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In early 2020, in-person data collection dramatically slowed or was completely halted

across the world as many labs were forced to close due to the COVID-19 pandemic.

Developmental researchers who assess looking time (especially those who rely heavily

on in-lab eye-tracking or live coding techniques) were forced to re-think their methods of

data collection. While a variety of remote or online platforms are available for gathering

behavioral data outside of the typical lab setting, few are specifically designed for

collecting and processing looking time data in infants and young children. To address

these challenges, our lab developed several novel approaches for continuing data

collection and coding for a remotely administered audiovisual looking time protocol. First,

we detail a comprehensive approach for successfully administering the Multisensory

Attention Assessment Protocol (MAAP), developed by our lab to assess multisensory

attention skills (MASks; duration of looking, speed of shifting/disengaging, accuracy of

audiovisual matching). The MAAP is administered from a distance (remotely) by using

Zoom, Gorilla Experiment Builder, an internet connection, and a home computer. This

new data collection approach has the advantage that participants can be tested in their

homes. We discuss challenges and successes in implementing our approach for remote

testing and data collection during an ongoing longitudinal project. Second, we detail an

approach for estimating gaze direction and duration collected remotely from webcam

recordings using a post processing toolkit (OpenFace) and demonstrate its effectiveness

and precision. However, because OpenFace derives gaze estimates without translating

them to an external frame of reference (i.e., the participant’s screen), we developed a

machine learning (ML) approach to overcome this limitation. Thus, third, we trained a

ML algorithm [(artificial neural network (ANN)] to classify gaze estimates from OpenFace

with respect to areas of interest (AOI) on the participant’s screen (i.e., left, right, and

center). We then demonstrate reliability between this approach and traditional coding
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approaches (e.g., coding gaze live). The combination of OpenFace and ML will provide

a method to automate the coding of looking time for data collected remotely. Finally, we

outline a series of best practices for developmental researchers conducting remote data

collection for looking time studies.

Keywords: gaze estimation, online data collection, remote data collection, looking time, Gorilla Experiment Builder,

OpenFace, machine learning

INTRODUCTION

In early 2020, in-person participant testing and data collection
dramatically slowed or was completely halted across the world as
some labs were forced to close due to the COVID-19 pandemic.
Developmental researchers who assess looking time (especially
those who rely heavily on in-lab eye-tracking or live observer
coding) were forced to re-think their methods of data collection.
They could either analyze old data or they could attempt to adapt
their data collection techniques to remote testing platforms—
e.g., online data collection using an internet-connected computer
in the child’s home. During March of 2020, our lab was forced
to close its doors to in-person participant testing in the middle
of an extended longitudinal project. In an effort to continue
data collection, we adapted many of our “in-lab” protocols and
tasks to a format suitable for a remote setting. We found it
relatively easy to convert parent questionnaires and assessments
of children’s language, social, and cognitive functioning, to this
format. However, collecting looking time data for audiovisual
tasks (i.e., tasks that track infant attention to multiple dynamic
visual events in the presence of a soundtrack matching one of
them) including theMultisensory Attention Assessment Protocol
(MAAP; Bahrick et al., 2018a), posed significant challenges. For
example, there are large individual differences in participants’
home computer setups (e.g., differences in screen size, web
camera quality, lighting, internet speed, etc.), making it difficult
to use webcam-based eye-tracking techniques or to reliably code
gaze in real-time. Further, because offline coding from videos
(e.g., frame-by-frame) is time- and labor-intensive, we wanted to
find a solution that might expedite the data coding process.

Fortunately, for those like us who opted to continue data
collection during the pandemic, there are a variety of remote
or online platforms (e.g., Amazon Mechanical Turk, Gorilla,
Lookit, PyHab, etc.) that are specifically designed for gathering
behavioral data outside of the typical lab setting. For example,
Lookit has shown significant promise for remote data collection
of looking time from infants and children (e.g., Scott and
Schulz, 2017). It provides a secure, robust platform that can
translate developmental methods to a computer-based home
testing environment, affording greater accessibility to families
both within and outside the university community. Similarly,
Gorilla Experiment Builder is a promising tool for online data
collection in adults and children, particularly for assessing
executive functioning and working memory (Anwyl-Irvine et al.,
2018; Ross-Sheehy et al., 2021), and it can also be used for
collecting data from looking time tasks. While these platforms
provide developmental researchers with legitimate options for
online data collection, they have yet to be thoroughly vetted and

tested with infants and children in the home, integrated with
audiovisual tasks, or integrated with reliable methods for gaze
coding for audiovisual tasks.

For our purposes, we opted to use Gorilla Experiment Builder
for the following reasons: (1) it provides excellent control of
temporal parameters (e.g., trial onsets and offsets), (2) optimal
video playback (e.g., little lagging, synchronous audio, and video
playback), (3) an intuitive interface for building experiments so
that they can be quickly deployed for remote data collection,
and (4) can easily and efficiently be deployed in the home
with minimal technology (e.g., experiments can be accessed
through a web browser; Anwyl-Irvine et al., 2020a,b). In this
paper, we detail our approach for collecting and coding looking
time data remotely from our MAAP protocol—a three-screen
(left, right, center displays) individual difference measure of
three foundational attention skills (duration of looking, speed
of shifting/disengaging, accuracy of audiovisual matching) to
audiovisual social and non-social events (Bahrick et al., 2018a)—
using widely available software and hardware available on home
computers. We then describe our approach for scoring data from
the MAAP that have been collected in the home, using a newly
developed platform for estimating gaze behavior from video
recordings (OpenFace), as well as our development of a machine
learning (ML) model to translate the estimates provided by
OpenFace into meaningful looking time data (i.e., left, right, and
center displays). We end by discussing the implications this new
approach for developmental researchers who are interested in
collecting looking time data from infants and children remotely.

Traditional Methods for Coding Looking
Time for Infants and Children
Developmental researchers who use looking time as an index of
infant perception or cognition typically code it in one of three
ways: using frame-by-frame coding, coding gaze in real time,
or by using one of many different types of eye trackers. The
general goal in using all of these methods is to estimate where the
participant is looking on a screen, when they initiated the look
(look onset), and how long they remain fixated on a particular
location (look duration and offset). Typically, researchers define
multiple areas of interest (AOIs) to demarcate locations on a
screen displaying visual images that participants could view. For
example, researchers have assessed looking time to the entire
screen (e.g., Richards, 1987; Lewkowicz, 1988; Colombo et al.,
1991), or locations corresponding to multiple images/events on
a single screen (e.g., Hirsh-Pasek and Golinkoff, 1996; Bahrick
et al., 2018b). While together, these looking time methods
have generated a tremendous amount of information about the

Frontiers in Psychology | www.frontiersin.org 2 January 2022 | Volume 12 | Article 731618

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Eschman et al. Remote Data Collection

development of attention, perception, and cognition, they require
training coders (e.g., live coding and frame-by-frame coding), can
be time consuming (e.g., frame-by-frame coding), and in some
instances, cannot be adapted to an online setting (e.g., remote
eye-tracking). The following is a brief overview of each of these
methods for coding looking time and the problems that might
arise when applied to coding data collected online.

Frame-by-Frame Coding
Frame-by-frame coding involves estimating gaze direction on
each frame from a video recording (Fernald et al., 2008; Ross-
Sheehy et al., 2015). Estimates of inter-rater reliability between
human observers is typically very high (e.g., 85–95% agreement)
but there appear to be limitations to the number of locations
that can be reliably coded. This is potentially due to the relatively
low spatial and temporal resolution when coding gaze direction
from videos (Wass et al., 2013), making it difficult to code
looking to more than two or three locations. These limitations
are especially evident for data collected remotely as several of
the environmental constraints that the lab setting affords (e.g.,
standardization of distance, position, and lighting) are absent.
Further, this method of coding is extremely time consuming,
and human coders can take up to 5 h to code 10min of video
(Wass et al., 2013). Due to this, frame-by-frame coding limits
the amount of data that can be processed, and is typically used
for shorter tasks (e.g., Jesse and Johnson, 2016). Further, human
observers need to be trained and reliability must be established,
both of which are also time consuming (Oakes, 2012).

Live Coding
Coding gaze in real time by trained observers is a widespread
method for quantifying looking time. Observers, blind to the
conditions of the study and unable to see the presentation of
visual stimuli, estimate gaze direction and duration in real time
while the participant views the stimuli (e.g., Lewkowicz, 1988;
Bahrick et al., 2018a). This method is more time-efficient than
frame-by-frame coding and requires little post processing of the
data. In addition, if needed, observers can also code gaze offline
from a video recording of the data collection. This approach
has been used to estimate looking to a single location on a
screen (e.g., Bahrick and Lickliter, 2000; Shaddy and Colombo,
2004; Altvater-Mackensen et al., 2016), looking to two locations
(e.g., left, right; Bahrick and Watson, 1985; Bahrick, 1987; Casey
and Richards, 1988), or looking to three locations (e.g., left,
center, right; Bahrick et al., 2018a). However, for assessments
administered remotely, coding data in real time is prohibitively
difficult and offline coding of a video recorded via a webcam
from a home computer can also be challenging. Specifically,
without a clear frame of reference, it is difficult to judge where
on the screen the participant is looking and how well the
participant’s looking is time-locked with the onsets and offsets of
the visual stimulus events. Further, procedures should be used to
ensure that observers are unaware of the experimental conditions
(Oakes, 2012), which can also be difficult using online platforms.

Eye-Tracking
Eye-tracking has become an increasingly popular tool for
examining looking time and has been developed and refined

over the last several decades (e.g., Hutton, 2019). Compared to
methods using human observers, eye-tracking allows researchers
to obtain gaze location objectively without the need to manually
code the data (Hessels and Hooge, 2019) and features higher
temporal and spatial resolution for gathering samples (Aslin,
2012; Wass et al., 2013). Gaze direction is determined by
the reflection of infrared light sources on the eye(s) using
information from the calibration process conducted prior to
data collection. The calibration process stores information about
the participant’s pupil(s) and corneal reflection(s) for fixations
at specified locations on the screen (Oakes, 2010, 2012). This
allows for gaze to be measured in terms of X, Y coordinates
for any location on the screen. However, infrared eye-tracking
cannot be employed for remote data collection. Though webcam-
based eye-trackers show some promise for remote data collection
(Semmelmann and Weigelt, 2017), there has been little research
into the feasibility of their use in collecting gaze data from infants
and young children. For example, changes in participant’s head
position can lead to significant data loss, and calibration can
be tedious and time consuming (increasing the likelihood of
participant fatigue).

In sum, while the techniques reviewed above have provided
a wealth of information derived from the looking behavior of
infants and young children, they were not optimal (and in some
instances, not possible) for our purposes of coding looking time
from a protocol administered remotely. We sought to devise an
approach in which looking time to a multi-screen audiovisual
protocol (the MAAP; see section Our Audiovisual Task: The
Multisensory Attention Assessment Protocol) could be coded
accurately and efficiently across many participants. Thus, our
approach does not supplant prior approaches, but rather provides
researchers with a new tool for coding looking time data, one
that is optimized for remote data collection. We detail our new
approach in sections Objective 1: Data Collection at a Distance,
Objective 2: Using OpenFace to Derive Gaze Estimates From
Web-Cam Recordings, and Objective 3: Training a ML Model to
Calculate Looking Time Data.

Online Data Collection
In addition to the challenges of coding looking time in an
online setting, there are a number of challenges specific to
online data collection. For example, a unique problem with
online (internet-based) testing is its reliance on participants’
home computer hardware and software. In the lab, researchers
develop and refine their lab computer, stimulus software, and
hardware for data collection. More important, they can be sure
that all participants are tested using the same system. For online
testing, the opposite is true: participants use different computers
(desktop, laptop, tablet, or even phone), as well as different
operating systems and web browsers. Because of this, ensuring
uniform standards for data collection is extremely difficult.While
all of the unique combinations of hardware and software are not
equal, some home computer set-ups outperform others (Anwyl-
Irvine et al., 2020a,b). By limiting the number of platforms
(described below), designing experiments that require minimum
amounts of technology, and providing the participants/caregivers
with explicit detail on how to set up their home computer, we
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FIGURE 1 | Example of OpenFace output including facial landmark detection,

head pose estimation, facial action unit recognition, and eye-gaze estimation.

These metrics are computed for each frame of the video. Depicted is a single

frame from the video.

can more closely recreate the lab setting using remote testing in
the home.

Post-processing of Looking Time Data
Recent advances in the offline post processing of looking
time data provide researchers with a viable option for scoring
data collected remotely (as well as in the lab) from video
recordings. In fact, there are a wide variety of open-source
tools and commercial systems available for eye-gaze estimation
(Wood and Bulling, 2014; Baltrusaitis et al., 2016; Park et al.,
2018; Chouinard et al., 2019) and webcam-based eye tracking
solutions (e.g., https://github.com/stepacool/Eye-Tracker and
https://webgazer.cs.brown.edu/). Further, Chouinard et al. (2019)
used an automatic face analysis tool (Amazon Rekognition) to
automate infant preferential looking coding from video data
collected online.

We found that one tool in particular (OpenFace; https://
github.com/TadasBaltrusaitis/OpenFace#eye-gaze-tracking)
seems to be well-suited to address our specific needs of coding
looking time data collected in a remote setting (for our particular
three-screen audio visual task) with infants and young children.
We chose to use OpenFace for eye-gaze estimation in our current
project for the following reasons. OpenFace is an open source,
post processing, gaze estimation tool (the code is freely available
for academic purposes). It is the first toolkit with available source
code capable of facial landmark detection, head pose estimation,
facial action unit recognition, and, most importantly, eye-gaze
estimation (see Figure 1). Further, this tool can estimate these
parameters from video recordings of a participant’s face.

Although there has been an increased interest in automatic
gaze estimation analysis and understanding, there has been little
application of these techniques to infants and young children (but
see Chouinard et al., 2019). Further little is known about how
these techniques may be integrated with online data collection—
using technology owned by most families (e.g., laptops, basic
internet, standard webcams).

The Current Project
The current project has three main objectives. First, we lay out
a detailed approach for successfully collecting looking time data

from a distance. Using only Zoom, an online experiment builder
(Gorilla), an internet connection, and equipment typically found
in the home (e.g., laptop, webcam, speakers), we have developed
a novel, successful method for administering an audiovisual
looking time task (the MAAP) remotely. Second, we detail an
approach for estimating gaze direction and duration collected
remotely from webcam recordings using OpenFace. While
OpenFace provides us with estimates of gaze direction/vectors,
these estimates are meaningless in the absence of an external
frame of reference (specific location on the participants screen).
Third, to overcome this challenge, we developed a novel ML
approach for training an algorithm (neural network) to classify
gaze direction/vectors into traditional looking time data (e.g.,
total looking to left, right, and center displays) by relating gaze
directions from OpenFace to an external frame of reference
(locations on the participant’s screen). To assess accuracy of
these looking time estimates, we assess reliability between these
looking time estimates using OpenFace/ML and the same data
that were previously coded live (traditional approach) from
a longitudinal study conducted in our lab using the MAAP
(Bahrick et al., 2018b). The data that were coded live serve as
the baseline and proof of concept for using OpenFace/ML to
code looking time data. We then discuss applying this novel
approach to data collected in participants’ homes from webcam
recordings. We provide the ML model with a series of “known
locations” (attention getting stimuli), to define looks to left, right,
and center. Further, we provide a set of guidelines for how to
implement looking time measures in the home, with minimal
software and equipment. This novel approach is designed to
address the immediate need of continuing data collection during
a pandemic (or any lab shutdown) by combining a variety of
methods into a single framework. In addition to serving this
immediate purpose, it is our hope that this method can be
developed further to offer future researchers a viable method for
collecting meaningful data remotely.

Our Audiovisual Task: The Multisensory
Attention Assessment Protocol
We demonstrate the effectiveness of this approach to online data
collection and the OpenFace post processing method using data
collected in our lab from the MAAP (Bahrick et al., 2018a).
The MAAP is a fine-grained measure of individual differences in
attention to dynamic, audiovisual social, and non-social events,
appropriate for infants and young children. The MAAP assesses
three multisensory attention skills (MASks; duration of looking,
speed of shifting/disengaging, accuracy of audiovisual matching)
using 24 short trials (to provide stable means), presents blocks
of both social and non-social events, and indexes the cost of
competing stimulation from a visual distractor event on each of
these skills. Trials of the MAAP consist of a 3-s dynamic, silent
central event (morphing geometric shapes) followed by two 12-
s side-by-side lateral events of women speaking (social events)
or objects impacting a surface in an erratic pattern (non-social
events). One of the lateral events is synchronous with its natural
soundtrack, and the other lateral event is asynchronous with the
soundtrack. For an example video, visit https://nyu.databrary.
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org/volume/326. Performance on the MAAP predicts language
outcomes in typically developing infants and children (Bahrick
et al., 2018a; Edgar et al., Under review1), and predicts language
and symptomatology in children with autism (Todd and Bahrick,
Under review)2. Also, unlike prior research using static images or
silent events, by presenting audiovisual events on three displays,
and presenting both social and non-social events in the presence
of an irrelevant visual distractor, the MAAP better reflects the
natural, multisensory learning environment of the child. Further,
the MAAP requires no verbal responses or verbal instructions
to the child, and is thus able to provide a common measure for
assessing development across infancy and early childhood.

OBJECTIVE 1: DATA COLLECTION AT A
DISTANCE

We adapted two well-established remote data collection
platforms (Zoom and Gorilla) for use with technology that is
commonly found in the home. Zoomprovides videoconferencing
and online chat services through a cloud-based peer-to-peer
software platform (https://zoom.us/). This platform provides a
stable environment for real time face-to-face communication,
including live interaction allowing the experimenter to provide
instructions and guidance, as well as the opportunity for the
participants to ask questions or provide feedback. Sessions can be
recorded for later behavioral coding. Gorilla (www.gorilla.sc) is
an online experiment builder whose aim is to enable researchers
to conduct online experiments (regardless of programming
and networking knowledge). It provides access to web-based
experiments and reduces the risk of introducing noise (e.g.,
misuse of browser-based technology) in data (Anwyl-Irvine
et al., 2018). Combined, these two platforms can be used
to conduct looking time tasks in the home with acceptable
precision and accuracy for temporal parameters (Anwyl-Irvine
et al., 2020a,b).

Programming and Presenting the Task
After programming a version of the MAAP that ensured
sufficient audio-visual synchrony (see Supplementary Material,
section 8.1, for details), we used Gorilla Experiment Builder to
present it to the participants in their own homes with minimal
technical requirements. In addition to providing a platform for
programming experiments, Gorilla Experiment Builder provides
a straightforward way to present stimuli to participants on their
own computer. Gorilla packages the task in a link that can be
shared and displayed using a web browser. After the participant
clicks on the link, the task will be displayed like a standard web

1Edgar, E. V., Todd, J. T., and Bahrick, L. E. (Under review). Intersensory

Matching of Faces and Voices in Infancy Predicts Language Outcomes in Young

Children. [Manuscript submitted for publication]. Department of Psychology,

Florida International University.
2Todd, J. T., and Bahrick, L. E. (Under review). Individual Differences in

Multisensory Attention Skills in Children with Autism Spectrum Disorder Predict

Language and Symptom Severity: Evidence from the Multisensory Attention

Assessment Protocol (MAAP) [Manuscript submitted for publication]. Department

of Psychology, Florida International University.

page. Participants are not required to download anything; they
simply click, and the program is launched.

Administering the MAAP Remotely
Although there are methods available to collect looking time
data in Gorilla (e.g., webcam based eye-tracking), we found them
somewhat difficult to work with and, importantly, the integration
of the webcam eye-tracking software with the videos introduced
some noise (e.g., lagging videos, asynchrony of video, and audio
soundtrack), into the presentation of the MAAP. Because the
MAAP depends on ensuring that the audio track aligns with the
video, it was imperative that we were able to record looks while
maintaining excellent audio-visual precision between the video
and the audio track. We found that a combination of Gorilla
(not including their webcam-based eye tracking feature) and
Zoom provided us with the level of precision that we required.
Specifically, our preliminary tests indicated that Gorilla playback
through the Zoom share screen function achieved a sufficient
level of precision of video and audio playback to allow us to
code looking time data from the MAAP. While this sounds
simple enough, there are a number of specific settings that the
experimenter needed to enable in order to maintain the level
of precision needed for this task (see Supplementary Material,
section 8.2, for details).

The Role of the Caregiver
In addition to the technical requirements on the experimenter’s
end (see Supplementary Material, section 8.3.1), we also found
that we needed to ensure that the parent/caregiver had the
necessary technology to participate. Because we wanted to
maximize time with the child and reduce demands on their
attention, we found it helpful to have a “pre-session” with
the parent/caregiver to familiarize them with the software (see
Supplementary Material, section 8.4, for a description of this
pre-session). In this pre-session we assessed their level of comfort
with Zoom and familiarized them with its features, if necessary.
Next we assessed what kind of computer they were using. While
most desktop/laptops were compatible, and Gorilla demonstrates
similar performance across both Macs and PCs (Anwyl-Irvine
et al., 2020a,b), we found that it was not possible for parents
to use tablets or computers that did not have a webcam at the
top center of the screen. This is because we needed consistency
for our post processing method (e.g., same camera location
and distance of the child from the camera). Next, we tested
the participant’s internet speed. Using https://www.speedtest.
net/, we recorded the participant’s download speed and their
ping rate. We found that as long as their download speed was
>50 mbps, and their ping was <25ms, there were no issues in
terms of lagging or asynchronous presentation of the MAAP (see
Supplementary Material, section 8.3.2, for more detail).

We also found it imperative to discuss with the
parent/caregiver the importance of their role in testing and
data collection Specifically, we wanted to emphasize that the
parent was not a passive viewer of the data collection, but
rather an “active at-home experimenter,” working alongside
the experimenters from our lab. By giving parents this title and
providing specific instructions for how to best approach the data

Frontiers in Psychology | www.frontiersin.org 5 January 2022 | Volume 12 | Article 731618

https://nyu.databrary.org/volume/326
https://zoom.us/
http://www.gorilla.sc
https://www.speedtest.net/
https://www.speedtest.net/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Eschman et al. Remote Data Collection

FIGURE 2 | Mean confidence ratings for 6-month-old infants (tested in the lab), 36-month-old children (tested in the lab), and 48–72-month-old children (tested

remotely). Error bars reflect standard errors of the means. OpenFace provides a confidence rating for every frame of a video (using all face, head position, and gaze

direction landmarks). The confidence rating is a measure of how well OpenFace can identify all of these components (averaged across all frames for each participant).

collection process, we found that parents were more engaged
with the data collection process. We started by stressing that
they needed to be present for the duration of the session and that
they must be ready to help at any time. Helping included: setting
up the camera angles, providing technical support (ensuring
the tasks opened and were displayed correctly), and keeping the
child engaged with the task. We also emphasized that they should
not interfere with the data collection and that only the actual
experimenter (who was present during task administration to
give feedback and instructions) should give feedback to the child.
Children were given no instructions about where to look. They
were told that they would “watch some videos of ladies talking
and objects moving,” that they needed to “sit nice and still,” and
that after the video was done, they could “play a really fun game.”
All of the information in the pre-session was recorded.

OBJECTIVE 2: USING OPENFACE TO
DERIVE GAZE ESTIMATES FROM
WEB-CAM RECORDINGS

While the combination of research tools mentioned in section
Objective 1: Data Collection at a Distance provides a promising
and exciting method for remote data collection, it does not
address the issues of quantifying and processing looking
time data. Therefore, the video recordings of the participants
completing the task require additional post-processing through
OpenFace to estimate gaze direction/vectors (for a summary
of OpenFace features, see section Post Processing of Looking

Time Data). To demonstrate the effectiveness of using OpenFace
to estimate gaze direction in infants and young children from
a video recording, we first evaluate how well OpenFace can
identify the face, head position, and eye gaze direction of the
participants. OpenFace provides a confidence rating for every
frame of a video (using multiple face, head position, and gaze
direction landmarks). The confidence rating is a measure of
OpenFace’s accuracy in identifying all components. They range
from 0 to 100% (higher is better). Frames in which the participant
is looking away from the camera or occluding their face would
receive a low confidence rating. It should be noted that we did
not initially set any criteria for data inclusion. As such, the values
provided by OpenFace are raw and unfiltered. Below, we describe
the confidence ratings for data collected in the lab (as a proof
of concept) and then extended this approach to data that were
collected remotely.

OpenFace Confidence Ratings for Data
Collected In-lab
Six- and 36-month-olds received the MAAP as a part
of an ongoing longitudinal study. The longitudinal study,
entitled “[blinded],” received IRB approval from the Social
and Behavioral Review Board of [blinded] (IRB-13-0448-CR06).
Video recordings of these sessions were processed by OpenFace
as a proof of concept for this approach. Video data (including
videos processed by OpenFace) are stored on a secure university
server, can only be accessed by trained lab personnel, and can
only be identified via a master key, which is kept in a separate,
physical location. A summary of the confidence ratings can be
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FIGURE 3 | Distribution of confidence ratings: percentage of frames with confidence ratings of 75% or higher (in blue), 50–75% (orange), 25–50% (gray), or <25%

(yellow) for 6-month-old infants (tested in the lab), 36-month-old children (tested in the lab), and 48–72-month-old children (tested remotely). For each participant, we

calculated the percentage of frames in each quartile, and then averaged across participants to get these numbers.

found in Figure 2 and in general, were quite accurate. Averaged
across all frames, 6-month-old infants (n = 54; tested in the lab)
had an overall confidence rating of 83.68% (SD = 16.11%), 36-
month-olds (n = 26; tested in the lab) had a confidence rating of
95.55% (SD = 3.37%). Further, inspection of the distribution of
confidence ratings revealed that, at 6 months, 86.35% of frames
analyzed by OpenFace had a confidence rating of 75% or higher,
and at 36 months, 98.27% had a confidence rating of 75% or
higher (see Figure 3).

OpenFace Confidence Ratings for Data
Collected Remotely
Video recordings of 48–72-month old children who participated
in the MAAP remotely were also processed via OpenFace.
Confidence ratings for children tested in the home (n= 12) were
also quite accurate (see Figure 2 for a summary). Averaged across
all frames, they had an overall confidence rating of 85.88% (SD
= 18.51%). Further, inspection of the distribution of confidence
ratings revealed that, 89.97% of frames analyzed byOpenFace had
a confidence rating 75% or higher (see Figure 3).

Challenges of Processing the Data
Because standard methods for coding looking time (see section
Traditional Methods for Coding Looking Time for Infants and
Children) are either too time consuming or impossible to use
in a remote setting, we opted to automate the coding process,
using OpenFace. OpenFace derives X, Y, Z (3D) coordinates
of gaze direction and facial landmarks from the image of the
participant’s face on each video frame, but without translating
these coordinates to an external frame of reference (i.e., locations

on the participant’s computer screen). This means that we
don’t know precisely where the participant is looking on the
screen using the OpenFace output alone, given variability across
participants in properties of the camera lens and visual angles.
As a result, we developed a ML approach to overcome this
lack of information about gaze direction with respect to the
external frame of reference. To do this, we trained a MLmodel to
classify gaze direction with respect to specific AOI on the screen,
based on vector information provided by OpenFace. By training
an ML algorithm in this manner, we can use the estimates
provided by OpenFace to predict individual look directions and
durations (traditional measures for looking time studies) for each
participant (in our case, looking to the left, center, and right
displays in the MAAP).

Processing the Data Using Machine
Learning and OpenFace
Machine learning is a data-driven approach for classifying
patterns of relations between two or more variables typically
from a large subset of a dataset (e.g., 50% of trials) in order
to predict patterns of relations between these same variables in
another subset of the data (e.g., remaining 50% of trials). ML
algorithms accomplish this task by leveraging large amounts
of data and computational power, and have been used in
many disciplines (e.g., healthcare, autonomous driving, product
recommendations). Artificial Neural Networks (ANNs) and their
more advanced variants (Deep Neural Networks) are a widely
used subset ofML approaches inspired by and based on biological
neural networks. They are typically comprised of multiple
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connected node layers that translate a set of inputs (e.g., the X,
Y, Z coordinates provided by OpenFace) into outputs (looks to
left, center, and right displays on the MAAP). The “learning” or
“training” process in ANNs is a powerful learning mechanism
that can ultimately improve the accuracy of the network when
presented with new data. This approach is similar to multi-voxel
pattern analysis (MVPA) used to predict patterns of relations of
fMRI and fNIRS data (e.g., Norman et al., 2006; Emberson et al.,
2017). For example, MVPA can be used to predict neural activity
in a single infant based on data patterns classified across the rest
of the infants in a sample, or can predict patterns in one or more
trials from patterns classified across the rest of the trials of a single
infant (e.g., Emberson et al., 2017).

While there have been previous successful examples of
using a combination of eye tracking and ML to estimate gaze
localizations (e.g., George and Routray, 2016; Akinyelu and
Blignaut, 2020; and for a review, see Klaib et al., 2021), our
approach was developed specifically for our three-screen video
based protocol to be used with infants and children with
data collected remotely and thus complements these previous
approaches. Our goal was to develop a ML model that could
be easily used and understood by individuals with little or no
prior ML modeling experience. As such, we chose to use a
multi-layer ANN as our current ML algorithm (see Figure 4).
After preliminary testing, we adopted a network consisting
of four fully connected (three hidden) layers which was the
minimum architecture effective for our specific needs. Our
first model included one hidden layer. In subsequent model

development, we tried a variety of layers and nodes (i.e.,

hyper parameters), ultimately settling on the three layers in

the current model, which demonstrated excellent agreement

with trained human coders. It should also be noted that

we intentionally chose a simple architecture to evaluate the
effectiveness of ML approaches in solving our unique problem.
This simple yet effective neural network can also serve as a
baseline for comparing the performance of more advanced deep
learning techniques.

Here, we demonstrate the feasibility of using a simple
ANN approach within individual infants, classifying patterns of

relations between two variables (data coded by live observers

and X, Y, Z coordinates provided by OpenFace) in a subset of
the data (50% of video frames) in order to predict relations
between these same variables in separate subset of the dataset

(e.g., 50% of frames) from the same participant. Our goal is to
design an algorithm that can use the information from a series
of single images (one for each frame of our video recording)
that is extracted when processing the video through OpenFace.
Specifically, we use the following information from OpenFace as
input to the model:

• Eye gaze direction vector and their average for both eyes
• Location of 2D and 3D eye region landmarks
• Pose estimates: location and rotation of the head with respect

to camera
• Face Landmarks locations in 2D and 3D space
• Rigid and non-rigid shape parameters
• Facial Action Units.

FIGURE 4 | Example schematic of our current architecture of the artificial

neural network (ANN). Our current ANN translates input features (from

OpenFace) into three outputs (looking left, center, or right). Each node has an

associated set of parameters (weights and biases) that generates an output. If

the output of any individual node is above a specified threshold value, that

node will pass data to the next layer of the network. Otherwise, no data will be

sent to the next layer of the network. This powerful mechanism can be applied

to modeling a plethora of problems that involve generating output values

based on some input values. The “learning” or “training” process involves

finding the optimum parameters for each node to minimize a cost function,

which ultimately improves their accuracy. In order to improve the efficiency of

model training, we included several standard regularization techniques.

Specifically, each layer is followed by 1-D batch normalization (Ioffe and

Szegedy, 2015) and a dropout procedure with the probability of 0.2

(Srivastava et al., 2014). We used the widely popular Rectified Linear Units

(ReLUs) activation function (Nair and Hinton, 2010) at each node.

More information about each one of the above inputs is
available at https://github.com/TadasBaltrusaitis/OpenFace/
wiki/Output-Format. The “learning” or “training” process
in ML involves finding the optimum combination
of parameters that can most efficiently predict an
outcome (e.g., gaze direction).

OBJECTIVE 3: TRAINING A ML MODEL TO
CALCULATE LOOKING TIME DATA

In order to calculate traditional looking time measures from
gaze estimation vectors from OpenFace, we trained a ML model
to classify gaze estimation vectors to looks to the left, right,
and center displays of the screen (AOIs) during the MAAP
protocol. We then compared ML estimates to estimates provided
by human observers who coded data in the lab. For the data
that were collected in the lab, look directions (to left, right,
and center displays on MAAP trials) were coded live by trained
observers according to standard procedures used in infant studies
(e.g., Casey and Richards, 1988; Shaddy and Colombo, 2004;
Bahrick et al., 2018a). Specifically, looking time and direction
were coded by a primary and a secondary observer during
task administration. Observers, hidden behind a black curtain,
viewed the child through a front facing camera (SONY FDR-
AX33) hidden above the widescreen monitor. Observers were
blind to condition, and they coded infant fixations to the left,
center, and right sides of the screen in real-time using a game
pad. Button presses were fed into a custom computer program
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that calculated individual looking time to left center and right.
Interobserver reliability was assessed by having the secondary
observer record the looking for 66% of the participants (n =

36) at 6 months and 40% (n = 10) of the participants at
36 months. We assessed interobserver reliability by calculating
the absolute difference between estimates of the two coders.
To the extent that measures are free of random error (i.e.,
reliable), scores from each observer should be comparable
(difference close to zero). This method is superior to correlational
approaches for assessing inter-observer reliability, which are
subject to artifacts (Goodwin and Leech, 2006; Jaccard and
Becker, 2009). Inspection of the median absolute differences
relative to the range of possible scores for each measure indicates
little difference between the scores of the two observers and
thus excellent reliabilities (differences were close to 0: from 0.009
to 0.053).

In order to train the model, we used looking time data that
were coded live from the primary observer and then translated
from individual look durations into frame-by-frame data. For
this initial stage of ML training, we only used a subset of the
total number of the 24 MAAP trials—a block of six social trials.
All participants had a minimum of five out of six trials From
these six trials, for each participant we randomly selected 50%
of the 3,270 total frames for the ML training set and used the
remaining 50% of frames for the testing set (to assess agreement
between ML estimates and the estimates of the trained coder).
For our next steps, we will use 50% of the entire 24 trials
for the training set and the remaining 50% for the testing
set to assess agreement. Our protocol was designed such that
the size, location, and trial duration of left, center, and right
displays are identical across social and non-social conditions.
Thus, we anticipate strong agreement between ML estimates and
a trained coder across all 24 trials (social and non-social) on the
MAAP. Importantly, ML algorithms rely on multiple training
iterations to learn and improve their accuracy, meaning the
predictions should improve each time these training iterations
are completed.

For the data that were collected online, because live coding
was not possible, we assessed agreement betweenML estimates of
the child’s looking behavior and the known locations of attention
getting stimuli. We recorded videos of the participants watching
attention getting stimuli and then used OpenFace to estimate
gaze locations to the screen. The attention getting stimuli were
presented in the middle of each of the AOIs (i.e., left, center,
and right). They were presented one at a time, starting in the
center, then, left, then back to center, and then to the right.
This sequence was then repeated. Attention getting stimuli were
presented for 1,500ms each. Unlike previous attempts to localize
gaze using ML (e.g., George and Routray, 2016), participants
were not explicitly instructed to fixate each point. This was in
part because our sample consisted of young children. Further, the
attention getting stimuli were designed to be highly salient so that
the children would fixate them. In addition to appearing rapidly,
during the 1,500ms presentation time, each point changed color,
grew and then subsequently shrunk in size, and was accompanied
by a series of salient sounds. This provided several known
locations on the screen for each participant, for short periods

of looking before the task started, serving as an external frame
of reference. Importantly, when these attention getting stimuli
were presented on the screen, they were the only thing visible.
Therefore, we can assume that if the participant was looking
at the screen, they were fixating each point. This allowed us
to provide the model with a set of parameters for each of
the three looking locations. Just like the approach described
above for the data collected in the lab, 50% of data for each
participant was used for training and validation of the ML
algorithm and the rest was used for testing the performance of
the algorithm.

After demonstrating the effectiveness of using OpenFace
to quantify looking time in infants and young children
by using the face, head position, and eye gaze direction
of the participants (section OpenFace Confidence Ratings
for Data Collected In-lab), we then compared the gaze
estimate (provided by OpenFace) to a known location. To
evaluate these outputs, we computed a percent agreement
rate, or the number of frames where the OpenFace output
provided the same estimate (e.g., left, center, right) as the live
coder or as the known location (attention getting stimuli),
divided by the total frames. For the data that were collected
in the lab, we used data that were coded live (during
data collection), and for the data collected remotely, this
consisted of using attention getting stimuli (to provide a
ground truth).

Predicting Data Collected In-lab
For data collected in the lab, agreement between predictions
of the ML model and live coders was calculated on the 50%
of frames not used for training (i.e., the testing set). Assuming
an equal distribution of looks to left, center, and right, without
model training, the initial predictions of the model should be
at chance (33%). However, training the model should result in
dramatic improvement in agreement. For example, following
model training, for 6-month-old infants (n = 54), the ML model
had an average agreement rate of 89.9% with the live coders
(SD = 6.75%). Further, this result was not driven by any one
location on the screen as agreement scores were 82, 88, and 87%
to the left, center, right, respectively. There were no significant
differences in agreement among left, center, and right displays
(ps > 0.199). It is important to note that because the amount
of looking to center, right and left locations differed, the average
agreement rate computed was a weighted average and thus does
not correspond precisely to the mean derived by averaging across
the scores for the three locations (left, right, and center displays).
Similarly, for 36-month-olds (n = 25), the ML model had an
average agreement rate of 85.83% with the live coders (SD =

5.85), with 85, 86, 80% agreement to the left, center, and right
(with marginally greater agreement to the center display, 86%,
than right display, 80%, p = 0.092). Two 6-month-old infants
had very poor agreement to individual locations. Participant A
had only 31% agreement to the center location and Participant B
had only 0.05% agreement to the left location. Further inspection
revealed that OpenFace appeared to have difficulties identifying
all of the necessary input components due to the fact that
Participant A’s hand was obscuring the face for large parts of

Frontiers in Psychology | www.frontiersin.org 9 January 2022 | Volume 12 | Article 731618

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Eschman et al. Remote Data Collection

FIGURE 5 | Participant A (in-lab). Example of a 6-month-old infant that

OpenFace may have trouble identifying all components (facial landmark, head

pose estimation, facial action unit recognition, and eye-gaze estimation) due to

obstruction (hand) of the child’s face.

FIGURE 6 | Participant B (in-lab). Example of a 6-month-old infant that

OpenFace may have trouble identifying all components due to the fact that the

video did not capture all of the child’s face.

the task (see Figure 5) and Participant B’s face was not entirely
in the video for large sections (see Figure 6). An optimal set up
can been seen in Figure 7. With these two individuals removed
from the dataset, average percent agreement for the 6-month-old
infants improved to 90.18% (SD = 6.63%; Table 1) and looking
the left, center, and right improves to 84, 89, and 87% agreement,
respectively. Therefore, in developing inclusion criteria for this
and future attempts using OpenFace, one should ensure that
participant faces are fully visible.

Predicting Data Collected Remotely
Because the data collected remotely could not be coded live, the
MLmodel used attention getting stimuli (at the beginning of each
block) as a frame of reference, similar to the procedure used by
most remote eye-trackers.

Following training, the average percent agreement for data
collected remotely (48-, 60-, and 72-month-old children; n =

12) between the ML model and the attention getting stimuli was
85.63% (SD= 24.76%) with 82, 84, and 83% agreement to the left,
center, and right locations. There were no significant differences
in agreement among left, center, and right displays (ps > 0.552).

FIGURE 7 | Exemplary video for OpenFace.

TABLE 1 | In lab ML agreement without participants A and B.

Age (months) n M (%) SD (%) Range (%)

6 52 90.18 6.63 73.51–99%

36 25 85.83 5.85 72.57–95.12%

Total 77 88.77 6.67 72.51–99%

One participant had an average agreement score of 7.85%. Again,
this appeared to be due to the fact that the child’s face was
not entirely in the frame while the attention getting stimuli
were being presented (see Figure 8). When that participant was
removed (Participant C), average agreement between the ML
model and the attention getting stimuli improved to 90.7% (SD
= 7.06%: Table 2) and to 89, 91, and 88% for looking to the
left, center, and right. Therefore, when the full face is within
view during calibration, the ML model seems to have excellent
potential for translating the OpenFace output into gaze locations
to specific AOIs on the screen for individual participants. Thus,
again when using OpenFace, an important inclusion criterion
should be that participant faces are fully visible.

Demographic Differences
Because facial recognition software can sometimes be biased
toward or perform better with members from the ethnic or
racial group that developed it (e.g., Mehrabi et al., 2019), we
explored the ability of OpenFace to identify and predict gaze
across individuals who differed in gender, ethnicity, and race.
Importantly, the ability of OpenFace to identify facial landmarks
(i.e., confidence ratings) did not significantly differ as a function
of gender (p= 0.761), Race (p= 0.227), or Ethnicity (p= 0.170).
Additionally, percent agreement between the ML model and
estimates from in-lab and remotely administered experiments
did not significantly differ as a function of gender (p = 0.219),
Race (p = 0.189), or Ethnicity (p = 0.520). See Tables 3–5 for
means and standard deviations.
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FIGURE 8 | Participant C (at-home). Example of a 72-month-old child that

OpenFace may have trouble identifying all components due to the fact that the

video did not capture all of the child’s face.

TABLE 2 | Online ML agreement without participant C.

Age (months) n M (%) SD (%) Range (%)

48 2 89.73 8.87 83.45–96

60 3 95.14 2.68 92.07–97.06

72 6 88.8 8.03 76.43–96

Total 11 90.7 7.06 76.43–97.06

TABLE 3 | Confidence rating (OpenFace) and ML agreement as a function of

gender.

Gender N M (%) SD (%)

Confidence rating Male 45 87 15.90

Female 37 86 15.45

ML agreement Male 45 89 6.94

Female 37 86 14.65

OpenFace provides a confidence rating for every frame of a video (using all face, head

position, and gaze direction landmarks). The confidence rating is a measure of how

well OpenFace can identify all of these components (averaged across all frames for

each participant).

DISCUSSION

In this article, we have described our novel and successful method
of data collection during the COVID-19 pandemic. While there
are inherent challenges to testing remotely, and even more
challenges when testing children, we found that with the proper
attention to detail, very good quality data can be collected. Using
a combination of Zoom and Gorilla Experiment Builder, looking
time tasks can be programmed and used in the home easily
and efficiently. Importantly, Gorilla afforded us with the level
of audio-visual precision that was necessary for our looking
time task. We also found it important to provide the caregiver
with explicit instructions during a pre-session for how to help
with data collection and serve as the “at-home experimenter”
and facilitate testing without interfering. Once the data were
collected, we used OpenFace (an open source gaze estimation
tool) and a ML model to process the data. We developed a ML
approach that was intentionally simple (compared to other deep

TABLE 4 | Confidence rating (OpenFace) and ML agreement as a function of race.

Race N M (%) SD (%)

Confidence rating African American 11 77 24.69

White 57 87 14.33

Other 2 80 8.88

More than 1 race 6 91 11.04

DNA 6 94 3.11

ML agreement African American 11 93 4.21

White 57 85 12.46

Other 2 87 8.71

More than 1 race 6 91 5.74

DNA 6 93 11.13

TABLE 5 | Confidence rating (OpenFace) and ML agreement as a function of

ethnicity.

Ethnicity N M (%) SD (%)

Confidence rating Hispanic or Latino 53 89 12.01

Not hispanic or Latino 28 81 20.66

DNA 2 88 13.58

ML agreement Hispanic or Latino 53 87 13.04

Not hispanic or Latino 28 90 6.66

DNA 2 88 2.43

learning techniques).We first tested this approach using data that
were previously collected (and coded live by human observers) in
the lab and then applied the approach to data collected remotely.

Our results revealed that the overall agreement between the
live observers and the ML model was high (∼90% for 6- and 36-
month-olds) suggesting that the combination of OpenFace and
ML performs at a level similar to well-established methods for
collecting looking time data. After demonstrating that OpenFace
could be used to estimate gaze for infants and children in a
lab setting, we expanded our dataset to include children tested
remotely in the home. Because these data could not be coded
live by observers in real time, we used attention getting stimuli to
compare the ML model’s predictions of gaze locations to known
locations. Once again, the ML model’s estimates of gaze locations
had high agreement (∼90% for 48-, 60-, and 72-month-olds)
with that of the known locations on the screen, demonstrating
that this method is suitable for estimating gaze direction for data
collected remotely.

FUTURE DIRECTIONS AND LIMITATIONS

While we have demonstrated initial success in implementing
this novel approach, it is important to note that both data
collection and model development are ongoing. Further, we
should acknowledge, that while results of our ML model are
promising, we are just beginning to test its effectiveness with
infants. Preliminary results look promising. Thus far, we have
tested four infants online (n = 2 at 15 months, n = 1 at
13 months, and n = 1 at 4 months). We have processed
their video data in OpenFace. Mean confidence ratings were
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as follows: 15-month confidence ratings = 90.39%, 87.46%, 13-
month confidence rating = 70.63%, 4-month confidence rating
= 68.73%. While the 15-month data look strikingly similar to
the average of our online data, the confidence ratings for the 13-
and 4-month-old infants were slightly lower. Again, we should
also note, there were no initial criteria in place for data quality
of the videos processed in OpenFace. As such, we are confident
that with further development, once factors such as looking away
from the screen or the face being obscured are taken into account,
confident ratings will increase. Future research should take this
into account.

One current limitation of our approach is that the ML
model requires training on a subset of the data. However, our
ultimate goal is to establish a fully autonomous model that is
robust enough to classify gaze without training on a subset of
the data. As our data set continues to grow, so too will the
generalizability of our ML model. In addition, we plan to train
more complex models with a larger number of parameters once
we incorporate additional data from multiple participants. This
involves adding more layers and more neurons to our neural
network. Specifically, we will use K-fold cross validation for
training the model. This works by randomly dividing the training
data set into groups (folds) and repeating training steps K times
(where K= the number of iterations) while at each time we hold
out one of the sections of data (folds). This allows us to test
the accuracy of the model on multiple sections of the dataset,
increasing our overall accuracy estimates.

Another limitation of our current approach is that it was
developed specifically for coding data from a three-screen audio-
visual protocol (the MAAP). Once we incorporate all the data
from multiple participants for training, the ML model will be
able to be used for various types of input (i.e., other looking time
tasks), and can be scaled up to incorporate more complex gaze
estimates (e.g., more than three locations). Our lab is currently
adapting aMLmodel to be used with the Intersensory Processing
Efficiency Protocol (IPEP; Bahrick et al., 2018b), an audiovisual
task similar to the MAAP, but with six AOIs as opposed three.

Recently, the approach that has been outlined in this
manuscript has been adapted by the Multisensory Data Network
(a collection of 13 research labs across North America) who will
administer the MAAP and IPEP remotely, process the looking
time data using OpenFace and our ML model, and add to our
growing dataset, helping to further inform and refine our model
as well as develop preliminary norms for the development of
skills assessed by the MAAP and IPEP. We plan on publishing
our dataset (once it is complete) for scientists to use. As such,
this paper provides an important first step in developing an open
source toolkit capable of quantifying large-scale looking time data
collected remotely for infants and children.

Finally, we acknowledge that the minimum technological
requirements of a home computer with a web camera and high-
speed internet connection could potentially limit our participant
pool. Specifically, as Lourenco and Tasimi (2020) have recently
pointed out, the technological requirements of many online
studies may restrict access to many low-income and minority
communities and thus, may impact the generalizability of
the findings.

CONCLUSIONS

These preliminary results suggest that under the right
circumstances, OpenFace can be used with infants (both
with data collected in a lab setting and preliminary data
collected remotely) and with young children (for tasks that were
administered remotely) to derive gaze vectors for looking time.
Further, when paired with our ML model, we can accurately and
efficiently process looking time data and provide an output that
is comparable in accuracy to traditional methods of looking time.
As such, our approach provides developmental researchers with
a viable option for collecting looking time data outside of the
typical laboratory setting. Not only does this provide researchers
with a cost-effective method for data collection, but it also
frees them from the geographical confines of testing individuals
within the typical university community, opening the door to a
world-wide participant pool.
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