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The brain-computer interface (BCI) interprets the physiological information of the human

brain in the process of consciousness activity. It builds a direct information transmission

channel between the brain and the outside world. As the most common non-invasive BCI

modality, electroencephalogram (EEG) plays an important role in the emotion recognition

of BCI; however, due to the individual variability and non-stationary of EEG signals, the

construction of EEG-based emotion classifiers for different subjects, different sessions,

and different devices is an important research direction. Domain adaptation utilizes data

or knowledge from more than one domain and focuses on transferring knowledge from

the source domain (SD) to the target domain (TD), in which the EEG datamay be collected

from different subjects, sessions, or devices. In this study, a new domain adaptation

sparse representation classifier (DASRC) is proposed to address the cross-domain

EEG-based emotion classification. To reduce the differences in domain distribution, the

local information preserved criterion is exploited to project the samples from SD and

TD into a shared subspace. A common domain-invariant dictionary is learned in the

projection subspace so that an inherent connection can be built between SD and TD.

In addition, both principal component analysis (PCA) and Fisher criteria are exploited to

promote the recognition ability of the learned dictionary. Besides, an optimization method

is proposed to alternatively update the subspace and dictionary learning. The comparison

of CSFDDL shows the feasibility and competitive performance for cross-subject and

cross-dataset EEG-based emotion classification problems.

Keywords: electroencephalogram, domain adaptation, emotion classification, cross-subject, cross-dataset

INTRODUCTION

Emotion is the attitude experience and corresponding behavior response of human beings to
objective things, which has an important influence on human behavior and mental health. How
to accurately identify emotions has an important significance in practical application. For example,
in the medical field, emotion recognition is helpful to guide and diagnose patients with mental
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diseases or expression disorders, and in the education field,
different teaching methods according to the emotion of the
listener can improve the teaching efficiency.

Emotion recognition using a variety of modal emotion
signals has now gained a lot of attention from researchers.
Typically, emotions can be perceived in the form of a variety of
signals. One type of visual signal can be directly observed from
external behavior and characteristics, such as facial expressions,
voice intonation, body movements, etc. The other type is
those physiological signals, such as electroencephalography
(EEG), electromyography (EMG), electrocardiogram (ECG),
skin conductance, pulse, heartbeat, skin temperature, and
respiratory signals; however, facial expressions, voice, and other
non-physiological signals are easily restricted by environmental
or social factors. The emotional information transmitted by
physiological signals is more objective and can reflect the
psychological emotion more reliably (Zheng et al., 2019; Doma
and Pirouz, 2020; Ni et al., 2020a).

Brain-computer interface (BCI) is a human-computer
interaction system that provides a communication channel
for human brain interaction with the external environment
and without depending on the peripheral nervous system and
muscles (Zhang and Wu, 2019; Liu et al., 2020; Ni et al., 2020b).
EEG plays a dominant role in emotion recognition based on
physiological signals. The illustration of EEG-based emotion
classification in BCI is shown in Figure 1. The operation of
emotion classification begins with the presentation of stimuli to
the user, which induces specific emotions. The stimuli may be
music, videos, and images, etc. During the session, EEG samples
are recorded by EEG devices. The next step is usually to extract
features from the recorded EEG and train a classifier. The final
step is to test new EEG samples to classify emotion labels (Liu
et al., 2018).

The existing EEG-based emotional classification in BCI
requires a large amount of label data and a lot of time in the
training phase. A relatively simple and direct method is to reuse
previously collected EEG data and train a new classifier, without
considering differences between individuals. These classification
methods are based on the assumption that training and test data
are independently and identically distributed. This assumption
is often difficult to hold for BCI, because EEG signals have non-
stationary characteristics, and the performance of the classifier
fluctuates significantly between subjects and datasets. When the
same classifier is applied to EEG data of other subjects or from
other datasets, the performance will be significantly reduced.

Domain adaptation learning is a fast and effective solution for
developing a classifier that selectively trains a new classifier in
TD using auxiliary data (source domain, SD) and less training
data in the new scenario (target domain, TD) (Fahimi et al.,
2019; Ni et al., 2020c). Different from multi-task learning that
aims to benefit the classifier in both source and target tasks,
domain adaptation learning mainly aims to benefit the classifier
in TD. For example, Yang et al. (2019) proposed a support
vector machine (SVM) combined with the significance test and
sequential backward selection strategy for cross-subject EEG-
based emotional classification. Instead of utilizing features on
raw EEG signals, this method analyzed and selected features

based on the significant differences between positive and negative
trials. Li et al. (2020a) proposed a two-stage multi-source semi-
supervised transfer learning method, in which the work of the
first stage was source domain selection and the second stage
was to learn style transfer mapping. This method selected the
appropriate sources and projected source data to the destination
via an affine mapping, so that only a few labeled data was
used in the calibration sessions. Subsequently, Li et al. (2020b)
developed a joint distribution adaptation method for EEG-
based emotion classification in cross-subject and cross-session
scenarios. The label information in the SD was used to train
the model, and it also took an important part in reducing
the difference of conditional distribution. This method achieves
domain adaptation by combining marginal distributions and
conditional distributions in the framework of neural networks.
Morioka et al. (2015) also developed a cross-subject and cross-
session recognition method, which learned the common spatial
bases underlying both SD and TD by using unsupervised
dictionary learning. The spatial transforms technology was
found to be efficient in extracted common brain activities. Lan
et al. (2018) developed a domain adaptation method to reduce
discrepancies across datasets and inter-subject variance. This
method designed a linear transformation function to adapt
subspaces feature to match the marginal distributions of SD
and TD.

Although domain adaptation for EEG-based emotion
classification has been extensively studied, most of the studies
focus on cross-subject and cross-session adaptation within the
same dataset, i.e., the samples of SD and TD came from the same
dataset. Domain adaptation across datasets is more challenging.
Because cross-dataset domain adaptation is restricted to the
different datasets, EEG signals are collected from the different
devices and different stimuli, etc. (Li et al., 2018; Yang et al., 2019;
Cimtay and Ekmekcioglu, 2020).

It is our opinion that although the distribution of common
characters in EEG signals shows differences between subjects
and datasets, it is expected that there might be some certain
common knowledge that is potentially independent of the
subjects and datasets. In addition, the shared common knowledge
could be preserved in a shared projection subspace. Thus, we
propose a domain adaptation sparse representation classifier
(DASRC) to address the EEG-based emotion classification in
cross-subject and cross-dataset scenarios. We consider learning
the common component in both SD and TD by exploring
a common dictionary in a shared subspace. Thus, we adopt
the local information preserved criterion to reduce the domain
distribution discrepancies in the learned subspace. We learn
the common domain-invariant dictionary, which builds a
connection between SD and TD. In addition, the principal
component analysis (PCA) and Fisher criteria are exploited
in this model to promote the recognition ability of the
learned classifier.

The main contribution of the study is as follows. First, DASRC
exploits the common characteristics of EEG data in SD and TD
to yield a domain-invariant dictionary in the shared subspace. It
takes advantage of the local data information preserved in both
SD and TD. This allows enhancing the domain adaptation in

Frontiers in Psychology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 721266

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Ni et al. Cross-Domain Electroencephalogram-Based Emotion Classification

FIGURE 1 | The illustration of EEG-based emotion classification in BCI.

subspace. Second, using PCA and Fisher criteria, the objective
function of DASRC is directly related to the classification rule.
This strategy can promote the recognition ability in the domain-
invariant subspace. Mathematically, an alternating optimization
algorithm is proposed to solve the subspace and dictionary
learning problem. Third, experiments on SJTU emotion EEG
dataset (SEED) (Zheng and Lu, 2015) and dataset for emotion
analysis using EEG, physiological and video signals (DEAP)
(Koelstra et al., 2011) demonstrate that dictionary learning in
subspace is effective and DASRC outperforms the advanced
methods in cross-subject and cross-dataset scenarios.

BACKGROUND

Sparse representation is a data analysis method to estimate
the sparse representation of measurable signals completely. It
originated from neuroscience and has been used in signal
processing, such as denoising and compression (Kanoga
et al., 2019; Gu et al., 2020). In pattern recognition, sparse
representation has also been proved to be suitable for
classification. In sparse representation, the data matrix Y =

[y1, y2, ..., yn] can be decomposed into a linear combination of a
few atoms on the dictionary,

Y ≈ DA, (1)

whereD is the dictionary matrix, andA is the coefficients matrix.
An adequate approximation makes DA the sparse

representation as a reasonable estimation ofY. Based on
this concept, Equation (1) can be rewritten as follows:

argmin
D,A

‖Y−DA‖2F ,

s.t. ∀i, ‖ai‖0 ≤ l0, (2)

where l0 represents the sparsity constraint, ai is the sparse
coefficient vector to represent yi over D. K-singular value

decomposition (KSVD) algorithm is one of the most
representative to solve Equation (2), in which the sparse
coding and dictionary are updated alternately (Aharon et al.,
2006).

DOMAIN ADAPTATION SPARSE
REPRESENTATION CLASSIFIER

In this study, we consider the EEG data from two different
domains SD and TD. The SD is with sufficient labeled samples
Ys = [ys1, y

s
2, ..., y

s
ns
] ∈ Rd×ns and the TD is with limited

labeled samples Yt = [yt1, y
t
2, ..., y

t
nt
] ∈ Rd×nt , such that the

data distribution is P(Ys 6= Yt) and P(Ys|L̃s) ≈ P(Yt|L̃t), where
ŸL̃s and L̃t are the class label set of samples in SD and TD,
respectively. The main idea of the proposed model is shown in
Figure 2.

Local Information Preserved in DASRC
Because the EEG signals are collected from different domains,
domain discrepancies exist between SD and TD. Usually, directly
adapting the existing classifier in SD may perform poorly to
new samples in TD. Domain adaptation is adopted in this study
to find a latent and domain-invariant subspace and maps Ys

and Yt by projection matrixes Ms and Mt , respectively. In this
domain-invariant subspace, the discrepancy between SD and TD
is reduced. Finally, we can train a new classifier for TD in the
subspace with the help of discriminative knowledge from labeled
samples in SD.

Domain adaptation method should strive to preserve the
class distribution and local characteristics of training samples.
Therefore, the local geometric structure of the samples is
considered, so that the samples in SD and TD can be validly
represented in the domain-invariant subspace. We construct
the similarity matrixes Gs and Gt of SD and TD by k-nearest
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FIGURE 2 | The main idea of the proposed model.

neighbor graphs, respectively. The elements in Gs and Gt can be
computed by the following equations,

Gs
i,j =







exp(−

∥

∥

∥
ysi−ysj

∥

∥

∥

2
σ

) if ysi ∈ KNN(ysj )

0 else
(3)

Gt
i,j =

{

1 if yti and y
t
j are ofthe same class

0 else
(4)

where KNN(ysj ) is a set that contains k nearest neighbor samples

of ysj . The element Gs
i,j presents the similarity between the ith

and jth samples in SD. As one of the most commonly used
similarity metrics in graph learning, the Gaussian kernel is
adopted in Equation (3). σ is the kernel parameter. Since the
number of samples in TD is insufficient, Equation (4) ensures
that the limited number of samples in TD is assigned with a given
one-to-one weight. Therefore, we construct the local preserved
constraint to maintain the intra-domain local information.

min
Ms ,Mt

J1 =
∑

i,j

Gs
i,j

∥

∥

∥
(MsYs

i −MsYs
j )
∥

∥

∥

2

2

+
∑

i,j

Gt
i,j

∥

∥

∥
(MtYt

i −MtYt
j )
∥

∥

∥

2

2
. (5)

PCA Criterion in DASRC
In addition, with the aim of classification, the discriminative
knowledge of SD and TD should be enforced in subspace
projection. We considerMs andMt are the bases of the subspaces
based on the PCA criterion for SD and TD. Following Gong
et al. (2019) and Ma et al. (2011), the PCA criterion is used to

TABLE 1 | Cross-subject accuracy % (std %) of DASRC using different features

on SEED dataset.

PSD FD DE MAV

Subject 1 73.76 79.43 79.84 74.02

(4.56) (6.33) (5.24) (5.61)

Subject 2 74.54 80.01 80.36 74.89

(5.63) (4.24) (5.23) (5.74)

Subject 3 63.99 69.35 69.49 64.37

(5.34) (6.17) (6.02) (7.26)

Subject 4 83.71 89.31 89.97 84.28

(6.49) (7.11) (6.13) (5.18)

Subject 5 73.29 78.23 78.62 73.95

(6.69) (7.11) (7.13) (7.07)

Subject 6 86.47 90.32 90.83 86.99

(7.15) (6.98) (7.31) (6.86)

Subject 7 67.85 72.06 72.65 67.82

(6.49) (6.75) (6.71) (6.66)

Subject 8 75.02 70.26 70.98 75.42

(7.04) (6.48) (7.01) (6.87)

Subject 9 79.66 84.09 84.26 79.95

(7.42) (7.16) (7.05) (7.04)

Subject 10 70.91 76.35 76.94 71.16

(6.89) (7.12) (7.30) (6.99)

Subject 11 74.90 80.14 80.47 75.25

(7.73) (7.56) (7.49) (7.58)

Subject 12 75.73 80.25 80.41 75.97

(7.29) (7.33) (7.48) (7.80)

Subject 13 81.28 86.45 86.78 81.44

(7.31) (7.45) (7.68) (7.54)

Subject 14 75.12 80.11 80.51 75.43

(6.43) (6.37) (6.39) (6.97)

Subject 15 75.32 81.26 81.93 75.75

(6.32) (6.27) (6.66) (6.74)

Mean 75.44 79.84 80.27 75.78

(6.57) (6.73) (6.73) (6.80)

preserve discriminative knowledge in the subspace. To this end,
we minimize the following optimization problem:

min
Ms ,Mt

J2 = −MsYs(Ys)T(Ms)T −MtYt(Yt)
T
(Mt)

T
,

s.t. Ms(Ms)T = I,

Mt(Mt)
T
= I. (6)

where I is the identity matrix.
The Laplacian matrixes are denoted as Ls = Gs−Ws and Lt =

Gt −Wt , whereGs andGt are diagonal matrixes whose elements
in the principal diagonal are defined asWs

i,i =
∑

j
Gs
i,jandWt

i,i =

∑

j
Gt
i,j, the term J1+J2 can be written as

min
Ms,Mt

J1 + J2 = Tr(MsYs(Ls − αI)(Ys)T(Ms)T
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TABLE 2 | Cross-dataset accuracy % (std %) of DASRC using different features

on SEED→ DEAP.

PSD FD DE MAV

SVM 33.34 35.75 36.66 33.94

(8.04) (9.00) (8.36) (9.10)

LC-KSVD 33.77 35.61 37.97 33.80

(7.34) (8.08) (8.85) (8.78)

TCA 41.69 44.12 45.08 41.90

(7.27) (9.35) (9.01) (9.70)

MIDA 43.61 45.13 45.86 42.96

(9.50) (10.81) (8.52) (6.65)

ASFM 44.67 47.14 47.97 44.88

(8.96) (9.04) (10.48) (8.66)

MMD 46.71 50.66 50.54 47.22

(9.89) (10.36) (8.99) (9.80)

DASRC 50.57 53.26 53.54 50.60

(9.30) (8.86) (8.77) (9.89)

The bold values in Tables 2, 3 mean the best values in comparison experiments.

+Tr(MtYt(Lt − αI)(Yt)
T
(Mt)

T
,

s.t. Ms(Ms)T = I,

Mt(Mt)
T
= I. (7)

where α is the regularization parameter.

Fisher Criterion in DASRC
To train the discriminative dictionary D in the projection space,
where the learned dictionary can sparsely represent samples from
each class in SD and TD, the representation errors of intraclass
and interclass in SD and TD are required to be minimized and
maximized, respectively. Inspired by the Fisher criterion (Peng
et al., 2020), the ratio of intra-class scatter to inter-class scatter are
minimized on the coding coefficients in SD and TD as follows:

argmin
Ms ,Mt ,D

J3 =

∑

j

∥

∥

∥
Msysj −Dϕlsj

(αs
j )

∥

∥

∥

2

F
+

∑

j

∥

∥

∥
Mtytj −Dϕltj

(αt
j )

∥

∥

∥

2

F

∑

j

∥

∥

∥
Msysj −Dθlsj (α

s
j )

∥

∥

∥

2

F
+

∑

j

∥

∥

∥
Mtytj −Dθltj

(αt
j )

∥

∥

∥

2

F

,

s.t.
∥

∥dk
∥

∥

2
2 ≤ 1, ∀k (8)

where the function ϕlj () returns the coefficient vectors of the same
class of yj, and the function θlj () returns the coefficient vectors of

the different class of yj.
To simplify Equation (8), we denote

2s = [ϕls1
(αs

1),ϕls2
(αs

2), ...,ϕlsns
(αs

ns
)], (9.1)

2t = [ϕlt1
(αt

1),ϕlt2
(αt

2), ...,ϕltnt
(αt

nt
)], (9.2)

1s = [θls1 (α
s
1), θls2 (α

s
2), ..., θlsns (α

s
ns
)], (9.3)

1t = [θlt1 (α
t
1), θlt2 (α

t
2), ..., θltnt

(αt
nt
)], (9.4)

Equation (8) can be re-written as

argmin
Ms ,Mt ,D

J3 =

∥

∥(MsYs −D2s)
∥

∥

2
F
+

∥

∥(MtYt −D2t)
∥

∥

2
F

∥

∥(MsYs −D1s)
∥

∥

2
F
+

∥

∥(MtYt −D1t)
∥

∥

2
F

,

s.t.
∥

∥dk
∥

∥

2
2 ≤ 1, ∀k (10)

when the minimization problem of J3 is solved, a shared
dictionary is learned to establish an intrinsic relationship between
different domains so that the discrimination information learned
from SD can be transferred to TD in a cross-domain scenario.

The DASRC Model
For cross-domain EEG-based emotion classification, we take into
account three objective functions J1, J2, and J3 together, joint
constraints on the local information preserved, PCA and Fisher
criteria to optimize the shared dictionary and domain-specific
projections. Thus, the optimization problem of DASRC can be
formulated as

argmin
Ms ,Mt ,D,As ,At

J1 + J2 + J3,

s.t. Ms(Ms)T = I,

Mt(Mt)
T
= I. (11)

To see all the components clearly, Equation (11) is expanded by

argmin
Ms ,Mt ,D

∥

∥(MsYs −D2s)
∥

∥

2
F
+

∥

∥(MtYt −D2t)
∥

∥

2
F

∥

∥(MsYs −D1s)
∥

∥

2
F
+

∥

∥(MtYt −D1t)
∥

∥

2
F

+Tr(MsYs(Ls − αI)(Ys)T(Ms)T

+Tr(MtYt(Lt − αI)(Yt)
T
(Mt)

T
,

s.t. Ms(Ms)T = I,

Mt(Mt)
T
= I. (12)

Let M̃ = [Ms,Mt], Ỹ =

[

Ys 0
0 Yt

]

, 2̃ = [2s,2t], 1̃ = [1s,1t],

L̃ =

[

Ls 0
0 Lt

]

, the simplified formulation of Equation (12) can be

approximately written as

min
M̃,D

∥

∥

∥
M̃Ỹ−D2̃

∥

∥

∥

2

F
∥

∥

∥
M̃Ỹ−D1̃

∥

∥

∥

2

F

+ Tr(M̃M̃(L− αI)ỸTM̃T ,

s.t. M̃M̃T = I. (13)

Optimization of the Objective Function
Equation (13) becomes a least square problem with quadratic
constraints and could be solved by many methods. The
Lagrangian of the optimization problem in Equation (13) is

F(M̃,D,β , γ ) =

∥

∥

∥
M̃Ỹ−D2̃

∥

∥

∥

2

F
+ Tr(M̃Ỹ(L− αI)ỸTM̃T

−β

∥

∥

∥
M̃Ỹ−D1̃

∥

∥

∥

2

F
− γ (M̃M̃T − I), (14)

where β and γ are Lagrange multipliers.
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FIGURE 3 | Cross-subject accuracy on SEED dataset with different features, (A) PSD, (B) FD, (C) DE, (D) MAV.

We use the alternating optimizationmethod to solve Equation
(14). When fixing D, β , and γ , we take the first-order partial
derivatives of Equation (14) over M̃,

F′(M̃) = M̃ỸỸT −D2̃ỸT + M̃Ỹ(L− αI)ỸT

−β(M̃ỸỸT −D1̃ỸT)− γ M̃, (15)

and the optimal M̃ can be computed in the closed-form

M̃ = (D2̃ỸT − βD1̃ỸT)(ỸỸT + Ỹ(L− αI)ỸT

−βỸỸT − γ I)−1. (16)

When fixing M̃, β , and γ , we take the first-order partial derivative
of Equation (14) overD,

F′(D) = −M̃Ỹ2̃
T
+D2̃2̃

T
+βM̃Ỹ1̃

T
− βD1̃1̃

T
, (17)

and the optimalD can be computed in the closed-form

D=(βM̃Ỹ1̃
T
− M̃Ỹ2̃

T
)(2̃2̃

T
− β1̃1̃

T
)−1. (18)

When fixing M̃,D, and γ , we take the first-order partial derivative
of Equation (14) over β ,

F′(β) = −

∥

∥

∥
M̃Ỹ−D1̃

∥

∥

∥

2

F
, (19)

Then β can be optimized by

βnew = β + λβ

F(β)

F′(β)
, (20)

where λβ is the length size.
When fixing M̃, D, and β , we take the first-order partial

derivative of Equation (14) over γ ,

F′(γ ) = I− M̃M̃T , (21)

Then γ can be optimized by,

γnew = γ + λγ

F(γ )

F′(γ )
, (22)

where λγ is the length size.
The proposed DASRC model is given in Algorithm 1.

Testing
With all the optimization steps discussed above, we summarize
the optimization procedure of the DASRCmodel in Algorithm 1.
When the projection matrix M̃ and the shared dictionary D are
obtained by Algorithm 1, we use the following step to recognize
the new EEG signal y in TD. The sparse coefficient vector α over
dictionary D can be solved as,

min
α

∥

∥M̃y−Dα
∥

∥

2

2 + µ ‖α‖22 , (23)
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The sparse coefficient vector α can be obtained as

α = (DTD+ µI)
−1

DTM̃y, (24)

The classification label of x can be derived as

label(y) = arg min
i

{
∥

∥M̃y−Dϕi(α)
∥

∥

2

2 /
∥

∥ϕi(α)
∥

∥

2
2}, i = 1, 2, ...,C

(25)

where C is the number of classes.

Algorithm 1 | DASRC: domain adaptation sparse representation classifier.

Input: Source domain dataset Ysand target domain Yt;

Output: The dictionary D and subspace M̃;

1: Initialize Ms and Mt using PCA method and D using KSVD algorithm;

2: Construct k-nearest neighbor graphs in SD and TD;

3: Construct matrixes Ỹ and L̃;

While

4: Construct matrixes M̃,2̃, and 1̃;

5. Update M̃ using Equation (16);

6: Update D using Equation (18);

7: Update β using Equations (19)–(20);

8: Update γ using Equations (21)–(22);

Return M̃ and D.

EXPERIMENT

Datasets and Experimental Settings
We conduct the experiments to evaluate the efficacy of the
proposed classifier on two public EEG emotion datasets, SEED
and DEAP. The EEG signals in the SEED dataset are recorded
from 15 participants across three different sessions. Their
emotions are stimulated by the Chinese file clips using an ESI
NeuroScan system with 62-channel electrodes at a sampling rate
of 1,000Hz. Each film clip is related to three emotions as positive,
neutral, or negative, and each emotion has five corresponding
film clips. The EEG signals in the DEAP dataset are recorded
from 32 participants by watching 40 videos with 32-channel
electrodes. DEAP dataset labels the valence and arousal rating
scores from 1 to 9, which is closely related to emotions. We
manually label the valence values above 4.5 as positive and
the values smaller than 4.5 as negative. For a comprehensive
study, we extract four different features in terms of time analysis,
frequency analysis, and non-linear analysis for each EEG channel.
Time analysis includes mean absolute value (MAV) (Shim et al.,
2016), frequency analysis includes power spectral density (PSD)
(Jenke et al., 2014), and non-linear analysis includes fractal
dimension (FD) (Li et al., 2019) and differential entropy (DE)
(Zheng and Lu, 2015). The size of the extracted feature is 10
dimensions for each channel.

FIGURE 4 | Cross-subject accuracy on DEAP dataset with different features, (A) PSD, (B) FD, (C) DE, (D) MAV.
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We evaluate the DASRC model on cross-subject and cross-
dataset scenarios. We compared DASRC with two baseline
methods and four domain adaptation methods. For the baseline
methods, we compared the DASRC with label consistent K-SVD
(LC-KSVD) (Jiang et al., 2013) and SVM (Cortes and Vapnik,
1995). For these two methods, the training data in SD and
TD are combined as the input samples. The Gaussian kernel
is used in SVM, and the kernel and penalty parameters are
searched in the grid {10−3, 10−2,. . . , 103}. The number of atoms
in each class is selected in {50, 60,. . . , 200}. We compared the
DASRC model with four domain adaptation methods, including
transfer component analysis (TCA) (Pan et al., 2011), adaptive
subspace feature matching (ASFM) (Chai et al., 2017), maximum
mean discrepancy (MMD) (Sejdinovic et al., 2013), maximum
independence domain adaptation (MIDA) (Yan et al., 2018). The
latent dimension in MIDA and TCA is determined by searching
the grid {20, 30,. . . , 100}. The subspace dimension in ASFM is
set as 70. The threshold parameter in ASFM was set at 0.45.
In DASRC, the subspace dimension is determined by searching
the grid {20, 30,. . . , 100}. The number of atoms in each class
is selected in {10, 15, 20, 25, 30, 35}. All the algorithms are
implemented in MATLAB.

Cross-Subject EEG-Based Emotion
Classification
For cross-subject evaluation, one subject is left out as the test
subject, and the remaining different subjects are used as training
data to feed the model. In the SEED dataset, one subject contains
925 samples in each session. We randomly select 300 samples
from each subject and combine them as training data. We repeat
the procedure 10 times.

First, we evaluate how the classification accuracy of the
classifier varies with the different features. For each subject,
Table 1 depicts the experimental results of mean accuracies and
SD on the SEED dataset. We can see that for DASRC, the
classification accuracy is relatively stable, and the value of SD
is acceptable. Meanwhile, the classification accuracy of some
subjects is relatively high and of some subjects is relatively low.
DE and FD features achieve better performance than PSD and
MAV features.

Then, DASRC is compared with two baseline methods
and four domain adaptation methods. Table 2 depicts the
experimental results of mean accuracies of all models using
PSD, MAV, DE, and FD features. From Table 2, we can see
that the classification accuracies of all methods on DE and FD
features are higher than PSD and MAV features. It may suggest
that non-linear analysis features may be more suitable when
compared to EEG-based emotion classification. The performance
of the DE feature is better than that of the FD feature,
and the best results in all methods are obtained using the
DE feature.

In the DEAP dataset, one subject contains 180 samples. As
such, we randomly select 100 samples from each subject and
the training set contains 3,100 samples. Figure 3 shows the
classification accuracies of six comparison methods on the SEED

TABLE 3 | Cross-dataset accuracy % (std %) of DASRC using different features

on DEAP→ SEED.

PSD FD DE MAV

SVM 48.87 51.05 51.66 48.94

(9.00) (9.43) (8.57) (8.08)

LC-KSVD 49.30 51.73 51.97 49.86

(9.76) (10.72) (7.70) (6.68)

TCA 56.08 58.57 58.32 56.55

(8.02) (8.83) (9.11) (7.06)

MIDA 57.96 59.21 59.99 58.31

(8.41) (8.64) (7.15) (9.61)

ASFM 58.77 61.74 62.01 59.76

(9.68) (7.45) (7.40) (8.05)

MMD 61.04 63.60 63.89 61.25

(8.82) (7.00) (8.64) (7.24)

DASRC 62.75 64.74 64.97 62.71

(8.20) (7.33) (7.67) (7.05)

dataset when four different kinds of features (PSD, MAV, DE,
and FD) are used. Figure 4 shows the accuracy results of five
comparison methods on the DEAP dataset for positive and
negative classes. According to the experimental results, we can
see that first, single-domain classification methods SVM and
LC-KSVD cannot obtain satisfactory classification performance
in subject-to-subject scenarios on SEED and DEAP datasets.
After all, they are not proposed to address the cross-domain
data scenarios. Second, among the domain adaptation methods,
the proposed DASRC model based on shared dictionary and
subspace learning perform better than the methods using some
other shared components. The main factor is that the shared
dictionary can learn more discriminative knowledge to encode
the EEG signals. Third, the accuracies of all models on the DEAP
dataset are lower than those obtained on the SEED dataset. It may
be the reason that the labeling quality of EEG signals in DEAP
is poorer.

Cross-Dataset EEG-Based Emotion
Classification
For cross-dataset evaluation, the SD and TD are from different
datasets. We perform comparison experiments across SEED
and DEAP datasets. According to the given exact threshold,
the samples in the DEAP dataset are divided into positive and
negative classes, which correspond to the positive and negative
classes of the SEED dataset. As the domain adaptation method
requires the same feature space in SD and TD, we use the 32
channels shared between DEAP and SEED. In two experiments,
we randomly select 3,000 samples in SD for training and 2,000
samples in TD for testing. We, then, repeat the procedure 10
times. Tables 2, 3, respectively, show the accuracy results of five
comparison methods on SEED→ DEAP and DEAP→ SEED,
when PSD, MAV, DE, and FD features are used. According to
the experimental results, we can see that first, the performance
of single-domain and domain adaptation methods exhibit
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FIGURE 5 | Cross-subject accuracy on DEAP dataset with different parameters p and K using features: (A) PSD, (B) FD, (C) DE, (D) MAV.

FIGURE 6 | The convergence curves of DASRC on two scenarios, (A) cross-subject on SEED, (B) cross-dataset on DEAP→ SEED.

evident differences, with three domain adaptation methods show
significant improvements in classification accuracy. Second,
DASRC is the best-performing classifier in two cross-dataset
EEG emotion classifications. DASRC achieves 16.88% accuracy

gains over the compared single-domain methods and 8.70%
accuracy gains over the compared domain adaptation methods.
The reason is that single-domain methods fail to reduce the
domain shift. On the contrary, DASRC learns the shared
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dictionary to build the connection between SD and TD such
that the discriminative knowledge from SD can be transferred
to TD. In addition, besides the advantage of the cross-domain
Fisher criterion and local information preserved technology, the
recognition ability also promotes the classification performance
of DASRC.

Parameter Analysis
In this subsection, we validate the DASRC in cross-subject
and cross-dataset scenarios. The subspace dimensions, p, and
size of dictionary atoms, K, are the key parameters, and they
are determined by the cross-validation method. We empirically
search p in {10, 20,. . . , 100} and K in {30, 40,. . . , 120}. Figure 5
plots the mean accuracy of DASRC with varying p and K, while
using DE features. From Figure 5, we can see that DASRC
can achieve stable performance with small p and K. The best
accuracies are achieved, in general, when p is great than 60
and K is great than 80. This result indicates that the proposed
DASRC can exploit the common knowledge in a relatively low
dimensional subspace. Based on the results in Figure 5, the
subspace dimension and dictionary size are suggested to be set
to 60 and 80, respectively.

The domain adaptation methods often produce extra
computational overhead. Figure 6 plots the convergence curves
of DASRC in cross-subject and cross-dataset scenarios while
using DE features. From this figure, we can see that DASRC can
converge within a small number of iterations. Thus, we can set
the iteration bound to 40.

CONCLUSION

In this study, the DASRC model is proposed, which solves
the EEG-based emotion classification across different subjects
and datasets. Three criteria are considered to jointly learn
sunspace and shared dictionary in DASRC. The local information

preserved criterion is exploited to project samples in SD and
TD into the shared subspace, where both PCA and Fisher
criteria are exploited to transform discriminative knowledge
through the shared dictionary. Experimental testing using
SEED and DEAP datasets demonstrates the effectiveness of
DASRC for dealing with the domain discrepancy for EEG-
based emotion classification. For future work, we will explore
more local preserved strategies in domain adaptation dictionary
learning, such as local salience information. In addition, we
will study the semi-supervised domain adaptation scenario, in
which the unlabeled samples in TD rather than limited labeled
samples participate in the model training. How to prevent
negative transfer will also be considered in the next stage
of work.
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