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INTRODUCTION

Consider randomly sampling variables from an infinite population1 and computing their
normalized-sum, which is the difference between the average of the variables and the mean of the
population multiplied by the square-root of the sample size. The Central-limit Theorem (CLT)
assures us that this normalized-sum asymptotically follows a normal distribution when the sample
size goes to positive infinity and when the population is with a finite non-zero variance (Dekking
et al., 2005; Kwak and Kim, 2017; see also Cuadras, 2002).

Many statistical and analytical methods (e.g., t-test, linear-regression, and ANOVA) used in
empirical Psychology studies are formulated on the basis of the CLT and some other assumptions
(Lumley et al., 2002; Nikulin, 2011; Wijsman, 2011; Kim and Park, 2019). Note that the CLT
assumes that the sample size goes to positive infinity but that the sample size is always finite in a real
experiment. With the finite sample size, the average approximately follows the normal distribution
when the sample size is sufficiently large but the “sufficiently-large” sample size depends on the
shape of the distribution of the population (e.g., heavy tails, see Cuadras, 2002;Wilcox, 2012), so, the
population should be close to a normal distribution especially when the sample size is small. Even
if the distribution of the average of the finite samples is approximately-normal, a discrepancy of
this distribution from the normal distribution can substantially affect the results of one’s statistical
and analytical methods (Wilcox, 2012). Note also that some other statistical and analytical methods
assume that the population itself is normally distributed, e.g., some Bayesian models.

In many Psychology studies, the population represents a group of people2 and the samples
represent individual participants sampled from the group and they are often the averages of the
responses of the individual participants. Namely, the sampling procedure used in these studies is
conducted in 2 steps: (i) it samples the participants in the group and (ii) it samples the responses
of each participant. It is often believed that the population, itself, can be regarded as approximately
following a normal distribution based on the CLT (Bower, 2003; Miles and Banyard, 2007; Sotos
et al., 2007). The population in these studies are actually a distribution of the “averages,” which is
the sum of the normalized-sum divided by the square-root of the sample size and the population
mean, but these averages were computed from the responses of individual participants and this fact
violates conditions in the CLT.

In this study, I describe how the conditions in the CLT are usually not satisfied in empirical
Psychological studies by comparing the formulation of the CLT with a common experimental

1This study, for the sake of simplicity, only the case in which the population was infinite was considered.
2This group is assumed to be sufficiently large for its population to be regarded as being infinite. Otherwise, the population

is finite and the participants from the group can be regarded as samples from the finite population without replacement. The

CLT cannot be applied under this condition (Plane and Gordon, 1982). This happens when a study is about a small group of

people, e.g., patients with a rare disease.
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procedure used in empirical Psychological studies. This explains
why the CLT cannot assure that the population follows a normal
distribution no matter how large the sample size is in these
studies. This applies regardless of the number of participants or
the number of trials run by each participant.

THE CLT AND A PROCEDURE COMMONLY
USED IN EMPIRICAL PSYCHOLOGICAL
STUDIES

In Psychology, one specific type of the CLT is described in almost
all of the Statistics textbooks and this type is referred to as
the classical CLT. Consider that an arbitrary distribution with
a finite non-zero variance is given, and that random variables
(x11, x12, . . . , x1n) are sampled from this distribution for n

times, and their normalized-sum x̄1· (the difference between the
average and the population mean multiplied by

√
n) is computed

(Figure 1A). This session is repeated for m times. This sampling
is independent and the sampled variables do not depend on

one another. Once this is done, the normalized-sums (x̄1·, x̄2·,

. . . , x̄m·) from the m sessions can be asymptotically regarded as
variables sampled from a normal distribution when n goes to
infinity.3

Now, consider a procedure commonly used in empirical
Psychological studies. Some dependent variable is measured
in multiple trials and an average of the measured variable
is computed for each participant (Figure 1C). These
averages were collected from multiple participants.
Note that the distribution of the dependent variable is
different across the participants because of their individual
differences (Williams, 1912). These distributions are
also different from the distribution of the population
of the participants. These facts violate the conditions
of the identically-distributed random variables for the
classical CLT.

A case in which variables are sampled from multiple
distributions is discussed in the Lyapunov/Lindberg CLT
(Billingsley, 1995; Petters and Dong, 2016). Consider that n
arbitrary distributions (f1, f2, . . . , fn) with finite non-zero
variances are given and that a single random variable x̄1i is
independently sampled from each distribution fi (i = 1, 2, . . . ,

n), and the normalized-sum x̄1· of the n sampled variables
(x11, x12, . . . , x1n) is computed (Figure 1B). This session is
repeated m times. These distributions can be different from
one another. This sampling is independent and the sampled
variables do not depend on one another. Once this is done,

the normalized-sums (x̄1·, x̄2·, . . . , x̄m·) from the m sessions
can be asymptotically regarded as variables sampled from a
normal distribution when n goes to infinity and when the
distributions f1, f2, . . . , and fn satisfy Lindberg’s condition about

3The asymptotic normality of the classical CLT, of the Lyapunov/Lindberg CLT,

and of the two modified procedures proposed in this study are simulated

computationally (https://osf.io/kn8mh/).

their variances:
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where ε is a free parameter, xi is a random variable from
the distribution fi, E(x) is an operator computing an expected
value of a random variable x, µi = E(xi) is the mean
of fi, and E

(

(xi − µi)
2
)

is the variance σi
2 of fi. The

parameter ε is an arbitrary non-zero positive number and it
is fixed during the limit n → ∞. Lindberg’s condition is a
sufficient condition for the Lyapunov/Lindberg CLT. Lindberg’s
condition implies that the individual variances σ1

2, σ2
2, . . . ,

and σn
2 of the distributions f1, f2, . . . , and fn become

negligibly small when they are compared with the sum of
these variances σ

6
2 as n → ∞ (Petters and Dong, 2016).

Note that Lindberg’s condition cannot be strictly satisfied
in a real experiment because n is finite, but the condition
can be brought closer to being satisfied when none of the
variances σ1

2, σ2
2, . . . , and σn

2 is very much larger than the
other variances.

The Lyapunov/Lindberg CLT also does not validate the
assumption of normality using a procedure commonly
used in empirical Psychological studies. Recall that some
dependent variable is measured in multiple trials and
an average of the measured variable is computed for
each participant in the common procedure (Figure 1C).
There are the participants’ individual differences and the
distribution of the dependent variable is different across
the participants. Namely, the averages are computed within
the individual distributions of the participants in the
common Psychological procedure. But note that, according
to the Lyapunov/Lindberg CLT, the averages should be
computed across the distributions (Figure 1B). The common
Psychological procedure does not follow the procedure of the
Lyapunov/Lindberg CLT.

Note that the common procedure used in empirical
Psychological studies can be modified so that the conditions of
the classical or Lyapunov/Lindberg CLT are better satisfied (see
Hoefding, 1951; Hájek, 1961). Some dependent variable
is measured in multiple trials and an average of this
measured variable is computed for each participant in
the common procedure. Let xji be the measured variable
in the j-th trial of the i-th participant. The average of
the measured variables of this participant is computed as

x̄·i = t−1
∑

j xji where t is the number of trials. Once this

is done, the averages from the n participants were randomly
categorized into s sets that have an equal number (n/s)
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FIGURE 1 | (A) A procedure for sampling data for the classical CLT. In a session for the classical CLT, a fixed number of variables are sampled from a single arbitrary

distribution and the normalized-sum of the n sampled variables is computed. (B) A procedure for sampling data for the Lyapunov/Lindberg CLT. In a session for the

Lyapunov/Lindberg CLT, a single variable is sampled from each of n arbitrary distributions and the normalized-sum of the n sampled variables is computed. (C) A

procedure commonly used for sampling data in empirical Psychological studies. Individual participants can be represented by distributions f1, f2, …, fn. A fixed

number of variables are sampled and the normalized-sum of the sampled variables is computed for each distribution (Note that the distributions in this figure are

clearly non-normal. This violation of the assumption of normality has been exaggerated in this figure to enhance the clarity of its explanation).

of the averages, and the averages within each group are
also averaged:

¯̄xk =
s

n

∑

x·i∈Sk

x·i

where s is one of divisors of n and Sk (k = 1, 2, . . . , s)
is the j-th set of the averages. If the number n/s of the
participants in each set is sufficiently large, this modified
procedure better satisfies the conditions of the classical CLT
than the common procedure used in empirical Psychological
studies (see https://osf.io/kn8mh/ for a computer simulation of
this modified procedure).

For the Lyapunov/Lindberg CLT, an average of the measured
variables (xji in the j-th trial of the i-th participant) is computed
across the participants for each order number of the trials:

x̄j· =
1

n

n
∑

i=1

xji

This modified procedure better satisfies the conditions of the
Lyapunov/Lindberg CLT than the common procedure used
in empirical Psychological studies when the number of the
participants n is sufficiently large, and when Lindberg’s condition
is satisfied (see https://osf.io/kn8mh/ for a computer simulation
of this modified procedure).

DISCUSSION

This study explained how conditions in the central-limit theorem
(CLT) are usually not satisfied in empirical Psychological studies.
The population usually represents a group of people in these
studies and when it does, the CLT cannot assure one that
that the population follows a normal distribution no matter
how large the sample size is. The study also discussed two
possible modifications of a procedure commonly employed

in the studies to better satisfy the conditions of the CLT
(see https://osf.io/kn8mh/ for computer simulations of these
modified procedures).

Some commonly used parametric statistical tests, such as
the t-test and the ANOVA (see also Tan and Tabatabai, 1985;
Fan and Hancock, 2012; Cavus et al., 2017 for the robust-
ANOVA) are robust to some extent against some types of non-
normality of the population (see Lumley et al., 2002 for a
review) but not against some other types of non-normality, e.g.,
heavy tails and outliers (Cressie and Whitford, 1986; Wilcox,
2012). Note that there are some non-parametric statistical tests
that do not use a normality assumption for the population
but these non-parametric tests are not universally more robust
than the parametric tests. These non-parametric tests use some
other assumptions about the data, such as equal variance, just
as the parametric tests do. These non-parametric tests can be
affected more subtlety than the parametric tests when these
assumptions are violated (e.g., Fagerland, 2012, see also Algina
et al., 1994).

The assumption of normality is also used in Bayesian statistics.
The Bayesian alternatives used in conventional statistical tests
often use Bayes factors (BFs) instead of the p-values used in
the conventional tests. These BFs correlate well with the p-
values (Rouder et al., 2012; Johnson, 2013; see also Francis,
2017), so the BFs can be robust to some extent just as the p-
values are when the normality assumption is violated. There
are studies that use Bayesian statistical models to explain their
results. These models are composed of multiple parts with
independent probability distributions. These distributions are
often assumed to be normal. The validity of this assumption
is difficult to test especially when their parts represent some
variables that are not directly observable. The robustness of
these models against the violation of the normality assumption
should depend on the structures of the models but their
structures are different from one another, so the effect of their
model structure and the robustness of the model need to be
studied systematically.
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The assumption of normality is fundamental in many
statistical analyses that are used in empirical Psychological
studies but this assumption is rarely assured by the CLT. The
conventional statistical analyses should be regarded as being, at
best, descriptive. Experimental Psychologists should check their
row data and should discuss “effects” only if the effects are clear
in their data. If they want to make inferences based on the results
of statistical analyses, more modern statistical methods should
be considered: e.g., Robust statistics (Tan and Tabatabai, 1985;
Huber and Ronchetti, 2009; Fan and Hancock, 2012; Wilcox,
2012; Cavus et al., 2017).

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

ACKNOWLEDGMENTS

The author thanks Drs. Gregory Francis, Lorick Huang, and
Zygmunt Pizlo for helpful comments and suggestions. The
author thanks Drs. Jimmy Aames and Kazuhiro Yamaguchi for
suggesting relevant literatures.

REFERENCES

Algina, J., Oshima, T. C., and Lin, W. Y. (1994). Type I error rates for Welch’s

test and James’s second-order test under nonnormality and inequality of

variance when there are two groups. J. Educ. Stat. 19, 275–291. doi: 10.3102/

10769986019003275

Billingsley, P. (1995). Probability and Measure, 3rd Edn. New York, NY: Wiley.

Bower, K. M. (2003). “Somemisconceptions about the normal distribution,” in The

Six Sigma Forum. Milwaukee, WI: American Society for Quality.

Cavus, M., Yazici, B., and Sezer, A. (2017). Modified tests for comparison of

group means under heteroskedasticity and non-normality caused by outlier (s).

Hacettepe J. Math. Stat. 46, 493–510. doi: 10.15672/HJMS.2017.417

Cressie, N. A. C., and Whitford, H. J. (1986). How to use the two sample t-test.

Biom. J. 28, 131–148. doi: 10.1002/bimj.4710280202

Cuadras, C. M. (2002). Geometrical understanding of the Cauchy distribution.

Qüest. Quader. d’Estadíst. Invest. Operat. 26, 283–287.

Dekking, F. M., Kraaikamp, C., Lopuha,ä, H. P., and Meester, L. E. (2005). A

Modern Introduction to Probability and Statistics: UnderstandingWhy andHow.

London: Springer-Verlag. doi: 10.1007/1-84628-168-7

Fagerland, M. W. (2012). t-tests, non-parametric tests, and large studies—a

paradox of statistical practice? BMC Med. Res. Methodol. 12:78. doi: 10.1186/

1471-2288-12-78

Fan, W., and Hancock, G. R. (2012). Robust mean modelling: An alternative

for hypothesis testing of independent means under variance heterogeneity

and nonnormality, J. Educ. Behav. Stat. 37, 137–156. doi: 10.3102/

1076998610396897

Francis, G. (2017). Equivalent statistics and data interpretation. Behav. Res.

Methods 49, 1524–1538. doi: 10.3758/s13428-016-0812-3

Hájek, J. (1961). Some extensions of the wald–wolfowitz–noether theorem. Ann.

Math. Stat. 32, 506–523. doi: 10.1214/aoms/1177705057

Hoefding, W. (1951). A combinatorial central limit theorem. Ann. Math. Stat. 22,

558–566. doi: 10.1214/aoms/1177729545

Huber, P. J., and Ronchetti, E. (2009). Robust Statistics, 2nd Edn. NJ: Wiley.

doi: 10.1002/9780470434697

Johnson, V. E. (2013). Revised standards for statistical evidence. Proc. Nat. Acad.

Sci. U.S.A. 110, 19313–19317. doi: 10.1073/pnas.1313476110

Kim, T. K., and Park, J. H. (2019). More about the basic assumptions of t-

test: normality and sample size. Kor. J. Anesth. 72, 331–335. doi: 10.4097/

kja.d.18.00292

Kwak, S. G., and Kim, J. H. (2017). Central limit theorem: the cornerstone

of modern statistics. Kor. J. Anesth. 70, 144–156. doi: 10.4097/kjae.2017.70.

2.144

Lumley, T., Diehr, P., Emerson, S., and Chen, L. (2002). The importance of the

normality assumption in large public health data sets. Annu. Rev. Public Health

23, 151–169. doi: 10.1146/annurev.publhealth.23.100901.140546

Miles, J., and Banyard, P. (2007). Understanding and Using Statistics in Psychology.

London: Sage.

Nikulin, M. S. (2011). “Student test,” in Encyclopedia of Mathematics. Available

online at: http://encyclopediaofmath.org/index.php?title=Student_test&oldid=

17068

Petters, A. O., and Dong, X. (2016). An Introduction to Mathematical FinanceWith

Applications. New York, NY: Springer. doi: 10.1007/978-1-4939-3783-7

Plane, D. R., and Gordon, K. R. (1982). A simple proof of the nonapplicability

of the central limit theorem to finite populations. Am. Stat. 36, 175–176.

doi: 10.1080/00031305.1982.10482823

Rouder, J. N., Morey, R. D., Speckman, P. L., and Province, J. M. (2012).

Default bayes factors for ANOVA designs. J. Math. Psychol. 56, 356–374.

doi: 10.1016/j.jmp.2012.08.001

Sotos, A. E. C., Vanhoof, S., Van den Noortgate, W., and Onghena, P. (2007).

Students’ misconceptions of statistical inference: a review of the empirical

evidence from research on statistics education. Educ. Res. Rev. 2, 98–113.

doi: 10.1016/j.edurev.2007.04.001

Tan, W. Y., and Tabatabai, M. A. (1985). Some robust ANOVA procedures

under heteroscedasticity and nonnormality. Commun. Stat. Simul. Comput. 14,

1007–1026. doi: 10.1080/03610918508812486

Wijsman, R. A. (2011). “ANOVA,” in Encyclopedia ofMathematics. Available online

at: http://encyclopediaofmath.org/index.php?title=ANOVA&oldid=14171

Wilcox, R. R. (2012). Introduction to Robust Estimation and Hypothesis

Testing, 3rd Edn. Waltham, MA: Academic Press. doi: 10.1016/

B978-0-12-386983-8.00010-X

Williams, R. D. (1912). An investigation of the personal equation and reaction

time. Publ. Pomona College Astron. Soc. 1:5.

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Sawada. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 4 November 2021 | Volume 12 | Article 762418

https://doi.org/10.3102/10769986019003275
https://doi.org/10.15672/HJMS.2017.417
https://doi.org/10.1002/bimj.4710280202
https://doi.org/10.1007/1-84628-168-7
https://doi.org/10.1186/1471-2288-12-78
https://doi.org/10.3102/1076998610396897
https://doi.org/10.3758/s13428-016-0812-3
https://doi.org/10.1214/aoms/1177705057
https://doi.org/10.1214/aoms/1177729545
https://doi.org/10.1002/9780470434697
https://doi.org/10.1073/pnas.1313476110
https://doi.org/10.4097/kja.d.18.00292
https://doi.org/10.4097/kjae.2017.70.2.144
https://doi.org/10.1146/annurev.publhealth.23.100901.140546
http://encyclopediaofmath.org/index.php?title=Student_test&oldid=17068
http://encyclopediaofmath.org/index.php?title=Student_test&oldid=17068
https://doi.org/10.1007/978-1-4939-3783-7
https://doi.org/10.1080/00031305.1982.10482823
https://doi.org/10.1016/j.jmp.2012.08.001
https://doi.org/10.1016/j.edurev.2007.04.001
https://doi.org/10.1080/03610918508812486
http://encyclopediaofmath.org/index.php?title=ANOVA&oldid=14171
https://doi.org/10.1016/B978-0-12-386983-8.00010-X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Conditions of the Central-Limit Theorem Are Rarely Satisfied in Empirical Psychological Studies
	Introduction
	The CLT and a Procedure Commonly Used in Empirical Psychological Studies
	Discussion
	Author Contributions
	Acknowledgments
	References


