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The impact of multiple
representations on students’
understanding of vector field
concepts: Implementation of
simulations and sketching
activities into lecture-based
recitations in undergraduate
physics

Larissa Hahn* and Pascal Klein

Physics Education Research, Faculty of Physics, University of Göttingen, Göttingen, Germany

Multiple external representations (e.g., diagrams, equations) and their

interpretations play a central role in science and science learning as research

has shown that they can substantially facilitate the learning and understanding

of science concepts. Therefore, multiple and particularly visual representations

are a core element of university physics. In electrodynamics, which students

encounter already at the beginning of their studies, vector fields are a central

representation typically used in two forms: the algebraic representation as

a formula and the visual representation depicted by a vector field diagram.

While the former is valuable for quantitative calculations, vector field diagrams

are beneficial for showing many properties of a field at a glance. However,

benefiting from the mutual complementarity of both representations requires

representational competencies aiming at referring di�erent representations

to each other. Yet, previous study results revealed several student problems

particularly regarding the conceptual understanding of vector calculus

concepts. Against this background, we have developed research-based,

multi-representational learning tasks that focus on the visual interpretation

of vector field diagrams aiming at enhancing a broad, mathematical as

well as conceptual, understanding of vector calculus concepts. Following

current trends in education research and considering cognitive psychology,

the tasks incorporate sketching activities and interactive (computer-based)

simulations to enhance multi-representational learning. In this article, we

assess the impact of the learning tasks in a field study by implementing them

into lecture-based recitations in a first-year electrodynamics course at the

University of Göttingen. For this, a within- and between-subjects design is

used comparing a multi-representational intervention group and a control

group working on traditional calculation-based tasks. To analyze the impact
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of multiple representations, students’ performance in a vector calculus test

as well as their perceived cognitive load during task processing is compared

between the groups. Moreover, analyses o�er guidance for further design of

multi-representational learning tasks in field-related physics topics.

KEYWORDS

multiple representations, simulation, conceptual understanding, vector fields,

physics, sketching, task-based learning, lecture-based recitations

1. Introduction

Mathematics and physics concepts are often represented in

some form of external representation (De Cock, 2012). Thereby,

different forms of representation, multiple representations

(MRs), allow to express a concept or a (learning) subject

in various manners by focusing on different properties and

characteristics. In complementing and constraining each other,

multiple representations enable a deep understanding of a

situation or a construct (Ainsworth, 1999; Seufert, 2003) and,

moreover, using multiple representations was found to have

positive effects on knowledge acquisition and problem-solving

skills (e.g., Nieminen et al., 2012; Rau, 2017). Regarding the

understanding and communication of science concepts, visual

representations are particularly crucial (Cook, 2006). Following

previous research, they can help to eliminate science concepts’

abstract nature and were shown to support students to develop

scientific conceptions (e.g., Cook, 2006; Chiu and Linn, 2014;

Suyatna et al., 2017). However, to benefit from multimedia

learning environments, representational competencies based

on an understanding of how individual representations depict

information, how they relate to each other, and how to choose

an appropriate representation to solve a problem are required

(DeFT framework; Ainsworth, 2006). Without representational

competencies, visual representations cannot fully unfold their

potential as meaning-making tools.

Additionally, learning with and mentally processing visual

representations often places special demands on the visuo-

spatial working memory, thus increasing cognitive load

(Baddeley, 1986; Cook, 2006; Logie, 2014). Here, previous

research showed that externalizing visuo-spatial information

can provide cognitive relief (e.g., Bilda and Gero, 2005). In

this regard, sketching (or drawing) visual cues in multimedia

learning has become an increasing scientific focus in recent years

(Ainsworth and Scheiter, 2021). Following empirical findings,

sketching allows to pay more attention to details (Ainsworth

and Scheiter, 2021), thus supporting a visual understanding

of concepts (Wu and Rau, 2018). Correspondingly, previous

studies reported positive learning effects of sketching activities in

(multi-)representational learning environments, as they increase

attention and engagement with the representations and help

to activate prior knowledge, to understand a representations’

properties, or to recall information (e.g., Leopold and Leutner,

2012; Wu and Rau, 2018; Kohnle et al., 2020; Ainsworth and

Scheiter, 2021). Typical sketching activities are copying a given

representation, creating a visual representation with modified

individual features or by transforming textual information into

a drawing, or inventing a novel representation (e.g., to reason;

Kohnle et al., 2020; Ainsworth and Scheiter, 2021). Moreover,

with respect to Cognitive Load Theory (Sweller, 2010) which

characterizes the limited capacity of working memory resources

based on three types of cognitive load—intrinsic, extraneous,

and germane cognitive load—sketching activities are able to

promote a more effective use of these resources (Bilda and Gero,

2005). In addition to cognitive relief provided by sketching in

multi-representational learning, previous work demonstrated

the added value of interactive (computer-based) simulations

for the development of representational competencies (e.g.,

Stieff, 2011; Kohnle and Passante, 2017). As such, integration

of simulations in multimedia learning environments foster

active learning, thus supporting students’ use of scientific

representations for communication and helping them to

integrate their representational knowledge systematically with

content knowledge (Linn et al., 2006; Stieff, 2011). Specifically,

the complementation of simulation-based learning by the

aforementioned sketching activities was found to support a

deeper understanding of the representation being presented

(Wu and Rau, 2018; Kohnle et al., 2020; Ainsworth and Scheiter,

2021).

Considering the value of multiple representations for

science learning, unsurprisingly, they also play a major role

in university physics. For instance, in electrodynamics, vector

field representations are deeply rooted in the developmental

history of the domain (Faraday, 1852), being represented either

algebraically as a formula or graphically using arrows. In

university experimental lectures, an introduction to electric

and magnetic fields typically starts from concrete analogous

representations of electric or magnetic field lines, then moving

on to more abstract or idealized visual-graphical and symbolical

representations (Küchemann et al., 2021). Using demonstration

experiments, electric and magnetic field lines are visualized, for

example, by semolina grains (Benimoff, 2006; Lincoln, 2017;

Küchemann et al., 2021) or iron filings (Thompson, 1878;

Küchemann et al., 2021), respectively. When representing a
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quantity as a vector field, the fields’ properties, its divergence

and curl, and further the integral theorems of Gauss and Stokes

are of particular importance for physics applications (Griffiths,

2013). Accordingly, a sound understanding of vector calculus

is of great importance for undergraduate and graduate physics

studies. For example, a study by Burkholder et al. (2021) found a

significant correlation between extensive preparation in vector

calculus and students’ performance in an introductory course

on electromagnetism.

However, further research also revealed that a conceptual

understanding, which is relevant to physics comprehension,

often caused difficulties for students (e.g., Pepper et al., 2012;

Singh and Maries, 2013; Bollen et al., 2015). Besides conceptual

gaps regarding vector field representations in general, learning

difficulties in dealing with vector field concepts such as

divergence and curl became particularly apparent. For example,

students struggled to extract information about divergence or

curl from vector field diagrams and they interpreted and used

these concepts literally instead of referring to their physics-

mathematical concepts (Ambrose, 2004; Pepper et al., 2012;

Singh and Maries, 2013; Bollen et al., 2015, 2016, 2018; Baily

et al., 2016; Klein et al., 2018, 2019). In a study on students’

difficulties regarding the curl of vector fields, Jung and Lee

(2012) diagnosed the gap between mathematical and conceptual

reasoning as a major source of comprehension problems.

Furthermore, Singh and Maries (2013) concluded that graduate

students struggle with the concepts of divergence and curl, even

though they know how to calculate them mathematically. In

the context of electrostatics and electromagnetism, it was also

shown that conceptual gaps regarding vector calculus led to

improper understanding and errors in when applying essential

principles in physics of essential principles in physics (Ambrose,

2004; Jung and Lee, 2012; Bollen et al., 2015, 2016; Li and

Singh, 2017). Regarding these findings, it is noticeable that

the aforementioned studies did not strictly distinct between

conceptual understanding and representational competencies

with respect to vector fields. This is not surprising, since there

is strong overlap of the two areas in this subject domain—

vector fields are, as such, a form of representation that cannot

be understood in a subject context isolated from concepts.

Conversely, it is almost impossible to learn electrodynamics

concepts without vector field representations.

In introductory physics texts, vector concepts are typically

given as mathematical expressions, but are either not or

insufficiently explained qualitatively (Smith, 2014). Even in

more advanced physics textbooks, there is little geometric

explanation or discussion of vector field concepts and integral

theorems. Regarding the aforementioned empirical findings,

relevance and requirement of new instructions that address

a conceptual understanding become even more apparent.

Consequently, numerous authors advocated the use of visual

representations in order to foster a conceptual understanding.

Following this line of research, Bollen et al. (2018) developed

a guided-inquiry teaching-learning sequence on vector calculus

in electrodynamics aiming at strengthening the connection

between visual and algebraic representations. Implementing

the tutorials in a second-year undergraduate electrodynamics

course revealed a positive effect of the interventions on physics

students’ conceptual understanding and their ability to visually

interpret vector field diagrams. In addition, subjects expressed

primarily positive feedback regarding the learning approach.

However, as discussed by the authors, the exact results should

be interpreted with care as the number of participants was small

and the implementation followed a less streamlined structure

as, for example, no strict control and intervention group design

was used. Additionally, Klein et al. (2018, 2019) developed

text-based instructions for visually interpreting divergence

using vector field diagrams. Eye tracking was used to analyze

representation-specific visual behaviors, such as evaluating

vectors along coordinate directions. Here, gaze analyses revealed

a quantitative increase in conceptual understanding as a result

of this intervention (Klein et al., 2018, 2019). In addition to

a positive impact of visual cues on performance measures,

a positive correlation with students’ response confidence was

found. This means that students not only answered correctly

more often, but also trusted their answers more, which is

a desirable result of successful teaching (Lindsey and Nagel,

2015; Klein et al., 2017, 2019). In subsequent interviews,

subjects expressed diagram-specific mental operations, such as

decomposing vectors and evaluating field components along

coordinate directions, as a main problem source (Klein et al.,

2018). Thus, a follow-up experimental study involved sketching

activities aiming at generating representation-specific aids (e.g.,

field components) to support the visual interpretation of

divergence (Hahn and Klein, 2021, 2022a). Here, sketching was

shown to significantly reduce perceived cognitive load when

applying visual problem-solving strategies related to a fields’

divergence (Hahn and Klein, 2022a).

With regard to previous findings concerning student

problems, building upon the existing multi-representational

teaching-learning materials, and using the DeFT framework

(Ainsworth, 2006), four multi-representational learning tasks

were developed aiming at visually interpreting vector field

diagrams (Hahn and Klein, 2022b). Their structure follows

the Modeling Instruction approach as each task addresses

one vector calculus concept in which the representational

forms are used in a coordinated manner aiming at developing

conceptual understanding (e.g., McPadden and Brewe,

2017). Furthermore, sketching activities and a vector field

simulation are incorporated to provide cognitive relief, to

foster engagement with the representations, and to support

the development of representational competencies related

to vector calculus concepts. Here, representation-specific

sketching activities, such as sketching vector components or

highlighting rows or columns to support evaluation along

coordinate directions, were included (Klein et al., 2018, 2019;

Hahn and Klein, 2021, 2022a). Additionally, typical sketching

tasks for learning with simulations, such as copying or creating
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FIGURE 1

Study design with timeline from left (t0) to right (t2; intervention group IG, control group CG, multiple representations MRs). The designations

“IG-CG group” and “CG-IG group” refer to the chronological order of the groups in the rotational design (first intervention group, then control

group, or vice versa).

a vector field diagram, were involved (Kohnle et al., 2020). As

part of the present registered report study, the research-based

multi-representational learning tasks are implemented into

lecture-based recitations in a first-year electrodynamics course.

Consequently, the present study aims at evaluating the added

value ofmultiple representations in task-based learning of vector

calculus by comparing a multi-representational intervention

group and a control group with traditional calculation-based

task. Therefore, the following guiding question is investigated:

“Domulti-representational learning tasks have a higher learning

impact than traditional (calculation-based) tasks in the context

of vector fields?” Considering previous research findings and

theoretical frameworks from cognitive psychology on multi-

representational learning, and on the use of sketching activities

and simulations, we hypothesize that multi-representational,

sketching- and simulation-based tasks

(H1) promote students’ performance as measured by a

vector field performance test (that includes tasks related

to vector calculus, vector field quantities, and vector field

concepts), and

(H2) reduce perceived cognitive load (as measured by a

cognitive load questionnaire) during task processing.

2. Methods

Learning tasks are implemented in the weekly recitations

on experimental physics II in the summer semester 2022 and

2023. Physics students usually attend experimental physics

II in their second semester of study, then encountering

university electromagnetism for the first time. The module

includes a lecture with demonstration experiments and weekly

recitations in which the compulsory assignments are discussed.

Dividing the study into an alpha and a beta implementation

(summer semester 2022 and 2023, respectively) primarily serves

to consolidate the data. In the alpha implementation, all

instruments and learning tasks are tested and psychometrically

characterized, thus providing guidance for improvement. Then,

alpha as well as beta implementation are used to evaluate

the effectiveness of the intervention aiming at answering the

guiding question and testing the hypotheses. Study design and

procedure are identical in both implementations in order to

transfer conclusions from the alpha to the beta implementation.

2.1. Procedure

The studies are based on within- and between-subjects

treatments wrapped in a rotational design (Figure 1). At the

beginning of the lecture period, all recitation groups are

randomly divided into two superordinate groups (IG-CG and

CG-IG groups, respectively) both serving as intervention groups

(IG) and control groups (CG) at some time but in different

order. Students select a fixed recitation group by their own

without knowing about the assignment to a treatment condition

later on. Before the first intervention phase, students take a

performance test on vector calculus (section 2.3). Subsequently,

the first intervention phase starts and in each of the following

four weeks, students complete a mandatory intervention task

(either a multi-representational or a traditional task) in addition

to a set of standard tasks which does not differ between the

groups. The latter consists of typical, predominantly calculation-

and formula-based, problem-solving tasks that have always

been used in the course (e.g., they present some vector fields

and students must calculate divergence or curl). First, the

upper group in Figure 1 is intervention group (IG) and works

on the multi-representational learning tasks, while the lower

group, acting as a waiting group, is control group (CG) and

works on traditional (calculation-based) tasks. All assignments

are completed by self-study within one week, submitted

for correction, and discussed with a dedicated, independent

intervention tutor during the subsequent recitation. Prior

to each task discussion, a short questionnaire on perceived

cognitive load during task processing and means of task

assistance is deployed (section 2.3). After the first intervention

phase in the seventh week of the semester, students again

complete the performance test on vector calculus and another

evaluation questionnaire. Subsequently, the groups switch roles

and the second four-week intervention phase starts. Finally, the
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performance test on vector calculus and the questionnaire are

administered again.

2.2. Power analysis

Due to the lack of comparable studies regarding target

group and topic, power analyses are based on effect sizes of

methodologically similar studies. Akkus and Cakiroglu (2010)

reported medium (η2 = 0.128, f = 0.383) to large

effect sizes (η2 = 0.233, f = 0.551) when comparing

seventh grade students’ algebra performance between an

experimental group provided with a multiple representation-

based algebra instruction and a control group using a

conventional instruction. Power analyses with G⋆Power 3.1

(Faul et al., 2009) indicated that for an analysis of covariance

(p < 0.05) including two covariates (e.g., semester of study and

school leaving examination grade) and an average effect size of

f = 0.467, a sample size ofN = 51 students would be required to

obtain a desired power of 0.9 (McDonald, 2014). Ameta analysis

by Sokolowski (2018) found a large overall weighted mean effect

size of f = 0.53 regarding the use of representations in Pre-

K through fifth grade mathematics compared to traditional

teaching methods which would require a sample size of N =

40 considering the aforementioned assumptions. Regarding the

alpha implementation of this study, pre- and midtest were

completed by N = 116 and N = 64 students, respectively. For

beta implementation, similar sample sizes can be expected which

would be consistent with the power analyses results.

2.3. Materials and measures

Test and scale analyses reported in the following are based

on the assessments and responses of the alpha implementation.

Here, data from the first implementation phase are used to

ensure the largest possible data base. Therefore, the performance

test at t0 (N = 116) and the weekly questionnaire used in the first

recitation after the pretest (N = 93) were examined. The sample

from the pretest included 86 male and 27 female undergraduate

physics students with a mean age of 20.3 ± 1.9 years, a mean

school leaving examination grade of 1.7 ± 0.6 [“Abitur” grade;

referring to a scale from 1 (best) to 6], and in their 2.8 ± 1.5

semester of study. Prior to test and scale analyses, all datasets

were cleaned of outliers. An overview of all variables and scales

used in the study is given in Table 1.

Initially, all subjects completed a test with demographic

questions (e.g., age, gender, semester of study) and a

performance test on vector calculus assessing conceptual

understanding closely linked with representational

competencies. The performance test included 19 tasks,

partly comprising several subtasks, hence, a total of 65 items

TABLE 1 Overview of variables, instruments, and scales including scale analyses results of the alpha implementation (scale meanM, mean di�culty

index P, mean standard deviation SD, mean discrimination index D, Cronbach’s alpha αC, Spearman-Brown coe�cient ρ).

Variable Scale #item M/Pa SD D αC /ρ

Recommendations according to Ding and Beichner (2009) – [0.3; 0.9]b – ≥ 0.3 ≥ 0.7

Dependent variables

Performancec Vector calculus test (V) 65 0.51 0.13 0.34 0.86

Response confidence Confidence (C) 42 0.52 0.23 0.56 0.97

Cognitive load Extraneous cognitive load (ECL) 4 0.30 0.22 0.53 0.82

Intrinsic cognitive load (ICL) 3 0.45 0.24 0.62 0.88

Germane cognitive load (GCL) 2 0.57 0.25 0.63 0.84

Effort (E) 2 0.67 0.25 0.63 0.80

Independent variables

Group – – – – – –

Gender – – – – – –

Control variables

Tutor behavior Tutor (T) 6 0.84 0.14 0.33 0.89

Age – – – – – –

Semester of study – – – – – –

Abitur grade – – – – – –

aScale mean is used for evaluation items; mean difficulty index is used for performance test items.
bRecommendation refers to mean difficulty index P.
cMultiple-choice and true-false items of one task are counted separately.

Frontiers in Psychology 05 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1012787
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hahn and Klein 10.3389/fpsyg.2022.1012787

(multiple-choice and true-false items of one task counted

separately) covering seven different subtopics of vector calculus.

Forty-nine of the items were designed in multiple-choice or

true-false format, while the remaining 16 items required a

sketch, formula, justification, calculation, or a proof. Most

of the items were taken from established concept tests on

electrodynamics (CURrENT) or have been used and validated

in a similar form in previous studies (Bollen et al., 2015, 2018;

Baily et al., 2016, 2017; Klein et al., 2018, 2019, 2021; Hahn and

Klein, 2022a; Rabe et al., 2022). Exploratory factor analysis of

the performance test did not reveal a distinct factor structure

which is a common result for concept tests in STEM education

research (e.g., FCI; Heller and Huffman, 1995; Hestenes and

Halloun, 1995; Huffman and Heller, 1995; Scott et al., 2012).

Therefore, for the following analyses, the performance test

is considered in its entirety. With a mean difficulty index of

P = 0.51, a mean discrimination index of D = 0.34, and

a reliability of αC = 0.86 (Table 1), the performance test

shows satisfactory psychometric properties according to the

recommendations of Ding and Beichner (2009). Additionally,

for most of the multiple-choice and true-false items, response

confidence was assessed using a 6-point Likert-type rating scale

(1 = absolutely confident to 6 = not confident at all; D = 0.56,

αC = 0.97; Table 1) to provide insight into student response

behavior beyond performance measures. Since previous studies,

also in the context of instruction-based learning of vector field

concepts, found positive correlations between performance and

confidence (e.g., Lindsey and Nagel, 2015; Klein et al., 2019),

it will be investigated whether group membership influences

this correlation.

In weekly recitations, students answered a short

questionnaire related to the previous learning task providing

information about the cognitive load they experienced while

completing the task as well as any kind of task assistance. The

items regarding cognitive load are based on a scale measuring

the three types of cognitive load from Leppink et al. (2013)

which was supplemented by items from Klepsch et al. (2017)

and Krell (2017). The final questionnaire contained 12 items

measuring cognitive load on a 6-point Likert-type rating

scale (1 = strongly disagree to 6 = strongly agree). As a

result of principal component analysis with varimax rotation
[

KMO = 0.74, X 2(66) = 522.56, p < 0.001
]

, four subscales

can be identified (75.03% variance explanation, excluding

item CL10; Table 1): extraneous cognitive load (four items,

αC = 0.82), intrinsic cognitive load (three items, αC = 0.88),

germane cognitive load (two items, ρ = 0.84), and effort (two

items, ρ = 0.80). The three scales for extraneous, intrinsic,

and germane cognitive load reflect the three types of cognitive

load according to Sweller (2010), with the germane cognitive

load scale primarily addressing perceived improvement in

understanding. In addition, the effort scale assesses the effort

expended in task completion (Paas and Van Merriënboer,

1994; Krell, 2017). Following the recommendations of

Ding and Beichner (2009), item and scale analyses yielded good

values of item-total correlation (rit ≥ 0.56) and discrimination

indices (Di ≥ 0.50) as well as the scales’ mean discrimination

indices (D ≥ 0.53) and their reliabilities (αC ≥ 0.80).

In addition to the perceived cognitive load, means of task

assistance (e.g., “working together in a group with students from

my course”, “looking up in a textbook”) were assessed using a

choice format.

After the intervention phases, the students again completed

the performance test which was extended by a module-

specific task on electrostatics. In addition, a questionnaire

was used which surveyed the tutor’s behavior during task

discussion as a control variable using six items (6-point

Likert-type rating scale from 1 = strongly disagree to 6 =

strongly agree). The items are based on the “tutor evaluation

questionnaire” by Dolmans et al. (1994) supplemented by

modifications from Baroffio et al. (1999) and Pinto et al. (2001).

Following the results of principal component analysis with

varimax rotation
[

KMO = 0.89, X 2(15) = 293.91, p < 0.001
]

,

the scale will be considered in its entirety (68.61% variance

explanation). It shows a high reliability (αC = 0.89) and a

satisfactory discrimination index (D = 0.33; Table 1). Further

information and detailed documentation of the study material,

instruments, scales, and test analyses can be found in the

Supplementary material.

2.4. Statistical data analysis

As required for parametric procedures, all scales for

dependent and control variables (Table 1) were checked for

normal distributed scale expressions. Regarding the hypotheses,

statistical analyses will mainly comprise (co-)variance analyses

to examine the influence of groupmembership on the dependent

variables. Both intervention phases are methodologically treated

equally, but analyzed separately to ensure the largest possible

data base. Moreover, the rotational design allows a comparison

of the pre-post learning gains of intervention and control group

within each phase. Here, a common measure of gain, Hake’s

gain, as defined by the quotient of absolute gain and maximum

possible gain, is used (Hake, 1998). However, a comparison

of both conditions (traditional vs. multi-representational) can

also take place within the IG-CG and CG-IG groups, since

each group is once CG and once IG. In addition, 2 × 2

analyses of variance will be conducted to examine the impact

of the intervention comparing different time points (pre-post

comparison). Moreover, the performance test will be examined

in more detail using Rasch analysis.
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