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Human language is inherently embodied and grounded in sensorimotor representations

of the self and the world around it. This suggests that the body schema and ideomotor

action-effect associations play an important role in language understanding, language

generation, and verbal/physical interaction with others. There are computational models

that focus purely on non-verbal interaction between humans and robots, and there

are computational models for dialog systems that focus only on verbal interaction.

However, there is a lack of research that integrates these approaches. We hypothesize

that the development of computational models of the self is very appropriate for

considering joint verbal and physical interaction. Therefore, they provide the substantial

potential to foster the psychological and cognitive understanding of language grounding,

and they have significant potential to improve human-robot interaction methods and

applications. This review is a first step toward developing models of the self that

integrate verbal and non-verbal communication. To this end, we first analyze the

relevant findings and mechanisms for language grounding in the psychological and

cognitive literature on ideomotor theory. Second, we identify the existing computational

methods that implement physical decision-making and verbal interaction. As a result,

we outline how the current computational methods can be used to create advanced

computational interaction models that integrate language grounding with body schemas

and self-representations.

Keywords: embodiment cognition, grounding language, dialog, minimal self, reinforcement learning,

developmental psychology, developmental robotics

1. INTRODUCTION

The human species has a unique communication system that involves verbal (e.g., speech) and
non-verbal (e.g., gestures, facial expressions, body language) interaction with others. Despite
cultural and social differences, participants in a conversation need to share a common conceptual
view of the world and their embodied self. This is essential to have a common understanding,
avoid misunderstandings, interpret metaphors (Feldman and Narayanan, 2004) (see Figure 1A),
and for self-other distinction (Schillaci et al., 2013). A common conceptual view of the world
is a consequence of the shared commonalities in how conversation partners ground language in
their embodied interaction with the world (Barsalou, 2008; Madden et al., 2010). For example, the
common conceptual view implies a self-representation that enables humans to solve tasks involving
intrinsic spatial reference frames, like the one in Figure 1B. But how can humans learn appropriate
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FIGURE 1 | (A) Misunderstanding a metaphor, potentially due to the lack of a self-representation. (B) A robot using the self as point of reference to understand an

instruction.

representations of their body and, consequently, their self? Is the
self a unifying principle that combines all the needed ingredients
to solve both mentioned examples?

In this review, we will address these questions from an
interdisciplinary perspective. Therefore, we will first discuss the
cognitive and psychological background for self-representation
and embodied language learning. Second, we will align this
background with contemporary research in reinforcement
learning. Herein, we focus on the cognitive mechanistic aspects
of representation learning and behavior. We also appreciate
insights from neuroscientific literature (Rizzolatti and Arbib,
1998; Kaplan, 2007; Madden et al., 2010), but we draw
only occasional links to maintain a feasible scope for this
article, we draw only occasional links to particularly relevant
neuroscience background.

1.1. Embodied Language Learning
Human-robot interaction (HRI) is an active field of research
where communication via natural language is an essential but
also a very challenging component. In the past years, methods
utilizedmachine learning to improve natural language processing
(NLP), enabling decent interactions with virtual agents like Siri,
Alexa, Cortana, and Google. These improvements are mainly
due to utilizing large neural network-based language models
(Vaswani et al., 2017; Devlin et al., 2019). However, these
systems are limited to disembodied language processing, and
therefore, cannot understand how natural language is situated
in the physical world. For example, properties such as “heavy”
or “hot” cannot be experienced without sensors, and they are
important for robots interacting with humans. A robot should
understand that hot things can hurt living beings and that not
every person can lift heavy objects. There exists research on
how robots can technically acquire and understand language
through sensorimotor grounding (Steels et al., 2012; Spranger
et al., 2014). However, in practice, this is still challenging for
current computational models on robots as sensory inputs
are imperfect, and natural language is full of ambiguities (see
Figure 1A). For example, Steels and Loetzsch (2012) present
research on how robots can establish new names for objects

they see in an environment. They play a grounded naming
game with a hardcoded cognitive system and vision, speech
recognition, and pointing mechanisms. This is consistent with
the concept of decoupling skill learning and language language
grounding (Akakzia et al., 2021; Lynch and Sermanet, 2021) that
we consider in this article.

To address the problem of imperfect sensors and noisy
perception, researchers and engineers often use crossmodal
inputs following the notion of the duck test for deductive
reasoning: “If it looks like a duck, swims like a duck, and quacks
like a duck, then it probably is a duck.” (Hill et al., 2020;
McClelland et al., 2020). Language models, even if showcased
as extremely powerful like GPT-3 (Brown et al., 2020), are
limited as they cannot make sense of swimming or what
a quaking duck would sound or even look like. To fully
understand what swimming and quacking are, an agent requires
embodied and situated experiences to ground these concepts.
This includes physical interaction with water and, preferably,
cross-modal visual and acoustic sensory input to perceive
the quacking. In other words, many of the existing language
models like GPT-3 perform Natural Language Processing (NLP),
but they lack the embodied grounding processes required for
Natural Language Understanding (NLU). As a consequence,
to understand language in the context of a dialog and to be
able to interact physically with the world via actuators, it is
critical to receive embodied multisensory inputs, such as vision,
sound, and touch. Figure 2 illustrates a possible association
between the language modality and other modalities (right
side) compared to a model that cannot use such grounded
connections. Understanding grounded language is critical for
acting robots (Tellex et al., 2020) to perform dialog (Bordes et al.,
2017) and HRI in general.

Many human skills can be acquired by explanation through
language only. However, learning physical skills like a backflip
is hard and costly to learn by verbal explanations only because
it also benefits from the athletic experience. For example,
Christiano et al. (2017) were able to teach an agent to do a backflip
via simple feedback akin to basic language only, describing how
good the agent is currently performing or what to improve.
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FIGURE 2 | We illustrate an example using a neural text-processing model

that integrates text only (left) and text in combination with vision and sound

(right). Possible associations or groundings are highlighted.

The key point is that learning skills through language require
embodied concepts that recall motions and postures in context.
For example, “While jumping as high as you can, pull your legs
towardz your body and throw yourself to the back; after a full
rotation, land on your feet” presupposes that the skill “jumping” is
already known. Without such concepts, explaining the execution
of a backflip, similarly to the example of Christiano et al. (2017),
requires a vast amount of feedback or very detailed guidance to
compensate for the lack of knowledge.

In summary, humans leverage embodied concepts built up
during their lifetime, with language understanding always tightly
connected to knowledge and experiences of the motor system
(Fischer and Zwaan, 2008). Specifically, verbal descriptions like
“throwing a ball” or “jumping in the air” excite the relevant
parts of the motor cortex that are active for both hearing and
executing. Therefore, language acquisition is strongly influenced
by embodied experiences and the current context (McClelland
et al., 2020).

1.2. Reinforcement Learning and
Computational Language Understanding
Methods
Reinforcement learning (RL) (Sutton and Barto, 2018) is a
cognitively plausible and valuable framework to emulate infant-
like learning, exploring the world with a trial-and-error approach
based on rewards. RL-based agents are sometimes intrinsically
motivated (Forestier et al., 2017; Colas et al., 2020; Akakzia
et al., 2021; Hill et al., 2021). They imitate behaviors (Chevalier-
Boisvert et al., 2019; Lynch and Sermanet, 2021), use hierarchical
abstractions to decompose a complex task into simpler tasks
(Oh et al., 2017; Eppe et al., 2019), and some of them can be
trained with language to follow instructions (Hermann et al.,
2017; Oh et al., 2017; Chaplot et al., 2018; Narasimhan et al., 2018;
Chevalier-Boisvert et al., 2019; Hill et al., 2019, 2020, 2021; Jiang
et al., 2019; Colas et al., 2020).

Reinforcement learning is also a promising method to
implement dialog systems (Shi and Yu, 2018; Saleh et al.,

2020) and language-driven interactive RL (Cruz et al., 2015;
Chevalier-Boisvert et al., 2019). Commonly, language in RL
(Luketina et al., 2019) is either used to provide an instruction
(what to do) or to assist the learning of the agent with hints
and descriptions (Narasimhan et al., 2018). Other methods
describe the agent’s environment purely in textual form, e.g.,
the agent’s state in a dialog or text-based game (Côté et al.,
2019; Madureira and Schlangen, 2020), which is a common setup
for most conversational settings. For example, the simulator
ALFWorld (Shridhar et al., 2021) was published with the goal
to provide a learning environment where they combine the text-
based knowledge obtained in TextWorld (Côté et al., 2019) is
combined with visual inputs from ALFRED (Shridhar et al.,
2020). Saleh et al. (2020) use hierarchical reinforcement learning
(HRL) (Barto and Mahadevan, 2003) in an open-domain dialog,
providing results that are comparable with the current state-
of-the-art language models (Vaswani et al., 2017). As another
example for language-driven RL, consider the research by Jiang
et al. (2019), who use simplified language to communicate
between a lower and higher layer of a hierarchical RL agent
following language instructions.

The recent review by Uc-Cetina et al. (2021) illustrates the
applicability of RL in NLP to some extent, such as machine
translation, language understanding, and text generation. The
authors also suggest considering embodiment (Heinrich et al.,
2020), textual domain knowledge, and conversational settings.
Bisk et al. (2020) focus further on embodiment and highlight
the importance of physical and social context, more precisely,
multimodal sensory experiences, to apprehend the coherency
of words and actions. In an embodied dialog, the notion of
technically combining the world state, i.e., the sensory inputs,
with a linguistic state of a dialog, e.g., the context of the last
n utterances, is crucial. We also see advances in multimodal
reinforcement learning (Schillaci et al., 2013; Chaplot et al., 2018;
Hill et al., 2019, 2020, 2021), integrating multisensory experience
for explainability and improved training performance.

1.3. Scientific Rationale and Contribution
of This Review
The work of Eppe et al. (2020) provides a thorough review
of the hierarchical concepts for embodied problem-solving, but
the authors do not consider language. Another related review
about computational models of the self and body schemas has
recently been presented by Nguyen et al. (2021). However,
the authors do not consider language either. We address this
gap by examining the challenges of embodied dialogs (Hahn
et al., 2020) in the context of the self, combining the presence
of language with other input modalities to learn appropriate
hierarchical representations.

For our review, we hypothesize that a disembodied
combination of the latest insights in multimodal data processing
and language processing is not sufficient to enable full language
understanding in dialogs between humans and embodied
computational agents like robots. Instead, we hypothesize
that an increased focus on the embodied self is important to
enable computational agents with true language understanding
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capabilities beyond the mere computational processing of
language. We investigate this hypothesis by addressing the
following research questions:

What are the cognitive components of the self, and why
are they important for communication and dialog? Which
components have been realized computationally, and how? Which
are still missing?

To address these questions, and as our main contribution,
we look into recent articles defining the prerequisites of an
artificial self (Schillaci et al., 2016; Georgie et al., 2019; Hafner
et al., 2020; Nguyen et al., 2021) and relate these prerequisites
with verbal and non-verbal dialog methods for computational
agents and reinforcement learning. In section 2, we survey
the developmental processes of humans to ground language
in embodied sensorimotor representations of the self and
its surrounding world. In section 3, we summarize existing
computational methods that use grounded language to train
an agent. In section 4, we address our main hypothesis
by summarizing and detailing why the self contains all the
components that make robots better language learners and dialog
partners. In addition, we provide a blueprint for combining the
different existing computational techniques. These results are
followed by a brief conclusion in section 5.

2. COGNITIVE AND PSYCHOLOGICAL
PERSPECTIVES OF THE
COMMUNICATING SELF

The development of the human ability to perform bi-directional
language-based dialog is a process over three interleaved stages.
The first stage is sensorimotor development, where infants learn
to align their perception with their motor skills (Paul et al., 2018)
to acquire an understanding of the physical dynamics of their
environment. Based on such low-level sensorimotor knowledge
acquisition, humans develop embodied mental concepts in
a second developmental stage to model their environment
in higher-level preverbal conceptual representations (Feldman,
2006; Barsalou, 2008; Frankland and Greene, 2020). Such higher-
level concepts are the foundation of language, which emerges
with social interaction and communication during the third
stage of development (Feldman, 2006; Kiefer and Pulvermüller,
2012). These three stages are not temporally distinct, but they
co-develop. For example, verbal interaction demands additional
low-level motor skills to produce phonemes using tongue, lips,
and diaphragm. And social interaction leads to learning new
conceptual representations that describe social interaction, e.g.,
in meta-communication. In the following, we will summarize the
psychological and cognitive foundations of each of these stages.

2.1. Learning Sensorimotor
Representations
From the very first month of birth, infants start developing
a sense of their own body and its relation to other physical
entities, such as objects and other living beings (Nguyen et al.,
2021). The representation of their body in space that encodes
positional and relational information is called the body schema

(Holmes and Spence, 2004; Hoffmann et al., 2010). The body
schema, or sense of body, is mainly shaped by proprioception,
but visual information and other modalities (Wermter et al.,
2009), including sound, vision, pain, and smell, also play a role
(Anderson, 1972). The multimodality of the formation of low-
level sensorimotor representations is very efficient for humans
suffering from a lack of one or more senses. For example, visually
impaired humans can build a rich conceptual understanding of
words, objects, and the world, even without the visual sense
(Nguyen et al., 2021). Generally, the absence of one or more
modalities can be compensated by the other modalities, such as
touch and sound. Therefore, multisensory integration is crucial
for embodied cognition and learning concepts to represent
the world.

Ideomotor theory postulates that the physical knowledge
about multimodal sensorimotor contingencies is encoded as bi-
directional action-effect associations (Shin et al., 2010). This
implies that neural structures learn a mapping between actions
and effects that enable humans to predict the outcome of actions
and external events. The same structures enable humans to select
an action based on a desired effect, i.e., a goal. The acquisition of
ideomotor associations is enabled by observing and interacting
with the world, learning principles such as occlusion, solidness,
collision, gravity, and other physical events (Baillargeon, 2001).

Developmental psychology suggests that the acquisition of
sensorimotor knowledge is guided by several forms of intrinsic
motivation, including self-guided play (Sutton-Smith, 2001),
curiosity (Oudeyer et al., 2007), repetition, and imitation (Wood
et al., 1976; Paulus, 2014). Self-guided play implies that infants
conduct their own experiments, e.g., dropping toys to discover
forces like gravity, to extend their knowledge about the world
and their own capabilities (Sutton-Smith, 2001). This behavior
is closely tied to curiosity and active learning: infants often
strive to encounter surprising and unpredictable situations to
maximize their knowledge about the world (Schwartenbeck et al.,
2019). More specifically, Schwartenbeck et al. (2019) state that
active learning builds on minimizing the unexpected uncertainty,
which can be described as the uncertainty about uncertainty.
The authors exemplify active learning with a two-armed bandit
problem where the reward of using one arm is low, but the
agent knows that the probability for the low reward is high. The
other arm has a low but unknown probability for a high reward.
In this case, an agent will first try to resolve the unexpected
uncertainty about the unknown probability for a high reward of
the second arm by trying it. In general, it will collect samples of
state transitions with a high unexpected uncertainty until it has a
good estimate of the uncertainty.

This explorative behavior, however, must be balanced with
striving for predictable action-state transitions, as described
by the free energy principle (Friston, 2009). This principle
implies that humans and other acting systems perform an active
inference behavior and seek to encounter predictable situations. It
describes long-term surprise as an upper limit for free energy and
states that biological agents strive to minimize the free energy.
At first glance, active inference seems to contradict the active
learning behavior where agents strive to encounter uncertain
and unpredictable situations to maximize their knowledge gain.
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However, since active learning seeks to encounter situations with
a high unexpected uncertainty, i.e., uncertainty about uncertainty,
this is in fact very compatible with active inference, which seeks to
avoid situations with a high expected uncertainty. In other words,
active learning is preliminary to active inference because it is
required to learn a model about expected uncertainty.

Another form of intrinsic motivation is repetition: Biological
agents exhibit behaviors that are not only goal-driven but
exclusively conducted for the purpose of repetition to discover
multiple possible ways of achieving a goal (Burghardt, 2006). For
example, one can think about a child stacking blocks just for the
sake of stacking rather than the goal of building a big tower.
In the goal-driven case, repetition allows experiencing many
ways of achieving the same desired outcome.1 Acevedo-Valle
et al. (2020) point out that intrinsically motivated sensorimotor
exploration is also related to imitation. The authors’ proposed
architecture highlights imitation-based learning of an infant in
the pre-linguistic phase, being supervised by an instructor. They
consider the simulation of a vocal tract as a comparison to
what young infants do to produce vocal sounds when acquiring
speech. Most robots do not have a vocal tract, but there exists
research on modeling goal-directed behavior where the goal is
to produce a certain vowel or syllable (Philippsen, 2021). Here,
the authors consider the case of speech acquisition, where goal-
directed explorative behavior uses sounds to learn vowels and
syllables via goal babbling (Philippsen, 2021).

In summary, explorative play and active learning are the main
drivers for learning to “know the unknown” (Vygotsky, 1967;
Belsky and Most, 1981) and, more specifically, about the effects
and uncertainties of actions (Nguyen et al., 2021). However,
explorative behavior is balanced with the free energy principle,
causing agents to strive for predictable situations. Other drivers of
sensorimotor learning are imitation and repetition. Once enough
knowledge is acquired, humans and other animals can use their
rich conceptual knowledge for one-shot problem-solving (Eppe
et al., 2020).

2.2. Formation and Grounding of Preverbal
and Abstract Conceptual Representations
Language allows humans to express thought. However, explicit
verbal language is not a prerequisite for thought—there exists
a preverbal hierarchical system of abstract mental concepts to
enable thought (Frankland and Greene, 2020).

2.2.1. Representational Abstraction
The human mind constantly performs inference on multiple
layers of representational abstraction (Clark, 2016). The theory of
embodied cognition suggests that the higher levels of abstraction
emerge from the sensorimotor interaction of the lower levels
(Barsalou, 2008; Lakoff and Johnson, 2010; Tani, 2016). Already
during the first year of a human’s life, sensorimotor abstraction
leads to higher-level preverbal concepts that enable problem-
solving and the understanding of simple language (Mandler,
2004). These concepts are grounded in sensorimotor experiences

1This idea was recently used to learn robust and diverse behaviors in goal-directed
RL (Akakzia et al., 2021; Lynch and Sermanet, 2021).

and perception, being later on shaped by our acquired language.
Cognitive sciences often refer to such preverbal general concepts
as image schemas (Lakoff and Johnson, 2010; Turner, 2015) or,
in a more linguistic context, semantic frames (Barsalou, 2008;
Gamerschlag et al., 2014).

How exactly such concepts are represented in biological
neural structures remains largely unknown. In particular, there is
a lack of research concerned with the semantic compositionality
of mental concepts. There exists phenomenological research
from the cognitive sciences community to model compositional
high-level concept formation (Lakoff and Johnson, 2010;
Turner, 2015; Eppe et al., 2018). On the other end of the
spectrum, there also exists very low-level neuroscientific research
showing the compositionality of distributed neural activation
patterns via neuroimaging (Haynes et al., 2015). Between
these extremes, there is some very interesting work related
to binding neurons (Shastri, 1999) that can potentially model
semantic role-filler bindings known from cognitive linguistics.
The event segmentation theory (EST) is a biologically plausible
model to explain action abstraction based on prediction errors
(Zacks et al., 2007). However, to the best of our knowledge,
no computationally verified and functional unifying theory
integrates the cognitive sciences and linguistics perspective
on symbolic compositional mental representations with the
neuroscientific perspective of representing mental concepts as
distributed neural activation patterns.

2.2.2. Abstract Mental Concepts for Language and

Creative Thought
Abstract preverbal concepts are not only critical for language
acquisition, but they are also very important for creativity
(Turner, 2015). For example, consider the metaphorical concepts
of files and folders of a computer’s operating system: the
terminology for these concepts comes from the pre-digital age,
originally from non-electronic paper-based files and folders.
Blending this terminology with the tree-based algorithmic
pointer concepts behind a computer’s file system was a creative
act that made it possible to align a human’s pre-existing
conceptual system with new technology and helped to improve
the usability of early operating systems like Windows 95.
Confalonieri et al. (2015, 2016, 2018) and Eppe et al. (2018)
demonstrate the importance of such concept blending with a
functional computational model that allows an artificial agent to
combine two known concepts to new concepts with emergent
useful and aesthetic properties. The authors show how the new
blended concepts lead to the creative and serendipitous discovery
of lemmas required for mathematical proofs and the automated
(re-)discovery of famous chord progressions in jazz music.

2.3. Embodied Language Acquisition
Preverbal and abstract semantic concepts are the basis for
language. Since abstract concepts emerge from low-level
sensorimotor interaction, the body and environment have a
great impact on our thinking and language acquisition (Feldman
and Narayanan, 2004). Several studies highlight that hearing or
reading language about action and perception activates related
areas of the brain, showing that there are neural representations
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reflecting an individual’s way of performing actions when heard
(see the overview by Willems et al., 2010 or the work about the
mirror system by Rizzolatti and Arbib, 1998). This is compatible
with ideomotor theory (Shin et al., 2010) and mental simulation
theory, which claims that humans simulate actions unconsciously
within those areas of the brain responsible for motor planning.
As a result, there exists an embodied mental semantics (Feldman
and Narayanan, 2004; Steels, 2007;Willems et al., 2010), implying
that living entities with different kinds of bodies simulate in
different ways. For example, consider the difference between
right- and left-handed people, using the contrary sides of the
premotor cortex.

2.3.1. Language Acquisition as Resolution of

Mismatches
Mandler (2004) describes the preverbal phase in infants as
dominated by general conceptual knowledge that is in a
mismatch with the language we understand and start to use at
the age of 9 months. General conceptual knowledge is required
to execute goal-directed actions, understand spatial relationships
and the difference between objects and animals. The conceptual
knowledge is also important to derive non-trivial intentions of
conversation partners (Trott et al., 2016). Consequently, when
language becomes more important during a toddler’s early life,
there is a need to compensate for the mismatch between the
rich self-acquired conceptual knowledge and the words used
to describe the world. For example, toddlers would assign the
word dog to a fox since they do not yet have the language to
differentiate them more precisely (Mandler, 2004). Similar to
machine learning models with the objective of classifying foxes,
wolves, and specific breeds of dogs distinctively, a child would pay
at some point closer attention to the details if the appearance is
different, but the describing word stays the same (Mandler, 2004).
One can also think about the attributes mentioned, like black
cat, red car, or big dog, to accentuate a specific property, helping
with the mapping of words to organize categories (Waxman and
Markow, 1995). Mainly using amixture of receptive language and
producing words and simple sentences allows them to learn about
things being said to and about them. Especially parents often
explain to their children what they are doing, allowing them to
learn word mappings to actions and objects nearly automatically,
known as perceptual learning (Mandler, 2004). There is also
a lot of imitation involved, e.g., replicating actions of social
partners, repeating perceived utterances, or recalling sentences in
a specific context.

There are still open questions at which point in time infants
are capable of learning specific differences, especially those
that are hard to grasp, like varieties between similar-looking
plants that are not that frequently experienced in their daily life
(Mandler, 2004).

2.3.2. Toward Narrative, Egocentric, and

Goal-Directed Language
When the first form of language is learned, infants tend to use
egocentric speech, where they narrate their own activities (Piaget,
1926). Even though they do not have fully learned fluent language
like adults, they use their present concepts and actively reinforce

their speech in their own doing. This is different from babbling
from an earlier stage, where the overall learning goal is to explore
and correct their internal motormodel of speech production with
respect to adult language heard (see section 2.1). Furthermore,
after infants learn a first basic corpus of language, they start
using it to describe their intrinsically motivated goals. This can
happen by just saying the word “arm” to tell their caregiver
that they want to be picked up or by issuing more complex
multi-word sentences of the form “I want X,” where the “I”
reflects an emerging concept of the self (Georgie et al., 2019).
Such goal-directed utterances to caregivers are among the first
language-based communication situations.

2.3.3. The Self and Communication
Language is very effective when it comes to communicating
with other humans. The efficiency stems from the compositional
structure of natural language. Most natural languages build on
a finite vocabulary in the order of magnitude of 100,000 to
200,000 actively used words that can be composed to express
an intractable number of different sentences and meanings.
Our acquired knowledge about grammar, syntax, and semantics
enables us to understand most of these compositions, even if we
have never heard them before. For example, you may never have
heard the sentence “She sneezed the napkin off the table.”, but
your knowledge about English grammar enables you to correctly
understand it. This demonstrates that language is an important
cognitive tool to convey meaning (Mirolli and Parisi, 2011; Colas
et al., 2020; Eppe andOudeyer, 2021). However, the self described
in recent literature (Schillaci et al., 2016; Hafner et al., 2020;
Nguyen et al., 2021) is also important for embodied dialog. The
self builds upon the actor’s capabilities to sense its own body and
the environment. It is, therefore, characterized by the response
to actions and predictions of the internal model (Schillaci et al.,
2016; Hafner et al., 2020). Grounded language in the context of
the self refers to the context of these senses. For example, the
phrase “Hand me the box to your left.” (see Figure 1B) requires
the robot to classify and detect the desired object (Matuszek et al.,
2012) that is next to itself. Once the sentence is understood,
a sequence of motor controls needs to be executed to fulfill
the instruction. While the language already contains important
contextual information, such that it is a box and not another
object, which requires different balancing and grasping, the clue
“next to you” suggests the object be in reachable distance, also
described as peripersonal space (Nguyen et al., 2021) with respect
to the self. The executed actions are conditioned on the initial
instruction of handing over the bottle. The theory about the
mirror system by Rizzolatti and Arbib (1998) hightlights the
linkage between language and action representations (Wermter
et al., 2009): Humans can merely recognize the intent of others
by observing their behavior, e.g., if someone is approaching
another person offensively. Intention recognition, however, plays
a core role in communication and dialogs. We build on this
neuroscientific perspective to underpin our claim that a self- and
other-manifold is essential for embodied dialogs.

Current computational methods cannot effectively learn a
theory of mind with the concepts of you and me. Therefore,
they fail to learn robust and general behaviors. We suppose that
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this gap is due to a lack of understanding of “the self ” (Hafner
et al., 2020), and how it is defined in the context of “the other.”
Specifically, we suggest that a self-other projection model is
critical for empathy and a theory of mind to map an observed
other agent, along with its semantic properties and relations, to
the self and its semantic properties and relations.

In the following section, we will address this gap by
investigating the computational language acquisition
models that exist and summarize how they relate to the
cognitive, psychological, and neurological perspectives on the
communicative self.

3. COMPUTATIONAL METHODS

Current advances in neural language modeling accelerated the
research progress inmany NLP tasks (Vaswani et al., 2017; Devlin
et al., 2019). Successful pre-trained one-shot models like GPT-3
(Brown et al., 2020) have many useful applications. Remarkable
results were presented with the recently introduced successor
version of GPT-3, named DALL-E (Ramesh et al., 2021), which
learns visual-linguistic representations that align textual with
image inputs to generate, based on text descriptions, samples of
new pictures, showing up compositional conceptualization. For
example, the sentence “a red table in shape of a pentagon” lets
the model generate samples of red pentagon-shaped tables based
on its learned multimodal representations. However, models
like GPT-3 and DALL-E consider only disembodied language
learning without any sensorimotor grounding because, unlike
robots, they cannot physically interact with the world. Insights
for grounded language learning in robotics (Heinrich et al.,
2020) with sequential decision-making settings (Akakzia et al.,
2021; Lynch and Sermanet, 2021) and embodied cognition
(Feldman and Narayanan, 2004; Fischer and Zwaan, 2008)
accentuate the need for embodied grounding. This includes
physical interaction and multiple sensory modalities to develop
systems that understand language more like humans (Anderson,
1972; Wermter et al., 2009; McClelland et al., 2020). Additional
prerequisites for modeling a communicative self requires
curiosity, body representations, and predictive processes (Hafner
et al., 2020; Eppe and Oudeyer, 2021). In reinforcement learning,
there is a body of research (Pathak et al., 2017; Dean et al.,
2020; Nguyen et al., 2020; Röder et al., 2020), containing these
components. However, to the best of our knowledge, these
prerequisites have not yet been combined with language and
the self in mind. Overall, there is a lack of research methods
that regard the self in the area of RL, explicitly making use of
language in embodied dialogs (Hahn et al., 2020). This section
reviews methods that partly satisfy the requirements but still miss
at least one of the desired components. Furthermore, we provide
an outlook on what needs to be recombined or is missing to learn
self-other representations in embodied dialogs.

3.1. Formal Background
Reinforcement learning (Sutton and Barto, 2018) is based
on a Markov decision process (MDP) defined by a tuple
(S ,A,T,R, γ ), where S is the space of all possible states, A the
space of all possible actions,T :S×A×S → [0,∞) the transition

probability function,R :S×A → R the reward function, and γ ∈

[0, 1) is the discount factor. The transition function represents a
probability density of transitioning to a following state s′ ∈ S ,
when executing action a ∈ A, being in state s ∈ S . The reward
function describes the immediate real-valued reward obtained
when transitioning to the next state. The overall objective is to
find a policy π that selects actions, π(at|st), to maximize the

expected discounted reward
∑T

t=1 Eπ

[

γ tR(st , at)
]

for every time
step t.

3.1.1. RL and Imitation Learning
The definition of the MDP, as mentioned earlier, also applies
to the framework of imitation learning (IL) (Atkeson and
Schaal, 1997; Lynch and Sermanet, 2021), where the learner
only has access to a sequence of state-action pairs (s1 :T , a1 :T)
of an expert—hence the optimal or suboptimal policy—without
knowing the reward function R.

3.1.2. Language as Goal
In this review, we consider papers that also augment this setup
with a set of goals G and condition the action-selection of the
policy based on the present state and goal, π(at|st , gt), also named
as goal-conditioned RL (Oh et al., 2017; Chaplot et al., 2018;
Chevalier-Boisvert et al., 2019; Jiang et al., 2019; Colas et al., 2020;
Röder et al., 2020; Akakzia et al., 2021; Lynch and Sermanet,
2021). One way of integrating language into the augmented
MDP, is to learn a mapping from language to goal, m(lt) →

gt . Another approach is to provide extra input to the policy
or concatenate and extend the dialog state as a combination of

language and world state, st =

[

sworldt , s
dialog
t

]

. However, these

are technical questions that we do not further consider within
this article.

3.2. Recent Advances in Reinforcement
Learning With Language
Modeling language occurrences in a simulated environment is
not obvious to implement, and using human-annotated linguistic
training data is usually inefficient and costly. It is also a very
specific design decision, how complex the sentences and how
limited the vocabulary of words used to train the agent are (see
section 3.3).

The review of Luketina et al. (2019) provides an overview
of the recent progress of language-processing RL agents where
researchers explore possibilities of integrating neuro-plausible
principles, such as intrinsic motivation (Forestier et al., 2017;
Colas et al., 2020), to foster language learning. Many approaches
benefit frommapping instructions to action sequences (Branavan
et al., 2010; Misra et al., 2017), latent plans (Lynch and Sermanet,
2021), semantic goals (Akakzia et al., 2021), and internal
abstractions (Jiang et al., 2019). In section 3.3, we further examine
the possibilities of providing language data to artificial agents
that learn from sparse rewards as successfully presented by recent
approaches (Luketina et al., 2019; Dean et al., 2020; Akakzia et al.,
2021; Lynch and Sermanet, 2021). We see a trend of detaching
from the traditional MDP formulation and integration imitation-
based (Lynch and Sermanet, 2021) and self-supervised methods
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(Akakzia et al., 2021) into a learning framework to autonomously
acquire motor skills and language understanding with minimal
human intervention. We draw inspiration from the intrinsically
motivated learning of infants, like mentioned in section 2, based
on a cognitive and developmental perspective.

3.2.1. Dataset-Driven RL Methods
Generally, methodsmake use of sparse goal annotations (Akakzia
et al., 2021; Lynch and Sermanet, 2021) or generate scene-
dependent descriptions (Narasimhan et al., 2018; Hill et al., 2021)
and instructions (Hermann et al., 2017; Oh et al., 2017; Chaplot
et al., 2018; Chevalier-Boisvert et al., 2019). Such methods
often build on a previously collected fixed dataset. Therefore,
most language-conditioned and language-assisted agents are
limited in these settings as they do not reveal behavioral
diversity, sticking to a poor set of discovered solutions. This
is a problem for embodied agents in dialogs and HRI, with
potential uncertainties and inaccuracies coming with dynamics
of the physical world. Furthermore, many do not consider all
the available modalities to build rich and robust representations,
including self-representation (Nguyen et al., 2020). Recent
work shows that RL with language needs another type of
benchmarking, similar to supervised learning, evaluating the
agent on unseen tasks, objects, and instructions (Hill et al., 2020).
Otherwise, one could not prove the generalizability of learned
feature representations that encode concepts and meanings that
are relevant. Especially for our case, we consider an embodied
conversational setup with an agent and a human communicating,
where having a self-other representation is beneficial if not crucial
(see Figure 1B).

3.2.2. Adding Dynamic Data and Language

Grounding
Using datasets only to train RL-based dialog agents creates
limitations. However, datasets can be used for pre-training when
a basic understanding of language is necessary to solve a certain
task. They can also be augmented with other data, such as
demonstrations and pre-trained word embeddings. This can also
be combined with other learning methods, such as inverse RL.

Interesting perspectives in this direction are covered in the
work of Luketina et al. (2019): The authors consider language-
conditioned RL, where language processing is inevitable to fulfill
a task because either the state space or action space contains
language. A sequence of instructions needs to be followed,
telling the agent what to do or which goal to accomplish. The
authors argue that following high-level instructions has a strong
connection to hierarchical RL (HRL) (Oh et al., 2017; Jiang
et al., 2019), decomposing the overall dialog into a sequence of
subtasks (Röder et al., 2020).

Another approach presented in the same study (Luketina
et al., 2019) is to infer the reward function from the present
instructions, especially where no external reward is available,
but a set of demonstrations is present. A suitable strategy in
such a case is inverse RL (Ng and Russell, 2000). An optimal or
suboptimal policy trajectory is used to reconstruct the underlying
reward function R as the origin of the demonstration policy’s
behavior. Unlike behavior cloning, as the simplest form of

imitation learning, a goal-achievement reward function could
be learned (Colas et al., 2020), which could also be helpful for
intrinsically motivated- and transfer learning.

Next, Luketina et al. (2019) consider language-assisted RL,
which is also partly related to language-conditioned RL, where
language eases the learning and is not required to solve a task.
Here, language is descriptive and contains assisting clues for the
agent, e.g., “be careful with the delicate plates” (as additional hint
before the agent tries to pick them up) or “to open a door, it
needs to be unlocked with a key” (the agent is facing a door and is
stuck or randomly tries to find a solution). This setting requires
the agent to retrieve the relevant information for a given context,
where a grounded language understanding is inevitable.

Lynch and Sermanet (2021) show that combining imitation
learning with pre-trained word embeddings enables zero-shot
learning. Approaching problems with pre-trained models like
BERT from Devlin et al. (2019) can circumvent the effort to train
so-called “tabula rasa” RL agents (Luketina et al., 2019), that
is, agents that need to learn language and sensorimotor control
simultaneously from scratch. Conclusively, language is a vehicle
for transfer learning, as it encodes world knowledge distilled
from large text corpora (Devlin et al., 2019; Brown et al., 2020).
We believe that language in RL (Luketina et al., 2019) should
focus on aligning its sensorimotor representations, learning from
multisensory inputs (Hill et al., 2021; Ramesh et al., 2021) that
exploit and ground the present compositional and hierarchical
linguistic concepts.

3.3. Language Data for RL Agents
When infants interact with their caretakers and the world, they
receive visual, auditory, and haptic feedback. In addition, they are
also exposed to linguistic utterances and speech in the context
of this interaction. In machine learning, this corresponds to
interactive RL (Cruz et al., 2015). However, as opposed to human
infants that can learn from a few examples very efficiently,
RL agents require large amounts of interaction data to learn a
reasonable behavior. Furthermore, the required presence of a
human partner in the training process is still costly and time-
consuming. For this review, we consider approaches (1) that can
efficiently collect language before training (Chaplot et al., 2018;
Narasimhan et al., 2018), (2) that can automatically generate
linguistic instructions at training and testing time (Hermann
et al., 2017; Chevalier-Boisvert et al., 2019; Jiang et al., 2019; Hill
et al., 2020, 2021), and (3) that require only minimal linguistic
input for an agent in the learning process (Colas et al., 2020;
Akakzia et al., 2021; Lynch and Sermanet, 2021).

3.3.1. Gathering Data in Advance
Approaches that fall into the first category, such as Narasimhan
et al. (2018) and Chaplot et al. (2018), gather language data in
advance. Narasimhan et al. (2018) utilize Amazon Mechanical
Turk (Buhrmester et al., 2011) to collect descriptions of entities
(their roles or behaviors) in different game environments—
Amazon Mechanical Turk offers a crowdsourcing website where
researchers can hire so-called crowd workers to collect large
amounts of data easily and rapidly for a particular task. For each
game environment, annotators are shown videos of gameplay
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and asked to describe entities in terms of their role or behavior,
whereby a set of descriptions are collected. It is important to note
that the annotators are prompted to give descriptive information
about the entities rather than instructive information, which
may help the agent complete the given task. The agent, in
turn, exploits the appropriate set of descriptions in an end-to-
end learning process to reach its goal for a given environment.
Chaplot et al. (2018), on the other hand, manually create 70
instructions that prompt the agent to navigate in a 3D game
environment and find the target object. Each instruction follows
the template “Go to the X” where X is an object with its properties
such as “green torch,” “tall blue object” etc.

3.3.2. Automated Generation of Verbal Instructions
The second category approaches, such as Chevalier-Boisvert
et al. (2019) and Jiang et al. (2019), can automatically generate
language input during training and testing. Jiang et al. (2019)
use the CLEVR language engine (Johnson et al., 2017), which
programmatically generates scenes of objects and language
descriptions/instructions. This also requires the agent to learn
a language-conditioned policy in an end-to-end fashion (see
section 3.2). In this sparse-reward setting, the authors use
hindsight instruction relabeling (Jiang et al., 2019) to improve
sample efficiency. Chevalier-Boisvert et al. (2019) introduce a
synthetic language, the Baby Language, which has a systematic
definition with combinatorial properties. Albeit a proper subset
of English, the Baby Language has 2.48 × 1019 possible
instructions. It has a special grammar based on which synthetic
instructions with different actions (pick up, drop, move), colors,
objects, and locations (e.g., “move the green ball next to the blue
box”) can be generated.

3.3.3. Training With Sparse Data
Lynch and Sermanet (2021) and Akakzia et al. (2021) are
considered in the third category because they require only very
little language data for the agent during the learning process.
Lynch and Sermanet (2021) introduce multicontext imitation,
which allows flexibility to use paired state-action language data
for less than 1% of the examples to train the agent. They pair play
data with human language, which they call hindsight instruction
pairing. They randomly select a robot behavior from play and
ask human annotators to describe it with the most suitable
instruction, with the question “Which language instruction
makes the trajectory optimal?” in their mind. From goal image
examples, a paired goal image and language dataset is created that
consists of short trajectories paired with unrestricted instructions
collected from human annotators. Akakzia et al. (2021) utilize a
synthetic social partner that describes the actions of the robotic
arm manipulating objects in a simulator.

The first two category methods that we review in this paper do
not strictly follow the approach we propose in this work. Many of
them integrate the language data directly into the simulation. For
our approach, we consider two phases (see Figure 4) where data
collection is important: skill learning and language grounding.
As a first phase in the skill learning (Akakzia et al., 2021), the
agent curiously collects data to learn goal-directed behaviors,
similar to infants in their preverbal phase (see section 2), shaping

their body schema (Nguyen et al., 2020). Subsequently, a social
partner or caregiver provides the language to be grounded in
the present goal-directed motor skills. Like infants, the agent
should align and learn word meanings with the corresponding
action effects. We consider a sparse annotation like applied in
Lynch and Sermanet (2021) with hindsight instructions of < 1%
of demonstrations—proposing the optimal instruction after the
fact—or behavior annotations like (Akakzia et al., 2021) with only
10% of episodes as plausible approaches in line with the sparse
utterances an infant experiences.

3.4. Decoupling Language Grounding From
Skill Learning
We visually summarize our review of research with respect to
different approaches used in language-driven RL in Figure 3.
The figure illustrates the underlying techniques, showing the
most overlaps with respect to the categories multitask, hierarchy,
curiosity, and hindsight in RL. Based on this categorization,
we identify two methods that we consider most appropriate
to address the research question of this article, namely Lynch
and Sermanet (2021) and Akakzia et al. (2021). Among the
approaches we discuss here, only these two consider the
decoupling of learning skills and grounding language for an
embodied robot in a 3D environment. This is important because
in order to benefit from insights of preverbal goal-conditioned
behavior in human infants (Wood et al., 1976; Mandler, 2004),
artificial agents should be able to learn sensorimotor skills
without the presence of language right at the beginning of the
learning process. For our following discussion, we perform an in-
depth analysis of these two methods. Based on the insights from
section 2, we split the overall learning into two phases, as shown
in Figure 4: skill learning and language grounding.

3.4.1. Skill Learning
The skill learning phase (Figures 4A,B) treats the sensorimotor
skill learning as (a) learning those skills independently via
imagined goals or concepts like self-play and intrinsic motivation
or (b) emulating the behaviors of a caregiver via imitation or
supervised learning. In the first case (Figure 4A), the agent could
learn via intrinsically motivated play or mental problem-solving
(imagination) to explore possible block configurations (Akakzia
et al., 2021). This is similar to how an infant learns by exploring
the environment while interacting with the objects around.

In the second case (Figure 4B), the agent could learn by
imitating the caregiver (Lynch and Sermanet, 2021). Lynch and
Sermanet (2021) conducted imitation learning on a dataset of
play data. One benefit of play data is the unrestricted setup
without solving any particular tasks. In their setup (Lynch and
Sermanet, 2021) have a fixed robot arm in front of a desk with
buttons, a cupboard, and other objects. The dataset is collected
by recording the proprioceptive inputs, images from the camera,
and executed motor control. Herein, the agent benefits from a
knowledgeable human collecting the data. This yields a dataset
of diverse and curious behaviors, including knowledge about
object affordances.
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FIGURE 3 | A selection of reinforcement learning methods which we categorize according to their properties. Multitask RL involves methods that learn a policy to

solve and transfer knowledge between different tasks. Hindsight learning allows to create and learn from imagined—(Colas et al., 2020) and relabeled goals (Akakzia

et al., 2021). Methods using a hierarchy of policies/models are employed for temporal abstractions (Jiang et al., 2019; Lynch and Sermanet, 2021). Curiosity serves as
an intrinsic signal to utilize self-supervision and overcome sparse extrinsic feedback (Colas et al., 2020; Akakzia et al., 2021; Hill et al., 2021). The methods with the

largest overlaps, namely Lynch and Sermanet (2021) and Akakzia et al. (2021), integrate both essential and cognitive plausible mechanism.

3.4.2. Language Grounding
In the second phase (Figures 4C,D), learning a grounded
language is achieved by providing feedback or instructions.
In Akakzia et al. (2021), a social partner—in our case, a
caregiver (Figure 4C)—provides linguistic feedback, describing
the behavior of the agent in hindsight. The social partner provides
a description that considers a change in spatial relations between
any two objects from the starting configuration to the final
in the scene. Language grounding is achieved via a language-
conditioned goal generator (LGG) which is implemented as a
conditional variational autoencoder (Sohn et al., 2015): given
an initial configuration and a description, LGG generates a
corresponding final configuration, the goal for the agent to
achieve. Resampling from the LGG allows the agent to solve the
instruction in different ways, resulting in a diverse behavior (see
section 2.1). Similar to Lynch and Sermanet (2021), only a small
fraction of the author’s dataset is annotated with instructions.
These are provided in hindsight: after observing a particular
behavior of the agent, the human provides the optimal “hindsight
instruction” that would evoke this behavior.

Lynch and Sermanet (2021) extend the learning from play
(LfP) approach (Lynch et al., 2020) by pairing experienced

trajectories with natural language instructions, which they coin as
LangLfP. They introduce multicontext imitation to train a single
policy on both image and language goals. Multicontext imitation
refers to training a single policy on shared latent representations
of goal image and natural language datasets using image and
language encoders. Multicontext imitation endows the approach
with the flexibility to use paired state-action language data for
less than 1% of the examples to train an agent. Having the ability
to learn from sparsely annotated data corresponds with how
infants learn in the real world with very little feedback from
their caregivers. The trained agent can relate language to low-
level perception, perform visual reasoning and solve a complex
sequential decision problem. As a result, it can follow non-expert
human instructions to perform object manipulation tasks in
a row.

Lynch and Sermanet (2021) also exploit a large-scale pre-
trained language model (Vaswani et al., 2017; Yang et al., 2020)
to encode linguistic input; before feeding the language input to
the network, they transfer it to a semantic vector space by using
the pre-trained languagemodel as an encoder. In this manner, the
approach can handle unseen linguistic inputs such as synonyms,
as well as instructions in 16 different languages. We suppose that
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FIGURE 4 | We accentuate the learning phases of current methods (Akakzia et al., 2021; Lynch and Sermanet, 2021) that have a grounded language acquisition by

first learning behaviors/skills (A,B)—be it via imitation learning or intrinsic motivation—and following this, ground language in actions by receiving instructions or

feedback from a caregiver (C,D).

training instruction-following and training dialog are suitable
tasks for fine-tuning a pre-trained agent (Figure 4D). Moreover,
continuing to learn a pre-trained mapping of new objects to
concepts appears to be a promising future approach to consider
(Hill et al., 2021).

4. THE SELF IN AN EMBODIED DIALOG

In this section, we propose the computational components of an
embodied dialog agent, informed by the above analysis of skill
learning and language grounding and inspired by the recent work
about self-representations of Hafner et al. (2020) and Nguyen
et al. (2021).

Naively, testing the capabilities of a language-aware
agent could already involve tasks and instructions that
specifically strain grounded language knowledge and self-
other distinction (see Figure 1B). However, we assume that
research progress can be accelerated by observing the problem
from a perspective of the artificial self (Hafner et al., 2020;
Nguyen et al., 2021) rather than disregarding the emerging
properties as a side effect. The recent methods introduced
in section 3 provide important techniques that implement
the required ingredients and are helpful in improving
embodied dialogs and HRI applications. Still, we see a
lack of methods that combine all of them jointly into one
learning architecture.

Current RL methods without language representations can
be extended with it (section 3.4.2), as they already include
the skill learning phase (section 3.4.1). This is an important
feature of RL because skill learning is a necessary prerequisite for
language grounding. However, since language grounding is not

a necessary prerequisite for skill learning, we conclude that RL-
driven physical skill learning is more foundational for embodied
dialog agents than disembodied language processing models like
GPT-3 (Brown et al., 2020).

In the remainder of this section, we summarize the
computational components that are important to develop
embodied dialog agents based on self-representations. In
addition, we provide references to successful implementations of
these components. We subdivide these components into those
that are related to predictive processes and those that are related
to self-other distinction.

4.1. Predictive Processes and Crossmodal
Self-Representations
Many methods compute prediction errors with inverse- and
forward models that implement action-effect associations [e.g.,
Schillaci et al., 2016; Röder et al., 2020 and also neuroscience-
related work like (Kaplan, 2007; Kidd and Hayden, 2015)]. At
training time, these errors yield a signal for intrinsic motivation,
helping to shape and update the body schema and sense of agency
(see section 2.1). We see plenty of methods that implement this
as curiosity-driven learning (Pathak et al., 2017; Nguyen et al.,
2020; Akakzia et al., 2021; Hill et al., 2021). Other researchers
model the prediction error not only with the sensory state but
based on language. For example, Hermann et al. (2017) and
Hill et al. (2021) consider word predictions given the egocentric
view of an agent in a 3D environment. Hermann et al. (2017)
predict a word at each time step, while a meaningful word of
the current instruction serves as a target, e.g., the object “apple”
given the instruction “Pick up the red apple.” This auxiliary task
helps to shape the agent’s representation in learning instruction
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FIGURE 5 | Internal models are capable of mentally simulating possible action

trajectories given the visual observation and instruction of stacking the blocks.

The longer the simulation horizon, the more uncertain the agent is about its

predicted action-effects (illustrated with increasing color transparency).

to word mappings. Hill et al. (2021) compute a surprise score for
both vision and language. An episodic memory with a specific
language to vision key-mapping, inspired by dual-coding theory
(Paivio, 1969), is queried to calculate a language- and vision-
based distance as an intrinsic reward. Although this seems to
be a promising approach, it is essential to consider some sort of
weighting (Hill et al., 2021).

The authors empirically show that the less frequently
encountered language is more important than the more
frequently changing visual information. However, they are not
using an appropriate body representation (Pathak et al., 2017;
Nguyen et al., 2020) for the vision encoding to omit the Noisy-
TV Problem (Burda et al., 2019), which might be the reason for
the superior performance when using intrinsic rewards based
on language only. Dean et al. (2020) implement an audio-
visual association model to employ curiosity-driven exploration
by exploiting the associations of two modalities, namely audio
and vision.

The approaches above combine crossmodal integration in
curiosity-driven and goal-directed learning procedures crucial
for intelligent explorative behaviors (Georgie et al., 2019). When
evaluating a trained agent, the internal models disclose metrics of
surprise where the agent encounters dynamics that are novel or
uncertainties with understanding instructions.

Other important computational components for embodied
dialog agents include hierarchical abstraction (Eppe et al., 2020)
and automatically generated subtasks (Jiang et al., 2019) or
latent plans (Lynch and Sermanet, 2021) to abstract away
from low-level motor execution, toward higher-level conceptual
representations. Abstractions are important because they limit
the horizon of predictive processes. For example, in Figure 5,
we illustrate sensorimotor simulation, using the internal model
to unroll a latent (abstract) plan consisting of four steps only.
If the same plan was represented in more fine-grained lower-
level motor actions, this would lead to many more consecutive
simulation steps, resulting in a higher cumulative prediction
errors. Also, since predictions become less accurate the farther
they are in the future, regenerating plans and subtasks happen

more frequently. For example, Lynch and Sermanet (2021)
use a hierarchy with a high-level module (plan encoder) to
generate a latent plan at the frequency of 1 Hz, while a low-level
action module (plan decoder) is executing motor controls at a
frequency of 30 Hz. Similarly, the implementation of (Jiang et al.,
2019) employs a 2-layer hierarchy that effectively leverages the
compositionality of language to solve a task by solving subtasks.

Finally, having access to the agents internal hierarchical
predictive state also allows observingmetrics such as surprise and
uncertainty (e.g., by measuring the prediction error) that expose
how strong the sense of body ownership and agency is (Georgie
et al., 2019; Hafner et al., 2020).

4.2. Self-Other Distinction
The scenario of Figure 1B requires the agent to understand the
meaning of self-related words like you and other related words
like me. Georgie et al. (2019) propose that distinguishing self-
generated from externally produced sensational actions-effects
are inevitable for an artificial self. By dividing the training
procedure into two phases (section 3.4), agents learn the required
body representations as describe by Georgie et al. (2019), Nguyen
et al. (2021), andHafner et al. (2020). The authors consider motor
babbling as an active self-exploration process, starting with self-
touch in prenatal development up to toddlerhood. Considering
the progression from this early stage, the evolved body ownership
and sense of agency define the minimal self (Georgie et al.,
2019). We suppose that this stage is covered by our first phase
(Figures 4A,B), employing motor babbling to train the internal
models and motor skills from scratch.

The language-grounding phase (section 3.4.2) exploits the
learned behaviors and body representations. This can be
performed with a social partner or hindsight instructions to
annotate behaviors. With the sense of body ownership developed
during the skill learning phase, through minimal prediction
error or free energy of inverse- and forward models, the agent
can align its motor skills with grounded language. Social-
psychological scientists like Mead et al. (2000) postulate the
emergence of a self requires a social process based on the social
theory of symbolic interactionism. However, there are limitations
and different perspectives (Aksan et al., 2009) toward social
RL (Jaques et al., 2019) and grounded language in a social
context (Bisk et al., 2020). We consider these as future work
and out of the scope of this article. Nevertheless, according to
symbolic interactionism, self-awareness is a kind of reflection and
inference of the behavioral observation of others. In other words,
the self develops as a generalization of others, putting perception
and expectations into the perspective of the social partners or
group (Mead et al., 2000). This process allows sharing the same
common understanding and thus the same language.

Despite the potential importance of social interaction, our
review in section 3 reveals that only Chevalier-Boisvert et al.
(2019) contain some sort of interactive partner or teacher that
provides linguistic and demonstrative feedback. The authors
use a 2D environment and employ a synthetic simplified
language (section 3.3). We suggest two possibilities to enhance
the integration of a social partner to train a self-aware agent
for communication.
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The first possibility follows the approach of Chevalier-Boisvert
et al. (2019), where the language grounding phase integrates
a social partner, caretaker, or teacher. This agent supplies
language annotations in hindsight (Akakzia et al., 2021) and, in
addition, serves as an embodied entity that provides perceptible
demonstrations in combination with language. The second
possibility to develop a self for embodied dialog agents is to
introduce a third alignment phase (see section 3.4), similarly to
the developmental process of section 2.3.3, that involves external
crossmodal sensory inputs of a social partner and considers fine-
tuning the present motor-linguistic skills of the previous phases
(sections 3.4.1 and 3.4.2).

In both cases, the language must explicitly refer to the
individuals. Sentences like “You put red on top of the blue” or “I
put red on top of blue” are possible examples that allow observing
self- and externally generated stimuli in the context of language
(McClelland et al., 2020).

5. CONCLUSION

This review contributes to the development of artificial agents
for embodied crossmodal dialog. Our main hypothesis is that
an explicit self representation is a critical component to enable
embodied language understanding, going beyond disembodied
language processing as proposed in recent machine learning
articles. Reinforcement learning seems particularly suitable, as
it allows by definition to discover the environment in a self-
explorative manner, similar to an infant shaping its body schema
within a self-conducted reinforcement process. Like Lynch and
Sermanet (2021) and Akakzia et al. (2021), we suggest splitting
the training of an agent into two phases, namely skill learning
and language grounding (section 3.4). These two methods are
the only ones regarding an embodied robot in a 3D environment
and integrate most of the plausible concepts (see section 2
and Figure 3) with state-of-the-art performance for complex
instruction following. After the skill learning phase, language is
grounded in sensorimotor- and body representations, hence in
essential parts of the artificial self (Hafner et al., 2020).

As our main result and contribution, we propose and
summarize computational components to implement and model
an artificial embodied dialog agent in section 4. Here, we
highlight self-related components and expand the decoupled
two-phased learning to a setting with an embodied social partner.

This approach is underpinned in social-psychological science
(Mead et al., 2000) and by recent findings in neurorobotics
(Hafner et al., 2020; Nguyen et al., 2021) which emphasize the

significance of learning socially with other agents. These benefits
arise because self-awareness and natural communication are
learned by distinguishing self-generated from external stimuli
and being part of social interaction. We believe that explicit
self-representations in artificial agents improve robustness,
performance, and trust for conversational settings because the
emergence of a self is a consequence of low-level interaction with
its body and environment (Schillaci et al., 2016; Hafner et al.,
2020) and high-level verbal/non-verbal social interactions (Mead
et al., 2000).

In this article, we focus primarily on mechanistic cognitive
models, but we are also aware of the valuable neuroscientific
research that examines the use of the RL framework (Botvinick
and Weinstein, 2014), grounded language (Friederici and Singer,
2015; Garagnani and Pulvermüller, 2016), and curiosity (Kaplan,
2007; Kidd and Hayden, 2015). Considering the integration
these neuroscientific theories would add a valuable additional
dimension to our future research.

A simulation of the self with artificial agents is another
beneficial future research direction. For example, we can
potentially gain more insights from attention-based mechanisms
(Chaplot et al., 2018; Hill et al., 2019), enabling us to visualize
the agent’s internal state as a kind of gaze following and
eye tracking [see Hill et al. (2019), how they visualize
the attention weights of different neural network layers
when processing language and vision]. Such research paves
the ground for measuring and defining neurologically
inspired low-level metrics of an artificial agent’s self in
the future.
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