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The Integrated Information Theory provides a quantitative approach to consciousness

and can be applied to neural networks. An embodied agent controlled by such a network

influences and is being influenced by its environment. This involves, on the one hand,

morphological computation within goal directed action and, on the other hand, integrated

information within the controller, the agent’s brain. In this article, we combine different

methods in order to examine the information flows among and within the body, the brain

and the environment of an agent. This allows us to relate various information flows to each

other. We test this framework in a simple experimental setup. There, we calculate the

optimal policy for goal-directed behavior based on the “planning as inference” method,

in which the information-geometric em-algorithm is used to optimize the likelihood of

the goal. Morphological computation and integrated information are then calculated

with respect to the optimal policies. Comparing the dynamics of these measures

under changing morphological circumstances highlights the antagonistic relationship

between these two concepts. The more morphological computation is involved, the less

information integration within the brain is required. In order to determine the influence

of the brain on the behavior of the agent it is necessary to additionally measure the

information flow to and from the brain.

Keywords: information theory, information geometry, planning as inference, morphological computation,

integrated information, embodied artificial intelligence

1. INTRODUCTION

1.1. Objective
An agent that is faced with a task can solve it using solely its brain, its body’s interaction
with the world, or a combination of both. This article presents a framework to analyze the
importance of these different interactions for an embodied agent and therefore aims at advancing
the understanding of how embodiment influences the brain and the behavior of an agent. To
illustrate the idea we discuss the following scenario:

Consider a sailor at sea without any navigational equipment. The sailor has to rely on the
information given by the sun or the visible stars in order to determine in which direction to steer.
The more complex part of the task is solved by the information processed in the brain of the
sailor. On the other hand, a bird equipped with magneto-reception, meaning one that is able to
use the magnetic field of the earth to perceive its direction, can rely on this sense and does not
need to integrate different sources of information. Here, the body of the bird interacts with the
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environment for the bird to orientate itself. The complexity of
the task is met by the morphology of the bird. Taking this
example further we consider a modern boat with a highly
developed navigation system. The sailor now only needs to
know how to interpret the machines and will therefore have less
complex calculations to do. The complexity of the task shifts
from the brain and background knowledge of the sailor toward
the construction of the navigation system, which receives and
integrates different information sources for the sailor to use.

Our objective is to analyze these shifts of complexity. We
will do that by quantifying the importance of the information
flow in an embodied agent performing a task under different
morphological circumstances.

The importance of the human body for perception of the
environment and ourselves is a core idea of the embodied
cognition theory, see for example (Wilson, 2002) or (Gallagher,
2005). In Gallagher (2000) the author develops a definition of a
human minimal self in the following way:

“Phenomenologically, that is, in terms of how one experiences it,

a consciousness of oneself as an immediate subject of experience,

unextended in time. The minimal self almost certainly depends

on brain processes and an ecologically embedded body, but one

does not have to know or be aware of this to have an experience

that still counts as a self-experience.”

Therefore, it is important to understand the influence the
ecologically embedded body has on the brain. Hence, here we
aim at quantifying both, the interaction of the body with the
environment and the information flows inside the body and
the brain, respectively, using the same framework and thereby
relating them to each other. As a first step in that direction we will
analyze simulated artificial agents in a toy example. These agents
have a control architecture, the brain of the agent, consisting of a
neural network. This will provide the basis for future analysis of
more complex agents such as humanoid robots. Ultimately, we
hope to gain insights about human agency, and in particular the
representation of the self.

The setting of our experiment will be presented in section
2.1. The question we ask is: How is the complexity of solving
the task distributed among the different parts of the body, brain
and environment?

The main statements that we will support by our
experiments are:

1. Themore the agent can rely on the interaction of its body with
the environment to solve a task, the less integrated information
in the brain is required.

This antagonistic relationship between integrated information
and morphological computation can be observed even in cases
in which the controller has no influence on the behavior of the
agent. Hence it is necessary to analyze further information flows
in order to fully understand the impact of the controller on
the behavior.

2. The importance of integrated information in the controller
for the behavior of an embodied agent depends additionally on

the information flowing to and from the controller. Therefore,
it is not sufficient to only calculate an integrated information
measure for understanding its behavioral implications.

In order to test these statements, we need to develop a
theoretical background.

1.2. Theoretical Background
We will model the different interactions using the sensori-motor
loop, which depicts the connections among the world W, the
controller C, the sensors S and actuators A. This will be discussed
further in section 2.1.2.

Using the sensori-motor loop we are able to define a
set of probability distributions reflecting the structure of the
information flow of an agent interacting with the world. Now we
need to find the probability distributions that describe a behavior
that optimizes the likelihood of success. It would be possible to
use a learning or evolutionary algorithm on the agents to find
this optimal behavior, but instead we will apply a method called
“planning as inference.”

Planning as inference is a technique proposed in Attias (2003),
in which a goal directed planning task under uncertainty is
solved by probabilistic inference tools. This method models
the actions an agent can perform as latent variables. These
variables are then optimized with respect to a goal variable
using the em-algorithm, an information geometric algorithm
that is guaranteed to converge, as proven in Amari (1995). This
algorithm might result in local minima depending on the input
distribution, which allows us to analyze different kinds of agents
and strategies that lead to a similar probability of success. This
course of action has the advantage that we can directly calculate
the optimal policies without having to first train the agents. We
will describe this method in the context of our experimental setup
in further detail in section 2.2.

Having calculated the distributions that describe the optimal
behavior, we apply various information theoretic measures to
quantify the strength of the different connections. The measures
we are going to discuss are defined by minimizing the KL-
divergence between the original distribution and the set of
split distributions. The split distributions lack the information
flow that we want to measure. Following this concept we are
able to quantify the strength of the different information flows,
which leads to measures that can be interpreted as integrated
information and morphological computation, respectively. We
will further define four additional measures that together
quantify all the connections among the controller, sensors and
actuators. These are defined in section 2.3.

Using information theoretic measures to quantify the
information flow in an embodied agent is a natural approach,
since we could perceive the different parts of the system as
communicating with each other. Surely the world does not
actively send information to the controller, but the controller
still receives information about the world through the sensors.
There have been various studies analyzing acting agents by
using information theoretic measures. In Klyubin et al. (2007)
maximizing the information flow through the whole system is
used as a learning objective. Furthermore, in Touchette and
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Lloyd (2004) the authors use the concepts of information and
entropy to define conditions under which a system is perfectly
controllable or observable. Emphasizing the importance of the
sensory input, entropy and mutual information are utilized in
Sporns and Pegors (2004) to analyze how an agent actively
structures its sensory input. Moreover, the authors of Lungarella
et al. (2005) also include the structure of the motor data in
their analysis. The last two cited articles additionally discuss
two measures regarding the amount of information and the
complexity of its integration. These concepts are also important
in the context of Integrated Information Theory.

Integrated Information Theory (IIT) proposed by Tononi
aims at measuring the amount and quality of consciousness. This
theory went through multiple phases of development starting as
a measure for brain complexity (Tononi et al., 1994) and then
evolved through different iterations (Tononi and Edelman, 1998;
Tononi, 2008), toward a broad theory of consciousness (Oizumi
et al., 2014). The two key concepts that are present in all versions
of IIT are “Information” and “Integration.” Information refers to
the number of states a system can be in and Integration describes
the amount to which the information is integrated among the
different parts of it. Measures for integrated information differ
depending on the version of the theory they are referring to and
on the framework they are defined in. We discussed a branch of
these measures building on information geometry in Langer and
Ay (2020). In this article we will use the measure that we propose
in Langer and Ay (2020) in the case of a known environment, as
defined in section 2.3.1. As advocated by the authors of Mediano
et al. (2021) we will treat the integrated information measure
as a complexity measure and therefore as a way to quantify the
relevant information flow in the controller.

Another general feature of all IIT measures so far is that
they focus solely on the brain, meaning on the controller in the
case of an artificial agent. Therefore, we want to embed these
measures into the sensori-motor loop and analyze their behavior
in relation to the dynamics of the body and environment.
Although the measures are only focusing on the controller,
there have been simulated experiments with evolving embodied
agents, interacting with their environment, in the context of
IIT. In Edlund et al. (2011) the authors measure the integrated
information values for simulated evolving artificial agents in
a maze and conclude that integrated information grows with
the fitness of the agents. Increasing the complexity of the
environment leads in Albantakis et al. (2014) to the conclusion
that integrated information needs to increase in order to
capture a more complex environment. In Albantakis and Tononi
(2015) the authors go one step further and conclude from
experiments with elementary cellular automata and adaptive
logic-gate networks that a high integrated information value
increases the likelihood of a rich dynamical behavior. All of these
examples focus on the measures in the controller in order to
analyze what kind of cause-effect structure makes a difference
intrinsically. Since we are interested in an embodied agent
solving a task, we want to emphasize the importance of the
interaction of the agent’s body with the world and additionally
measure this interaction explicitly. This leads us to the concept of
morphological computation.

Morphological computation is the reduction of computational
complexity for the controller resulting from the interaction
between the body and the world, as described in Ghazi-Zahedi
(2019). There are different ways in which the body can lift the
burden of the brain, as discussed inMüller andHoffmann (2017).
An example for morphological computation is the bird using
its magneto-reception mentioned earlier in the introduction.
Another case of morphological computation would be a human
grabbing a fragile object compared to a robotic metal hand. The
soft tissue of the human hands allows us to be less precise in
the calculation of the pressure that we apply. The robot needs
to perform more difficult computations and will therefore most
likely have a higher integrated information. Does this mean that
our experience of this task is less conscious than the experience
of the robot? Here we want to take a step back from the abstract
concept of consciousness and instead examine the complexity of
the tasks. Even though the interactions are not fully controlled
by the human brain, the soft skin of the human hand interacts
with the object in a more complicated manner than the robot’s
hand. In this article we want to analyze how the complexity of
solving a task is met by the different information flows among the
brain, body and environment. In Lungarella and Sporns (2006),
the authors find that the information flow in the agent can be
affected by changes in the body’s morphology. Examining this
phenomenon further we will observe shifts in the importance
of the information flows depending on the morphology of the
body, which directly changes the complexity of the environment
for the agent.

Furthermore, we will define two additional groups of agents.
For the agents of the first group all the information has to
go through the controller, while the controller has no impact
on the action for the agents in the second group. These
cases demonstrate once more that the antagonistic behavior of
morphological computation and integrated information exists
regardless of the behavior of the agents. The results of our
experiments are presented in section 3.

2. MATERIALS AND METHODS

2.1. Setting
In order to analyze the information flow of an acting agent, we
examine the following simple setting. The agents are idealized
models of a two-wheeled robot depicted in Figure 1A. Each
wheel can spin either fast or slow, hence the agents have four
different movements and are unable to stop. If both wheels spin
fast, then the agent moves 0.6 units of length and if they both spin
slow, then the agent moves 0.2. In case of one fast and one slow
wheel the agent makes a turn of approximately 10◦ with a speed
of 0.4. The code of the movement of the agents and a video of 5
agents performing random movements can be found in Langer
(2021) . The agent’s body consists of a blue circle and a blue line
marking the back of the agent, depicted in Figure 1B. The two
black lines are binary sensors that only detect whether they touch
an obstacle or not, without reporting the exact distance to it. If a
sensor touches a wall it turns green and if the body of the agent
touches a wall it turns red.
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FIGURE 1 | (A) A sketch of a two-wheeled robot and its four different types of movement. (B) The racetrack the agents have to survive in and (C) the different sensor

lengths, named SL, on the right.

Consider a racetrack as shown in Figure 1B. The agents die as
soon as their bodies touch a wall. Hence the goal for the agents is
to stay alive. The design and implementation of the agents and the
racetrack is due to Nathaniel Virgo. Although we depicted more
than one agent in the environment, these agents do not influence
each other.

Additionally, we want to manipulate the amount of
potential morphological computation for the agents. There exist
different concepts referred to as morphological computation, as
thoroughly examined in Müller and Hoffmann (2017), where the
authors distinguish between three different categories. These are
(1) Morphology facilitating control, (2) Morphology facilitating
perception and (3) proper Morphological computation. The
notion we will use belongs to the second category and is called
“pre-processing” in Ghazi-Zahedi (2019). How well agents
perceive their environment can heavily influence the complexity
of the task they are facing. One example is the design of the
compound eyes of flies, which has been analyzed and used for
building an obstacle avoiding robot in Franceschini et al. (1992).
Therefore manipulating the qualities of the sensors directly
influences the agent’s perception and consequently the amount
of necessary computation in the controller. Hence changing the
length of the sensors influences the agent’s ability for interacting
with the environment. We will therefore vary the length of
the sensors from 0.5 to 2.75. Four different sensor lengths are
depicted in Figure 1C.

The strategies the agents should use will be calculated by
applying the concept of planning as inference as discussed
in section 2.2. Utilizing this method we are able to directly
determine the optimal behaviors without having to train
any agents.

Before we discuss this further, we will first present the control
architecture of the agents in the next section.

2.1.1. The Agents
We model the whole system by using the sensori-motor loop as
depicted in Figure 2A. There the information about the world is

received by be the sensors, which send their information to the
controller and directly to the actuators. This direct connection
between the sensors and the actuators enables the agent to have
a response to certain stimuli, without the need for integrating
the information in the controller. The controller processes the
information from the sensors and also influences the actuators,
which in turn have an effect on the world. The sensori-motor
loop, also called action-perception circle, has been analyzed and
discussed in, for example, Klyubin et al. (2004), Ay and Zahedi
(2014), and Ay and Löhr (2015).

Unfolding the connections among the different parts of
the agent and its environment for one timestep leads to the
depiction in Figure 2B. The agents have two sensor S1t , S

2
t , two

controller C1
t ,C

2
t and two actuator nodes A1

t ,A
2
2. The sensors

and controllers send their information to the actuators and
controllers in the next point in time. The sensors are only
influenced by the world W and the world is only affected by the
actuators and the last world state.

To simplify we only draw one node for each S,A and C in the
following graphs.

The behavior of the agents is governed by a probabilistic
law, which can be modeled as the following discrete multivariate
time-homogeneous Markov process

(Xt)t∈N = (Wt , St ,At ,Ct)t∈N

with the state space X = W × S ×A× C and the distribution

P(x0, . . . , xt+1) = P(x0)

t+1
∏

i=1

P(xt|xt−1)

P(xt+1|xt) = P(wt+1|wt , at)
∏

k

P(skt+1|wt+1)

∏

i

P(ait+1|st , ct)
∏

j

P(c
j
t+1|st , ct).

The corresponding directed acyclic graph is depicted in
Figure 3A. See Lauritzen (1996) for more information on the
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FIGURE 2 | (A) The sensori-motor loop and (B) the architecture of the agents.

relationship between graphs and graphical models. Throughout
this article we will assume that the distributions on X are
strictly positive.

In the next section we will take a closer look at the role of
the environment.

2.1.2. The Environment
The Markov process defined above describes the interactions
between the agent and its environment in terms of a joint
distribution. Note that the distributions discussed in this section
determine the information flow in the system. The optimization
of this flow will require a planning process which we are going to
address in the next section. Since the agent has only access to the
world through the sensors, we replace

P(wt+1|wt , at)
∏

k

P(skt+1|wt+1)

using information intrinsically known to the agent. In order to
do that, we will look closer at one step in time P(xt , xt+1) =

P(xt)P(xt+1|xt). Reducing the focus to one step in time means
that we need to define an initial distribution that takes into
account the past of the agent. In Figure 3A we see that the
sensors St , actuators At and controller nodes Ct are conditionally
independent given the past, butmarginalizing to the point in time
t leads to additional connections. More precisely marginalizing
to one timestep results in undirected edges between St , At and
Ct . Here we will assume that the environment only influences
the sensors, even in the graph marginalized to one timestep as
depicted in Figure 3B. We will then sum over wt ,wt+1 ∈ W in
order to get a Markov process that only depends on the variables
known to the agent.

Proposition 1. Marginalizing the distribution, that corresponds
to the graph (B) in Figure 3, that is

P(xt , xt+1) = P(wt) · P(st , at , ct|wt) · P(wt+1|wt , at)
∏

k

P(skt+1|wt+1)
∏

i

P(ait+1|st , ct)
∏

j

P(c
j
t+1|st , ct)

FIGURE 3 | (A) Graphical representation of the Markov process (Xt )t∈N .

(B) Graphical representation of one timestep and (C) the marginalized graph.

over (wt ,wt+1) ∈ W ×W leads to the following Markov process

P(st , at , ct , st+1, at+1, ct+1) = P(st , at , ct) ·
∏

i

P(ait+1|st , ct)

∏

j

P(c
j
t+1|st , ct) · P(st+1|st , at).

The proof can be found in the Supplementary Material.
The new process describes the behavior of the environment

with information known to the agent and is shown in Figure 3C.
A similar distribution is also used in Ghazi-Zahedi and Ay (2013)
in section 3.3.1. and in Ghazi-Zahedi (2019). There it is derived
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FIGURE 4 | Graphical representation of two timesteps.

by taking P(St+1|St) as the intrinsically available information of
P(Wt+1|Wt).

We sample this distribution P̃(St+1, St ,At) for every sensor
length, by storing 20.000.000 sensor and motor values for agents
starting in a random place in the arena, performing arbitrary
movements. We denote all the sampled and therefore fixed
distributions by P̃.

Since we are now able to define a set of distributions
that describe the interaction between the agent and the world
according to the sensori-motor loop, we will present the method
to find the optimal behavior in the next section.

2.2. Optimizing the Behavior
In order to calculate the optimal behavior of the agents, we will
use the concept of planning as inference. This was originally
proposed by Attias in Attias (2003) and further developed by
Toussaint and collegues in Toussaint et al. (2006), Toussaint
(2009), and Toussaint et al. (2008) as a theory of planning
under uncertainty. There the conditional distribution describing
the action of the agent is considered to be a hidden variable
that has to be optimized. This is done by using the EM-
algorithm, which is equivalent to the information theoretic em-
algorithm in this case. We use the em-algorithm, because of its
intuitive geometric nature. More details can be found in the
Supplementary Material. The em-algorithm is well known and
was proposed in Csiszár and Tsunády (1984), further discussed in
Amari (1995) and Amari et al. (1992). The resulting distribution
maximizes the likelihood of achieving the predefined goal, but
might be a local optimum depending on the initial distribution.
Normally this is a disadvantage, but in our setting it allows us to
analyze various strategies by using different initial distributions.

The goal of the agents in our example is to maximize the
probability of being alive after the next two movements. To make
at least two steps is necessary since we want the connection
between Ct and Ct+1 to have an impact on the outcome. This can
be seen in Figure 4.

We will denote the goal variable by G with the state space
G = {0, 1}, where P(g1) : = P(g = 1) refers to the probability of
the agent to be alive. Since the agentmoves twice, this distribution
depends on the states of the last three sensor and motor states

P̃(G|St+2, St+1, St ,At+2,At+1,At).

The variable G depends on the nodes that are marked with a
golden circle in Figure 4. We sampled this distribution for every
sensor length, as described in the previous section in the context
of P̃(St+1, St ,At).

The architecture of the agents considered in this article was
discussed in the last sections. There we outlined how we sample
the distribution γ = P̃(St+1|St ,At) that describes the influence
the agent has on itself through the world. The distributions
influencing the behavior of the agents are

β = P(At+1|St ,Ct) and α = P(Ct+1|St ,Ct).

Hence we will treat (At+1,Ct+1) as hidden variables and
optimize their distributions with respect to the goal. We
denote these distributions by α,β and γ in order to
emphasize that the process is time-homogeneous, meaning
that P(At+1|St ,Ct) = P(At+2|St+1,Ct+1), P(St+1|St ,At) =

P(St+2|St+1,At+1) and P(Ct+1|St ,Ct) = P(Ct+2|St+1,Ct+1)
as indicated in Figure 4. Note that the above mentioned
homogeneity does not imply stationarity.

It remains to define the initial distribution P(St ,Ct ,At). In
the original planning as inference framework an action sequence
is selected conditioned on the final goal state and an initial
observation, as described in Attias (2003). Here, we do not want
to restrict the agents to an initial observation St . Instead we first
write the initial distribution in the following form

P(st , ct , at) = P(ct|at , st)P(st|at)P(at).

Using the sampled distribution P̃(St+1, St ,At), we are able to
calculate P̃(St|At) and set P(st|at) = P̃(st|at). The remaining
distributions P(ct|at , st) and P(at) are also treated as variables
and optimized using the em-algorithm. This approach leads to
the optimal starting conditions for the agents. The details of the
optimization are described in the Supplementary Material.

2.3. Measures of the Information Flow
In this section we will define the different measures. These are
information theoretic measures that use the KL-divergence to
calculate the difference between the original distribution and a
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split distribution. This split distribution is the one that is closest
to the original distribution without having the connection that
we want to measure.

Definition 1 (Measure 9). Let M ⊂ P◦(Z) be a set of probability
distributions corresponding to a split system. Then we define the
measure 9 , by minimizing the KL-divergence between M and
the full distribution P to quantify the strength of the connections
missing in the split system

9 = inf
Q∈M

D(P ‖ Q) =
∑

z

P(z) log
P(z)

Q(z)
.

Note that this measure depends on M, the set of split distributions.

Every discussed measure has a closed form solution and
can be written in the form of sums of conditional mutual
information terms.

Definition 2 (Conditional Mutual Information). Let (Z1,Z2,Z3)
be a random vector on Z = Z1 × Z2 × Z3 with the distribution
P. The conditional mutual information of the random variables Z1
and Z2 given Z3 is defined as

I(Z1;Z2|Z3) =
∑

z1∈Z1

∑

z2∈Z2

∑

z3∈Z3

P(z1, z2, z3) log

(

P(z1, z2|z3)

P(z1|z3)P(z2|z3)

)

=
∑

z1∈Z1

∑

z2∈Z2

∑

z3∈Z3

P(z1, z2, z3) log

(

P(z1|z2, z3)

P(z1|z3)

)

.

If I(Z1;Z2|Z3) = 0, then Z1 is independent of Z2 given Z3.
Therefore, this quantifies the connection between Z1 and Z2,
while Z3 is fixed. Additionally, we emphasize this by marking the
respective connection quantified by the measure in a graph as a
dashed connection. To simplify the figures we only depict one
timestep, but the connections between (Yt+1,Yt+2) are the same
as the connections between (Yt ,Yt+1).

The base of the logarithms in the definitions above is 2, hence
the unit of all the measures defined below is bits.

Although these measures were originally defined for only one
timestep, we will introduce them directly tailored to our setting
with two timesteps.

2.3.1. Integrated Information and Morphological

Computation
The two measures discussed in this section each quantify the
information flow among the same type of node in different
points in time. Integrated information only considers the nodes
inside the controller and therefore measures the information flow
inside the agent, while morphological computation is concerned
with the exterior perspective and measures the information flow
between the sensors.

2.3.1.1. Integrated Information
The measure 8T restricts itself to the controller nodes and can
be seen in the context of the Integrated Information Theory
of consciousness (Tononi, 2004). This theory was discussed

in the introduction. It aims at measuring the strength of
the connections among different nodes across different points
in time, in other words, the connections that integrate the
information. Since every influence on Ct+1 is known in our
setting, we are able to use the measure 8T proposed in Langer
and Ay (2020). This measure is defined in the following way

8T =
∑

τ∈{t,t+1}

∑

j

I(C
j
τ+1;C

I\{j}
τ |C

j
τ , Sτ )

and depicted as (b) in Figure 5. In the definition above,

I(C
j
t+1;C

I\{j}
t |C

j
t , St) denotes the conditional mutual information,

described in Definition 2, and I \ {j} is the set of indices of
controller nodes without j. For two controller nodes and j =

2 this would be {1, 2} \ {2} = {1}. Hence 8T measures the

connections between Ci
t and C

j
j+1 with i, j ∈ {1, 2} and i 6= j.

A proof of the closed form solution can be found in Langer
and Ay (2020). All the following measures can be proven in a
similar way.

2.3.1.2. Morphological Computation
In Ghazi-Zahedi (2019)morphological computation was referred
to as morphological intelligence and characterized in Definition
1.1. as follows

“Morphological Intelligence is the reduction of computational

cost for the brain (or controller) resulting from the exploitation

of the morphology and its interaction with the environment.”

There exists a variety of measures for morphological
computation, described for example in Ghazi-Zahedi (2019)
and Ghazi-Zahedi et al. (2017). The distribution P̃(St+1|St ,At)
describes the influence the agent has on itself through the
environment. Hence this distribution is dependent on the
environment and the morphology of the agent. The interplay
between environment and body is influenced by the length of
the sensors.

In Ghazi-Zahedi and Ay (2013) the authors define the
following measure for morphological computation, which
depends on P̃(St+1|St ,At). It quantifies the strength of the
influence of the past sensory input on the next sensory input
given the last action as

9S =
∑

τ∈{t,t+1}

I(Sτ+1; Sτ |Aτ )

which corresponds to ASOCW defined in Ghazi-Zahedi (2019)
in Definition 3.1.3. There the author compares the different
measures numerically and concludes in the chapter 4.9 that
the measure following the approach of 9S, but defined
directly on the world states, has advantages over other
formulations and is therefore the recommended one. We will
follow this reasoning and consider 9S to be the measure of
morphological computation.
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FIGURE 5 | Calculation of the measures for morphological computation (a) and integrated information (b).

2.3.2. Measures for Information Flows Between

Different Types of Nodes
We will observe that the measures for integrated information
and morphological computation behave antagonistically. This,
however, does not lead to a definitive conclusion about howmuch
of the behavior of the agent is determined by the controller.
Intuitively, it might be the case, that the agent acts regardless
of all the information integrated in the controller. In order to
understand the influences leading to the actions of the agents,
we will present four additional measures for the four remaining
connections in the graph and a measure quantifying the total
information flow. These are depicted in Figure 6.

2.3.2.1. Reactive Control
Reactive control describes a direct stimuli response, meaning
that the sensors send their unprocessed information directly
to the actuators. We are measuring this by the value 9R.
The corresponding split distribution results from removing the
connection between St and At+1

9R =
∑

τ∈{t,t+1}

∑

i

I(Ai
τ+1; Sτ |Cτ ).

2.3.2.2. Action Effect
We are able to quantify the effect of the action on the next sensory
state by calculating

9A =
∑

τ∈{t,t+1}

I(Sτ+1;Aτ |Sτ ).

This measures the amount of control an agent has. Hence in
Ghazi-Zahedi and Ay (2013) this measure was normalized and
inverted in order to quantify morphological computation. The
differences between this approach and 9S are further discussed
in section 4.9 in Ghazi-Zahedi (2019).

2.3.2.3. Sensory Information
The commands the controller sends to the actuators should be
based on the information received from the sensors. Therefore,
we will additionally calculate the strength of the information

flow from the sensor to the controller nodes. The smaller this
value is, the more likely it is that the controller converged to
a general strategy and performs this blindly without including
the information from the sensors. We will call this “sensory
information,” 9SI ,

9SI =
∑

τ∈{t,t+1}

∑

j

I(C
j
τ+1; Sτ |Cτ ).

2.3.2.4. Control
Since we are looking at an embodied agent, we additionally
want to measure how much of the information processed in the
controller has an actual impact on the behavior of the agent. We
will term the measure quantifying the strength of the impact of
the controller on the actuators “control,” 9C,

9C =
∑

τ∈{t,t+1}

∑

i

I(Ai
τ+1;Cτ |Sτ ).

2.3.2.5. Total Information Flow
The last measure quantifies the total information flow, 9TIF . In
this case two points in time are independent of each other in the
split system, as depicted in Figure 6,

9TIF =
∑

τ∈{t,t+1}

∑

i,j

I(Sτ+1; Sτ ,Aτ )+ I(Ai
τ+1; Sτ ,Cτ )

+I(C
j
τ+1;Cτ , Sτ ).

The total information flow is an upper bound for all the other
measures defined in the previous sections.

3. RESULTS

In this section we will present the results of our experiments.
The length of the sensors are varied from 0.5 to 2.75 in steps
of 0.25. We took 100 random input distributions P̄. Each time
the algorithm takes at least 1,000 iteration steps and stops when
the difference between the likelihood of the goal is smaller
than 1 ∗ 10−5.
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FIGURE 6 | Calculation of the measures for (c) reactive control, (d) action effect, (e) sensory information, (f) control and (g) total information flow.

FIGURE 7 | (A) The architecture of the fully coupled agents and (B) the probability of survival (top) and the total information flow 9TIF (bottom).

3.1. Fully Coupled Agents
The architecture of the fully coupled agents are the ones described
in section 2.1.1 as shown in Figure 7 on the left. We will refer to
the optimized distribution of a fully coupled agent by P1, hence
P1(g1) is the probability with which the agents survive. This value
is depicted in Figure 7 on the top right. The agents perform best
between a sensor length of 1.25 and 2.25. If the sensors are too
long or too short their information is not useful to assure the
survival of the agents.

The total information flow 9TIF in Figure 7 on the bottom
right exhibits an almost monotonic increase, except for a local
maximum at a sensor length of 1. We will discuss this sensor
length below in the context of 9R and 9A.

Now we are going to present the results for integrated
information 8T and morphological computation 9S, depicted in
Figure 8.

We observe that 8T monotonically decreases as the sensors
become larger. Directly to the right, 9S exhibits the opposite
dynamic. It quantifies the influence of the past sensory input

FIGURE 8 | Integrated information 8T and morphological computation 9S for

the fully coupled agents.

on the next sensory input given the action. Hence, taking the
perspective of the agent, 9S describes the extrinsic information
flow, whereas 8T only depends on the controller nodes and
quantifies therefore, the most intrinsic information flow. So
these measures exhibit an antagonistic relationship between
the outside and the inside, meaning between morphological
computation and integrated information.
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Note that the total information flow, 9TIF , is a sum of three
mutual information terms and that the first term I(St+1; St ,At)
is an upper bound of 9S, the measure for morphological
computation. Since9S is particularly high compared to the other
measures, the dynamics of I(St+1; St ,At) are dominating 9TIF ,
leading to the monotonic increase in Figure 7.

In Figure 9 in the first row we see the measures 9SI and 9C.
The measure 9SI quantifies how important the information flow
from the sensors to the controller is. For a length below 1 the
sensors are too short and above approximately 2 too long to carry
information that is valuable for the controller. The importance
of the commands sent from the controller to the actuators is
measured by 9C. Between 0.5 and 1.25 this value is very close
to 0, which means, that the controller has next to no influence on
the behavior of the agent. In this case the sensors are so short that
the agents need to react directly to it.

Hence, although8T has its maximum values at a sensor length
of 0.5, the integrated information does not have a significant
impact on the behavior of the agents. Therefore the importance
of the information flow in the controller of an embodied agent
depends additionally on the information flowing to and from
the controller.

The measure for reactive control is shown in the second
row. In the case of short sensors, the information needs to get
passed directly to the actuators. Now we will compare 9R to
9A, depicted on the bottom right in Figure 9. The latter one
is defined as the action effect, meaning the higher 9A is, the
more influence the actuators have on the next sensor state. The

FIGURE 9 | The measures for control 9C, sensory information 9SI, reactive

control 9R and action effect 9A for the fully coupled agents.

maximum of 9R and 9A are at a sensor length of 1, which
results in the local maximum of 9TIF in Figure 7. Both graphs
show similar dynamics between sensors of length 1 to 2.25. If the
sensors are too small, the information needs to pass directly to the
actuators, but the actuators might not be able to assure survival
and therefore9R is high, while9A is low. In the case of very long
sensors, they detect a wall with a high probability, so that the next
sensory state will again detect a wall regardless of the action taken.
This leads to a high 9R and a low 9A.

At a sensor length of 1.25, 9R is close to 0, as well as 9C and
9A, which suggests that the algorithm converged to an optimum
in which the next sensor state is not dependent on the action and
the action is not dependent on the last sensor state.

At a first glance the values of 9A and 9C seem to be
insignificant compared to the other measures, but note that
the relatively small amount is an expected result in these
experiments. The last sensor state has a very high influence on
the next sensor state and on the next action, since an agent that
is not touching a wall will most likely not touch a wall in the next
step and move slowly, whereas an agent touching a wall will steer
away and, depending on the length of the sensors, probably touch
a wall in the next step. Nevertheless, if 9A and 9C are not zero,
then there exists an information flow and therefore an influence
from the actuators to the sensors and from the controller nodes
to the actuators. Hence observing the dynamics and relating them
to the other measures does lead to insights to the interplay of the
different information flows.

In order to further substantiate the results of our analysis,
we will now examine two subclasses of agents. We will directly
manipulating the architecture of the agents so that the influence
on the actuators are limited. Hence we will gain insights on the
importance of reactive control and the controller for the behavior
of the agent. The first subclass contains agents that are incapable
of reactive control and therefore all the information has to flow
through the controller. Hence we call them controller driven
agents in section 3.2. The second class consists of agents in which
the controller has no impact on the actuators. These will be called
reactive control agents and discussed in section 3.3.

3.2. Controller Driven Agents
Now, we will discuss the results for the agents that are not able to
use reactive control. These are displayed in Figure 10 on the left.
We will refer to the optimized distributions by P2.

FIGURE 10 | (A) the architecture of the controller driven agents and (B) the probability of survival (top) and the total information flow 9TIF (bottom).
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Note that these agents are a subclass of the fully coupled
ones. Hence optimizing the likelihood of success for these agents
should not lead to a higher value for success than for the
fully coupled agents. Since we are using the em-algorithm that
converges to local minima, however, we observe that controller
driven agents have a higher probability of success around a sensor
length 1, as depicted on the right in Figure 10.

The results of the total information flow are similar compared
to the case of the fully coupled agents after a sensor length of 1.
In this case 9TIF has a global maximum at 0.75, which we will
discuss in the context of 9SI and 9A.

The measures 8T and 9S show in Figure 11 approximately
the same values as in Figure 8. There is no change in the
dynamics of 9S, but 8T is lower than before at a sensor length
of 0.5. Note that 9C in Figure 12 is significantly higher in this

FIGURE 11 | Integrated information and morphological computation for the

controller driven agents.

FIGURE 12 | The measures for control 9C, sensory information 9SI, action

effect 9A for the controller driven agents and the performance difference the

fully coupled agents and the reactive ones.

case, so that the integrated information makes an impact on
the actuators.

All of the measures corresponding to the controller have
a spike at 0.75, at which point these agents perform better
than the ones with the ability for reactive control as can be
seen in the graph on the bottom left of Figure 12. There the
total information flow 9TIF , depicted in Figure 10, reaches its
maximum. This spike can also be observed in 9A, meaning that
the influence of the actuators on the next sensory input given the
last sensory input is high.

Additionally, looking at the goal difference depicted on the
bottom left in Figure 12, we see that these agents perform better
than the fully coupled agents for the sensors being longer than
0.5. The black line marks the value 0. After a sensor length of 1
the measures 9C and 9A and show that the information flows
from the controller to the actuators and from the actuators to the
sensors are barely existent. Therefore, we come to the conclusion,
that the agents converged to an optimum in which the actuators
do not depend on the sensory input and have no influence on
the next sensory state. Note that 8T still shows the decreasing
behavior, even though it has no impact on the actions of the agent.

3.3. Reactive Control Agents
The architecture of the reactive control agents is shown in
Figure 13 on the left. Here the controller has no influence on the
actuators. On the right we see the probability of survival P3(g1).

There is now significant difference between the total
information flow of the fully coupled agents and the total
information flow in this case.

The measures 8T and 9S show in Figure 14 the same
antagonistic behavior as in the fully coupled case. This

FIGURE 14 | Integrated information and morphological computation for the

reactive control agents.

FIGURE 13 | (A) The architecture of the reactive control agents, (B) the probability of survival (top) and the total information flow 9TIF (bottom).
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FIGURE 15 | The measures for control morphological computation 9S, reactive control 9R and action effect 9A for the reactive control agents and the performance

difference between the fully coupled agents and the reactive ones.

demonstrates once more that only using integrated information
as a measure in the case of embodied agents does not suffice if we
want to understand the agent’s behavior.

A closer examination of the difference in performance,
depicted on the top right in Figure 15, reveals that the agents
connected to a controller perform better for sensors between
1.25 and 2.5. Looking back at Figure 9, we see that this is
approximately the region in which 9C and 9SI are both high.
This supports the idea that integrated information has an impact
on the behavior, when at the same time the information flows to
and from the controller are high.

The other measures show the same dynamics as the
corresponding measures for the fully coupled agents.

4. DISCUSSION

In this article we combine different techniques in order to create
a framework to analyze the information flow among an agents
body, its controller and the environment. The main question
we want to approach is how the complexity of solving a task is
distributed among these different interacting parts.

We demonstrate the steps in the analysis with the example
of small simulated agents that are not allowed to touch the
walls of a racetrack. These agents have a sufficiently simple
architecture such that we are able to rigorously analyze the
different information flows. Additionally, we can examine the
dynamics of the information theoretic measures of an agent
under changing morphological circumstances by modifying the
length of the sensors.

We calculate the optimal behavior by using the concept of
planning as inference which allows us to model the conditional
distributions determining the actions of the agents as latent
variables. Using the information geometric em-algorithm, we are
able to optimize the latent variables such that the probability
of success is maximal. Here, the expectation maximization
EM algorithm used in statistics is equivalent to the em-
algorithm, but we chose to present the em-algorithm, because
it has an intuitive geometric interpretation. This algorithm is

guaranteed to converge, but converges to different (local) optima
depending on the starting distribution. Hence this allows us
to analyze various kinds of strategies that lead to a reasonably
successful agent.

The distributions that are optimal regarding reaching a goal
are then analyzed by applying seven information theoretic
measures. We use the measure 8T to calculate the integrated
information in the controller and we demonstrate that, although
the agents have goal optimized policies, this value can be high
even in cases in which it has no behavioral relevance. Therefore,
the importance of the information flow in the controller of an
embodied agent additionally depends on the information flow
to and from the controller, measured by 9SI and 9C. Hence, if
we want to fully understand the impact integrated information
has on the behavior of an agent, it is not sufficient to only
calculate an integrated information measure. This is supported
by the comparison of the fully coupled agents to the reactive
ones, the agents in which the controller has no impact on the
actuators. It shows that the controller has a positive influence on
the performance of the agents exactly in the cases in which 9SI

and 9C are both high.
Comparing the morphological computation, measured by 9S,

to the integrated information reveals an antagonistic relationship
between them. The more the agent’s body interacts with its
environment, the less information is integrated.

The measure for reactive control 9R displays a dynamic
similar to the action effect 9A. Removing the ability to send
information from the sensors directly to the actuators, in the
controller driven agents, leads to agents that perform an action
regardless of the sensor input for a sensor length greater than 1.

Finally, the total information flow is an upper bound for the
other measures. Therefore 9TIF combined with the measures
above give us a notion of which information flow has the most
influence on the system.

All in all, we present a method to completely examine the
information flow among the controller, body and environment
of an agent. This gives us insights into how the complexity of the
task is met by the different interacting components. We observe
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how the morphology of the body and the architecture of the
agents influence the internal information flows. The example
discussed in this article is limited by its simplicity, but even in this
scenario, we were able to demonstrate the value of examining the
different measures.

We will continue to develop these concepts further to be able
to efficiently analyze more complicated agents and tasks and test
them on humanoid robots. A humanoid robot can perform for
example a reaching movement, which is a goal directed task that
allows for more degrees of freedom and the need to integrate
different information sources such as visual information and the
angle of the joints.

Furthermore, we have seen in the examples presented in this
paper, that some tasks can be performed without involvement
of the controller. In contrast to the agents in this article,
which are optimized directly using planning as inference, natural
agents learn to control their body and to interact with their
environment gradually. It is intuitive to assume that learning
a new task requires much more computation in the controller
than executing an already acquired skill. Hence, it is important
to analyze the temporal dynamics of the integrated information
and morphological computation measures during the learning
process to gain insights into potential learning phases. These
different learning phases may lead us one step closer to
understanding the emergence of the senses of agency and body
ownership, two concepts closely related to the human minimal
self (Gallagher, 2000).

Using an agent with a more complicated morphology can lead
to the opportunity to study the “degrees of freedom” problem,
formulated in motor control theory. In his influential work
(Bernstein, 1967) addresses the difficulties resulting from the
many degrees of freedom within a human body, namely the
problem of choosing a particular motor action out of a number of
options that lead to the same outcome. In Bernstein (1967), in the
chapter “Conclusions toward the study of motor co-ordination,”
he makes the following observation:

“All these many sources of indeterminacy lead to the same end

result; which is that the motor effect of a central impulse cannot

be decided at the centre but is decided entirely at the periphery:

at the last spinal and myoneural synapse, at the muscle, in the

mechanical and anatomical change of forces in the limb being

moved, etc.”

He thus emphasizes the importance of the morphology of the
body for the actual movement.

There have been a number of theories further discussing
this topic. In Todorov and Jordan (2002), for example, the
authors propose a computational level theory based on stochastic
optimal feedback control. The resulting “minimum intervention
principle” highlights the importance of variability in task-
irrelevant dimensions. It would be interesting to analyze, whether
we observe spikes in the control value and the integrated
information that indicate a correctional motor action only for the
task-relevant dimensions.

Another theory approaching the degrees of freedom problem
is the “equilibrium point hypothesis” by Feldman and colleagues,
Asatrian and Feldman (1965) and Feldman (1986). There the
control is modeled by shifting equilibrium points in opposing
muscles. The usage of the properties of the body in order
to achieve co-ordination is directly related to the concept of
morphological computation. The authors of Montúfar et al.
(2015) study how relatively simple controllers can achieve a set
of desired movements through embodiment constraints and call
this concept “cheap control.”

By applying our framework to more complex tasks, we
would expect results agreeing with the observations in
Montúfar et al. (2015). Fewer degrees of freedom, which
are associated with strong embodiment constraints, should
lead to high morphological computation and therefore,
following the reasoning of this paper, to a small integrated
information value.
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