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Rapid advances in the field of Deep Reinforcement Learning (DRL) over the past several

years have led to artificial agents (AAs) capable of producing behavior that meets or

exceeds human-level performance in a wide variety of tasks. However, research on DRL

frequently lacks adequate discussion of the low-level dynamics of the behavior itself

and instead focuses on meta-level or global-level performance metrics. In doing so,

the current literature lacks perspective on the qualitative nature of AA behavior, leaving

questions regarding the spatiotemporal patterning of their behavior largely unanswered.

The current study explored the degree to which the navigation and route selection

trajectories of DRL agents (i.e., AAs trained using DRL) through simple obstacle ridden

virtual environments were equivalent (and/or different) from those produced by human

agents. The second and related aim was to determine whether a task-dynamical model

of human route navigation could not only be used to capture both human and DRL

navigational behavior, but also to help identify whether any observed differences in the

navigational trajectories of humans and DRL agents were a function of differences in the

dynamical environmental couplings.

Keywords: task-dynamical model, dynamical perceptual motor primitives, deep reinforcement learning,

navigational behavior, obstacle avoidance, route selection

INTRODUCTION

Rapid advances in the field of Deep Reinforcement Learning (DRL; Berner et al., 2019;
Vinyals et al., 2019) over the past several years have led to artificial agents (AAs) capable
of producing behavior that meets or exceeds human-level performance across a wide variety
of tasks. Some notable advancements include DRL agents learning to play solo or multiagent
video games [e.g., Atari 2,600 games (Bellemare et al., 2013), DOTA (Berner et al., 2019),
Gran Turismo Sport (Fuchs et al., 2020), Starcraft II (Vinyals et al., 2019)], and even
combining DRL with natural language processing (NLP) to win at text-based games such
as Zork (Ammanabrolu et al., 2020). There have also been major developments in the
application of DRL agents for physical systems, including applying DRL to automate a complex
manufacturing-like process for the control of a foosball game table (De Blasi et al., 2021),
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using DRL to control a robotic agent during a collaborative
human-machine maze-game (Shafti et al., 2020), and for the
control of a robotic hand performing valve rotation and finger
gaiting (Morgan et al., 2021). Recent research has also focused
on implementing DRL agents in multiagent human-AA settings,
including recent work in which a human teammate collaborated
with unmanned aerial vehicles driven by DRL agents to douse
fire in a real-time environment, where the task goals could not
be achieved by either the human teammate or AAs alone (Navidi
et al., 2020).

In DRL, agents learn via trial-and-error by modifying their
behavior to maximize desired outcomes. Indeed, a primary
advantage of using DRL techniques is that AAs can be trained
and optimized to achieve task success across a variety of tasks
without prior knowledge of the dynamics of the environment
or the agent’s action capabilities. However, research on DRL
frequently lacks adequate discussion of the low-level dynamics
of the behavior itself, and rather shifts its focuses on meta-
level or global-level performance metrics (e.g., Mnih et al., 2015;
Pohlen et al., 2018; Berner et al., 2019; Vinyals et al., 2019).
In doing so, the current literature lacks perspective on the
qualitative nature of AA behavior, leaving questions regarding the
spatiotemporal patterning of their behavior largely unanswered.
In fact, these agents often produce behavior that is easily
distinguishable from or incompatible with human behavior, and
for certain applications, this can be non-optimal. For instance, in
the case of an AA acting alongside humans as an autonomous
squad member (Chen et al., 2018), as a robot or virtual guide
through a museum (Philippsen and Siegwart, 2003; Swartout
et al., 2010), when training humans to perform a multiagent
team task (Rigoli et al., 2020), or when navigating autonomously
alongside humans in pedestrian areas (Carton et al., 2013) or
on highways (Urmson et al., 2009; Wollherr et al., 2014; Weiss
et al., 2015). Moreover, human-like movement or navigation is
known to improve human-AA interaction in a myriad of ways,
including increases in fault tolerance, trustworthiness, work pace,
and perceived predictability (Carton et al., 2016, 2017; Castro-
González et al., 2016; Obaid et al., 2016).

BEHAVIORAL DYNAMICS OF HUMAN
ROUTE SELECTION

An alternative method for controlling AA behavior is to
incorporate behavioral dynamics models (Warren, 2006; Warren
and Fajen, 2008) and/or related task-dynamics models (Saltzman
and Kelso, 1987) of human behavior within the control
architecture of AAs. Consistent with the more general dynamical
and complex systems approach to human behavior (Kugler
et al., 1980; Haken et al., 1985; Thelen and Smith, 1994;
Kelso, 1995, 2009; Richardson et al., 2014; Richardson and
Kallen, 2015) the behavioral dynamics approach places a
strong emphasis on self-organization and contextual emergence,
whereby the organization or stable order of observed behavior
is not understood to be the result of any individual system
component, mechanism, or centralized control structure, but
rather is understood to emerge as a posterior consequence

of the distributed interaction of physical (lawful) processes,
informational and biomechanical couplings, and contextual
constraints. Accordingly, stable behavior is assumed to reflect
a functional grouping of structural elements within an agent-
environment system (e.g., limbs, movements and actions of
actors, and objects and events of the task environment) that is
temporarily constrained to act as a single coherent unit (also
termed synergy), formed, and destroyed in response to changing
task and sub-task goals and action possibilities (i.e., affordances).

Central to the approach is both identifying and then defining
the self-organizing physical and informational constraints and
couplings that underly the emergence of stable and effective
human perceptual-motor behavior in the form of a non-linear
dynamical system. Of particular relevance here is that, although
identifying and defining such non-linear dynamical models may
at first seem rather difficult, there is now a substantial body of
research demonstrating how human perceptual-motor behavior
can be modeled (and perhaps even derived) using a simple set of
dynamical motor primitives (Haken et al., 1985; Kay et al., 1987;
Schaal et al., 2005; Warren, 2006; Ijspeert et al., 2013; Richardson
et al., 2015; Amazeen, 2018; Patil et al., 2020). Specifically,
these dynamical motor primitives correspond to the fundamental
properties of non-linear dynamical systems, namely (i) point-
attractor dynamics and (ii) limit-cycle dynamics, with the former
capable of capturing discrete movements or actions (e.g., tapping
a key, passing, or throwing a ball) by means of environmentally
coupled damped mass-spring functions, and the latter capable
of capturing rhythmic movements (e.g., hammering, walking)
by means of forced (driven) damped-mass spring systems or
non-linear self-sustained oscillators (e.g., Rayleigh or van der Pol
oscillator). In the context of modeling human perceptual-motor
behavior, these dynamical primitives can be termed dynamical
perceptual-motor primitives (DPMPs).

Dynamical perceptual-motor primitive models can
successfully capture a wide range of human behaviors, from
human object passing (Lamb et al., 2017), reaching, cranking,
and rhythmic wiping (Kay et al., 1987; Saltzman and Kelso,
1987), intersegmental coordination (Amazeen et al., 1998), to
drumming and racket ball tasks (e.g., Sternad et al., 2001; Ijspeert
et al., 2013), as well as complex multiagent tasks (Dumas et al.,
2014; Richardson et al., 2015; Nalepka et al., 2017, 2019; Lamb
et al., 2019). One of the most prominent information-based
models from this approach is the Fajen and Warren model
for route selection and obstacle avoidance (hereafter referred
to as the FW-DPMP model; Fajen et al., 2003 and Fajen and
Warren, 2003, 2004), that employs simple, point attractive, and
repulsive mass-spring-damper functions to model the changes
in bearing or heading direction, ϕ, of an agent moving toward
(attracted to) a goal location, while navigating around (repelled
from) environmental obstacles. An abstract illustration of the
task space used to define the FW-DPMP model is provided in
Figure 1 (left) (adapted from Fajen and Warren, 2003; Warren
and Fajen, 2008). In short, given a reference axis, x, in an (x, y)
planar space, and assuming the agent is moving forward at a
constant velocity, the FW-DPMP model defines the dynamics
of an agent’s heading direction, ϕ, to a target (goal) location, g,

Frontiers in Psychology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 725932

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Rigoli et al. Navigational Behavior Humans and DRL-Agents

FIGURE 1 | (Left) Abstract representation of the task-space devised by Fajen and Warren (2003) to capture the bearing behavior or heading direction, ϕ, of an agent

attracted toward a target goal, g, while avoiding environmental obstacles, o. (Right) Four examples of route selection trajectories generated by the participant-specific

parameterized version of the Fajen and Warren (2003) model (see text for more details about the model and model functions).

while avoiding obstacles, oi using the equation

ϕ̈ = −βϕ̇ − γ
(

ϕ − θg
)

(
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)

+
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∑
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ε
(
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)

e−c3
∣
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∣

∣

(

e−c4dOi

)

(1)

Here, ϕ̈ represents the angular acceleration and ϕ̇ represents the
angular velocity of the agent’s heading direction, θg represents
the angle of the goal direction (with respect to the agent in
an egocentric reference frame), θOi represents the angle of an
obstacle i, with dg and dOi representing the distance to the
target and obstacle i, respectively. The model parameters β, γ ,
and ε reflect the magnitude of damping or resistance toward
changes in direction of heading, attraction to the direction of
heading that leads to the goal location (i.e., positive stiffness
toward the goal direction), and the repulsion force to repel the
heading direction away from an obstacle location (i.e., negative
stiffness toward obstacle direction), respectively. In other words,
for a given value of β , steering toward a goal involves changing
heading direction or turning rate, ϕ̇, until ϕ − θg = 0 at a
rate determined by γ , while avoiding or steering away from an
obstacle involves a change in heading direction or turning rate,
ϕ̇, at a rate determined by ε away from ϕ − θo = 0. The fixed
constants c1 and c2 influence the rate of decay of the attraction
toward the goal and the scaling of the minimum acceleration
(such that it never reaches zero, even for large goal distances),
respectively, and c3 and c4 influence the angular acceleration
away from obstacles and the rate of decay of the repulsion of
obstacles, respectively.

The simple transparency with which Equation (1) can capture
complex human steering behavior and locomotory navigation
has been verified across numerous experimental procedures and
tasks (see Warren, 2006; Warren and Fajen, 2008 for reviews).
Modest extensions of Equation (1) can also capture patterns
of collective behavior in crowd locomotor dynamics (Bonneaud
et al., 2012;Warren, 2018), the dynamics of intercepting amoving
target (Fajen and Warren, 2007), robot navigation (Huang et al.,
2006) object pick-and-place tasks (Lamb et al., 2017), and
more recently, navigation around obstacles while using a short-
range haptic sensory substitution device (Lobo et al., 2019).
Moreover, it is important to note that in each of the above
studies, the movement trajectories generated by the model are
not a result of a-priori computation (planning), but instead, are
simply a situated self-organized result of interacting attractors
and repellors.

CURRENT STUDY

The current study had two exploratory aims. The first was
to investigate the degree to which the navigation and route
selection trajectories of DRL agents (i.e., AAs trained using DRL)
through an obstacle ridden environment were equivalent (and/or
different) from those produced by human agents. The second
and related aim was to determine whether the FW-DPMP model
of human route navigation [i.e., Equation (1)] could not only
be used to capture both human and DRL navigational behavior,
but also help to identify whether differences between human
and DRL trajectories were a function of different parametric
tunings in the attractive and repulsive forces that shape an agent’s
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movement toward a goal location while avoiding obstacles.
Motivating the latter question was the possibility that one reason
why DRL agents produce behavioral patterns different from
humans is that DRL methods over-optimize (tune) AA behavior
to a given task context (Hasson et al., 2020) and thus exhibit
less variability and less flexible behavioral patterning than human
agents. Given the powerful function approximation properties
of deep neural networks (Csáji, 2001; Arulkumaran et al., 2017),
examining the similitude with which the FW-DPMPmodel could
capture both DRL and human navigation also provided a way
of determining the degree to which the DRL and human agents
learn to exhibit the same low-dimensional task dynamics.

To achieve these aims, human participants and DRL agents
navigated a subset of 18 total obstacle configurations, each with
two start locations and three goal/target locations, for a total of
108 unique combinations. Participants performed the task on a
computer and used keyboard keys to control their movements
through the environment. We examined (1) the similarities and
differences between the navigational trajectories exhibited by
human participants and the DRL agents and, after fitting the FW-
DPMPmodel to the observed human and DRL agent trajectories,
(2) whether different parametric tunings of the FW-DPMPmodel
could account for any observed differences between the human
and DRL agent trajectories.

Accordingly, the rest of the paper is structured as follows.
First, we detail the experimental method used for data collection
and the analysis methods employed to compare the observed
human and DRL agent trajectories. We then report the results
of this analysis. Following this, we detail the FW-DPMP
model (Equation 1) fitting procedures and report a detailed
analysis of the parametric differences between the simulated
human and DRL agent trajectories. Note that additional analyses
were employed to examine the degree to which the FW-
DPMP model effectively captured the observed trajectories
and to compare FW-DPMP-simulated human trajectories to
simulated DRL agent trajectories, which can be found in the
Supplementary Material.

EXPERIMENTAL METHODS

Participants
Two hundred and five participants were recruited to participate
remotely using AmazonMechanical Turk (MTurk) for monetary
compensation. MTurk participants ranged in age from 19 to 65
years old (M = 35.5, SD = 9.4), of which 32% were female and
68% were male. Twenty additional participants were recruited to
participate in-person onMacquarie University campus for course
credit or monetary compensation to validate the data collected
remotely viaMTurk (see section Confidence Interval Analysis for
these comparative results, but in short, there were no differences
between the groups). The in-person participants ranged in age
from 18 to 35 (M = 23.6, SD = 5.3), of which 55% were female
and 45% were male. One of the in-person participants and 13
Mturk participants were dropped from the analysis due to lack
of task completion.

Method and Apparatus
The route selection game and interface were developed using
the Unity Game Engine (Unity Technologies, San Francisco,
USA). As illustrated in Figure 2, the navigation environment
was a 40 × 40m square, surrounded by a “brick” textured wall,
with the target (goal) location represented by a red cylinder and
obstacles represented by blue cylinders (both measuring 0.5m
wide and 1m tall). The game could be played on both PC and
MAC computers using a web browser, with the playing area
visualized by participants via a first-person camera view with
a field of view of 60◦ in the vertical direction and 95◦ in the
horizontal direction. Participants controlled their movements
using a keyboard, with the left and right arrows used to control
the heading direction (turn left and right) and pressing and
holding down the spacebar to move forward along their current
heading direction. When the space bar was pressed, the velocity
of the participant’s movements within the game environment
was constant and was set to 10 m/s and the maximum rotation
speed was set to 25◦ with an angular acceleration of 62.5◦/s2.
Participants were unable to move backwards but were able to
stop moving (by releasing spacebar) and turn around completely
(360◦) using the arrow keys.

There were 18 randomly generated obstacle configurations.
The positions of the obstacles for each configuration are included
in the Supplementary Material. From a top down view of
the playing area with (0, 0) at the center (see Figure 2), for
each of these obstacle configurations, there were two starting
positions (in meters): (5, −16) and (−5, −16,), which in practice
corresponded to starting from either the left or right of the
bottom of the field, and three target locations: (12, 16), (0, 16),
or (−12, 16), which corresponded to the target being located at
the top left, top middle, or top right of the field, respectively.
In total, there were 108 combinations of the eighteen obstacle
configurations, two starting locations, and three route types (18
× 2 × 3), where each unique combination is referred to as
a “scenario.”

During a trial, if an obstacle was hit or bumped into, the trial
would restart. A small counter was presented in the top right
corner of the game displaying the number of successful trials
completed. All participants began by completing five mandatory
successful practice trials. Following this, the experiment required
participants to complete 108 successful trials. Each participant
was assigned a set of three obstacle configurations, which
included the two starting positions and the three route types,
resulting in 18 unique scenarios (3× 2× 2) per participant. Each
scenario was repeated six times resulting in a total of 108 trials
per participant which were presented in a random order.

Each of the in-person participants performed the task twice,
once using a keyboard and once using a joystick (with the
order counterbalanced). The joystick data was collected in
order to compare the trajectories resulting from a continuous
controller (joystick) to a discrete controller (keyboard). The
joystick controls were as follows: shifting the joystick to
the left or right moved the player in that direction and
holding down the joystick’s trigger moved the player forward.
All MTurk participants completed the task using their own
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FIGURE 2 | (Left) Depiction of the game field as seen by participants, with the target represented by the red cylinder and the obstacles by the blue cylinders. (Right)

Top-down view of game field with reference axes, with the player represented by a black peg and the target represented by the red cylinder.

personal computer and keyboard. Both in-person and MTurk
participants completed a Qualtrics survey before starting the task
which collected basic demographics (i.e., age, gender, ethnicity,
handedness). The survey also included a standardized set of
instructions for how to play the game. Put shortly, participants
were told to do their best to navigate to the red target object
as quickly as possible, without hitting any obstacles. Lastly,
participants were made aware that they would be paid the same
amount regardless of the time taken to complete the experiment.

DRL Agent Training
The same route selection game described above was used to train
the DRL agents. Two types of DRL agents were trained to reach
the target while avoiding obstacles: (1) using raycast data and
(2) using visual pixel data as inputs. A raycast is conceptually
like a laser beam that is fired from a point in space along a
particular direction and any object that the beam hits can be
detected, thus a set of N raycasts projected at the different angles
from an agent’s location can provide a discrete map of objects
within the projected raycast region. Visual pixel data is simply
screen capture data and is analogous to what the participants
would see on the screen. TheUnityMLAgents framework (Juliani
et al., 2018) was used to train the agents whose policy was
refined by the Proximal Policy optimization (PPO) methodology
(Schulman et al., 2017) of RL. Proximal Policy optimization
uses a combination of the Clipped Surrogate Objective function
and multiple adaptive epochs on batches of state-action-reward
combinations in order to update the policy of the agent, which in
this case, is approximated by a deep neural network. Both types of
agents were trained to generate five outputs corresponding to two
one-hot “move” actions [move forward or do notmove] and three
one-hot “rotate” actions [rotate left, do not rotate, or rotate right].

The raycast agents were given inputs from 11 rays with one
ray pointing straight ahead and five rays on each side spread
equally over 45◦. Each ray transmitted the information about
what it was detecting in a one-hot vector of size 4 corresponding

to whether it hits an object with one of the tags [one input each
for target or obstacle], it hits an object with another tag [not a
target or obstacle], and it does not hit anything, thus, resulting
in an input size of 44. Furthermore, two additional inputs were
given corresponding to the heading direction and distance of the
target at any given time. The raycast agents’ policy was controlled
by a deep neural network consisting of an input layer with 46
neurons, two hidden layers with 128 neurons each, and an output
layer with five outputs.

The visual agent was given an input from the first-
person camera view (similar to the view presented to human
participants) compressed to an RGB matrix of 80 × 144. The
policy was controlled by a deep neural network consisting of two
convolutional layers with kernel sizes 16× 3× 8× 8 and 32× 16
× 4× 4, respectively, two hidden layers consisting of 512 neurons
each, and an output layer with five outputs.

Both raycast and visual agents were trained for 5 million
training steps. The hyperparameters used during training for the
agent with raycast inputs were- batch size: 128, buffer size: 2,048,
learning rate: 0.0005, beta: 0.01, epsilon: 0.2, lambda: 0.95, num
epoch: 3, learning rate schedule: linear and for the agent with
visual inputs were batch size: 128, buffer size: 10,240, learning
rate: 0.0005, beta: 0.01, epsilon: 0.2, lambda: 0.95, num epoch: 3,
learning rate schedule: linear (refer to Juliani et al., 2018 for more
details). During each episode, which lasted either for 30 s or until
the agent collided with an obstacle or the target, the obstacles
were randomly placed in the playing area while the observations
were collected every fifth frame and the environment updated at
50Hz. The agent was given a (+1) reward for hitting the target
and (−1) reward for either hitting an obstacle or not hitting
anything within the trial duration. For the first 3 million training
steps, the agent’s start position and the target’s position were
randomly selected and for the final 2 million steps, the agent and
the target were placed on the far sides of the playing area such
that the x coordinates were −16 and 16, respectively, and the
y coordinates were randomly selected. For the first 1.5 million
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FIGURE 3 | The distance between a pair of trajectories is the average of the absolute values of di calculated for every 20 cm bin along the y-axis. This example has 16

points per trajectory for illustration purposes, however the actual data had 160 points per trajectory.

training steps of the visual agent, the number of obstacles was
reduced to four in order to facilitate learning by increasing the
probability of a positive reward.

Twenty agents were trained by using the raycast and the target
position as inputs and five agents were trained by using visual
inputs. All the trained DRL agents were simulated to complete
the task of reaching the target by presenting the same scenarios
and using the same paradigms that were used for the human
participants. Note that a third set of DRL agents was trained
using raycast data as inputs, but without any target information,
to determine whether they could learn the task completely
from scratch and create the necessary dependencies on the
task constraints. The results for these DRL agents and for the
visual DRL agents are included in the Supplementary Material,
but in short, both agents produced learning behavior that was
nearly equivalent to the DRL agent with target information.
Specifically, the DRL agents trained by visual data exhibited
similar behavior to the agents with raycast and target position
as inputs, whereas DRL agents trained by raycast data without
the target information exhibited higher variability in their
trajectories (refer to Supplementary Material), which can be
partly attributed to the search behavior in the absence of direct
visibility to the target and absence of information between
raycasts. Given that human participants were always aware of the
target location, they never exhibited such search behavior, and
thus, comparing the variability of the DRL agents using raycast
inputs without explicit target position information to the human
trajectories could not be justified. Therefore, the raycast agents
trained with target information (described above) were used as
the DRL agents for the current study.

Data Pre-processing
The raw data for each trajectory (sampled at 50Hz) were first
interpolated to a standard-length of 1,000 data points. Any
trajectory that was 1.2X longer in distance than the average
trajectory length for that scenario (i.e., the average cumulative
distance) was discarded, as these trajectories represented paths
where a human or DRL agent took a highly anomalous path to
the target. Further, any trajectory that took the participant more
than 20 s to complete was also discarded, as the average trial
time was only 6 s. Out of all trajectories, <5% were discarded.
Following this, the value of each trajectory in the x coordinate
was binned in intervals of 20 cm along the y axis (from−16 to 16
meters on the y axis), such that each trajectory had 160 points (see
Figure 3 for illustration of this process). Analysis was done using
Python 3.8, with larger computational tasks (e.g., agent training,
model fitting) performed using the Multi-modal Australian
Sciences Imaging and Visualization Environment (MASSIVE)
high performance computing infrastructure (Goscinski et al.,
2014) and the National Computational Infrastructure (NCI),
which is supported by the Australian Government.

ANALYSIS

To help simplify the analysis, the trajectories for each scenario
were collapsed such that any trajectory with a starting location
and target position on the same side (i.e., both on the left or both
on the right) was classified as a near-side trajectory, any trajectory
with a starting location and target position on opposite sides
(i.e., starting on the left and target on the right, and vice versa)
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FIGURE 4 | Example scenarios from the raw human (green) and DRL agent (red) data displaying the starting positions (i.e., left or right) and target position(s) (i.e., left,

right or middle) for each route type.

was classified as a far-side trajectory, and any trajectory with the
target position in the middle was classified as a middle trajectory
(note, preliminary analysis reaved the results were symmetrical
with regards to route type, justifying this simplification). These
three classifications are hereafter referred to as “route types” (see
Figure 4). Further, in order to allow for comparison between
trajectories, the data was pre-processed such that each value of
a trajectory in the x coordinate was binned in intervals of 20 cm
along the y axis, similar to Fajen and Warren (2003) and Lobo
et al. (2019).

The proceeding analyses examine the differences between the
human and DRL agent trajectories (both raw and simulated), as
well as the differences between the near-side, far-side, and middle
trajectories. In order to explore these data, three main analyses
were employed: (i) number of preferred routes, (ii) confidence
interval analysis, and (iii) the distance/error between trajectories.
These analyses are described in detail in the following sections.

Preferred Paths
The number of preferred routes was examined as a global
measure of the overall flexibility and variability in route selection
displayed by the humans and DRL agents. To determine the
number of routes taken by human participants and the DRL
agents for each scenario, any route that contained at least 10% of
the humans’ or DRL agents’ trajectories and that took a distinct
path around an obstacle or obstacles was counted as a “preferred
route” (see Figure 5 for examples of preferred routes). Preferred
routes were determined by the researcher manually/by-hand.

Confidence Interval Analysis
A confidence interval analysis was employed to determine the
degree to which the mean DRL agent trajectory fell within the
bounds of the 95% confidence interval (CI) of the human-
produced trajectories, and thus provides a measure of the degree
of similarity between the two groups. This was calculated by
determining whether the mean trajectory of the DRL agents was
in-between the bounds of the human 95% CI at each time-step
and then calculating the proportion of time-steps where themean
DRL agent trajectory lay within the bounds. This was calculated
separately for each of the 108 scenarios.

The mean DRL agent trajectories were calculated for each
scenario by simply taking the mean x-value across all of the
DRL agent-produced trajectories within each of the 20 cm bins
along the y-axis. The upper and lower 95% CIs for the humans

were calculated by taking the x-values at the 97.5th and 2.5th
percentiles within each of the 20 cm bins along the y-axis, such
that 5% of the human data points fell outside of the bounds for
each bin. Following this, the code checked whether the mean
DRL agent x-value for each bin was less than the upper-limit
and greater than the lower-limit of the human CI. Finally, the
proportion of time-steps where the DRL agent mean x-value was
within these bounds was calculated.

The CI analysis was also utilized to help determine the
similarity between the human trajectories collected via Amazon
Mechanical Turk (MTurk) and the human trajectories collected
in the lab. For each scenario, the proportion of the mean
MTurk trajectory that fell within the 95% CI of the in-lab
human trajectories was calculated. This was done separately
for the joystick-control and keyboard-control data. The analysis
revealed that 100% of the meanMTurk trajectory fell within both
the keyboard-controlled and joystick-controlled human 95% CI
for all scenarios, indicating that the mean MTurk trajectory was
not significantly different from the in-lab participants (at the 5%
level) across all scenarios. Thus, we proceeded with the MTurk
data for all analyses in the paper. See Supplementary Figures 3,
4 in SupplementaryMaterial for example scenarios displaying the
mean trajectories and CIs.

Distance Between Trajectories
The distance measure was calculated to provide a quantitative
measure of the difference between trajectories to allow for
comparisons between the human-produced and DRL agent-
produced trajectories. Similar to Fajen and Warren (2003) and
Lobo et al. (2019), distance was calculated by taking the average of
the absolute value of the differences between the x-values of two
trajectories within each 20 cm bin along the y-axis (see Figure 3
for an illustration of this process).

Distance measures were calculated between human and DRL
agent trajectories within each scenario for each possible pairing
of human- and DRL agent- produced trajectories. The measures
were then averaged for each route type (i.e., near-side, middle,
and far-side, see Figure 4) and across the 20 DRL agents for each
human participant, such that the final analysis included three
average distance measures for each route type and for each of the
192 human participants (e.g., participant 10’s trajectories had an
average distance of 2.69 cm across all DRL agents’ trajectories for
near-side routes, an average distance of 2.91 cm across all DRL
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FIGURE 5 | Example scenarios with human trajectories in green, and DRL agent trajectories in red. (A) contains one preferred path for humans and DRL agents, (B)

contains three human preferred paths and one DRL agent preferred path, (C) contains two human preferred paths and one DRL agent preferred path, (D) contains

three human preferred paths and two DRL agent preferred paths.

agents’ trajectories for middle routes, and an average distance of
3.70 cm across all DRL agents’ trajectories for far-side routes).

Distance measures were also calculated within-groups (i.e.,
separately for humans and DRL-agents) to provide a measure
of within-group variability, such that the distance was calculated
for every possible pairing of two human-produced trajectories
(excluding trajectories produced by the same participant) within
each scenario, and then averaged for each route type and for
each participant, such that the final analysis include three average
distance measures for each route type and for each of the 192
participants (e.g., participant 10’s trajectories had an average
distance of 2.83 cm across all other human trajectories for near-
side routes, an average distance of 3.74 cm across all other human
trajectories for middle routes, and an average distance of 3.25 cm
across all other human trajectories for far-side routes). The same
method was used to calculate the distances for the DRL agents.

Finally, the same measures were calculated for the simulated
data, and the corresponding results for these measures (including
examining the degree to which the FW-DPMP model effectively
captured the observed trajectories and comparing FW-
DPMP-simulated human trajectories to simulated DRL agent
trajectories) can be found in the Supplementary Material.

EXPERIMENTAL RESULTS

Preferred Routes
For the human data, 41.67% of the scenarios contained greater
than one preferred path, and 8.3% contained greater than two.
No scenarios contained greater than three preferred paths. For
the DRL agent data, 27.78% of the scenarios contained greater
than one preferred path, and none contained greater than two.
Further, 73.15% of the 108 total scenarios contained the same
preferred path(s) for both humans and DRL agents, of which
26.58% contained two preferred paths. The scenarios in Figure 5

(excluding Figure 5A) were chosen to exemplify diversions from
normality, where humans and DRL agents chose to take a
variety of paths around the obstacles to reach the target location.
However, the preferred routes chosen by humans andDRL agents
tended to overlap across the majority of obstacle scenarios.

Confidence Interval Analysis
The CI analysis revealed that on average, 98.45% of the mean
DRL agent trajectory fell within the human 95% CI, with a
standard deviation of 9.08%. See Figure 6 for example scenarios
displaying the mean trajectories and CIs. Only two out of 108
total scenarios contained DRL agent mean trajectories that were
<91% inside the human CI. In one of these instances (displayed
in Figure 6B) we see that the majority of DRL agents chose
a distinct curved route around the obstacles compared to the
humans, for whom the vast majority chose to navigate in a
relatively straight line through the obstacles to the target location.
Additionally, only five scenarios contained DRL agent mean
trajectories that were between 91.25 and 97.5% inside the human
CI, while the remaining 101 out of 108 total scenarios contained
DRL agent mean trajectories that were >98% within the bounds
of the human CI.

In summary, the analysis revealed a high degree of
similarity between the DRL agent-produced and human-
produced trajectories across all scenarios, such that the DRL
agents tended to navigate through these environments in a
manner that was relatively indistinguishable from human agents.
However, as can be seen from inspection of Figure 6, at the
group-level, DRL agents not surprisingly exhibited much less
spread/variability across trajectories compared to humans.

Distances Between Humans and DRL
Agent Produced Trajectories
Distances (i.e., the average of the binned X-differences) were
calculated between all pairs of DRL agent and human observed
trajectories for each scenario in order to compare the trajectories
produced by both groups (i.e., between human-produced and
DRL agent-produced trajectories). This measure is hereafter
referred to as Distance(BG), where “BG” denotes a between-
groups comparison.

A repeated measures ANOVA was conducted in order to
examine whether there was a difference in Distance(BG) for the
three route types (near-side, middle, and far-side). The analysis
revealed a significant main effect of route type, F(2,380) = 118.12,
p < 0.001, ηp² = 0.38. Post-hoc analyses (pairwise comparisons)
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FIGURE 6 | Example scenarios with human trajectories in green, DRL agent trajectories in red, human CIs in black-dash, and DRL agent mean trajectories in

red-dash. Percent of the mean DRL agent trajectory contained in the human CI for each plot (from left to right): 91.9, 25.6, 100, 100%. (A) and (B) display rare

examples of the mean DRL agent trajectory deviating from the human tendency, captured by the human CI, while (C) and (D) display more typical cases.

conducted using the Bonferroni correction revealed that
Distance(BG) for the far-side location (M = 1.8, SD = 0.8) was
significantly higher than for the near-side location (M = 1.3,
SD = 0.6), and middle location (M = 1.3, SD = 0.7; both p
< 0.001), indicating that humans and DRL agents produced
more dissimilar trajectories for the far-side routes, which with
longer travel distance presented more opportunity for divergence
in route selection around obstacles. However, the near-side
location andmiddle location were not significantly different from
each other, indicating that human and DRL agent trajectories
remained relatively similar for these route types.

Within-Group Distances
Distances were calculated between all possible pairings of
trajectories within each scenario separately for DRL agents and
Humans, and thus provides a measure of within-group variation.

To assess the effects of player type and route type on the
binned X-differences, hereafter referred to as Distance(WG),
we defined a multilevel model predicting Distance(WG), with
fixed effects (near-side, middle, or far-side), and Player (DRL
agent or Human), and random effect Player ID. In the model,
independence of residuals was assumed but due to unequal
variance between humans and DRL agents, we specified for the
model to estimate distinct variance for each two player types (that
is, the model estimated distinct variance for Distance(WG) for
Human trials and for DRL agent trials). The model was fit using
the maximum likelihood estimation procedure.

This model adequately fit the data, χ2
(3) = 484.62 p < 0.001.

When the Player × Location two-way interaction was added to
the model, the model again adequately fit the data, χ2

(5) = 716.79,
p < 0.001. The likelihood-ratio test of the two nested models was
significant, χ2

(2) = 217.11, p < 0.001, suggesting that the latter
model fit the data more appropriately, and thus the latter model
was adopted.

In the full model, there were significant main effects of Player,
χ2
(1) = 66.24, p < 0.001, and location, χ2

(2) = 515.27, p <

0.001, and a significant Player × Location interaction, χ2
(2) =

412.11, p < 0.001. Contrasts revealed that there were significant

simple main effects of player on near-side location, χ2
(1) = 61.55,

p < 0.001, with humans (M = 1.6, SD = 0.6) having higher
Distance(WG) than DRL agents (M = 0.6, SD = 0.1); on middle
location, χ2

(1) = 29.26, p < 0.00, with humans (M = 1.3, SD =

0.7) having higher Distance(WG) than DRL agents (M = 0.6, SD
= 0.0); and on far side location, χ2

(1) = 118.05, p < 0.001, with
humans (M = 2.1, SD = 0.7) again having higher Distance(WG)

than DRL agents (M= 0.7, SD= 0.0). Thus, these results suggest
that (not surprisingly) humans exhibited higher within-group
variability in their trajectories as compared to DRL agents, who
appeared to exhibit more consistency (i.e., less variation) across
all the route types.

There was also a significant simple main effect of location for
DRL agents, χ2

(2) = 173.71, p < 0.001. Follow-up Bonferroni-
corrected pairwise comparisons of Distance(WG) for each
location revealed that for the DRL agents, Distance(WG) was
significantly higher for the far-side location than both the middle
location, b = 0.03, t(19) = 3.57, p < 0.01, and the near-
side location, b = 0.09, t(19) = 12.77, p < 0.001. In addition,
Distance(WG) was higher for the middle location than for the
near-side location, b=−0.07, t(19) = 9.20, p < 0.001. Thus, DRL
agents exhibited the highest degree of consistency in the near-side
routes, and the highest degree of variability in the far-side routes.

Results also revealed significant simple main effect of location
for humans, χ2

(2) = 476.81, p < 0.001. Follow-up Bonferroni-
corrected pairwise comparisons of Distance(WG) for each of
the locations revealed that for humans, Distance(WG) was
significantly higher for the far-side location than both the middle
location, b = 0.74, t(191) = 21.47, p < 0.001, and near-side
location, b = 0.49, t(191) = 14.15, p < 0.001. Contrary to
the results for the DRL agents, Distance(WG) for humans was
significantly lower for the middle routes than for the near-side
routes, b=−0.25, t(191) =−7.29, p < 0.001. Thus, in contrast to
DRL agents, humans exhibited the highest degree of consistency
in the middle routes, and the highest degree of variability in the
far-side routes.

Collectively, these results indicate that humans displayed
higher variability overall [i.e., higher Distance(WG)] in their

Frontiers in Psychology | www.frontiersin.org 9 September 2021 | Volume 12 | Article 725932

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Rigoli et al. Navigational Behavior Humans and DRL-Agents

FIGURE 7 | Example scenarios with human trajectories in green and DRL agent trajectories in red.

trajectories than DRL agents across all three route types, and both
humans and DRL agents exhibited the most variation in the far-
side routes. However, DRL agents were found to exhibit more
variability in the middle routes than the near-side routes, while
humans exhibited the opposite effect, such that there was higher
human variation for the near-side routes than the middle routes.

MODEL-FITTING AND SIMULATIONS

Model-Fitting
The FW-DPMP model was used to fit each of the observed
trajectories produced by human participants and the DRL agents.
For this study, the parameters γ , ε, and β were of central
concern as these parameters are responsible for determining
the goal’s “attractiveness” and stability, repulsion from obstacles,
and damping (which acts as a frictional force to oppose angular
motion). These three parameters are ultimately responsible for
the resulting/emergent trajectory. Thus, we fit the model to each
trajectory by modulating these key parameters. For this study, all
other parameters in Equation (1) were kept the same as inferred
by the original Fajen and Warren (2003) formulation.

To determine the optimal γ , ε, and β parameters for a given
human or DRL agent trajectory, we employed the differential
evolution algorithm (Storn and Price, 1997) implemented
in the SciPy.optimize package (Virtanen et al., 2020) which
is a population-based search algorithm that can optimize a
multivariate function by iteratively improving solutions based on
an evolutionary process. In our case, the algorithm minimized
the dynamic time warping (DTW) distance [implemented via
the python similarity-measures package (Jekel et al., 2019)]
between the observed trajectory and the simulated trajectory,
using a range of parameter values until an optimal set was
found that resulted in the smallest DTW error. Dynamic time
warping is a method for measuring the similarity between two
temporal sequences that may vary in speed/time by computing
the distance between sequences using a one-to-many (and many-
to-one) approach, such that the total distance between the
sequences is minimized without concern for synchronization
between the sequences. These parameters were then averaged
for each human/DRL agent, such that each human/DRL agent
ended up with their own characteristic set of parameters. The
average, or characteristic parameters obtained for each agent

were then used to simulate agent-specific movement trajectories
within each scenario, resulting in a set of simulated trajectories
for each human and DRL agent for all scenarios. See Figure 7 for
examples of the simulated trajectories.

Parameter Analysis
In order to determine what parameter estimates underlie
the differences in the human and DRL agent parameter-
defined model trajectories, we analyzed the differences in the
parameters β, γ , and ε for humans and DRL agents across the
three route types. Again, these parameters represent damping
on turning rate, attraction to the goal, and repulsion from
obstacles, respectively. Accordingly, we defined a multilevel
model predicting parameter value with fixed effects Parameter
(β, γ , or transformed ε), Route Type (near-side, middle, or far-
side), and Player (DRL agent or Human), and random effect
Player ID. The model was fit using the Maximum Likelihood
estimation procedure. For readability, the simplified results are
reported here; see Supplementary Material for the full details
of this analysis. The means, standard deviations, minimum, and
maximum values, and skew and kurtosis values for parameters β,
γ , ε, and the Box-Cox-transformed ε are summarized in Table 1
of Supplementary Material.

The full three-way model (Parameter× Route Type× Player)
adequately fit the data, χ2

(17) = 35458.60, p < 0.001, and revealed

significant main effects of parameter type, χ2
(2) = 20591.37, p <

0.001, route type, χ2
(2) = 80.32, p< 0.001, and player type, χ2

(1) =

34.63, p < 0.001, on parameter value. There were also significant
Parameter × Location, χ2

(4) = 282.33, p < 0.001, Parameter

× Player, χ2
(2) = 125.59, p < 0.001, and Location × Player,

χ2
(2) = 74.22, p < 0.001, interaction effects on parameter value.

Most importantly, the Parameter× Location× Player interaction
was also significant, χ2

(4) = 121.34, p < 0.001, suggesting that
the Location × Player interaction varied for different parameter
types. Contrasts were used to break down this interaction for each
of the parameter types.

There were significant simple main effects of route type on
β , χ2

(2) = 159.50, p < 0.001, on γ , χ2
(2) = 95.94, p < 0.001,

and on transformed ε, χ2
(2) = 260.96, p < 0.001. Similarly, there

were significant simple main effects of player type on β , χ2
(1)
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= 83.05, p < 0.001, on γ , χ2
(1) = 47.77, p < 0.001, and on

transformed ε, χ2
(1) = 14.70, p < 0.001. Interestingly, there were

also significant simple interaction effects of route type and player
type on β , χ2

(2) = 36.27, p < 0.001, on γ , χ2
(2) = 80.92, p <

0.001, and on transformed ε, χ2
(2) = 78.31, p < 0.001. These

simple interaction effects suggest that the target-location simple
main effects for each of the three parameter types was different
for human and DRL agent players. These differing effects were
further investigated using contrasts.

The results revealed significant simple main effects of route
type on β for both Human players, χ2

(2) = 21.74, p < 0.001, and

DRL agent players, χ2
(2) = 351.71, p< 0.001. Similarly, there were

also significant simple main effects of route type on transformed ε

for both Human players, χ2
(2) = 15.36, p < 0.001, and DRL agent

players, χ2
(2) = 1354.99, p < 0.001. However, there was only a

significant simple main effect of route type on γ for DRL agent
players, χ2(2) = 448.61, p < 0.001. There was not a significant
simple main effect on γ for Human players, χ2

(2) = 3.80, p =

0.150. That is, γ -values did not significantly differ as a function
of route type for human players.

Follow-up Bonferroni-corrected, pairwise comparisons of
parameter value means for each of the parameter types for each
of the route types and for each of the player types revealed that
for DRL agents, γ -values were significantly lower when the target
was on the same side as the starting position compared to when
the target was in the middle, b = −49.57, 95% CI [−61.46,
−37.68], t(19) = −12.47, p < 0.001. Additionally, γ -values were
also significantly lower when the target was on the far side to the
player’s starting position compared to when the target was in the
middle, b = −81.65, 95% CI [−93.18, −70.12], t(19) = 21.18, p
< 0.001. γ -values for when the target was on the same side were
significantly greater than values for when the target was on the
far side, b= 32.08, 95% CI [21.51, 42.65], t(19) = 9.08, p < 0.001.

For humans, β-values were significantly lower when the target
was in themiddle compared to when the target was on the far side
to the player’s starting position, b=−3.36, 95% CI [−5.56, 0.87],
t(181) = −4.57, p < 0.001. However, there were no significant
differences in β-values when the target was on the same side as
the player’s starting position compared to when the target was in
the middle, b = −2.42, 95% CI [−4.88, 0.04], t(181) = −2.94, p
= 0.059, or the far side, b = −0.95, 95% CI [−3.39, 1.50], t(181)
= −1.16, p > 0.999. For DRL agents, β-values were similarly
significantly lower when the target was in the middle compared
to when the target was on the far side to the player’s starting
position, b = −5.67, 95% CI [−6.98, −4.36], t(19) = −12.92, p <

0.001. However, unlike the human players, DRL agents’ β-values
were significantly greater when the target was on the same side
than when the target was on the far side, b = 2.34, 95% CI [1.16,
3.51], t(19) = 5.96, p < 0.001, and when the target was in the
middle, b= 8.00, 95% CI [6.72, 9.29], t(19) = 18.62, p < 0.001.

For humans, transformed ε-values did not significantly differ
between same-side and middle route types, b = −0.14, 95% CI
[−0.33, 0.05], t(181) =−2.23, p= 0.465, and did not significantly
differ between same-side and far-side route types, b = 0.10, 95%
CI [−0.09, 0.30], t(181) = 1.6, p > 0.999. However, transformed

ε-values were significantly lower for far-side route types than
middle route types, b = −0.25, 95% CI [−0.43, −0.06], t(181)
= −3.90, p = 0.002. For DRL agents, transformed ε-values were
also significantly lower for far-side route types than middle route
types, b = −0.83, 95% CI [−0.89, −0.76], t(19) = −36.31, p
< 0.001, however transformed ε-values were also significantly
lower in far-side-target trials than same-side-target trials, b =

−0.27, 95% CI [−0.33,−0.21], t(19) =−14.09, p< 0.001. Finally,
transformed ε-values were significantly lower in same-side trials
than in middle trials, b = −0.56, 95% CI [−0.63, −0.48], t(19) =
−21.17, p < 0.001.

Overall, and not surprising given the analysis of the raw
data trajectories above, there was much less variability in the
parameter estimates for DRL agents than for humans across
all route types, reflecting the fact that the DRL agents were
more finely tuned to changes in route type. Humans, on the
other hand, tended to exhibit a large degree of variation in their
trajectories, which is reflected in the wide range of parameter
estimates for their data. This can be seen from an inspection
of Figure 8. The results revealed that damping of turning rate
(i.e., β) was lowest for the middle routes for both humans and
DRL agents. However, damping was also lower for far-side routes
than for near-side routes for DRL agents, but not for humans.
Furthermore, there was no effect of route type on attraction to the
target (i.e., γ ) for humans, while for DRL agents, attraction was
significantly different across all route types, such that attraction
was highest for middle routes and lowest for far-side routes.
Finally, repulsion from obstacles (i.e., ε) was lower for far-side
routes than middle routes for both humans and DRL agents, but
unlike humans, repulsion for DRL agents was also lower for far-
side routes than near-side routes, and lower for near-side routes
than middle routes.

DISCUSSION

The analysis of the trajectories produced by DRL and human
agents revealed a high degree of similarity across all scenarios.
That is, the DRL agents tended to navigate through the
environments in a manner that was relatively indistinguishable
from human agents. Specifically, the preferred routes chosen
by DRL agents and humans tended to overlap across most
scenarios, and, on average, 98.5% of the mean DRL trajectory
fell within the human 95% CI. However, the analysis of observed
trajectories also revealed that humans exhibited much more
variability in their trajectories across all three route types than
the DRL agents, which is clear upon visual observation of
the trajectories produced by both groups (see Figures 5, 6 for
examples). Consistent with this latter finding, the comparative
analysis of the parameter estimates of β, γ , and ε, which
represent damping on turning rate, attraction to the goal, and
repulsion from obstacles, respectively, revealed more highly
tuned parameter estimates for the DRL-agents compared to the
human agents.

The parameter analysis also revealed similarities between the
two groups in that repulsion was highest and damping was lowest
for middle routes for both DRL and human agents, reflecting
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FIGURE 8 | Box plots of parameter estimates for β, γ, and Box-cox corrected ε (i.e., damping, attraction to target, and repulsion from obstacles, respectively) by route

type and by player.

how for the shortest-distance routes, with less time and distance
to allow for smooth adjustments in their heading, both groups
steered away from obstacles abruptly. Further, DRL and human
agents both exhibited low repulsion and higher damping for
the far-side routes, indicating that for far-side routes (which on
average involve the greatest travel distance) agents had more
time to steadily adjust the angle of approach in their trajectory,
such that they could smoothly avoid obstacles in the way of
reaching the target, and could even closely shave (without hitting)
obstacles on the way given the opportunity for finer control.
Regarding the virtual nature of the task, a study by Fink et al.
(2007) compared human paths while walking to a stationary
goal and avoiding a stationary obstacle in matched physical and
virtual environments and found small, but reliable, differences
in locomotor paths, with a larger maximum deviation, larger
obstacle clearance, and slower walking speed in the virtual
environment. They concluded these differences were most likely
the result of greater uncertainty regarding the egocentric location
of virtual obstacles. However, they found that the trajectories
from both environments had similar shapes with no difference
in median curvature and could be modeled with a single set
of DPMP parameter values, thus justifying the use of virtual
environments to study locomotor behavior.

On one hand, given that a simple DPMP model (FW-
DPMP model; Fajen and Warren, 2003, 2004) can capture the
navigational behavior of human agents in an environment with
obstacles, and that neural networks are powerful functional
approximators (Csáji, 2001), it is perhaps unsurprising that
the DRL agents produced trajectories that are consistent with
those produced by the human participants. Indeed, the current
findings suggest that the policies (state-action mappings) that
the DRL agents learned during training approximated the
same low-dimensional dynamics expressed by the FW-DPMP
model (Equation 1); and, in turn, the DRL agents produced
trajectories that closely matched the prototypical or near-optimal
human (hyper-tuned) trajectories and human-parameterized
FW-DPMP model trajectories. Indeed, one advantage of DRL
methods for AA development is the capacity of deep neural
networks to learn low-dimensional feature representations from
high-dimensional state-action spaces (Arulkumaran et al., 2017).

Thus, within the context of relatively simple perception-action
tasks with a singular and easily defined task goal (and reward
structure), like the virtual navigation task explored here, the
similarity of DRL and human behavior is much more likely.

On the other hand, for more complex tasks that involve
multiple sub-goals or equifinal possibilities to achieve task
success, the highly tuned, near-optimal dynamics of DRL policies
is also their downfall in that these policies can quickly and
significantly diverge from those preferred (Carroll et al., 2019)
or even attainable by human actors (Fuchs et al., 2020). This
results in DRL agent behavior that is either incompatible or
non-reciprocal with respect to human behavior (Carroll et al.,
2019), or difficult for humans to predict (Shek, 2019), even
requiring the human user to be more-or-less enslaved to the
behavioral dynamics of the DRL agent to achieve task success
(Shah and Carroll, 2019). Moreover, consistent with the current
findings, even when the DRL agent policies and behavior are
within the action landscape of human behavior (as was the case
here), the over-tuned nature of DRL behavioral policies are often
unable to capture the robust variability and flexibility of human
behavior, requiring the implementation of rather complex and
bespoke reward structures to cultivate different “types” of agents
or DRL “personalities” (e.g., over avoidant or under-avoidant
navigational agents).

The obvious advantage of DPMP models, with regard to
the latter point, is that such models can not only be used to
approximate human behavior across a wide range of simple and
complex task contexts (Sternad et al., 2001; Ijspeert et al., 2013;
Dumas et al., 2014; Lamb et al., 2017; Nalepka et al., 2017), but by
making simple and transparent changes to model parameters one
can also capture the variability of human behavior. Accordingly,
the action dynamics of AAs controlled by DPMP models can be
easily tuned or varied to capture various “types” of human actors
or actor task preferences within (or even across) task contexts.
However, defining the environmental couplings (information
control laws) and functional details of DPMP models of human
behavior does have its own challenges and often requires having
a comprehensive a-priori understanding of the task-dynamics
in question, which itself can require a significant degree of
experimentation and trial and error. This is of course in stark
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contrast to the majority of contemporary DRL methods that do
not require any knowledge of a task’s underlying dynamics.

Given the complementary challenges associated with
employing DPMP and DRL methods for the development of
human-like AAs, Patil et al. (2021) have recently suggested
employing a hybrid DPMP-DRL approach, allowing the DRL
model to learn the high-level decision making while leaving
the action dynamics to be captured by the DPMP functions. In
summary, Patil et al. (2021) discovered that hybrid DPMP-DRL
agents outperformed a heuristically parameterized DPMP
model in terms of effectively representing characteristic expert
human behavior. Indeed, combining DPMP and DRL model
architectures can provide the best of both worlds by harnessing
the generative “human-like” action patterns provided by
DPMPs with the flexibility afforded by deep neural networks. In
addition to augmenting DRL architectures by DPMP models,
Patil et al. (2021) also argue that DPMP models can also be
used to create synthetic datasets for training DRL agents with
imitation learning (Bain and Sammut, 1999), which can provide
scaffolding during the initial training steps of the DRL agents.

Finally, it is important to appreciate that one of the
issues motivating the present research was the fact that the
vast majority of DRL studies only focus on overall/global
performance outcomes of DRL training, with little attention to
the spatiotemporal patterning of the behavior enacted. Although
the current study revealed that for a simple navigation task DRL
agents produced behavior that appeared human-like in terms of
its spatiotemporal patterning, this equivalence still highlights the
importance of making such low-level behavioral comparisons.
Indeed, as more and more Artificial Intelligence technologies
start relying on DRL as a way of creating AAs that act alongside
or replace human co-actors in complex tasks, it is crucial that
the compatibility of the low-level, spatiotemporal behavior of
AAs for human-AA interaction is assessed and not eclipsed by a
desire for “super-human” performance levels. This is particularly
important for social or multiagent tasks, where achieving greater
than expert level performance does not necessarily lead to
AAs capable of robust or even effective human interaction and
coordination (Carroll et al., 2019), nor does it translate to AAs
(acting as trainers) being able to induce optimal behaviors in
novice humans (Rigoli et al., 2021).
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