
Frontiers in Psychology | www.frontiersin.org 1 September 2021 | Volume 12 | Article 729755

ORIGINAL RESEARCH
published: 09 September 2021

doi: 10.3389/fpsyg.2021.729755

Edited by: 
Jennifer Foley,  

National Hospital for Neurology and 
Neurosurgery (NHNN), 

United Kingdom

Reviewed by: 
Michael Lawton,  

University of Bristol,  
United Kingdom

Lambros Messinis,  
Aristotle University of Thessaloniki, 

Greece

*Correspondence: 
Anna Rieckmann  

anna.rieckmann@umu.se

Specialty section: 
This article was submitted to  

Neuropsychology,  
a section of the journal  
Frontiers in Psychology

Received: 23 June 2021
Accepted: 06 August 2021

Published: 09 September 2021

Citation:
Andersson S, Josefsson M, 

Stiernman LJ and 
Rieckmann A (2021) Cognitive 

Decline in Parkinson’s Disease: A 
Subgroup of Extreme Decliners 

Revealed by a Data-Driven Analysis 
of Longitudinal Progression.
Front. Psychol. 12:729755.

doi: 10.3389/fpsyg.2021.729755

Cognitive Decline in Parkinson’s 
Disease: A Subgroup of Extreme 
Decliners Revealed by a Data-Driven 
Analysis of Longitudinal Progression
Sara Andersson 1,2,3, Maria Josefsson 4,5, Lars J. Stiernman 2,3 and Anna Rieckmann 2,3,6,7*

1 Neuro-Huvud Halscentrum, Region Västerbotten Hospital, Umeå, Sweden, 2 Umeå Center for Functional Brain Imaging, Umeå, 
Sweden, 3 Department of Integrative Medical Biology, Umeå University, Umeå, Sweden, 4 Department of Statistics, Umeå School 
of Business, Economics and Statistics, Umeå, Sweden, 5 Center for Demographic and Ageing Research, Umeå, Sweden, 
6 Department of Radiation Sciences, Umeå University, Umeå, Sweden, 7 The Munich Center for the Economics of Aging, Max 
Planck Institute for Social Law and Social Policy, Munich, Germany

Cognitive impairment is an important symptom of Parkinson’s disease (PD) and predicting 
future cognitive decline is crucial for clinical practice. Here, we aim to identify latent 
sub-groups of longitudinal trajectories of cognitive change in PD patients, and explore 
predictors of differences in cognitive change. Longitudinal cognitive performance data 
from 349 newly diagnosed PD patients and 145 healthy controls from the Parkinson 
Progression Marker Initiative were modeled using a multivariate latent class linear mixed 
model. Resultant latent classes were compared on a number of baseline demographics 
and clinical variables, as well as cerebrospinal fluid (CSF) biomarkers and striatal dopamine 
transporter (DAT) density markers of neuropathology. Trajectories of cognitive change in 
PD were best described by two latent classes. A large subgroup (90%), which showed 
a subtle impairment in cognitive performance compared to controls but remained stable 
over the course of the study, and a small subgroup (10%) which rapidly declined in all 
cognitive performance measures. Rapid decliners did not differ significantly from the larger 
group in terms of disease duration, severity, or motor symptoms at baseline. However, 
rapid decliners had lower CSF amyloidß42 levels, a higher prevalence of sleep disorder 
and pronounced loss of caudate DAT density at baseline. These data suggest the existence 
of a distinct minority sub-type of PD in which rapid cognitive change in PD can occur 
uncoupled from motor symptoms or disease severity, likely reflecting early pathological 
change that extends from motor areas of the striatum into associative compartments 
and cortex.
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INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by loss of midbrain 
dopamine neurons and accumulation of Lewy Bodies. Motor disturbances are the dominant 
symptoms of PD. However, non-motor symptoms such as cognitive impairment are common 
and strongly affect quality of life in patients and caregivers.
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Deficits in global cognitive functions are often subtle in 
the early stages of the disease but a diagnosis of dementia 
is common as the disease progresses to an advanced stage 
(Barone et  al., 2011; Aarsland et  al., 2017; Schapira et  al., 
2017). The presence of cognitive impairment or other non-motor 
symptoms is a key criterion for the definition of separable 
subtypes of PD (Marras and Chaudhuri, 2016). State-of-the-art 
classifications separate a mild motor-predominant subtype, 
capturing the majority of patients, from diffuse-malignant 
and intermediate subtypes who exhibit non-motor symptoms 
including cognitive impairment (Fereshtehnejad et  al., 2015, 
2017). Such classifications aid in better understanding 
heterogeneity in PD pathophysiology and to tailor individual 
treatment optimally.

Regardless of using data-driven (Lewis et  al., 2005; van 
Rooden et  al., 2011; Dujardin et  al., 2013; Fereshtehnejad 
et  al., 2017; Campbell et  al., 2020) or hypothesis-driven 
(Muslimovic et  al., 2005; Elgh et  al., 2009; Reid et  al., 2011) 
methods for subtyping PD, a common approach has been 
to use data from a single assessment, often early in the disease, 
as the basis for grouping. This approach is sensible if identifying 
heterogeneity at the time of diagnosis can provide information 
on subsequent disease progression and survival for a clinician. 
However, from these analyses, it remains unclear whether 
distinct “between-person” cognitive profiles in PD at baseline 
are the best predictors of cognitive decline across time. For 
example, two patients that do not differ in their cognitive 
performance or motor symptoms in the first year of the 
disease may decline at different rates over subsequent years. 
A useful alternative approach may therefore be  to identify 
heterogeneity in cognitive change across time, and then, in 
a second step, try to identify predictors of diverging trajectories 
at baseline.

In the current study, we  explore whether longitudinal 
trajectories of cognitive decline across multiple domains in 
PD can be  described in terms of meaningful latent subgroups. 
Posing few a priori assumptions, we  utilize a multivariate 
latent class linear mixed model (MLCLMM) approach (Lai 
et  al., 2016; Proust-Lima et  al., 2017). The model considers 
multiple variables at once (here: different cognitive domains) 
and identifies latent subgroups in the data in terms of 
longitudinal change. To foreshadow the main results, this 
analysis revealed the existence of a small, homogeneous group 
of de novo PD patients (10%), who showed rapid decline of 
global cognitive functions (executive domain, memory, and 
visuospatial ability) over 5 years in the early stage of disease. 
In order to characterize early risk factors of rapid cognitive 
deterioration in PD, we  compared the rapid decliners to the 
rest of the sample on a number of baseline demographics 
and a wide range of behavioral clinical assessments. Baseline 
biomarkers were selected on the basis of a priori relevance 
for cognitive impairment in PD and related neurodegenerative 
disorders and included dopamine transporter (DAT) loss in 
caudate and putamen (e.g., Pasquini et  al., 2019), APOE4 
genotype (e.g., Tan et  al., 2021), and levels of α-synuclein, 
amyloidß42, and tau from cerebrospinal fluid (CSF; e.g., 
Siderowf et  al., 2010; Kang et  al., 2016).

MATERIALS AND METHODS

Participants
Data used in the preparation of this article were obtained 
from the Parkinson’s Progression Markers Initiative (PPMI) 
database (Marek et  al., 2018; www.ppmi-info.org/data). For 
up-to-date information on the study, visit www.ppmi-info.org. 
PPMI was conducted in accordance with the Declaration of 
Helsinki and the Good Clinical Practice (GCP) guidelines after 
approval of the local ethics committees of the participating 
sites. Informed consent was obtained from each subject.

At enrolment, PD patients had received a diagnosis no 
longer than 2 years before and were not taking PD medication. 
DAT status was performed with Iodine-123-labeled ioflupane 
single-photon emission computerized tomography imaging for 
the DAT (Darcourt et al., 2010; DaTSCAN) at the first screening 
visit. Patients below age 50 were also excluded to avoid cases 
of early onset PD.

An age-, sex-, and education- matched healthy control (HC) 
group was free of neurological disease, no first-degree family 
member with PD and used no medication that might interfere 
with DAT imaging. For both patients and healthy controls, 
we included only participants with at least two scheduled visits. 
Data from unscheduled follow-ups outside the original yearly 
follow-ups were not included in this study. Following these 
criteria, the final sample size included in the present study 
were 349 PD patients with an average disease duration of 
6.72 months (SD = 6.63) at baseline and 145 HCs. The data 
were downloaded from the PPMI database on 28 September 
2020. At this point, individuals had undergone up to 5 annual 
follow-up visits.

Cognitive Assessment
At baseline and at each annual follow-up visit, a comprehensive 
neuropsychological battery was administered to all subjects by 
trained personnel as part of the PPMI testing procedure.

For the current study, the core five cognitive tests of the 
neuropsychological assessment in PPM were considered:  
(1) the WMS-III Letter-Number-Sequencing Test (Wechsler, 
1997), (2) a Symbol Digit Modalities Test (Smith, 1973), (3) 
the Benton Judgement of Line Orientation Test (Benton et  al., 
1978), (4) a semantic fluency test (Gladsjo et  al., 1999; animal 
naming), and (5) the Hopkins Verbal Learning Test-Revised 
(Benedict et al., 2010; alternate forms were used at follow-ups). 
We obtained the age-corrected, and where available, education-
corrected, and normed cognitive scores (T and scale points) 
from the database and then transformed them into z-scores 
for each test. Further, where appropriate, cognitive domain 
composite scores were created based on the average of z-scores: 
An executive function (EF) composite included the average 
of z-scores from symbol digit modalities test, letter-number 
sequencing and semantic fluency, and memory composite 
included z-scores from immediate recall and delayed recall in 
the learning test. For the visuospatial domain, only the line 
orientation test was available. Patients were asked not to take 
their PD medication on the day of each annual study visit.
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Demographics and Clinical Variables
To identify early markers of different cognitive trajectories, 
a number of demographic, clinical variables and biomarkers 
(section “Genetic and CSF Biomarkers”) were used to 
compare patient sub-groups at baseline (section “Post-hoc 
Explorations”). Demographics included age, sex, and 
education in years. To evaluate motor impairment in the 
patients, The Movement Disorders Society Unified Parkinson’s 
Disease Rating Scale (MDS-UPDRS) part III was used 
(Goetz et  al., 2008). A mean tremor score and a mean 
postural instability and gait difficulties (PIGD) score were 
calculated from the respective items. Scores for a tremor 
dominant subtype (TD) and an akinetic-rigid subtype were 
then calculated according to the criteria: If mean tremor 
score/PIGD score ≥ 1.15, OR if PIGD score = 0 and Tremor 
score > 0, then subject is TD. If ratio ≤ 0.9, then subject 
is PIGD (Stebbins et  al., 2013). As an indicator of disease 
stage/severity, the Hoehn and Yahr stage was included 
(Hoehn and Yahr, 1998). Part II total score of the 
MDS-UPDRS was used as an additional indicator of motor 
problems in daily living. Disease duration was calculated 
as the number of months between diagnosis and enrolment 
into the study.

Movement Disorders Society Unified Parkinson’s Disease 
Rating Scale score from part I was used as a general indicator 
of non-motor aspects of daily living associated with PD. 
In addition, cognitive impairment was assessed with the 
brief cognitive screening instrument montreal cognitive 
assessment (MOCA) (Nasreddine et  al., 2005, adjusted for 
education); sleep disorder was assessed by the rapid eye 
movement (REM) Sleep Behavior Disorder Questionnaire 
(Stiasny-Kolster et  al., 2007). Olfactory dysfunction with 
the University of Pennsylvania Smell Identification Test 
identified hyposmia as a score below the 15th percentile 
for the patient’s age and sex group (Jennings et  al., 2014). 
Psychiatric features associated with PD were assessed with 
the short version of the Questionnaire for Impulse-Compulsive 
Disorder (QUIP; Weintraub et al., 2013), the 15-item Geriatric 
Depression Scale (GDS-15; Sheikh and Yesavage, 1986) and 
the 40-item psychiatric State-Trait Anxiety Inventory (STAI). 
The QUIP was used to indicate the total number of compulsive 
behaviors (max 7). The 40 items from the STAI were summed 
into a mean state and a mean trait anxiety score with a 
range of 20–80 and a higher score indicating greater anxiety 
(Spielberger et  al., 1970).

For the current study, established cut-offs were used to 
separate normal from abnormal non-motor functions where 
available. A cut-off of 26 was used for the MOCA to indicate 
cognitive impairment vs. no cognitive impairment according 
to Nasreddine et al. (2005). The REM Sleep Behavior Disorder 
Questionnaire Score was dichotomized into REM sleep 
disorder (yes-no) using a cut-off of 5 (e.g., Nomura et  al., 
2011). For the GDS, prior research in PD patients has 
indicated that a cut-off score of <5 accurately distinguishes 
depressed from nondepressed patients in PD (Weintraub 
et  al., 2006). Missing data for all questionnaires and clinical 
assessments were <1%.

Genetic and CSF Biomarkers
APOE4 genotype and levels of CSF biomarkers were obtained 
as processed values from the PPMI database. CSF data were 
available for baseline and follow-up timepoints 1, 2, and 3 of 
the current study. Briefly, APOE genotyping followed the 
methods by Livak (1999). Taqman Assays were used per 
manufacturers protocol to genotype two non-synonymous single 
nucleotide polymorphisms (SNPs), rs429358 (APOE-C112R) 
and rs7412 (APOE-R158C), in each patient sample in order 
to distinguish between APOE ε2, ε3, and ε4 alleles. Patients 
were grouped into those having at least one ε4 allele vs. the 
rest. Genotype was missing for 37 patients (10.6%).

The measurements of α-synuclein, amyloidß42, total (t)-tau, 
and phosphorylated tau 181 (p-tau) levels in CSF are described 
in detail in Kang et  al. (2016). CSF was collected by standard 
lumbar puncture. α-synuclein, amyloidß42, t-tau, and p-tau 
were measured by INNO-BIA AlzBio3 immunoassay 
(Innogenetics Inc.). α-synuclein was measured by enzyme-linked 
immunosorbent assay. Missing CSF data was 1.7% at baseline, 
15.92% at follow-up  1, 17.57% at follow-up  2, and 34.84% at 
follow-up  3.

Dopamine Transporter Imaging
In order to investigate the association between cognitive decline 
and regional neuropathology, i.e., dopaminergic dysfunction, 
longitudinal DaTSCAN-data were included in the current study. 
DAT-data were quantified as Striatal Binding Ratios (SBR), a 
measure of DAT density computed as (target region/reference 
region)-1, with the target region being the DAT-rich striatum 
(consisting of caudate and putamen), and a reference region 
with negligible specific DAT binding, the occipital lobe. For 
the purposes of this study, the SBR values for right and left 
caudate and right and left putamen were downloaded from 
the database and averaged across hemispheres. In order to 
match the DaTSCAN data as closely as possible with the 
neuropsychological testing, DaTSCAN data were obtained from 
the screening visit (mean difference in months to baseline 
cognitive assessment = 0.82, SD = 1.06; available for 338 patients), 
and from the scans that were conducted in conjunction with 
annual follow-up visits 1 (mean diff = 0.61 months, SD = 0.49; 
N = 298), 2 (mean diff = 0.62 months, SD = 0.58; N = 294), and 
4 (mean diff = 0.58 months, SD = 0.62; N = 249).

Statistical Analysis
Identification of Latent Sub-Groups
Statistical analyses were performed in R version 3.6.2 and R 
studio version 1.2.5033. To identify distinct patterns of 
longitudinal change across multiple cognitive domains, a 
MLCLMM was used, implemented in the multlcmm function 
in the R package lcmm (Proust-Lima et al., 2017). The MLCLMM 
is an extension of the linear mixed effects model by latent 
class analysis for multiple outcome variables simultaneously. 
The algorithm partitions the population into heterogeneous 
subgroups (latent classes) based on their longitudinal trajectories 
across multiple outcomes, i.e., their longitudinal performance 
across multiple cognitive domains. Multlcmm provides a 
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maximum likelihood estimation of MLCLMM using an iterative 
procedure. The three composite domain scores described in 
the previous section (Executive Composite, Memory Composite, 
and Visuospatial Score) were included as multivariate outcome 
variables in the model. The fixed effects were intercept and 
timepoint, where the timepoint was added as a factor (baseline, 
first follow-up, second follow-up etc.) in order to allow for 
non-linear trajectories such as accelerated decline at later test 
occasions or initial practice effects. Random effects for subject 
and timepoint were modeled to account for within-subject 
correlations between repeated measurements (in other words, 
controlling for baseline when estimating change).

The number of latent subgroups is unknown and needs to 
be  pre-specified before each model estimation procedure. In 
this study, we  used the Bayesian Information Criterion (BIC) 
to select the best-fitting number of latent subgroups between 
1 and 4. BIC is the most commonly used method and has 
shown good performance when selecting the best fitting latent 
class model (Nylund et  al., 2007). For the best-fitting solution, 
entropy was computed as an index of the strength of class 
separation according to Ramaswamy et  al. (1993), where an 
entropy value close to 1 indicates a good separation of classes.

Post-hoc Explorations
Visual inspection of mean performance at each timepoint for 
each class suggested linear effects in rates of change. Lme4 
(Bates et al., 2015) was used to fit separate linear mixed effects 
models for confirmation and illustration of each cognitive 
domain, with class, time (timepoint as numeric), and their 
interaction as fixed effects and subject and time as random 
effects. For comparison, motor function based on the UPDRS 
score part III was analyzed in the same way.

In order to identify predictors of cognitive decline at baseline, 
post hoc explorations of differences in demographics, clinical 
variables, APOE4 group, CSF markers, motor symptoms, and 
disease severity were performed using Student’s t-tests, and 
where appropriate chi-square tests. In addition, comparisons 
were made between the whole PD group and HC group at 
baseline for descriptive purposes where applicable. Post-hoc 
group comparisons were interpreted at a Bonferroni-adjusted 
value of p < 0.05, adjusted for 22 different tests (cf. Table  1). 
Finally, CSF biomarker levels and DAT data for caudate and 
putamen were modeled as linear mixed effects models in the 
patients, with class, time, and their interaction as fixed effects 
and subject and time as random effects.

In order to test for change-change associations between 
cognitive decline and loss of DAT binding, individual slopes 
were fitted to the cognitive performance and DAT data for 
each patient and then correlated.

RESULTS

At baseline assessments, patients were on average 63.64 years 
of age (SD = 7.50), with 15.54 (SD = 2.99) years of education. 
Consistent with higher prevalence of PD in men, 65% were male.  

Out of 349 PD patients, 262 (75%) were retained until the 
last timepoint. Missing values were below 3% across all of the 
obtained cognitive measures. For comparison, matched healthy 
controls were 63.96 (SD = 7.74) years of age at baseline, with 
15.91 (SD = 2.83) years of education, and 65% men.

Latent Class Analysis Identifies a Sub-
Group of Rapid Cognitive Decliners in PD
Fitting of a MLCLMM to the cognitive data suggested that 
longitudinal cognitive decline in the patient sample was best 
described by two latent groups (as indicated by the lowest 
BIC statistic (Table 2)). The two-class solution split the sample 
into one larger subgroup with 90% of the PD participants 
(Class 1. N = 315) and one smaller subgroup, with 10% of 
the participants (Class 2. N = 34, entropy = 0.90). The worse-
fitting three-and four-class solutions further divided the larger 
group but retained the smaller subgroup.

Plotting of the mean performance scores for each cognitive 
domain, timepoint, and both classes in Figures  1A–C shows 
that the smaller patient class (class 2, red) was characterized 
by performance deficits within 1 SD of the larger class (class 1, 
blue) at baseline but then showed rapid linear decline over time.

Fitting linear mixed effects models with fixed effects of time, 
class, and time*class in the patients confirmed significant effects 
of class (i.e., a significant difference between patient classes at 
baseline) and a highly significant time*class interaction for each 
cognitive domain (i.e., a significant difference between classes 
in slopes, Table 3). HC were added (in grey) as a single control 
group after confirming with a separate multivariate latent class 
mixed model that cognitive decline across domains was best 
described as one group for HC (all multi-group solutions had 
a BIC > 4777.33 (1-group), loglik = −2296.67, and 37 parameters).

Post-hoc comparisons between the large PD class (class 1) 
and HC showed that, on average, patients performed worse 
than HC in EF and memory but did not differ in performance 

TABLE 1 | Post-hoc linear mixed effects models.

Domain Effect Estimate SE p

Comparison of PD class 1 vs. PD group 2

EF Class −0.10 0.10 <0.001

Class*Time −0.23 0.02 <0.001
Memory Class −0.86 0.17 <0.001

Class*Time −0.25 0.04 <0.001
Visuospatial Class −0.77 0.16 <0.001

Class*Time −0.10 0.04 0.005
Motor function Class 2.82 1.63 0.08

Class*Time 1.34 0.50 0.008

Comparison of PD class 1 vs. HC

EF Class 0.17 0.01 0.002
Class*Time 0.02 0.00 0.135

Memory Class 0.32 0.01 <0.001
Class*Time 0.00 0.00 0.966

Visuospatial Class −0.02 0.09 0.831
Class*Time −0.01 0.02 0.603

Motor function Class −17.92 0.08 <0.001
Class*Time −2.18 0.20 <0.001

EF, Executive Functions.
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on the visuospatial task (Figure  1; Table  3). Compared to the 
large performance decrements of patients in class 2, the 
performance deficit in class 1 patients was small, with an 
estimated difference of less than half a SD at baseline. Interactions 
between class and time were not significant (all ps > 0.05). In 
summary, these analyses suggest longitudinal trajectories of 
cognitive change in PD are best described by two distinct 
latent classes: (1) A large group of patients that performed 
worse (compared to matched HC) on tests of EF and episodic 
memory but remained stable over 5 years, suggesting subtle 
cognitive impairment is common in PD. (2) A small group 
of PD patients with rapid and pronounced loss of global 
cognitive functions across time.

For comparison, class differences in motor function (UPDRS 
score part III) were estimated over time (Figure  1D; Table  3). 
Here, both groups showed large differences to HC at baseline 
and over time. The rapid decliners also showed pronounced 
loss of motor functions over time, however they did not differ 
significantly from class 1 patients at baseline (p = 0.08, cf. section 
Class Comparison on Baseline Demographics, Clinical Variables, 
and CSF Biomarkers).

Class Differences in Medication and  
Drop-Out
At the first follow-up, 63.03% of patients in the large class 
(class 1) were on anti-PD medication, compared with 56.67% 
among the rapid decliners [χ2 (df = 1, N = 349) = 0.23, p = 0.63]. 
At the second follow-up, the number of patients on medication 
was over 87% in both classes and over 90% at subsequent 
visits, suggesting differences in cognitive decline were not due 
to differences in medication.

Table 4 shows the number of follow-up visits for each class. 
The majority of patients in both classes participated in all five 
follow-up visits and there was no significant difference in the 
proportion of maximum follow-up visits (i.e., 5) between classes 
[χ2 (df = 1, N = 349) = 2.82, p = 0.09], suggesting that study drop-out 
had no impact on the results.

Class Comparison on Baseline 
Demographics, Clinical Variables, and CSF 
Biomarkers
In order to identify clinical predictors of rapid cognitive decline 
at baseline, post-hoc comparisons between the patient classes 
revealed that the rapid decliners were more likely than the 
rest of the patients to score below 26 on the MOCA, be mildly 
depressed, suffer from a REM sleep disorder, and have lower 
levels of CSF amyloidß42 level (Table 1) though these differences 
should be  interpreted with caution as only the differences in 
amyloidß42 level reached significance after control for 
comparisons of 22 different variables.

In terms of the potential of these markers as stand-alone 
clinical screening tools at baseline, it should be  noted that 
the majority of patients in both classes had a normal MOCA 
score of 26 or higher at baseline, suggesting that brief clinical 
screeners at baseline do not accurately identify rapid decliners. 
Prevalence of depression did not differ between that large 
patient class 1 and HC [χ2 (df = 1, N = 349) = 0.92, p = 0.34], 
which indicates that a higher prevalence of depression may 
be  specific to the rapid decliners and not PD in general. 
Nevertheless, only 10 out of 34 patients were considered mildly 
depressed, and no patient among the rapid decliners was judged 
to be  moderately or severely depressed.

Amyloidß42 level was significantly lower in the rapid decliner 
at baseline whereas amyloidß42 level did not differ between 
the large patient group and HC [t(225.50) = −1.50, p = 0.14].

Interestingly, neither demographics, such as age, gender, and 
education, nor motor symptoms, disease severity or disease 
duration were strongly predictive of rapid cognitive decline 
{all ps < 0.05, though we  note trend level differences in age 
[t(40.42) = −1.98, p = 0.054] and UPDRS part III motor score 
[t(39.17) = 1.99, p = 0.054] between the patient classes}. Because 
of the large number of independent comparisons, trends of 
p > 0.06 are not considered further.

Dopamine Transporter Loss and Rapid 
Cognitive Decline
Differences in regional neuropathology between the large PD 
class and the rapid decliners, estimated as DAT density in 
caudate and putamen, were compared between groups. DAT 
density estimates from SPECT scans obtained at the screening 
visit were available for 305 patients from the larger class and 
33 patients from the class of rapid decliners and 293 and 28 
patients, respectively, had at least one follow-up scan. Linear 
mixed effects models with DAT density as the outcome and 
class and time as predictors were fitted separately for caudate 
and putamen. For caudate DAT density, the results revealed a 
significant effect of time, class, and a trend for a significant 
time*class interaction, suggesting slightly accelerated loss of 
caudate DAT density for the rapid decliners. For putamen DAT 
density, a significant effect of time, class but no significant 
time*class interaction was found (Table  5). Figure  2 illustrates 
the main effects and interactions for both models. A linear 
model assessing the interaction between region (caudate/putamen) 
and class for baseline DAT level confirmed that a difference 
in DAT density between classes at baseline was pronounced 
for caudate relative to putamen (interaction Estimate = −0.22, 
SE = 0.11, and p = 0.05). Together, this suggests a highly significant 
DAT deficit for the rapid decliners that was marginally more 
pronounced for caudate both at baseline and in terms of loss 
over time. For comparison, the reduction of CSF biomarker 
levels over time did not differ between classes for myloidaß42 
(Table  5), t-tau, or p-tau (ps > 0.50). Of note, there was a 
significant interaction between class and time for α-synuclein 
(Estimate for time*class = 67.36, SE = 33.34, and p = 0.04), but 
in the direction that α-synuclein increased at follow-up timepoints 
to the level of the comparison class (i.e., regression to the 
mean), suggesting that the marginal difference at baseline may 

TABLE 2 | Number of follow-up visits (max 5) by class, in percent.

1 2 3 4 5

Class 1 4.44 3.49 6.03 9.52 76.51
Class 2 0 5.88 8.82 23.53 61.77
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be  a false positive. Thus, unlike DAT, CSF biomarker change 
did not resemble the pattern of cognitive decline.

Within the group of rapid decliners, change in caudate DAT 
was associated with change in visuospatial ability (estimated 
with individually fitted slopes for each patient and each outcome, 
r = 0.42, p = 0.03, and N = 28), but not with change in executive 
functions or memory (p > 0.05).

DISCUSSION

Cognitive deficits in PD are common but incompletely 
understood. In the current study, we used a data-driven clustering 
approach to identify latent groups of cognitive decliners in PD.  

With this method, the large majority of the patients (90%) 
was statistically best described as a single group who showed 
slight cognitive impairment compared to matched controls but 
remained stable over the first 5 years of the disease. A small 
group (10%) of rapid decliners showed a marked loss in all 
cognitive domains over 5 years, up to 0.25 SD each year in 
comparison to the rest of the patients. Of particular note, the 
rapid decliners performed lower but within 1 SD at baseline. 
Similarly, the majority of rapid decliners had normal (> 26) 
MOCA scores at baseline. Moreover, they did not differ 
significantly from the large sample in age, sex, education, mean 
disease duration, or motor symptom severity at baseline (though 
we  note a trend for age and UPDRS motor score at baseline 
and accelerated decline in motor function over time).

A B

C D

FIGURE 1 | (A–D) Mean performance (with SE) at each timepoint by class and cognitive domain. Fitted lines are for a linear model regressing time against cognitive 
performance for each class.
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Prior work that has taken into account non-motor symptoms 
such as cognitive deficits has revealed quite a different pattern 
of subtypes in PD, even using the same PPMI sample. 
Fereshtehnejad et  al. (2015, 2017) for example, showed that 
at baseline, younger patients with predominant motor symptoms 
form a mild disease sub-type on one end of the clinical spectrum 
whereas a small group of “diffuse-malignant” symptoms including 
cognitive deficit represent a more aggressive clinical sub-type. 
Focusing in on the baseline cognitive assessment in PPMI as 
the basis for grouping, LaBelle et  al. (2017) identified up to 
six sub-types. Again, and unlike our rapid decliners, global 
deficits in cognition at baseline were strongly associated with 
differences in demographics and symptom severity in other 
domains. While such baseline groupings may, to some degree, 
be  predictive of future progression of disease on the mean 
group level, individual differences in trajectories are by design 
not considered in these classifications. In comparison, our 
approach identified a homogeneous group of rapid decliners 
but did not take baseline predictors into account a priori. 

Thus, our results and those of baseline groupings are not in 
conflict with each other but should be  viewed as providing 
complementary information. Our results highlight a rare but 
aggressive form of cognitive decline, as well as accelerated loss 
of motor function, in PD that may be  missed using only 
baseline assessments. However, this is not to say that the larger 
comparison group of patients in our analysis is not composed 
of meaningful sub-groups of patients in terms of baseline 
disease severity.

The measures that were most predictive of rapid cognitive 
decline in PD were higher prevalence of mild depression, REM 
disorder, lower levels of CSF amyloidß42, and lower DAT 
density on SPECT, particularly so in caudate. Moreover, caudate 
loss across time was proportional to loss of cognitive deficits 
in the decliners, though only on the visuospatial test. According 
to anatomical tracing and human fMRI functional connectivity, 
the caudate is predominantly connected to prefrontal and other 
associative cortical areas whereas the putamen is in large parts 
connected with motor areas (Provost et  al., 2015).  

TABLE 4 | Indices of fit multivariate latent class mixed model with 1–4 classes.

G npm loglik BIC % class 1 % class 2 % class 3 % class 4

1 37 −5618.56 11453.76 100
2 44 −5585.80 11429.22 90.26 9.74
3 51 −5572.93 11444.48 88.83 2.29 8.88
4 58 −5569.60 11478.79 81.94 1.14 7.45 9.46

G, number of estimated groups; Loglik, log likelihood; npm, number of parameters; and BIC, Bayesian Information Criterion.

TABLE 3 | Baseline characteristics of PD patients by class and healthy controls.

PD Class 2 (decliners) PD Class 1 X2 or t (p) HC

N 34 315 145
Age years. 66.06 (7.48) 63.37 (7.46) 1.99 (0.05) 63.96 (7.74)
Male % 79.41 63.81 2.65 (0.10) 65.52
Education years. 15.62 (3.95) 15.53 (2.88) 0.13 (0.90) 15.91 (2.83)
Disease duration (months) 5.65 (5.99) 6.84 (6.70) −1.09 (0.28) NA
UPDRS part I score 6.53 (4.33) 5.43 (3.99) 1.42 (0.16) 3.04 (3.06)
UPDRS part II score 6.88 (3.74) 5.65 (4.03) 1.82 (0.08) 0.49 (1.00)
UPDRS part III score 24.24 (9.53) 20.86 (8.68) 1.12 (0.06) 1.41 (2.43)
% Tremor dominant 79.41 70.70 0.76 (0.39) NA
% PIGD dominant 14.71 19.43 0.19 (0.66) NA
HoehnandYahr, % st 2 64.71 55.87 0.65 (0.42) NA
UPSIT, % hyposmia 97.06 91.11 0.75 (0.39) 42.76
REM disorder, % yes 61.77 34.30 8.78 (0.003) 18.62
MOCA, % with <26 44.11 21.27 7.69 (0.006) NA
GDS-15, % normal 70.59 88.25 6.77 (0.009) 91.72
Any QUIP disorder, % 26.47 19.43 0.55 (0.45) 20
STAI trait total score 46.41 (4.40) 45.99 (4.16) 0.54 (0.60) 46.57 (3.37)
STAI state total score 47.12 (5.59) 47.46 (5.20) −0.33 (0.74) 47.83 (5.17)
APOE4 presence, % 31.03 24.38 0.32 (0.57) 24.81
CSF α-synuclein 1363.60 (542.85) 1550.18 (681.59) −1.83 (0.08) 1739.65 (769.08)
amyloidß42 679.50 (307.88) 938.27 (415.66) −4.41 (<0.001) 1011.77 (507.34)
t-tau 182.80 (72.68) 169.83 (54.70) 0.97 (0.34) 197.01 (83.07)
p-tau 16.75 (7.08) 14.77 (5.06) 1.45 (0.16) 18.12 (8.98)

MDS-UPDRS, Movement Disorders Society Unified Parkinson’s Disease Rating Scale; PIGD, postural instability-gait disturbance; UPSIT, University of Pennsylvania Smell 
Identification; REM, rapid eye movement; MOCA, montreal cognitive assessment; GDS-15, Geriatric Depression Scale-15; QUIP, Questionnaire for Impulsive-Compulsive Disorders 
in Parkinson’s Disease; STAI, State and Trait Anxiety Inventory; and CSF, cerebrospinal fluid marker. p values and the respective statistic (X2 for categorical variables, t for continuous 
variables) are reported for the comparison class 2 vs. class 1. NA, by definition not applicable for healthy controls.
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Consistent with this, prior imaging work in PD patients has 
identified that DAT loss in putamen is proportional to decreases 
in midbrain-putamen fMRI connectivity (Rieckmann et  al., 
2015) and that altered fMRI activation in putamen correlates 
with motor impairment (Herz et al., 2014). Conversely, cognitive 
impairment in PD has been associated with disrupted connectivity 
in brain networks subserving higher-order associative functions 
(Lopes et  al., 2017). In line, depression in PD has been linked 
to lower extrastriatal neurotransmitter functions in PD (Remy 
et  al., 2005), though higher prevalence of depression may also 
indicate subjective awareness of impending cognitive decline 
(Burmester et  al., 2016). Lower baseline amyloidß42 levels in 
the rapid decliners also point toward a high load of cortical 
“Alzheimer like” pathology (e.g., Hansson et al., 2018), collectively 
suggesting that early neuropathological changes are not confined 
to motor areas in these patients but extend to association cortex.

Interestingly, prior work has reported reduced caudate DAT 
and increased amyloid burden as variables that distinguish PD 
from dementia with Lewy bodies (DLB; e.g., Gomperts et  al., 
2016). A high prevalence of REM sleep disorder is now also 
established as a hallmark symptom of DLB (McKeith et  al., 
2017). However, a key diagnostic criterion for DLB is the 
diagnosis of dementia before or concurrent with Parkinsonism. 
As discussed above, this was not the case for the rapid decliners 
who only showed mild cognitive deficits at baseline. Our work 
clearly highlights an urgent need to continue research on the 
diagnostic criteria that accurately distinguishes subtypes of 
synucleinopathies and develop multivariate prediction models 
at time of diagnosis that may forecast the likely course of disease.

A recent study from PPMI identified that caudate DAT 
loss was present in as many as 50% of patients at baseline 
(Pasquini et al., 2019). Even though our study confirmed these 
findings in terms of caudate DAT loss being a predictor of 
worse cognition, our group of rapid decliners was much smaller, 
suggesting heterogeneity in cognitive trajectories among 
individuals with pronounced DAT loss. On the one hand, the 
differences between the prevalence of caudate DAT loss at 
baseline and rapid cognitive decline are interesting, and future 
studies should focus on additional risk or protective factors 
that link caudate loss to cognitive decline. On the other hand, 
this discrepancy may suggest that our statistical approach misses 
more subtle impairment within individuals at risk. Pertaining 
to this point, data from large samples of healthy individuals 

have suggested that normal aging is also characterized by 
sub-groups with differing cognitive trajectories (e.g., decliners 
vs. maintainers; Josefsson et  al., 2012), yet our model was 
unable to detect different cognitive subtypes of change in our 
healthy control sample. Thus, there is a possibility that the 
model is not sensitive enough to recognize a finer-grained 
picture of subtypes in PD cognition even though these may 
be  clinically meaningful.

Another limitation of the current study for accurately 
describing cognitive change in PD is the short follow-up time 
in the PPMI. Cognitive change often occurs gradually over 
many years of the disease and is particularly prevalent in the 
late stages. Thus, our current analyses cannot identify whether 
these groups would follow the same pattern of stability and 
decline also over longer periods. In fact, it is likely that the 
large group of stable patients in our study will become more 
heterogeneous with time and that important sub-types of disease 
already exist but are not detected within this relatively short 
time span of the early stage of the disease. In line with this 
important caveat, Pigott et  al. (2015) showed that, of patients 
who were enrolled 5 years into the disease (i.e., where observations 
of the current cohort end), the cumulative incidence of cognitive 
impairment was 9% but increased to almost 50% 6 years later. 
Thus, while the current study contributes to an understanding 
of early cognitive decline and its predictors, we  likely “miss” 
the period of the disease where cognitive impairment becomes 
more pronounced and common in the current sample. Related 
to this point, while drop-out was low for both classes in the 
current study, non-random drop-out for rapid decliners would 
likely increase with longer follow-up periods or measurement 
in later stages of the disease. Thus, follow-up studies of these 

FIGURE 2 | Estimated intercept and slopes of dopamine transporter (DAT) 
density for each patient class from a linear mixed effects model with time and 
class, run separately for caudate and putamen.

TABLE 5 | Linear mixed effects models for DAT and amyloidß42.

Marker Effect Estimate SE p

  Comparison of PD class 1 vs. PD group 2

Caudate DAT Time −0.16 0.02 <0.001

Class −0.33 0.09 <0.001
Class*Time −0.04 0.02 0.06

Putamen DAT Time −0.06 0.01 <0.001
Class −0.11 0.05 <0.001
Class*Time 0.01 0.01 0.51

amyloidß42 Time −18.81 17.31 <0.001
Class −254.80 72.28 <0.001
Class*Time −7.14 18.06 0.69
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individuals or studies in independent samples using a similar 
approach should be  designed with appropriate control samples 
or appropriate statistical control for non-random drop-out. In 
addition, the current results need to be  validated in an 
independent cohort.

In clinical practice, pronounced PIGD-motor symptoms 
at the time of PD diagnosis are flagged as a warning sign 
for a rapid deterioration in motor symptoms and 
non-symptoms. The current results suggest that there is a 
subtype of PD patients that will decline rapidly in cognitive 
functions without presenting with severe deficits in motor- 
or other symptoms at the time of diagnosis. Our results 
further indicate that approximately every 10th individual 
among the newly diagnosed PD patients without dementia 
at the time of diagnosis belongs to this subtype of rapid 
cognitive decliners, making them relatively rare and maybe 
easily overlooked in a clinical setting. The current study 
thus highlights the need for clinicians to prioritize an 
elaborated and repeated neuropsychological assessment as 
a general routine.
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