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Methamphetamine (MA) can cause brain structural and functional impairment, but there
are few studies on whether this difference will sustain on MA abstainers. The purpose
of this study is to investigate the correlation of brain networks in MA abstainers. In
this study, 47 people detoxified for at least 14 months and 44 normal people took a
resting-state functional magnetic resonance imaging (RS-fMRI) scan. A dynamic (i.e.,
time-varying) functional connectivity (FC) is obtained by applying sliding windows in
the time courses on the independent components (ICs). The windowed correlation
data for each IC were then clustered by k-means. The number of subjects in each
cluster was used as a new feature for individual identification. The results show that the
classifier achieved satisfactory performance (82.3% accuracy, 77.7% specificity, and
85.7% sensitivity). We find that there are significant differences in the brain networks of
MA abstainers and normal people in the time domain, but the spatial differences are not
obvious. Most of the altered functional connections (time-varying) are identified to be
located at dorsal default mode network. These results have shown that changes in the
correlation of the time domain may play an important role in identifying MA abstainers.
Therefore, our findings provide valuable insights in the identification of MA and elucidate
the pathological mechanism of MA from a resting-state functional integration point
of view.

Keywords: Methamphetamine, classification, independent component analysis, sliding window, brain network,
K-means clustering

INTRODUCTION

Methamphetamine (MA) is synthesized on the basis of ephedrine, which has the effect of mental
stimulation (Chen et al., 2021). MA is one of the most widely abused illegal substances in the
world, but unfortunately, there are still very few studies on detoxification after a period of time
(Huang et al., 2021; Li et al., 2021). Due to the high addiction, it is prohibited in many countries.
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The abuse and addiction of MA has become one of the difficult
problems threatening world health (Manzanares et al., 2018;
Nicolas et al., 2021), which not only harms the health of addicts,
but also hinders the economic development.

Methamphetamine can cause brain structure and functional
impairments, whether the impairment still exists after a recovery
period is not yet known. To study this problem, we collected
neuroimaging data from abstaining MA-independent individuals
(for at least 14 months). A better understanding of functional
connectivity in the brains of MA abstainers will help to
explain abnormal behavioral syndromes and to perform objective
diagnosis of MA abstainers. As an effective method to analyze
brain pathological patterns, resting-state functional magnetic
resonance imaging (RS-fMRI) can reflect the spontaneous brain
activity in humans (Rashid et al., 2016; Salman et al., 2018;
Stoehr et al., 2021). However, RS-fMRI generates high dimension
data. The key challenge to analyze RS-fMRI data is how to
extract effective features. In the past, most studies of MA
mainly focused on region of interest (ROI), which usually
required prior knowledge to choose brain region in the network
(Taheri et al., 2016). However, mounting evidences indicate that
neurodegenerative processes are associated with the alterations in
functional connectivity across the whole brain (Tang et al., 2018).
There are few studies on the abnormal functional connection
patterns of MA abstainers in the whole brain. One work on this
topic showed that compared with healthy controls, MAs showed
low network function in the cerebellum and high intra-network
function in the post-significant network, proving that there is
indeed a change in the brain function network(Jiang et al., 2021).

To analyze the high dimensional RS-fMRI data, it is possible to
use kernel principal component analysis to identify the attention-
deficit hyperactivity disorder though the accurate rate was less
than 80% possibly due to the noisy data (Salimi-Khorshidi
et al., 2014; Abrol et al., 2019). Typical independent component
analysis (ICA) is a data-driven method (Allen et al., 2014; Qiu
et al., 2019), which can eliminate the artificial error and extract
the largest spatial independent component (Glasser et al., 2018).
It can be used to obtain the brain network while removing noise
and separate different but overlapping activities (Zhang et al.,
2019). When ICA is used to find hidden sources from a group
of observation or measurement data, each source has the greatest
independence. ICA is a combination of spatial components, and
each component is related to time courses (TCs) (Calhoun et al.,
2005; Xie et al., 2017).

Some more recent methods for RS-fMRI data classification use
functional connection as the input feature (Rashid et al., 2016).
Although some progress has been made, the dynamics of time
courses are ignored. In diagnosing and distinguishing complex
mental diseases such as schizophrenia and Alzheimer’s disease,
the overlooked time information is likely to become a key point
in disease analysis (Yan et al., 2019). Sliding window correlation
is a popular method used by most dynamic FC studies to capture
the dynamics in TCs (Keilholz et al., 2013; Thompson et al.,
2013; Wilson et al., 2015; Shakil et al., 2016; Vakamudi et al.,
2020). When drawing a window on TCs, the two edges of the
window will move during the acquisition process. It can better
capture the dynamic changes of brain activity, thus enhancing the

understanding of normal cognition and changes caused by brain
diseases (Abrol et al., 2017).

After the completion of sliding window correlation, clustering
is usually used to find the number of states and time points
in the scanning process (Damaraju et al., 2014; Shakil et al.,
2014). In the past few decades, various clustering algorithms have
been proposed. Among these algorithms, k-means is a popular
choice because it is simple, efficient, and has moderate but stable
performance on different problems (Himberg et al., 2004). Since
each person has multiple sliding windows, here we take the
number of windows for every person in each class as the new
features for classification. The decision tree is used as the classifier
(Douglas et al., 2011), where the subject searches along a single
path from the root to the leaf, and the path depends on the
characteristics of the sample (Hehn et al., 2019). The decision tree
can handle uneven data without standardizing and quantifying
the data, and the logic is simple and intuitive.

In this paper, we exploit ICA, sliding window correlation,
k-means clustering and decision tree to perform the data
analysis. The motivation is to reduce the dimensionality of high-
dimensional brain data for subsequent analysis. We propose the
feature filtering method with multiple classification criteria, and
the experimental results have shown its effectiveness in rendering
the differences between the normal people and MA abstainers in
their brain networks.

MATERIALS AND METHODS

Ethics Statement
All subjects were fully informed of the nature of the study and all
gave their written consent regarding participation. This study was
approved by the local ethical committee of the Second Xiangya
Hospital of Central South University Institutional Review Board
for clinical research.

The Overall Introduction of the Method
In order to discriminate the MA abstainers from the normal
people, we developed a data-driven classifier that incorporates
five steps: preprocessing, sliding windows, k-means clustering
and classification. Figure 1 shows the overall flowchart.

Data
We selected a data set containing 91 individuals (44 normal
individuals, 47 MA abstainers), which was provided by the
Second Xiangya Hospital of Central South University Medical
Academy. The data collection was completed on the 3.0T MRI
scanning system produced by Siemens. Everyone was required
to wear sponge earplugs and noise-canceling headphones
to lower noise, and elastic sponges were also used to fix
the head to reduce head movement. When scanning in
compartments, the even-numbered layer is scanned first, and
then the odd-numbered layer. Each individual was collected 225
contiguous whole-brain resting-state functional images with the
following parameters: number of slices = 36, TR = 2,000 ms,
TE = 30 ms, FOV = 220 mm, flip angle = 80 degrees, slice
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FIGURE 1 | The framework of the proposed method.

FIGURE 2 | Intrinsic connectivity networks (a total of 44) arranged into groups: ASN, AN, DDMN, HVN, LN, PSN, PN, RECN, SN, VDMN, and VN. The associated
number in each group indicates the number of ICNs included the group.

thickness = 4 mm, image dimension = 64 × 64 × 36, and voxel
size = 3.4 mm× 3.4 mm× 4 mm.

Data Preprocessing
In the preprocessing, the SPM1 and DPASF (Yan et al., 2016)
toolboxes were used. Due to the magnetic saturation, we removed
the first ten volumes for each person. Then we proofread
the scanning time point of each layer image, and the head
motion correction was used to exclude subjects with excessive
head movement. Next, we used the Echo-Planer Imaging (EPI)
template of the Montreal Neurologic Institute (MNI) space to
standardize the image registration to 3 mm × 3 mm × 3 mm
(Brandman et al., 2021; Fan et al., 2021; Peng et al., 2021), and

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12

finally the Gaussian kernel with a half-height full-width value
of 6 mm was used for spatial smoothing to reduce spatial noise
(Maniar et al., 2021; van Buuren et al., 2021).

For quality control, participants with head movements greater
than 2 mm or rotation parameters greater than 2 degrees
were excluded. Forty one normal individuals and 40 MA
abstainers were retained.

Independent Component Analysis
We used the GIFT toolkit2 to extract independent components
from the pre-processed data. After estimating the optimal
numbers of independent components using the MDL criterion
(Li et al., 2007), we selected 50 independent components.

2http://mialab.mrn.org/software/gift/
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FIGURE 3 | ROC curves and AUC values are shown in the picture.

TABLE 1 | Head movements and age information of the subjects.

MA abstainers Normal people P value

Age 32.97 ± 6.85 34.94 ± 6.9 0.2118

Head motion
(MEAN_FD_
JENKINSON)

0.0655 ± 0.03539 0.06832 ± 0.0443 0.7583

The independent components estimated from the GIFT were
processed by initializing parameters, group data reduction,
calculating ICA, back reconstructing, calibrating components,
and group stats. Then we used the resting state network
(RSN) (Du and Fan, 2013; Du et al., 2017) template to
generate the mask of 11 networks shown in Figure 2, including
anterior salience network (ASN), auditory network (AN),
dorsal default mode network (DDMN), higher visual network
(HVN), language network (LN), posterior salience network
(PSN), precuneus network (PN), right executive control network
(RECN), sensorimotor network (SN), ventral default mode
network (VDMN) and visuospatial network (VN). We calculated
the correlation coefficients between the independent components
and each mask, and allocated the independent components to
the brain network with the highest correlation. The calculated
correlation coefficients were placed in the attachments. Figure 2
shows the independent components in each brain network, and
the area of each independent component is marked with a
different color.

Sliding Windows Correlation
After going through the above steps, each participant has 44
time courses. Every time course has 215 time points. We used
the sliding windows on the time axis. The window size between
30 and 60 s (15-30TR) leads to a relatively small impact on the
dynamics, and can help correctly identify the cognitive states
(Zalesky and Breakspear, 2015). Thus, the size of a sliding
window was chosen as 25 TR with step size chosen as two.
Here each participant is measured by (215−25)/2 = 95 sliding
windows. For each sliding window, the correlations in pairs of
time courses were calculated. Thus 44 × 44 symmetric matrices
would be generated for each sliding window. Next, the upper
triangular matrix of this symmetric matrix was extracted and
converted it into a row vector. Then a 95× 946 (946 = 44× 43/2)
dimensional sliding window feature matrix was produced for
each participant, and each row represents the correlation of the
independent components at that time point.

Feature Selection
The feature matrices were calculated with the k-means clustering
algorithm. The optimal number of clusters was determined to
be 5 using the elbow criterion (Plis et al., 2018). We clustered
the sliding window feature matrices of all participants by row.
For everyone, we counted the number of windows gathered in
each category, and these numbers were used as new features.
After that, a new matrix of 1 × 5 dimensions was generated
for each participant, which is the input to the decision tree for
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FIGURE 4 | The figure shows the distributions in clusters. The horizontal axis represents the state of each cluster, and the vertical axis is the total number of
windows in each category. The p-value of the two-sample t-test for each state is marked on the histogram.

FIGURE 5 | The picture shows the distribution of the sliding windows gathered in the fifth state of normal people and MA abstainers. The abscissa represents the
label of the sliding windows, and the ordinate represents the number of sliding windows. The blue column represents the total number of normal people classified
into a certain category, and the red one is MA abstainers. The green broken line indicates the difference in the total number of sliding windows.
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FIGURE 6 | The figure shows the distribution of independent components belonging to the brain networks. The names of the brain networks labeled 1–11 are: ASN,
HVN, PSN, DDMN, PN, VDMN, LN, VN, RECN, SN, and AN.

classification. Fivefold cross-validation was used and the metrics
of the five times were averaged as the total results. The feature
matrices of all participants were divided into five parts. Four parts
were selected as the training set and the remaining part was used
as the test set.

Different indicators are used to measure the method,
including sensitivity, specificity, precision, accuracy, and F1
score. Sensitivity is the proportion of the true normal people
who are correctly identified. Specificity is the proportion of
true MA abstainers who are correctly identified. Accuracy is the
percentage of people who are completely matched. Precision is
the proportion of predicted normal people who are correctly
identified. F1 score is the harmonic average of precision and
sensitivity. The specific calculation methods are shown in below.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Precision =
TP

TP + FP
(3)

Accuracy =
TPTN

TP + TN + FP + FN
(4)

F1score =
2 ∗ Precision ∗ Sensitivity
Precision + Sensitivity

(5)

Here TP denotes the number of true positives (number of
the normal people who are correctly identified) and TN is the
number of true negatives (number of the MA abstainers who

are correctly identified). FP denotes the number of false positives
(number of the MA abstainers who are classified as the normal
people), while FN is the number of false negatives (number of the
normal people who were classified as the MA abstainers).

RESULTS

Various indicators of the model are calculated (accuracy: 82.3%,
precision: 77.7%, specificity: 77.7%, sensitivity: 85.7, F1 score:
81.5%). The ROC curve is shown in Figure 3.

In order to exclude the influence of head movement and
age, we ensured that there is no significant difference between
the parameters of MA abstainers and normal people during
preprocessing. The head movement parameters of the remaining
subjects are shown in Table 1. The p-value is obtained by the
two-sample t-tests, and the data in the table is represented by the
mean± standard deviation.

We can see the feature distributions of various states in
Figure 4. In the fifth state, there is a significant difference
(p< 0.05) in the number of windows between normal people and
MA abstainers. In the remaining states, there were no significant
differences between normal people and MA abstainers.

The number of windows which is clustered to the fifth state in
every sliding window is shown in Figure 5. The sliding windows
that are higher than the mean of the difference are selected. The
sliding windows of normal people and MA abstainers are selected
for two-sample t-test and FDR multiple ratio correction, where
the correlations with p value less than 1e-4 (Fayers, 2008) are
selected for further analysis.

Since the values in the sliding windows reflect the correlation
between two independent components in the time courses,
and each independent component belongs to a brain network.
We draw a distribution map of the brain network of
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FIGURE 7 | The graph shows all the correlations that are significantly different for normal people and MA abstainers in the DDMN. Among them, the red dotted line
indicates the higher correlation of normal people while the gray one means the higher correlation of MA abstainers. The colors are related to different brain networks.
The brain networks of a-i in the figure are ASN, PSN, DDMN, VDMN, LN, VN, RECN, SN, and AN.

independent components in the Figure 6, and the largest
proportion is DDMN.

As shown in Figure 7, we use Pajek3 to draw the relationship
among the independent components in the DDMN. In Figure 8,
in addition to ASN and AN, the correlation of the normal people
between DDMN and other brain is higher. That is to say, the
connection between DDMN and ASN, DDMN, and AN in MA
abstainers is more intimate, but this degree of intimacy is not
highlighted in normal people. However, the correlation between
DDMN and itself and LN is same between MA abstainers
and normal people.

In the time domain, the difference in DDMN between normal
people and MA abstainers is the largest, and the results of the
two-sample t-test in the spatial domain are listed in Table 2. The

3http://mrvar.fdv.uni-lj.si/pajek/

data shown in the table indicates that the difference in the time
domain does not affect the spatial domain.

DISCUSSION

This study shows that MA abstainers can be distinguished from
healthy controls by whole-brain RS-fMRI with high resolution. In
addition, we find that the abnormal correlations on DDMN with
other brain networks, indicating that MA may cause changes in
the correlation of these brain networks in the time domain, but
these differences are not synchronized in the space domain. The
results of this study show that even after long-term withdrawal of
MA, certain brain regions are exposed of drug related clues.

Previous research demonstrates that the abuse of MA has
serious damage to various organs of the human body, including
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FIGURE 8 | The figure shows the distribution of connection with each brain network in DDMN. The numbers 1–11 represent the corresponding brain networks:
ASN, HVN, PSN, DDMN, PN, VDMN, LN, VN, RECN, SN and AN. The blue histogram indicates the number of normal people’s connections in this brain network,
and the red histogram indicates the number of MA abstainers’ connections in this brain network.

TABLE 2 | The p-values of the components are shown in the table.

The name of brain networks p-values of t-test

ASN 0.4809

AN 0.4481

DDMN 0.4889

HVN 0.506

LN 0.4889

PSN 0.4896

PN 0.5569

RECN 0.5046

SN 0.495

VDMN 0.4814

VN 0.5051

the brain. DDMN can be regarded as the background network
of the brain (Yuan et al., 2021). The main feature is that its
functional activity is higher in the resting state than in the
motion state, which is related to memory and information
processing. We found that DDMN plays the most important role
in distinguishing normal people from MA abstainers, which is
consistent with the results of many mental diseases. It shows
abnormal functional connections in the MA abstainers, agreeing
with the previous research results (Peng et al., 2021). This
indicates that DDMN may be involved in the pathogenesis
of mental diseases, and the results are related to the selected
statistical methods, data analysis methods, sample size, selection
of psychotropic drugs during treatment and other factors
(Luo et al., 2019).

Emerging evidences suggested that DDMN plays a key role in
processing consciousness, self-reflection, and episodic memory
(Higgins et al., 2021). For people who are addicted to MA,
they are weak in self-control and generally require external
compulsory drugs to assist with withdrawal. These evidences

coincide with our results that the brain network of MA abstainers
after withdrawal for a period of time still has a big difference in
DDMN. Long-term use of MA can lead to dysfunction of the
brain network, and similar experiments have also found that the
brain networks of MA abstainers have been damaged (Su et al.,
2020). We also found that similar damage still exists after a period
of treatment. Generally speaking, the correlation between DDMN
and other brain networks is higher for normal people.

Dorsal default mode network plays the role of a central hub
in prediction, which can reduce classification errors. In research
on substance use disorders, it was found that DDMN is related to
impaired self-awareness. This impairment manifests itself as the
inability to convert internal or external stimuli to the individual
into feedback to the self. The impairment of self-awareness also
promotes uncontrolled drug use and also decreased sensitivity
to the effects of drugs (Zhang et al., 2019). The ASN of MA
abstainers is less correlated with other brain networks. After
using MA, it will cause high-frequency auditory hallucinations
(Liu et al., 2020).

After a period of detoxification, MA abstainers and normal
people still have differences in some brain networks. The results
of successful classification showed that the correlation between
the independent components of MA abstainers and the control
group was still significantly different in some brain networks.
Drug addiction is a chronic and recurrent disease, which causes
a huge global health burden. At present, drug addiction has
not been effectively treated, which may be due to the difficulty
in finding suitable targets to treat this complex disease, thus
increasing the need for further identification of new therapeutic
methods (Guo et al., 2017). Based on the features extracted from
independent component analysis and sliding window correlation,
this study determined the most relevant features for potential MA
treatment and provided possible biomarkers to distinguish and
predict the treatment response of MA-dependent patients. We
hope in the future more large-sample studies could be conducted
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to help formulate effective drug treatment strategies and select
surgical targets for MA treatment.

CONCLUSION

In this study, we successfully distinguished the MA abstainers
from the normal control group, and determined the abnormally
changed parts of brain networks through analyzing the RS-fMRI
images of the whole brain. Our results prove the effectiveness the
classification algorithm. Therefore, we believe that people who
have been detoxified for a period of time still have differences in
the time domain in DDMN.
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