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A Wilcoxon–Mann–Whitney Test for
Latent Variables
Heidelinde Dehaene*, Jan De Neve and Yves Rosseel

Department of Data Analysis, Ghent University, Ghent, Belgium

We propose an extension of the Wilcoxon–Mann–Whitney test to compare two groups

when the outcome variable is latent. We empirically demonstrate that the test can have

superior power properties relative to tests based on Structural Equation Modeling for a

variety of settings. In addition, several other advantages of the Wilcoxon–Mann–Whitney

test are retained such as robustness to outliers and good small sample performance. We

demonstrate the proposed methodology on a case study.

Keywords: rank test, measurement error, indicators, robustness, nonparametric inference, group comparison

1. INTRODUCTION

Consider a study where the interest is in the association between employment (yes/no) and the
construct depression. The latter is quantified by the score on three questionnaires: the Patient
Health Questionnaire-9 (PHQ-9; Spitzer et al., 1999; Kroenke et al., 2001; Kroenke and Spitzer,
2002), the Center for Epidemiological Studies Depression Scale-10 (CESD-10; Andresen et al.,
1994), and the eight-item PROMIS Depression Short Form (PROMIS D-8; 8b short form; Pilkonis
et al., 2011). The data originate from Amtmann et al. (2014), where the psychometric properties
of these questionnaires were examined given that they all aim to screen for high depressive
symptoms or major depressive disorder (MDD). Figure 1 displays these scores for 455 employed
and unemployed individuals living with multiple sclerosis (MS). Scores for the PHQ-9 can range
from 0 to 27, for the CESD-10 from 0 to 30 and the scores for PROMIS D-8 are reported on a
standardized scale with mean 50 and standard deviation 10.

At first sight, the Wilcoxon–Mann–Whitney (WMW) test seems an appropriate choice to
compare these two groups given the skewness and presence of outliers depicted in Figure 1. For
each questionnaire, a WMW test can be carried out and for the sake of illustration, the WMW test
will be introduced below for the PHQ-9 scores. The test considers the null hypothesis claiming that
the distribution of the PHQ-9 scores is the same for both groups against the alternative stating that
the probability that a subject of the unemployed group has a higher PHQ-9 score as compared to a
subject of the employed group is different from 50%. The test statistic reflects this probability, also
denoted as the probabilistic index, and the sole use of ranks hereby results in robustness against
outliers. Under the null hypothesis and in the absence of ties, the sampling distribution of the test
statistic only depends on the sample sizes of both groups, hence resulting in a distribution-free test
(Thas, 2010). The WMW test often has superior power compared with the t-test for heavy tailed
distributions (Blair and Higgins, 1980). For an exponential distribution, for example, the t-test
needs approximately three times more observations than the WMW test to attain the same power
(Van der Vaart, 2000; Hollander et al., 2013). Albeit both the WMW and the t-test aim to compare
two samples, they apply different hypotheses and according effect sizes (i.e. probabilistic index vs.
comparison of means) hence leading to different test properties.
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FIGURE 1 | Boxplot of the scores for employed and unemployed subjects on three questionnaires measuring depression: A, the Patient Health Questionnaire-9

(PHQ-9, scale [0, 27]), B, the Center for Epidemiological Studies Depression Scale-10 (CESD-10, scale [0, 30]) and, C, the eight-item PROMIS Depression Short Form

(PROMIS D-8, scores reported on a standardized scale with mean 50 and standard deviation 10). Higher scores indicate more symptoms of depression.

Although the WMW test seems to be an appropriate choice
in the current example, there is a complication as the outcome
of interest, depression, is a latent variable. Stated otherwise, it is
a variable that is not directly observed, but rather theoretically
postulated or empirically inferred from observed variables (i.e.
the indicators or proxies). Switching to latent variables, one
cannot directly apply the methods that were designed for
observed variables, because a measurement model that connects
the latent variable to observed variables has to be postulated.
Typically, continuous data with latent variables are analyzed via
Factor Analysis (FA) or Structural Equation Modeling (SEM).
The classical SEM has an optimal performance with respect
to hypothesis testing when data are multivariate normally
distributed. Given the skewness of the data, it is our interest to
study whether the WMW test can be used in the context of latent
variables while maintaining the attractive properties mentioned
before. Applying the WMW test naively on each questionnaire
results in a significant difference between the two groups on
the first and second questionnaire (p = 0.003 and p = 0.04
respectively) but not on the third questionnaire (p = 0.12),
making it difficult to obtain a global conclusion whether there
is a significant association between depression and employment
or not. In addition, these p-values do not take the measurement
error into account. To the best of our knowledge, an extension
of the WMW that takes into account those two essential aspects
(i.e. combining the information of multiple indicators where
measurement error is inherent) is not available yet and therefore
the objective of this paper is to extend the WMW test in the
context of latent variables with the main focus on hypothesis
testing. The paper is organized as follows. In Section 2 we propose
a WMW test for latent variables. Section 3 empirically contrasts
the new methodology with existing methods in different settings
by the use of a simulation study. Section 4 presents a case study
and Section 5 provides a conclusion and discussion.

2. METHOD

We first introduce a measurement model that relates the latent
variable to multiple indicators (or proxies). We then formulate
the hypotheses of interest and demonstrate how they can
be tested.

2.1. Measurement Model
The measurement model that relates the latent variable η to a set
of indicators Yp (p = 1, . . . , P), is given by

Yp = hp(η)+ εp (1)

where hp(·) denotes a strictly monotone function and εp denotes
the measurement error. To distinguish between the two groups,
we use the notation (Yp, η, εp) for the first group and (Y∗

p , η
∗, ε∗p )

for the second. We define the reliability of an indicator Yp as the
proportion of variance in the indicator Yp that is not explained
by the measurement error εp and thus reflecting the quality
of that indicator (Nunnally and Bernstein, 1994; Kline, 2015).
Specifically,

Rel(Yp) =
var(Yp)− var(εp)

var(Yp)
. (2)

The variance of the measurement error εp can be replaced by
its empirical counterpart in order to obtain an estimate of the
reliability of an indicator. We further elaborate on this estimation
in the subsequent subsection.

Similar to classic factor analysis and SEM, comparing the
latent means between two groups by the use of indicators is
only feasible when assuming measurement invariance. Hence,
the function hp(·) is assumed to be equal for the two groups and
this needs to be confirmed by using e.g. SEM. In contrast with FA
and SEM, where hp(·) is assumed to be linear, we impose a less
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stringent specification, i.e. monotone without imposing linearity.
Garcia-Marques et al. (2014) pointed out that a curvelinear
trend between a latent variable and its indicator may exist in
psychological research due to e.g. ceiling or floor effects. An
example of a floor effect is observed by Amtmann et al. (2014) for
the PROMIS D-8 questionnaire and hence portrayed in the right
panel of Figure 1. This demonstrates that assuming linearity can
sometimes be an incorrect representation of reality.

The focus in this paper does not lie on estimating the
measurement model and will thus be treated as a nuisance, in
contrast with classic FA and SEM.

2.2. Hypotheses and Testing Procedure
We are interested in testing the following hypotheses which are
expressed in terms of the distribution of the latent variable η

(i.e. Fη):

H0 : Fη = Fη∗ HA : Fη 6= Fη∗ . (3)

If ηi (i = 1, . . . ,m) and η∗j (j = 1, . . . , n) would be observable, the

WMW test statistic (in the absence of ties) is given by (π̂−0.5)/σ0
where σ0 =

√

(m+ n+ 1)/(mn12) and

π̂ =
1

mn

m
∑

i=1

n
∑

j=1

I(ηi < η∗j ) (4)

with I(·) the indicator function (Wilcoxon, 1945; Mann and
Whitney, 1947). Here, π̂ is an unbiased estimator for P(η < η∗),
i.e. the probability that a randomly selected subject from group
1 has a lower outcome than a randomly selected subject from
group 2.

In practice, ηi and η
∗
j are unobservable and therefore Equation

(4) can not be computed. Instead, we only observe Ypi and Y∗
pj

which are related to ηi and η∗j via measurement model (1). Let

WMW(Yp,Y
∗
p ;α) denote theWMWtest applied to the indicators

Yp and Y∗
p and where α denotes the level of significance. Under

location-shift, i.e. Yp
d
= Y∗

p +1, WMW(Yp,Y
∗
p ;α) is an unbiased

test for H0 : FYp = FY∗
p
vs. HA : FYp 6= FY∗

p
, meaning that the

rejection level does not exceed α when FYp = FY∗
p
and that it is at

least α when FYp 6= FY∗
p
(Lehmann, 1951).

Under the model

Yp = hp(η)+εp, and Y∗
p = hp(η

∗)+ε∗p , with εp
d
= ε∗p , (5)

WMW(Yp,Y
∗
p ;α) is also an unbiased test for H0 : Fη = Fη∗ vs.

HA : Fη 6= Fη∗ . Indeed, when assuming equal distributions for the
measurement error over the two groups per indicator, it follows
that when Fη = Fη∗ then FYp = FY∗

p
so that the rejection level of

WMW(Yp,Y
∗
p ;α) does not exceed α when Fη = Fη∗ . Secondly,

when Fη 6= Fη∗ then FYp 6= FY∗
p
so that the rejection level is at

least α when Fη 6= Fη∗ and under the assumption of location-shift

(i.e. Yp
d
= Y∗

p + 1). Consequently, the test statistic

(mn)−1
∑m

i=1

∑n
j=1 I(Ypi < Y∗

pj)− 0.5

σ0
(6)

results in an unbiased test for H0 : Fη = Fη∗ vs. HA : Fη 6= Fη∗ .
In summary, we can apply the WMW test on the observed data
to test hypotheses concerning the latent variable. This testing
procedure does not require that hp(·), var(εp), var(ε

∗
p ) have to be

estimated nor that hp(·) needs to be linear. The strong assumption
of equal distributions for the measurement error is required for
the theoretical validation of this method. However, violations of
this assumption will appear to have no detrimental consequences
with respect to hypothesis testing in our simulation study (see
Section 3).

When multiple indicators are available, we propose to
aggregate them to obtain a new indicator where the above-
mentioned test rationale still holds. This aggregated indicator
can be superior in terms of its reliability in comparison with
the original indicators, but it however requires estimates of
the measurement error variance. The aggregated indicator
is obtained by making a linear combination of the original
indicators while preserving measurement invariance as
mentioned in Section 2.1. Therefore, the construction of
this linear combination is based on all data of an indicator p, i.e.
both Yp and Y∗

p . Let Zpk denote an observation from the pooled
sample Yp and Y∗

p where k = 1, . . . , (m + n). We define the
aggregated indicator as

YAGG
k =

P
∑

p=1

apZpk, (7)

where the weights ap in Equation (7) can be chosen according
to two strategies. A first strategy is to simplify the aggregation
to an unweighted mean of the standardized indicators. However,
treating all indicators as equally important is a reduction of
the complexity in reality where some indicators are more
reliable than others. Therefore, we propose a second strategy
where the weights ap in Equation (7) are chosen so that the

estimated reliability of YAGG
k

is maximized (Bentler, 1968; Li,
1997; Penev and Raykov, 2006). In other words, a maximally
reliable composite is constructed and the estimated reliability of
YAGG
k

is by construction at least equal to the highest estimated
reliability of the separate indicators used in the aggregation.

In order to obtain the weights ap, one needs to estimate
the variance of the measurement error of the accompanying
indicators, comprising the data of both groups. Given the data
structure of our simulation study (Section 3) and case study
(Section 4), we briefly elaborate on how this variance can be
estimated when at least three indicators are available. For a
more exhaustive explanation on how to estimate the variance of
measurement error under different settings, we refer to De Neve
and Dehaene (2021). Imposing a linear relationship among the
indicators Y1i = h(ηi) + ε1i, Y2i = a2 + b2h(ηi) + ε2i and
Y3i = a3 + b3h(ηi) + ε3i, it follows that whenever cov(Y1,Y2)
6= 0, cov(Y1,Y3) 6= 0 and cov(Y2,Y3) 6= 0 that var(ε1) = var(Y1) -
cov(Y1,Y2)cov(Y1,Y3)/cov(Y2,Y3). Although the assumption of
a linear relationship among the indicators is required for these
formulas, the results of our simulation study show no detrimental
consequences of violations.
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The test rationale that has been put forward earlier on, i.e.
employ the WMW test on observed data to make inference with
respect to latent variables, is still valid when using this aggregated
indicator YAGG

k
. Moreover, this aggregation does not complicate

the justification due to the flexibility of the measurement model,
because the aggregated indicator can be rewritten as

YAGG
k = hAGG(ηk)+ εAGGk , hAGG(·) =

P
∑

p=1

aphp(·),

εAGGk =

P
∑

p=1

apεpk,

and hence the same structure as described inmeasurementmodel
(1) still holds. Therefore, we obtain the following test statistic:

UAGG =
(mn)−1

∑m
i=1

∑n
j=1 I(Y

AGG
i < YAGG

j )− 0.5

σ0
, (8)

where the data of the two groups for the aggregated indicator
are distinguished by using the notation YAGG

i and YAGG
j

for respectively the first and second group. Similar with the
standard WMW test, a p-value can be obtained by either
using a permutation null distribution or a standard normal
approximation (Wilcoxon, 1945;Mann andWhitney, 1947; Thas,
2010).

2.3. Sample Size and Power Calculation
An approximate total sample size N (N = m + n) for a one-
sided test with significance level α can be determined by using
the formula from Hollander et al. (2013):

N =
(zα + zβ )

2

12c(1− c)(δ − 1
2 )

2
, (9)

where c reflects the ratio of the sample sizes of the two groups,
i.e. c = m

m+n , and δ denotes the effect size under the alternative

hypothesis, i.e. P(YAGG
1 < YAGG

2 ). Subsequently, the expected
power can be deduced via

1− β = 8

(

√

N12c(1− c)(δ −
1

2
)2 − zα

)

. (10)

3. SIMULATION STUDY

In order to assess the finite sample performance of the extended
Wilcoxon–Mann–Whitney test, a simulation study is performed.
All simulations and analyses are performed with R version 3.5.1
(R Core Team, 2020).

Different scenarios are explored, all based on the following
data generating process:

Latent variables:

η = β + ζ η∗ = β∗ + ζ ∗ (11)

Observed variables/indicators:

Y1 = η + ε1

Y2 = h2(η)+ ε2

Y3 = h3(η)+ ε3

Y∗
1 = η∗ + ε∗1

Y∗
2 = h2(η

∗)+ ε∗2

Y∗
3 = h3(η

∗)+ ε∗3

(12)

To explore the performance of the suggested methodology
under different scenarios, the simulation study covers both
normal, heavily tailed and skewed distributions for ζ and ζ ∗

(and consequently η and η∗): N (0, 1), t5, Laplace(0, 1.25) and
the standard exponential centered around zero. In the wide
range of possible non-normal distributions, these distributions
correspond to kurtosis and skewness values that can be
encountered in practice and that are leptokurtic (Chou et al.,
1991). This positive kurtosis enables the examination of whether
the superior power of the WMW test in heavier tailed
distributions is carried over to the context of latent variables
(Van der Vaart, 2000; Hollander et al., 2013). The superiority
in heavier tailed distributions is also observed in small samples
and therefore sample sizes in this simulation study are varied
between 15, 50, and 100 observations in each group. As a result,
exploration of the properties of different methods is possible
without running into a ceiling effect with respect to the empirical
power. By varying the variances of the measurement error, the
influence of the reliability of the indicators on the different
methods can be studied. We consider reliabilities of 60% and
80% which corresponds to indicators that can be considered as
having a relatively weak and an adequate reliability respectively
(Nunnally and Bernstein, 1994; Jackson, 2001). The function
hp(·) is either linear or non-linear. In the non-linear case, the
transformation hp(·) equals 8−1[F(·)] where F equals the t-
distribution with 1 or 3 degrees of freedom. This relationship
can be seen as a modified inverse logit function and was chosen
since it recreates a curvilinear trend between a latent variable
and its indicator, in accordance with the trend mentioned in
Garcia-Marques et al. (2014). Figure 2 shows an example of such
a curvilinear trend between a latent variable η and hp(η).

Taking into account all parameters discussed up till now,
the simulation study involves linear or non-linear functions
hp(·), four error distributions, three sample sizes and two
reliabilities, resulting in 48 simulation scenarios. For all these 48
combinations, four settings are considered to gain insight with
respect to the empirical consequences of violating the assumption

FIGURE 2 | Illustration of the curvilinear trend between a latent variable η and

the function hp(η) as used in the simulation study.
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of equality in distribution of the measurement error as postulated
under model (5) in Section 2.2.

• Setting 1: εp
d
= ε∗p , i.e. a correctly specified model.

In setting 2 and 3, the model is misspecified.

• Setting 2: cεp
d
= ε∗p with c 6= 1, i.e. the variance of the

measurement error differs across groups, where c is chosen in
such a way that the reliability of all indicators in the second
group is consistently about 5% lower than in group 1.

• Setting 3: εp
d
6= ε∗p but Var(εp) = Var(ε∗p ), i.e. the distribution

of the measurement error differs across groups (a normal
distribution and Laplace distribution respectively), but the
variance is equal.

In the last setting, we consider a correctly specified model but
with an indicator with very low reliability:

• Setting 4: εp
d
= ε∗p , Y3 and Y∗

3 have a reliability of only 20%.

In order to assess the impact of all these parameters on both
the empirical Type I error rate and power, the parameter β∗

as defined in Equation (11) is varied. The exact parameter
value depends on the error distribution, but it is chosen so
that the probabilistic index P(η < η

∗) equals 50% and 65%
under the null and alternative hypotheses respectively. The
rationale for this probabilistic index can be traced back to
the simple relationship between a probabilistic index and the
standardized difference as described in Cohen (1988) and
De Schryver and De Neve (2019). By exploiting this relationship,
a probabilistic index of 65% coincides with a standardized effect
of 0.55 and is hence defined as a medium effect according to
Cohen (1988).

For each setting, 1,000 Monte Carlo simulation runs are used
to evaluate and contrast the performance of six methods. In the
first method, further referred to asWMW–max rel, a maximally
reliable composite is used as input for the WMW test. In this
simulation study, the weights ap are obtained via an optimisation
function, but an analytic solution based on Bentler (1968) is
also possible. The variance of the measurement error of each
indicator needed for this optimization process was estimated
by using the formulas presented in Section 2.2. The second
method, further referred to as WMW–mean, also applies the
WMW test on an aggregated indicator, but here the aggregation
is simplified to the mean of the standardized indicators. This
comparison enables us to study the influence of estimating
weights according to the quality of the individual indicators. The
third method uses the maximally reliable composite as input
for a Welch t-test while the fourth method has the unweighted
mean as input variable for a Welch t-test. These two methods
are accordingly further referred to as t-test–max rel and t-test–

mean and form a parametric alternative for the first and second
method. The fifth and sixth method are based on SEM with
equal group loadings and intercepts and are currently the most
common methods to compare a latent variable between two
groups. We include both SEM with and without correction for
non-normal data, further referred as SEM and SEM–correction.

The correction for non-normal data refers to the use of robust
Satorra-Bentler standard errors (Satorra and Bentler, 1994).
SEM and SEM–correction can also be seen as a parametric
counterpart of the proposed WMW extension, but unlike the
Welch t-test, SEM does take into account the measurement error
of the indicators. The SEMs are implemented by using lavaan
(Rosseel, 2012).

For sample size m = n = 15, p-values for the methods
based on SEM and the Welch t-test were obtained by using a
permutation null model, to ensure a fair comparison between
the six different methods. For larger samples, inference was
conducted by relying on the asymptotic distribution of the
respective test statistics.

The R code to recreate the simulation study is available in the
Supplementary Material.

3.1. Results
Because the Type I error rate is correctly controlled for almost all
methods in almost all settings, we do not display these tables in
the main text but provide them in the Supplementary Material

(i.e., Tables 1–4 in Supplementary Data Sheet 2). For 3 cases, it
can be noted that the methods relying on SEM are too liberal,
i.e. the empirical Type I error rate is 6.9%. On the other hand,
one can observe that the methods relying on the WMW test are
too conservative in 4 cases for setting 2 with an empirical Type I
error rate of 3.0 or 3.2%. These 7 deviations are indicated in bold
in the corresponding tables in the Supplementary Material. It is
noteworthy that even under model misspecification (i.e. setting 2
and 3) the Type I error rate is controlled for by all six methods.
Hence, the assumption of distributionally homogeneous errors
as postulated in Equation (5) is in practice less stringent. The
results with respect to the empirical power are summarized in
Tables 1–4.

Regardless of the setting, sample size, reliability or type
of function hp(·), the following trend can be observed
with respect to the empirical power. When the latent
variable is normally distributed, the six methods have
similar power although the methods based on SEM and
the t-test are slightly more powerful. As the distribution
becomes more heavily tailed, the more superior the
WMW methods become. This pattern is in accordance
with the observations in the context of observed outcome
variables, as mentioned by Van der Vaart (2000) and
Hollander et al. (2013).

When one of the three indicators has an extremely low
reliability, i.e. setting 4, a slightly different pattern can be seen.
SEM has now a more pronounced superior power for the
normal distribution. For the more heavily tailed distributions,
the superiority of the WMW methods overall re-emerges. The
methodsWMW–max rel andWMW–mean differ in terms of the
aggregated indicator that is used as input for the WMWmethod.
The added value of the optimization process is demonstrated
when looking at setting 4. The ability to fine-tune the weights
in line with the reliability of each indicator separately and hence
giving less influence to an indicator that has a bad quality,
results in a higher empirical power for WMW–max rel in
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TABLE 1 | Empirical power from the simulation study with the indicators having an overall reliability of 80% and a linear relationship with the latent variable.

Linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

N (0, 1)

m = n = 15

Setting 1 29.7 31.0 33.2 32.9 32.4 32.1

Setting 2 28.4 29.2 30.7 31.3 30.0 30.3

Setting 3 29.5 29.3 31.8 32.3 32.0 31.9

Setting 4 25.8 26.2 28.5 27.4 29.4 28.6

m = n = 50

Setting 1 78.7 79.1 81.7 81.4 83.2 83.1

Setting 2 79.5 78.8 81.0 80.4 82.0 82.1

Setting 3 79.2 79.9 81.2 81.8 82.2 82.0

Setting 4 74.8 72.3 77.6 74.4 80.0 80.0

m = n = 100

Setting 1 98.2 98.1 98.5 98.6 98.7 98.7

Setting 2 97.7 97.7 98.2 98.3 98.3 98.3

Setting 3 97.6 97.5 98.1 98.2 98.2 98.2

Setting 4 97.4 95.1 98.1 95.8 98.1 98.2

t5

m = n = 15

Setting 1 23.5 23.9 24.2 24.1 24.4 23.9

Setting 2 24.0 24.1 23.1 22.6 22.0 22.2

Setting 3 23.7 23.8 22.4 23.1 22.5 23.3

Setting 4 22.1 22.4 22.2 22.4 22.4 23.5

m = n = 50

Setting 1 65.8 66.1 60.8 60.9 61.8 61.4

Setting 2 68.7 68.7 62.2 62.2 63.7 63.4

Setting 3 67.3 67.6 61.1 61.4 62.7 62.2

Setting 4 63.9 58.4 57.6 53.7 60.2 60.0

m = n = 100

Setting 1 92.3 92.4 87.6 87.6 88.0 88.1

Setting 2 91.7 91.7 87.0 87.4 87.9 87.8

Setting 3 93.2 93.4 88.9 88.7 89.4 89.5

Setting 4 90.6 86.8 85.7 83.4 87.4 87.4

Linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

Laplace (0, 1.25)

m = n = 15

Setting 1 21.5 22.3 19.6 20.4 19.3 19.0

Setting 2 21.9 21.4 21.0 21.1 19.8 21.0

Setting 3 22.0 22.5 20.6 20.3 20.1 20.3

Setting 4 17.3 19.8 16.5 18.8 19.4 19.3

m = n = 50

Setting 1 61.8 62.0 53.2 53.2 55.0 54.6

Setting 2 62.2 63.2 52.7 53.3 54.5 53.8

Setting 3 64.6 66.0 52.9 52.8 54.7 54.2

Setting 4 58.9 56.9 51.7 49.8 56.0 56.1

m = n = 100

Setting 1 92.3 92.2 83.2 82.9 83.5 83.4

Setting 2 88.1 87.9 77.7 77.5 78.2 78.1

Setting 3 91.0 90.7 82.6 82.9 82.9 83.0

Setting 4 85.5 80.4 77.7 74.2 79.3 79.3

Exp

m = n = 15

Setting 1 22.2 23.1 18.1 18.2 18.7 18.3

Setting 2 19.7 19.8 17.0 17.5 17.2 17.5

Setting 3 19.4 20.2 16.9 17.6 16.9 17.0

Setting 4 15.7 16.0 13.4 14.9 14.8 14.9

m = n = 50

Setting 1 61.9 62.0 40.8 41.8 42.6 42.6

Setting 2 56.2 57.6 38.0 38.2 39.9 39.3

Setting 3 63.0 63.5 42.6 42.6 44.9 44.8

Setting 4 50.1 45.0 36.9 36.7 40.6 40.4

m = n = 100

Setting 1 86.7 87.2 67.2 67.5 67.7 67.8

Setting 2 85.4 85.6 65.5 66.0 66.6 66.8

Setting 3 88.2 88.4 66.4 66.3 67.3 67.6

Setting 4 83.5 76.1 65.2 61.1 66.9 67.7

The highest power per setting is indicated in bold.
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TABLE 2 | Empirical power from the simulation study with the indicators having an overall reliability of 60% and a linear relationship with the latent variable.

Linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

N (0, 1)

m = n = 15

Setting 1 26.4 27.7 28.8 29.4 28.5 28.9

Setting 2 23.9 25.4 26.0 26.9 25.4 24.6

Setting 3 26.4 27.4 28.5 29.9 28.9 28.3

Setting 4 21.1 24.1 23.5 25.3 24.0 23.7

m = n = 50

Setting 1 74.6 74.2 76.4 76.4 77.9 78.1

Setting 2 73.8 74.2 75.7 75.8 77.0 76.7

Setting 3 75.4 74.7 76.7 77.8 77.8 77.6

Setting 4 67.8 68.0 71.1 70.0 74.5 74.2

m = n = 100

Setting 1 96.7 97.0 97.5 97.6 97.7 97.7

Setting 2 95.9 96.2 97.7 97.7 97.7 97.7

Setting 3 95.8 95.7 96.3 96.3 97.6 97.6

Setting 4 94.4 92.3 95.1 94.0 95.6 95.6

t5

m = n = 15

Setting 1 19.9 20.8 21.2 21.8 20.2 19.4

Setting 2 18.3 19.6 18.3 19.4 18.2 18.4

Setting 3 20.1 20.8 20.1 20.7 20.3 20.7

Setting 4 19.0 19.9 19.8 21.4 18.0 18.3

m = n = 50

Setting 1 56.4 57.8 54.2 54.8 55.4 55.4

Setting 2 61.6 62.2 56.7 57.0 58.2 58.1

Setting 3 60.6 60.6 57.4 58.1 59.0 58.2

Setting 4 52.3 51.7 49.1 48.4 51.2 51.5

m = n = 100

Setting 1 87.7 87.7 83.5 83.8 84.1 83.7

Setting 2 85.3 86.3 82.9 83.2 83.2 83.2

Setting 3 89.1 88.9 84.9 84.8 84.8 85.0

Setting 4 83.7 82.0 80.3 79.1 81.2 81.1

Linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

Laplace (0, 1.25)

m = n = 15

Setting 1 18.3 19.0 17.7 18.2 17.7 17.2

Setting 2 18.3 18.5 18.5 19.0 17.5 17.2

Setting 3 16.8 18.7 17.4 18.9 17.9 17.0

Setting 4 14.9 17.7 14.5 16.3 17.4 16.8

m = n = 50

Setting 1 51.6 51.8 47.4 48.0 48.4 48.7

Setting 2 54.0 54.1 48.7 49.0 49.9 50.6

Setting 3 55.9 56.0 47.2 47.2 48.9 49.2

Setting 4 49.0 48.0 46.7 45.5 49.7 49.7

m = n = 100

Setting 1 85.5 85.5 78.1 78.1 79.0 79.1

Setting 2 80.1 80.8 72.7 72.7 73.0 73.4

Setting 3 85.5 85.9 78.7 79.3 78.8 79.1

Setting 4 85.5 85.9 78.7 79.3 78.8 79.1

Exp

m = n = 15

Setting 1 16.1 16.9 14.6 16.4 15.7 14.6

Setting 2 15.5 15.6 13.9 15.4 14.5 14.2

Setting 3 14.9 16.3 14.3 14.5 14.3 13.8

Setting 4 12.9 14.1 12.0 13.9 12.1 12.2

m = n = 50

Setting 1 48.8 48.2 36.5 37.3 37.7 37.4

Setting 2 43.6 44.7 33.3 33.4 34.7 34.8

Setting 3 48.8 50.1 38.1 38.6 40.0 39.8

Setting 4 37.6 37.3 31.3 32.5 33.2 33.3

m = n = 100

Setting 1 75.2 75.0 61.6 62.0 62.2 62.6

Setting 2 74.3 75.2 60.2 61.2 61.1 61.0

Setting 3 77.4 78.8 60.8 61.5 61.8 62.0

Setting 4 71.0 66.7 58.2 54.2 59.6 59.5

The highest power per setting is indicated in bold.
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TABLE 3 | Empirical power from the simulation study with the indicators having an overall reliability of 80% and a non-linear relationship with the latent variable.

Non-linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

N (0, 1)

m = n = 15

Setting 1 29.7 30.3 32.2 31.4 31.8 31.0

Setting 2 28.1 29.0 29.3 30.3 28.7 28.6

Setting 3 28.1 28.4 30.6 31.4 30.8 29.8

Setting 4 23.7 25.5 25.7 26.2 29.1 27.0

m = n = 50

Setting 1 78.0 78.8 79.0 79.8 80.7 80.6

Setting 2 77.7 77.7 79.4 79.4 80.6 81.2

Setting 3 78.9 78.5 79.8 80.6 81.2 81.3

Setting 4 73.5 70.9 76.1 73.6 78.8 79.1

m = n = 100

Setting 1 97.6 97.7 98.2 98.2 98.3 98.2

Setting 2 97.6 97.5 97.9 97.9 98.0 98.0

Setting 3 97.3 96.9 98.0 97.8 98.0 98.0

Setting 4 96.3 94.8 97.1 95.4 97.6 97.6

t5

m = n = 15

Setting 1 23.3 23.1 23.6 24.0 24.1 23.2

Setting 2 23.0 23.4 23.4 24.1 22.8 23.2

Setting 3 23.5 23.9 23.8 24.2 24.0 23.9

Setting 4 22.2 22.7 21.8 23.3 22.4 22.7

m = n = 50

Setting 1 65.4 65.8 60.8 61.1 62.2 62.1

Setting 2 68.5 69.2 63.6 63.3 64.8 64.9

Setting 3 66.5 67.1 62.9 62.9 64.5 65.1

Setting 4 62.9 57.5 58.5 55.2 61.4 61.1

m = n = 100

Setting 1 92.2 92.1 88.9 88.7 89.3 89.5

Setting 2 91.6 91.3 88.8 88.7 89.3 89.5

Setting 3 93.0 93.2 90.6 90.9 90.8 90.9

Setting 4 90.4 86.7 87.5 84.6 88.9 88.8

Non-linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

Laplace (0, 1.25)

m = n = 15

Setting 1 21.1 22.3 19.5 20.2 20.2 19.7

Setting 2 22.9 22.4 22.2 21.8 20.9 21.8

Setting 3 22.5 22.7 21.2 20.5 20.4 21.4

Setting 4 19.3 20.2 18.0 19.9 21.0 20.2

m = n = 50

Setting 1 61.6 62.9 53.9 55.1 55.9 55.4

Setting 2 62.1 63.5 55.4 55.8 56.3 56.8

Setting 3 64.4 65.4 55.6 55.4 57.4 57.9

Setting 4 59.8 56.2 54.4 50.1 57.0 56.9

m = n = 100

Setting 1 92.0 92.6 85.6 85.5 86.1 85.8

Setting 2 88.3 89.0 80.6 80.2 81.2 81.2

Setting 3 91.1 91.7 85.2 85.7 86.1 86.1

Setting 4 86.1 81.9 80.7 75.9 81.9 81.8

Exp

m = n = 15

Setting 1 25.0 25.9 23.6 23.3 23.7 24.2

Setting 2 23.1 22.5 21.2 21.5 22.1 23.2

Setting 3 22.4 22.2 20.9 21.2 21.4 21.6

Setting 4 19.4 18.8 18.7 18.7 18.2 18.5

m = n = 50

Setting 1 67.9 67.9 58.3 57.1 60.8 59.7

Setting 2 63.7 64.6 54.5 54.0 56.8 56.9

Setting 3 69.6 70.4 60.6 59.1 62.3 61.7

Setting 4 58.7 55.9 49.7 49.0 54.8 54.6

m = n = 100

Setting 1 91.8 91.7 84.7 84.1 85.4 85.7

Setting 2 89.5 89.5 82.6 82.5 83.2 84.1

Setting 3 92.8 92.7 86.8 85.5 87.1 87.0

Setting 4 90.5 85.3 81.6 79.4 84.6 84.5

The highest power per setting is indicated in bold.
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TABLE 4 | Empirical power from the simulation study with the indicators having an overall reliability of 60% and a non-linear relationship with the latent variable.

Non-linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

N (0, 1)

m = n = 15

Setting 1 24.6 25.6 27.7 28.3 27.5 28.0

Setting 2 22.6 24.6 25.1 26.7 24.6 24.2

Setting 3 24.0 26.3 26.8 28.3 26.6 25.9

Setting 4 21.2 21.6 23.1 23.2 23.3 23.2

m = n = 50

Setting 1 71.6 72.4 73.2 74.0 75.2 75.3

Setting 2 71.6 71.8 74.3 74.0 75.4 75.5

Setting 3 73.4 73.3 74.7 75.4 76.2 76.1

Setting 4 65.8 64.9 68.9 66.8 72.2 72.3

m = n = 100

Setting 1 95.4 95.8 96.5 96.6 96.9 96.8

Setting 2 94.9 95.0 96.1 96.0 96.1 96.2

Setting 3 94.9 94.6 95.5 95.6 95.7 95.8

Setting 4 92.6 91.5 94.0 92.2 94.6 94.7

t5

m = n = 15

Setting 1 19.2 19.2 20.4 21.2 19.0 18.8

Setting 2 18.6 19.1 18.2 19.0 18.6 19.3

Setting 3 20.3 20.5 21.1 21.1 20.3 20.8

Setting 4 19.5 20.2 19.7 20.6 17.8 17.7

m = n = 50

Setting 1 56.6 56.6 55.9 56.1 56.6 56.9

Setting 2 60.0 61.3 57.1 57.3 57.7 57.8

Setting 3 60.6 60.2 57.8 58.3 58.9 59.2

Setting 4 51.9 50.8 51.0 49.2 52.0 52.9

m = n = 100

Setting 1 87.4 87.7 84.2 84.8 84.6 84.4

Setting 2 85.2 85.9 83.6 84.4 84.0 84.4

Setting 3 88.4 88.9 86.3 86.8 86.8 87.2

Setting 4 84.2 81.9 81.4 80.0 81.9 82.1

Non-linear

WMW–max rel WMW–mean t-test–max rel t-test–mean SEM SEM–corrected

Laplace (0, 1.25)

m = n = 15

Setting 1 16.8 19.0 16.5 17.7 16.9 16.8

Setting 2 18.2 19.2 18.5 19.0 17.6 17.2

Setting 3 17.6 18.5 18.6 19.3 18.3 17.4

Setting 4 15.6 17.4 15.8 17.3 17.2 17.4

m = n = 50

Setting 1 50.9 52.2 48.4 49.3 49.4 49.3

Setting 2 52.8 54.9 49.8 51.1 51.2 51.8

Setting 3 56.0 56.5 49.0 49.3 51.2 51.8

Setting 4 49.5 49.6 46.8 46.5 50.0 49.5

m = n = 100

Setting 1 85.1 85.8 80.6 80.2 81.0 81.1

Setting 2 81.0 81.6 74.1 74.9 74.8 75.0

Setting 3 85.8 86.1 81.3 81.2 81.4 81.4

Setting 4 78.1 74.7 72.7 70.5 74.2 74.2

Exp

m = n = 15

Setting 1 19.1 21.4 19.0 20.1 18.7 19.1

Setting 2 18.7 19.1 18.1 19.4 18.3 19.1

Setting 3 17.9 19.0 17.5 18.6 17.2 17.9

Setting 4 14.8 16.8 15.9 16.5 13.7 14.1

m = n = 50

Setting 1 58.0 58.5 51.2 52.3 53.3 53.1

Setting 2 52.9 54.5 46.9 49.3 48.6 49.2

Setting 3 58.3 59.0 51.7 53.2 54.1 53.1

Setting 4 46.2 47.7 43.0 44.0 44.5 44.4

m = n = 100

Setting 1 83.8 84.6 78.0 78.4 78.7 78.8

Setting 2 83.0 84.1 77.0 77.7 77.5 77.8

Setting 3 85.5 86.5 79.6 80.3 80.3 80.0

Setting 4 80.0 78.4 74.8 74.6 76.6 75.8

The highest power per setting is indicated in bold.
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FIGURE 3 | Figures A–C depict the pairwise scatterplots of the three questionnaires (i.e. PHQ-9, CESD-10 and PROMIS-D-8) that are the indicators for the latent

variable depression. The scatterplots reveal deviations from linearity for the scatterplots depicting the PROMIS-D-8.

comparison with WMW–mean. However, it should be noted
that when the reliability of indicators is equal to one another
and/or the sample size is small (i.e. m = n = 15), a small
reduction in empirical power forWMW–max rel in comparison
with WMW–mean is observed. Hence, estimating the weights
in order to optimize the estimated reliability of the aggregated
indicator only has an added value when the data requires
such adaptation.

Comparing the methods SEM and SEM–correction, the
results with respect to the empirical power show no remarkable
differences. Hence, the results suggest that the added value
of robust Satorra-Bentler standard errors is limited in our
simulation setup.

The lower the reliability of all three indicators, the lower
the power, and this is true for all settings and all methods.
To guard the readability of the tables, the point estimates and
standard errors are not listed, but based on these results, the
reason of the decrease in power is perhaps different between
the WMW methods and SEM methods. For SEM and SEM–

correction, it seems that there is barely an effect on the
precision of the estimation but an increased empirical standard
error is observed, hence influencing the power. Contrary, for
WMW–max rel andWMW–mean, the empirical standard error
remains relatively stable over the different levels of reliability,
but the estimation is less accurate and hence influencing
the power.

Overall, the simulation results suggest that the attractive
properties of the original WMW method as discussed in the
introduction are preserved in the context of latent variables.
The extended WMW method is thus robust against outliers,
relevant for skewed data and has a superior power in skewed
distributions.

4. ILLUSTRATION

We now reconsider the example of the introduction, where
we want to examine the association between employment and
depression in 455 patients with multiple sclerosis (MS).

Figure 3 shows the pairwise scatterplots of the three
depression questionnaires. The relation between PROMIS-D-
8 and the other two indicators seems non-linear. This is
in accordance with Amtmann et al. (2014), who argue that
this questionnaire is subject to floor effects. Taking into
account the characteristics of the data, i.e. the skewness
depicted in Figure 1 and the observed non-linearity in
Figure 3, the proposed extension of the WMW method is an
appropriate analysis.

Visual inspection via Q–Q plots (see Figure 1 in
Supplementary Data Sheet 2) shows that the assumption
of location shift for the indicators is reasonably met. For the sake
of completeness, the data are analyzed with the six estimation
methods mentioned in the simulation study (Section 3):WMW–

max rel, WMW–mean, t-test–max rel, t-test– mean, SEM and
SEM–correction. In order to compare two groups by using our
proposed WMW extension or via SEM, model comparison tests
indicate that measurement invariance across the two groups is
established. After performing a data-driven model evaluation,
a residual covariance between CESD-10 and PROMIS-D-8 is
added for both groups in order to further enhance the fit of
the model when using SEM. Table 5 lists the p-values of all six
methods and almost all methods lead to the conclusion that
there is a significant difference in levels of depression between
employed and unemployed people living with MS. Inference
based on t-test–max rel is only marginally significant at the 5%
significance level.
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TABLE 5 | Effect sizes and inference based on the extended WMW methods,

default and corrected SEM and the adapted t-tests when comparing the latent

outcome variable depression between employed and unemployed patients

with MS.

Probabilistic index p-value

P(Depresunemployed > Depresemployed )

WMW–max rel 56.48% 0.021

WMW–mean 56.92% 0.014

Mean difference p-value

unemployed - employed

t-test–max rel 1.14 0.055

t-test–mean 0.19 0.034

SEM 1.444 0.0031

SEM–correction 1.444 0.0033

The interpretation of this difference does vary according to
the used method. All parametric methods, i.e. the methods
based on SEM and the t-test, give an estimation of the mean
difference between the two groups where the employed patients
are the reference group. Hence, a positive difference indicates
that the unemployed patients have on average a higher score.
Both SEM and SEM–correction give an estimated difference
in latent means for depression of 1.444. Analyses based on
the t-test with a weighted sum or mean of the standardized
indicators result in a difference of 1.14 and 0.19, respectively.
Given that these modified t-tests do not take a measurement
model into account, in contrast with SEM, its effect size merely
reflects a difference in an overall outcome that aims to measure
depression. Nevertheless, both analyses indicate that the group of
unemployed patients score on average higher for depression than
the group of employed patients.

For the extended WMW methods, the interpretation of the
effect sizes is slightly different. Here, the effect size represents
the probability that an unemployed patient has a higher score
for depression than an employed patient. These probabilities
are 56.48 and 56.92% for respectively WMW–max rel and
WMW–mean. Consequently, patients who are unemployed
have a significantly higher probability (around 56%) to have
higher depression scores than patients that do have a job.
The results thus show that the conclusion in this specific
context for all methods points in the same direction. The
R code for all analysis and figures is made available in the
Supplementary Material.

5. DISCUSSION

In this paper, we proposed an extension of the Wilcoxon–Mann–
Whitney test in the context of latent variables with a main focus
on hypothesis testing. We introduced two strategies: one where
the mean of the standardized indicators is used and one where a
maximally reliable composite is created to form the input of the
WMW test. The statistical properties of these proposed testing
procedures were examined and compared with the performance

of SEMs and two adapted t-tests in a simulation study. By
comparing the two proposed strategies to each other in this
simulation study, the costs and benefits of this maximization
procedure were explored.

Even though SEM is omnipresent in the context of analyzing
latent variables, we believe that a valuable alternative is provided
in this paper. Concerning measurement model (1), the difference
with the classical theory in SEM is the amount of knowledge
that is required concerning the function hp(·). Typically, hp(·)
is assumed to be linear and is estimated during the analysis. In
our proposed methodology where the mean of the standardized
indicators is used, we relax this requirement since we only
assume monotonicity and we do not need to estimate hp(·) as
this is not our main interest. Some flexibility has thus been
introduced in comparison with the traditional FA and SEM.
Additionally, the variances of the measurement error do not need
to be estimated in this strategy. For the theoretical validation
of our methodology, we do need to impose the assumption
of equal distributions for the measurement error per indicator
across two groups. However, the simulation results suggest that
violations have no detrimental consequences with respect to both
the empirical Type I error rate and the power.

When a maximally reliable composite is used, i.e. the second
strategy of the extended WMW test, the variance of the
measurement error needs to be estimated in order to obtain
the weights for this aggregated indicator. In the proposed
formulas for the estimation of the variance, linearity among
the indicators was imposed. Also here, deviations from this
linearity assumption did not lead to problems with respect
to hypothesis testing in our simulation study as long as the
function hp(·) is monotone. It may be clear that the use of a
maximally reliable composite requires additional assumptions
in comparison with the use of a simple mean, but based on
our simulation study, these assumptions seem to be flexible
in practice.

Using an aggregated indicator based on the data-driven
maximization procedure entails an improvement compared
with the use of an unweighted mean when the reliability of
the indicators differs. These results confirm the theoretical
expectation that fine-tuning the weights in line with the reliability
of each indicator separately can result in an increase in
empirical power. However, one should not needlessly use this
maximization procedure as it can result in a small loss of power
when e.g. the reliability of indicators is equal to one another
and/or the sample size is small (i.e.m = n = 15).

Most interestingly for this paper is that the results show
that the attractive properties of the original WMW method are
transferred to the context of latent variables. The results confirm
that the procedures based on theWMW test have superior power
when the distribution is heavily tailed. This is a pattern that is
also observed when simulating data in the context of observed
outcome variables, as mentioned by Van der Vaart (2000) and
Hollander et al. (2013).

A possible limitation for the user might be the effect size of
the extendedWMW test. Where SEM provides an estimate of the
difference between two groups on the scale of the latent variable
which can be standardized, the effect size of our proposed
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method is a probabilistic index. On the other hand, from a
theoretical point of view, this latter effect size has attractive
properties. A probabilistic index is scale invariant and robust
to outliers.

A second limitation of this study is the sole focus on
hypothesis testing. It is known that using the standardWilcoxon–
Mann–Whitney test in the context of measurement error leads to
an underestimation of the true effect size (Coffin and Sukhatme,
1996, 1997; Faraggi, 2000; Schisterman et al., 2001; Tosteson
et al., 2005; Fuller, 2009). In future research, adaptations to
the proposed methodology can be studied to enhance the point
estimation. Other possible directions for research are extensions
for paired groups, multiple group comparison or comparing
groups over time.

A third limitation of the suggested methodology is that
it is inherently impossible to model the monotonic relation
between the indicator and the latent variable, in contrast to SEM.
The methodology presented in this paper extends the standard
Wilcoxon–Mann–Whitney method and hence only uses the rank
of the data. Closely related is the remark that the extended
WMW test can only be applied after measurement invariance is
determined by using SEM. The additional use of the extended
WMW test is especially justified when the distribution is heavily
tailed in order to profit from the attractive properties of the
extended WMW test as discussed earlier.

To conclude, this paper validated the use of the WMW
method in the context of latent variables by implementing
some small adaptations, i.e. the creation of an aggregated
indicator. The use of existing concepts not only facilitates
the practical implementation for researchers and practitioners,
the advantages of the original WMW method are also
carried over into the new context. We believe that the
combination of flexibility in the measurement model, the
ability to allocate weights reflecting the reliability of indicators
and the superiority in heavily tailed distributions results in a
valuable methodology.
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