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Children show substantial variation in the rate of physical, cognitive, and social

maturation as they traverse adolescence and enter adulthood. Di�erences

in developmental paths are thought to underlie individual di�erences in

later life outcomes, however, there remains a lack of consensus on the

normative trajectory of cognitive maturation in adolescence. To address

this problem, we derive a Cognitive Maturity Index (CMI), to estimate the

di�erence between chronological and cognitive age predicted with latent

factor estimates of inhibitory control, risky decision-making and emotional

processing measured with standard neuropsychological instruments. One

hundred and forty-one children from the Adolescent Development Study

(ADS) were followed longitudinally across three time points from ages 11–14,

13–16, and 14–18. Age prediction with latent factor estimates of cognitive

skills approximated age within ±10 months (r = 0.71). Males in advanced

puberty displayed lower cognitive maturity relative to peers of the same age;

manifesting as weaker inhibitory control, greater risk-taking, desensitization to

negative a�ect, and poor recognition of positive a�ect.

KEYWORDS

adolescence, cognitive development, age prediction, maturity, dual systems model,

regularized regression, structural equation model

1. Introduction

1.1. Estimating cognitive age in developing adolescents

The transition from adolescence to emerging adulthood is a fuzzy boundary with

no standard demarcation that can be applied to every child. Currently, there are no

cheap, non-invasive, and accessible tools for tracking the individual growth curves of

developing teenagers. The adolescent brain goes through significant changes during

the approach to adulthood, suggesting that cognitive skills may be promising markers

for tracking maturation (Shulman et al., 2016). Skills such as active maintenance of

goal-related representations in workingmemory, inhibitory control of reflexive behavior,
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weighing of risks vs. rewards, and processing emotional context

have been identified as key developmental traits leading to

adulthood (Luna et al., 2015). Mainstream models of adolescent

brain development underscore emotional reinforcers as

key drivers for social learning and cognitive control skills

(Jones et al., 2014; Rosenbaum et al., 2020). These models

are corroborated by behavioral and neuroimaging evidence

suggesting that cognitive skills, emotional processing, and

the brain regions that support them, develop together during

adolescence. However, the timing of neurocognitive skill

maturation and the interaction between cognitive control,

risk-taking, and emotion processing is not yet fully elucidated

(Duell et al., 2016; Shulman et al., 2016). Although existing

models of adolescent cognitive development have been helpful

for understanding the transition to adulthood, a key missing

aspect is a data-driven operational definition of neurocognitive

age or maturity. A more precise definition has the potential to

help distinguish sources of variation in development and help

translate science for utilitarian social applications by identifying

critical developmental windows during which particular

interventions may exert the greatest benefits (Somerville,

2016). For example, variance in standardized testing scoring

curves could be adjusted for cognitive skills maturity to

aid personalized assessment of educational level and course

placement. Tailored cognitive skills training may yield more

persistent and effective results if delivered during key periods

of developmental plasticity (Knoll et al., 2016). Adolescent

decision making is heavily biased by social and environmental

context. Identification of individual growth curves may reveal

periods of enhanced vulnerability to adverse outcomes and may

provide opportunities for intervention (Kirisci et al., 2009).

Early biological models of age based on DNA methylation,

transcription and telomere length (Baker and Sprott, 1988;

Jylhävä et al., 2017), brain structure (Khundrakpam et al., 2015;

Aycheh et al., 2018; Madan and Kensinger, 2018), and brain

network oxygen metabolism (Dosenbach et al., 2010; Qin et al.,

2015) have exhibited significant success in predicting age and

identifying individual developmental trajectories bench-marked

against the average growth curve in the sampled population.

However, cognitive age prediction using theory-driven indicator

variables obtained from behavioral experiments has yet to be

implemented. Cognitive age prediction with neuropyschological

assessments would be cheaper, less invasive, and more accessible

to researchers and practitioners compared to biometric assays.

1.2. Improving on the model-free
approach

No complete model of the biological mechanisms of age-

related change exists yet, and so exploratory research has

relied on statistical techniques that compress a large number

of features to extrapolate sample-specific effects (Crimmins

et al., 2008; Sagers et al., 2020). Common methods for age

prediction typically use big-data-driven approaches, involving

the collection of large amounts of data per individual, such

as genome-wide RNA transcription, or MRI measurements

analyzed using hundreds of thousands of pair-wise correlations

between voxels at discrete time intervals. These methods pose

an issue in that there are significantly more descriptive features

per individual than there are samples in the dataset (i.e.,

“the curse of dimensionality”; p >> n, Taylor, 2019)—a

problem that commonly leads to overfitting with standard

linear regression. This issue is overcome through the application

of data reduction and variable selection techniques, such as

principal component analysis or regularized regression, that

penalize or eliminate redundant features (Lee and Yoon, 2017).

Model-free techniques have been successful for predicting age

within an acceptable error range (Cole and Franke, 2017);

however, these models do not always lend themselves to

interpretation because variable selection and data reduction can

be biased by their cost function, leading to overfitting (Babyak,

2004), or confounded by collinear indicators of age, such as

motion in fMRI experiments (Satterthwaite et al., 2013).

1.3. Modeling maturity with latent
variables of behavior

A potential remedy for the curse of dimensionality in

age prediction is specifying models with data derived from

experiments designed to isolate and measure features of age-

related change. A hierarchical approach that involves (1)

identifying key cognitive metrics, (2) their interactions, and

(3) finally correlations with behavior enhances statistical power

and the interpretability of tested models. Currently, there

are no applications utilizing behavioral tasks developed for

tracking age-related change with the goal of estimating cognitive

age in typically developing adolescents. Here, we describe a

method for computing a cognitive maturity index (CMI) using

reaction time, task performance, and other derived metrics

from the Continuous Performance (CPT), Wheel of Fortune

(WOF), Emotional Face Recognition (EFR), and Temporal

Delay Discounting (TD) tasks collected in the Adolescent

Development Study (Fishbein et al., 2016). First, confirmatory

Factor Analysis (CFA) is used to estimate directly unobservable

latent cognitive factors predicted to change with age during

adolescence; such as inhibitory control, risk/reward processing,

and emotion recognition. The interaction between factors is

tested in a structural equation model (SEM) and latent factor

estimates of cognitive skills used as predictors in a regularized

regression model to predict age. The CMI is defined as the

difference between observed and predicted cognitive age for

each participant. A high CMI indicates accelerated cognitive
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TABLE 1 Demographic, risk, and neuropyschological indicators

assessed across development.

Wave one Wave two Wave three P

(> ‖χ‖)

Sex 0.930

Female 65

(53.60%)

62

(54.50%)

60

(54.0%)

Male 57

(46.40%)

54

(45.5%)

48

(46.0%)

Race 0.918

White 65

(54.60%)

62

(55.40%)

61

(58.10%)

Black 37

(31.10%)

35

(31.20%)

29

(27.60%)

Hispanic 8

(6.70%)

5

(4.50%)

4

(3.80%)

Other 9

(7.60%)

10

(8.90%)

11

(10.05%)

Age <0.001

Mean

(SD)

12.68

(0.76)

14.32

(0.82)

15.84

(0.80)

Range 11.11–14.00 12.41–16.12 13.87–18.01

BMI 0.004

Mean

(SD)

21.01

(4.73)

22.00

(5.04)

23.14

(5.15)

Range 14.40–45.46 15.35–47.90 15.59–46.17

Composite

IQ

0.380

Mean

(SD)

110.66

(14.25)

108.03

(15.26)

109.02

(13.13)

Range 75.00–139.00 72.00–136.00 84.00–138.00

DUSI-VP <0.001

Mean

(SD)

2.79

(2.05)

3.53

(2.50)

4.23

(2.76)

Range 0.00–9.00 0.00–10.00 0.00–11.00

BIS 0.395

Mean

(SD)

20.12

(3.30)

20.34

(3.67)

20.78

(3.92)

Range 12.00–28.00 13.00–27.00 10.00–28.00

BAS-D 0.012

Mean

(SD)

9.83

(2.55)

10.18

(2.42)

10.81

(2.37)

Range 4.00–16.00 5.00–16.00 5.00–16.00

(Continued)

TABLE 1 (Continued)

Wave one Wave two Wave three P

(> ‖χ‖)

BAS-FS 0.509

Mean

(SD)

11.50

(2.39)

11.23

(2.25)

11.16

(2.29)

Range 4.00–16.00 5.00–16.00 6.00–16.00

BAS-RR 0.849

Mean

(SD)

17.68

(1.67)

17.61

(1.82)

17.54

(1.97)

Range 14.00–20.00 12.00–20.00 13.00–20.00

χ2 test revealed significant effect of Age, BMI, DUSI-VP, and BAS-D across waves. A total

of 23 unique participants were excluded from summary statistics at any wave due to high

DUSI-LIE.

maturity relative to the sample mean, whereas a low CMI

indicates a relatively lagging developmental trajectory. This

work demonstrates that predicting cognitive age using latent

constructs is a promising technique that can be scaled with larger

neurocognitive datasets to generate more accurate population

estimates for adolescent neurocognitive maturity and further

illuminate the interaction between social context and trajectories

of neurocognitive development.

2. Methods

2.1. Participants

Early adolescent youth were recruited to participate in

the Adolescent Development Study (ADS), a prospective,

longitudinal investigation of the neurodevelopmental factors

underlying early substance use initiation and the consequences

on brain development (Fishbein et al., 2016). Youth (N =

141) from the Washington, D.C. Metro area were enrolled in

2011 (Table 1). As of March 2020, participants had completed

up to four sequential waves of data collection separated by

approximately 18 months. Eligibility at wave 1 included the

following criteria: (1) ages 11–13 years, (2) right-handedness,

(3) no history of neuropsychiatric disorders or recent head

injuries, (4) no self-reported consumption of one or more units

of alcohol or other substances and (5) not of direct Asian

descent. Asian participants were excluded at the onset of the

study to control for genetic metabolic differences in the dose-

response curve to alcohol. A total of six participants were

excluded following the baseline visit due to: substance use at

baseline (N = 2), autism diagnosis (N = 1), and high scores on

ambidexterity measured with the Edinburgh Handedness Test

(N = 3) (Veale, 2014). Despite attrition, the distribution of

sex and race remained approximately the same throughout the
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study (±0.5%). Participants were compensated and reimbursed

for travel, when applicable. All youth and caregivers gave their

informed assent and consent prior to data collection and study

procedures were reviewed and approved by the Georgetown

University Institutional Review Board.

2.2. Interview procedure and collected
metrics

Pre-screened, eligible participants were invited for an

on-site visit at Georgetown University Medical Center to

complete a series of questionnaires and interviews designed

to measure neurocognitive developmental traits and capture

social and family life. The accompanying primary caregiver

was interviewed in a separate room and asked to complete a

questionnaire regarding economic status, education, and the

difficulty of acquiring basic needs such as food, healthcare, and

housing (Bornstein et al., 2003). Socioeconomic Status (SES)

was estimated from these responses by converting the family’s

household income to z-scores, averaging both guardian/parents’

years of education, converting the average to a z-score, and lastly

averaging the income and education z-scores for the final SES

measure (Manuck et al., 2010).

2.2.1. Anthropometrics

Adolescents had their height and weight measured and

completed the Pubertal Development Scale (Carskadon and

Acebo, 1993) to measure body-mass index (BMI) and physical

changes with age at each wave. Pubertal development scores

were derived from an interview that recorded self-reported

changes in height, body hair, complexion, vocal pitch, breast

size, and menarche. Respondents responded with: “has not

yet begun,” “has barely begun,” “is definitely underway,” or “is

complete” for each puberty related physical features queried by

the instrument.

2.2.2. Instruments

All participants were assessed for verbal and performance

IQ using the Kaufman Brief Intelligence Test (KBIT)

(Kaufman, 2004) and completed The Behavioral Inhibition

System/Behavioral Activation System (BIS/BAS) Scale to

provide a measure of appetitive and avoidant behavioral

tendencies (Carver and White, 1994). The BAS is divided into

three subscales measuring funseeking (BAS-FS; four items,

ex. “I will often do things for no other reason than that they

might be fun.”), independent drive (BAS-D; four items, ex. “I go

out of my way to get things I want”) and reward responsivity

(BAS-RR; five items, ex. “When I get something I want, I

feel excited and energized”) used to measure self-reported

idiosyncratic differences in temperament and personality

underlying reinforcement sensitivity (Corr, 2004). Participants

were asked on a four-point scale how well a particular statement

characterized them (1:strongly agree to 4:strongly disagree).

2.3. Neurocognitive tasks

Participants completed the Continuous Performance and

Wheel of Fortune tasks while undergoing functional MRI

(Siemens Tim Trio 3T Scanner) during waves one through

three. All participants were trained on the tasks outside of

the scanner before entering the scanning room. Stimuli were

projected onto a screen and reflected into the participant’s field

of view using amirror. Participants responded using fiber optical

button boxes. The Emotional Face Recognition and Temporal

Discounting tasks were completed outside of the scanner on

a laptop in a private behavioral testing room in the first three

waves. The Facial Emotion Recognition Task was administered

with E-Prime 1.2. All other neurocognitive tasks were built

and presented with the E-prime Stimulus Presentation Software

Version 2.0 (Schneider et al., 2002). Previous findings with

these tasks have been published, validating associations between

neural activity, impulsivity, and risk-taking (Darcey et al., 2019,

2020; Trojanowski et al., 2021).

2.3.1. Continuous performance task (CPT)

The continuous performance task was used to measure

impulsivity and inhibitory control of reflexive actions (Horn

et al., 2003). Participants viewed five blocks of 30 letters

presented one-at-a-time for a 200 ms duration (150 total trials).

Each block was separated by a “cool-down” period in which

a gray fixation cross was presented for 1,300 ms. Participants

were instructed to press the right-hand button box as quickly

as possible for all letters except “Q”. The lure “Q” appeared

27 times in the task. The sequence of letters was the same

across all participants. Signal Detection Theory metrics were

utilized for analyzing CPT behavior (Stanislaw and Todorov,

1999). “Hits” were defined as correct button presses to target

letters and “Misses” as failure to respond to a target letter. “False-

Alarms” were defined as an incorrect response to the lure “Q”,

whereas “Correct Rejections” were defined as correct inhibition

of response. Discriminative sensitivity to lures was measured

by the d′ variable, d′ = φ−1(Hits) − φ−1(FalseAlarms), and

response-bias calculated by utilizing the natural log-transformed

beta estimate, β = 0.5 ∗

[

φ−1(FalseAlarms)2 − φ−1(Hits)2
]

;

where φ−1 is the inverse probability distribution function

(Forbes et al., 2011).

2.3.2. Wheel of fortune task (WOF)

A modified version of the Wheel of Fortune (WOF) task

was administered to test propensity of risk-taking and gambling
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strategies (Ernst et al., 2004). The task was divided into three

runs of 30 trials. In each trial, a “wheel” appeared on the screen

that portrayed the probabilities of winning different amounts

of virtual money. Participants were instructed to select between

large monetary gains with a low probability (high-risk) or small

monetary gains with high probability (low-risk) and indicated

their choice using button boxes placed in their left and right

hands (corresponding to choice of the left and right sides of

the wheel, respectively). Winning probability varied pseudo-

randomly between a 10 : 90% split (occurring 32 to 42 times of

a total 90 trials) and a 30 : 70% split (occurring 48 to 58 times).

The quantities of money assigned to the left and right side of

the wheel varied between a $1–$9 for the low risk choice or

a $2–$18 split for the high risk choice, when the wheel was

split 10 : 90. The quantities similarly varied between $3–$7 and

a $9–$21 split when the wheel was divided 30 : 70. These values

and proportional assignments assured that the expected value

(EV) appeared equal for a winning selection independent of risk

(e.g., 30% chance of winning $7 =$2.10 EV vs. 70% chance of

winning $3 = $2.10 EV). Spatial position of the rewards varied

evenly, with the larger reward appearing on each side 50% of

the time. The wheel was visible until the participant made their

selection, or for a maximum of 3,000 ms, followed by a 3,000 ms

delay after which feedback was presented indicating whether the

participant had won or lost the selected dollar amount, along

with their cumulative winnings up to and including that trial.

Participants automatically lost the higher dollar amount if no

decision was made before 3,000 ms had elapsed. Each run began

with a 6, 000 ms fixation, and the inter-trial interval was varied

based on a Poisson distribution between 2,500 and 10,000 ms.

The total quantity of money won or lost would be reset to $0

at the beginning of each run. Participants were encouraged to

improve upon the amount they won in the next run. Participants

were encouraged to respond as if their gains and losses were

real, however no real money or physical reward was given. Task

performance was analyzed using the probability of high vs. low

risk decisions, the reaction time to make those decisions and

the cumulative winnings at each run. Anticipatory responses

were defined as trials < 200 ms reaction time and discarded

from analysis as outliers. The Wheel of Fortune Task has been

implemented outside of the scanner and validated as a reliable

predictor of real life risky behavior (Rao et al., 2011).

2.3.3. Emotional face recognition task (EFR)

Participants viewed 70 photographs (grayscale images, 284

x 351 pixels, resolution = 96 dpi) from the NimStim dataset,

which includes images of 29 professional actors aged 21–30

years (12 female, 17 male, 14 European-American, 10 African-

American, 3 Asian-American 2 Latino-American) instructed to

pose for expressions of seven emotions: happiness, surprise,

sadness, anger, disgust, fear, and neutral (Tottenham et al.,

2009). To prepare for the task, participants were presented

showcards with labels of each of seven emotions and asked

to describe each of the emotions followed by a practice trial

for each emotion. For each trial, a photograph appeared for a

maximum duration of 5,000 ms along with seven labels for each

of the emotions. Participants were instructed to click on the

emotion with a mouse to advance to the next trial. The image

disappeared after 5,000 ms and labels remained until a response

wasmade. Trials were separated by an inter-trial interval of 3,000

ms, during which time participants viewed a white screen. No

actor was shown with the same emotion more than once. The

accuracy and reaction time for disgust, anger, sadness and fear

were averaged together to compose estimates of performance

for recognizing negative emotion. Positive emotion recognition

performance was derived from reaction time and accuracy for

happy faces only.

2.3.4. Temporal delay discounting task (TD)

Individual preference between small, immediate vs. large,

delayed rewards was tested by offering participants a forced

choice between two options: “Would you rather have $X now

or $X + Y in Z days?” The delay of rewards, Z, was varied

from 0, 1, 2, 10 days, 1 month, half a year, and 1 year.

The immediately available amount, X, was determined using a

random adjustment procedure that updated the current choice

based on previous choices. Immediate reward amounts varied

from $0.50 to $10 while the delayed reward value X + Y was

fixed at $10. The propensity for discounting the objective value

due to delayed receipt was computed as the area under the curve

(AUC) using the trapezoidal method: AUC =
∑t=k

t=0(dt+1 −

dt) ∗ (vt + vt+1/2), where t is the current normalized delay

point, k the maximum delay and v the indifference value at that

point (Myerson et al., 2001; Olson et al., 2007; Borges et al.,

2016). Indifference points reflecting the subjective value of the

immediately available reward at a given delay were normalized to

the maximum award value of $10 and plotted across time delays

normalized to a duration of a year (annualized). As described

above, trapezoids formed by normalized subjective values at

each normalized delay contributed to AUC in the range from

0 to 1. A large AUC indicates participants are more likely to

prefer large but delayed rewards whereas a lower AUC indicates

preference for immediate gratification. In order to elicit behavior

reflective of the participant’s actual preferences, participants

were informed that they would receive either a $5 or $10 reward

based randomly on their choices in the task prior to the task.

2.4. Statistical analysis

Data were converted from double-entered paper records,

Qualtrics survey exports, and E-prime task outputs then

consolidated into a single long-format data frame containing

an observation for each participant at each wave. Next,
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descriptive statistics and assessments of multivariate normality

were performed with the Arsenal (3.5.0), MVN (5.8, Korkmaz

et al., 2014), and DescTools (0.99.36, Signorell, 2020) packages

in R version Orange Blossom (1.2.5033, R Core Team, 2019).

Participants with high DUSI-R Lie scores (N = 23; Lie> 6) were

excluded from analysis (Dalla-Déa et al., 2003). Demographics

for the excluded participants did not significantly differ from the

retained group. Scored neurocognitive and sociodemographic

measures were correlated with age to identify and confirm

expected bivariate relationships with development, including

that of age-related changes in neurocognitive skills as revealed

by EFR, CPT, WoF, TD task performance. Longitudinal effects

of task performance by age were performed using the lmer

R package to account for hierarchies of repeated measures

in multi-level models (Bates et al., 2015). Task performance

at each wave of data collection was modeled as a nested

factor within participants and used to estimate the average

intercept and rate of change across all participants and

within subgroups controlling for random effects attributable

to individual differences. First, we assessed the Confirmatory

Factor Analysis (CFA) was implemented with the Lavaan R

package (0.6–6) to estimate latent factors for inhibitory control

(CPT), risk/reward processing (WOF/TD), and emotional face

recognition (EFR) (Rosseel, 2012). Latent factor analysis is a

statistical method for estimating an underlying mechanism that

can only be indirectly measured through indicators derived from

experimental constructs (Finch and French, 2015). Latent factor

estimates are obtained by averaging the unique contribution

of each indicator variable after controlling for the shared

variance across indicators to satisfy the local independence

principle (Sobel, 1997). Maximum likelihood estimation with

full information maximum likelihood (FIML) was used to adjust

CFA parameter estimates for missing data (Cham et al., 2017).

The latent factors were standardized to allow for free estimation

of factor loadings and post hoc testing (Hu and Bentler, 1998).

Themodel fit of the implied structural relationships was assessed

with χ2 Goodness of Fit referenced against a null model with 0

factor loadings, the Root Mean Square Error of Approximation

(RMSEA), the Comparative Fit Index (CFI) and the Tucker-

Lewis Index (TLI; Hu and Bentler, 1999; Wu et al., 2009; Kenny

et al., 2015). Path and structural models were visualized with

the semPlot R package (1.1.2). The standardized latent factor

estimates of inhibitory control, risk-taking and facial emotion

recognition were used to predict age with regularized linear

regression models implemented in the glmnet R package (4.0-

2) using leave-one-out cross-validation for estimation of model

hyperparameters and a 50% random split across participants

between training and test datasets (Friedman et al., 2009,

2010). Cross-validated model performance was estimated by

computing the R2 from the mean cross-validated error divided

by the variance of observed age in the test sample across

the regularization rate (λ) and penalty factor (α; 0 =Ridge

Regression, 0.5 = Elastic Net, 1 = Least Absolute Shrinkage and

TABLE 2 Normalized estimates for latent factors estimated with

structural equation modeling of inhibitory control using continuous

performance task metrics and the behavioral inhibition system scale.

Inhibitory control

latent factor

Estimate Std.

error

Z-

value

P

(> ‖z‖)

CPT target discrimination (d’) 0.650 0.090 7.189 <0.001

CPT response bias (β) −0.503 0.124 −4.059 <0.001

CPT hit RT standard

deviation

−0.913 0.115 −7.910 <0.001

CPT false alarm RT standard

deviation

−0.371 0.085 −4.367 <0.001

Behavioral inhibition system

(BIS)

0.193 0.058 3.335 0.001

CFI = 1.00, TLI = 1.018, RMSEA = 0.001, p = 0.910.

Selection Operator) hyper-parameter estimates. The minimum

λ at the highest R2 was used to calculate regression coefficients

in the training sample. The cognitive maturity index was

estimated as the difference in the observed and predicted age for

each participant.

3. Results

3.1. Latent factor analysis of cognitive
metrics

3.1.1. Inhibitory control

The ICLF was estimated using the CPT response time

standard deviation, log transformed response bias, ln(β), target

discrimination, d′, and the BIS part of the BIS/BAS. The fitted

relations were significant compared to a null model with 0 factor

loadings between all measures, residual covariances, and the

latent variable estimate (Table 2; CLI = 1.0; TLI = 1.018;

RMSEA < 0.01, p = 0.91). Greater discriminative ability

between false alarms and targets was significantly inversely

correlated to response bias (−0.46± 0.14; Z = 3.36; p = 0.001)

and was associated with greater variation in response time to

targets (0.30 ± 0.09; Z = 3.36; p = 0.001) (Figure 1). This

was corroborated by a strong linear relationship between d′ and

the average response time to targets (Supplementary Figure 4;

0.57 ± 0.05; Z = 12.11, p < 0.001). Response time variance

to targets interacted inversely with false alarm response time to

predict d′ (−0.08 ± 0.02; Z = −3.35, p < 0.001). Response

time variation was uncorrelated between target and false alarm

trials (0.07 ± 0.09; Z = 0.70, p = 0.48) demonstrating that

each provided a statistically independent contribution to ICLF.

The ICLF increased with greater age (0.72 ± 0.01; Z = 7.50,

p < 0.001). The ICLF did not vary by sex, or BMI, but was

found to significantly increase with SES (0.267±0.053; Z = 4.99,
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FIGURE 1

Signal detection theory metrics were used to estimate

discriminative sensitivity (d’) and overall response bias (ln β) for

targets versus lures in the Continuous Performance Task (CPT).

d’ increased linearly with higher probability of a Correct

Rejection (purple) and response to target (Hits, blue); and

declined with greater False Alarm responses (yellow) and Miss

rate (red) to targets (top). The probability of a Correct Rejection

and response to target was a non-linear decreasing function of

increasing response bias (bottom). Greater false alarm rates

were indicative of elevated response bias and lower target-lure

discrimination.

p < 0.001) and pubertal development (0.14 ± 0.06; Z = 2.22,

p = 0.03).

3.1.2. Risk-taking

The RRLF was estimated using probability of high risk

decisions, cumulative winnings and response time in the WOF

task, and area under the curve of TD performance. Overall,

RRLF was characterized by greater risky decisions, moderate

response time for high risk options, longer response time for

low risk decisions, significantly poorer cumulative winnings

and stronger propensity for immediate rewards in the TD task

(Table 3). RRLF significantly decreased with age (−0.22 ± 0.10;

Z = −2.35, p = 0.019). The model fit to the data significantly

improved by allowing free estimation of covariance between

the probability of making a high risk decision and response

time, and between low and high risk response times. The fitted

relations with these free parameters revealed a significant fit of

the covariance structure compared to a null model with 0 factor

loadings between all measures, residual covariances, and the

RRLF estimate (CLI = 1.0; TLI = 1.0; RMSEA = 0.005, p =

0.846). The estimate of the covariance between response time

and the probability of making a high risk decision revealed that

risky decisions occurred more quickly than carefully evaluated

low risk options (−0.121 ± 0.031; Z = −3.849, p < 0.001).

Overall, the RRLF was related to greater risk-taking in the

WOF task, which resulted in poor cumulative winnings due to

high probability of loss and consequently running a negative

TABLE 3 Normalized estimates for latent factors estimated with

confirmatory factor analysis summarizing reward/risk-taking in the

Wheel of Fortune Gambling and Temporal Delay Discounting tasks.

Reward/risk latent

factor

Estimate Std.

error

Z-

value

P

(> ‖z‖)

WOF percent high risk

choices

0.703 0.087 8.106 <0.001

WOF high risk mean reaction

time

0.158 0.060 2.648 0.008

WOF low risk mean reaction

time

0.433 0.073 5.971 <0.001

WOF cumulative winnings −0.899 0.076 −11.817 <0.001

Temporal discounting −0.127 0.064 −1.974 0.048

CFI = 1.00, TLI = 1.00, RMSEA = 0.005, p = 0.846.

balance. RRLF did not significantly covary with sex, PDS, BMI,

or SES.

3.1.3. Emotional face recognition

Performance in the EFR task was used to derive latent

factors of positive and negative emotional face recognition

(EPLF/ENLF). Latent factors were estimated using the mean and

standard deviation of response time and accuracy to recognize

angry, fearful, sad, or disgusted (negative) and happy (positive)

facial expressions. The model fit was improved significantly

by permitting free covariation between mean reaction time

to negative and positive faces, negative and positive emotion

recognition accuracy, and between standard deviation andmean

response time for both negative and positive emotions. The

proposed model structure explained a significant proportion of

the covariance between taskmetrics and provided an excellent fit

compared to a null model (Table 4; CLI = 0.978; TLI = 0.942;

RMSEA = 0.073, p = 0.115). Perceptual processing of positive

emotional faces often resulted in correct emotion recognition,

but was associated with generally longer and more variant time

to recognition, reflecting difficulty in distinguishing between

happy and other facial expressions. Perceptual processing of

negative emotional faces often resulted in correct recognition

with quick and consistently low variation in recognition time.

Perceptual processing performance for negative emotions was

inversely related to positive emotion processing (standardized

estimate −3.44 ± 1.85; Z = −1.86, p = 0.063). ENLF, but not

EPLF, was found to increase with SES (0.16 ± 0.07; Z = 2.11,

p = 0.036) and BMI (0.04 ± 0.02; Z = 2.65, p = 0.008).

No significant relationship between ENLF and sex or PDS was

revealed. Greater physical maturation measured with PDS was

related to lower EPLF scores (−0.70 ± 0.15; Z = −4.55, p <

0.001). ENLF significantly increased with age (0.35 ± 0.14; Z =

2.44, p = 0.015) whereas EPLF decreased with age (−0.16±0.10;
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TABLE 4 Normalized estimates for latent factors estimated with

confirmatory factor analysis summarizing emotional face recognition

task performance for positive and negative emotions.

Negative emotions

latent factor

Estimate Std.

error

Z-

value

P

(> ‖z‖)

EFR accuracy 0.164 0.088 1.869 0.062

EFR mean reaction time −0.451 0.128 −3.536 <0.001

EFR standard deviation of

reaction time

−0.302 0.085 −3.541 <0.001

Positive emotions latent factor

EFR accuracy 0.173 0.088 2.245 0.092

EFR mean reaction time 0.310 0.132 2.702 0.048

EFR standard deviation of

reaction time

0.235 0.093 2.818 0.042

CFI = 0.978, TLI = 0.942, RMSEA = 0.073, p = 0.115.

Z = −1.52, p = 0.129). No relationship between EPLF and SES,

BMI, or sex was found.

3.2. Structural equation model of
cognitive factors

A structural equation model was constructed to

explore the interaction between the identified latent

factors and their indicator variables (Figure 2). Significant

covariations were identified between the constituent cognitive

latent factors compared to a null model (CLI = 0.95;

TLI = 0.93; RMSEA = 0.047, p = 0.64). ICLF was

found to significantly reduce RRLF (−0.22 ± 0.10;

Z = −2.16, p < 0.031). Greater inhibitory control

also predicted greater sensitivity to negative emotional

faces (0.55 ± 0.26; Z = 2.09, p = 0.037) and effected

faster recognition time for all emotions at the expense of

recognizing happy facial expressions. As previously noted,

elevated ENLF was inversely correlated with EPLF. No

relationship was found between RRLF and negative or positive

emotional processing.

3.3. Cognitive maturity index

Linear ordinary least squares regression was used to test

ICLF, RRLF, EPLF, and ENLF as predictors of chronological age

to explore the utility of a predictive model of neurocognitive

age. Inhibitory control (0.72 ± 0.01; Z = 7.50, p < 0.001) and

negative affect perceptual processing (0.35 ± 0.14; Z = 2.44,

p = 0.015) significantly increased in efficiency with age, whereas

risky reward taking (−0.22 ± 0.10; Z = −2.35, p = 0.019)

and positive affect recognition (−0.16 ± 0.10; Z = −1.52,

p = 0.129) declined. Ridge regression (α = 0, λ = 0.083)

with latent factors predicted age in a split-half test sample

within a mean absolute error of ±10.11 months (R2 = 0.51;

Figure 3), significantly more accurately than by training on the

original indicator variables used to generate the latent variable

estimates (R2 = 0.16). The difference between predicted and

observed age, defined as the cognitive maturity index (CMI),

was computed for each participant. Greater CMI correlated with

lower BMI (Pearson’s R = −0.24, p < 0.001), slower pubertal

development (R = −0.20, p < 0.001), lower BAS-D (R =

−0.16, p < 0.001), higher IQ scores (R = 0.20, p < 0.001),

and lower DUSI-R problem scale scores on: substance use (R =

−0.20, p < 0.001), health risk (R = −0.16, p < 0.001),

and, lastly, risk for violence (R = −0.28, p < 0.001). No

significant relationship was found between SES and CMI, or

between any of the other BIS/BAS scales and CMI. Advanced

pubertal development (−0.67 ± 0.089; Z = −7.47, p < 0.001)

interacted with sex (−2.44 ± 0.39; Z = −6.21, p < 0.001) to

predict greater CMI in more fully developed females compared

to males (interaction effect estimate 0.82 ± 0.16; Z = 5.30,

p < 0.001).

4. Discussion

The distinction between chronological and biological age

has been explored in great detail, but not yet extended to

account for different trajectories of neurocognitive maturation

during adolescence. The current study demonstrates a novel

method for identifying behavioral hallmarks of cognitive

development that can be used to estimate within-sample

maturity in adolescents. This technique and derived findings

have significant implications for predicting adverse life

outcomes in emerging adulthood, such as risk for substance

use and experiences of violence. Reliable prediction of

age-related adverse outcomes is a significant unlock for

prevention practice, as it opens opportunistic windows for

intervention and cognitive skills training (Lipsey et al., 2010;

Dorn et al., 2019). Theory-driven variable reduction was

implemented with regularized regression for optimized age-

prediction accuracy (±10 months). This accuracy exceeds

age prediction performance using expensive neuroimaging

datasets (±1 year), which typically incorporate a massive

number of features, leading to overfitting (Franke et al.,

2012; Cole and Franke, 2017). Structural equation modeling

revealed a significant interaction between inhibitory control

ability with risk-taking and emotional face recognition.

Where advanced inhibitory control skills correlated with

tempered risk-taking and higher sensitivity to negative

emotional faces. The interaction between inhibitory control,

risk-taking, and sensitivity to emotional faces covaried

with age, supporting claims that the development of

cognitive control skills occurs with greater sensitivity
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FIGURE 2

Structural equation model of latent factors underlying inhibitory control (ICLF), risky reward processing (RRLF), and responsivity to positively

(EPLF) and negatively salient emotional faces (ENLF; RMSEA = 0.047, TLI = 0.926, CFI = 0.945). Inhibitory control was observed to be a significant

e�ector of lower risk taking (p = 0.026) and responsivity to both negative (p = 0.007) and positive (p = 0.02) emotional faces. No significant

relationship was observed between RRLF and EPLF/ENLF. The ENLF manifested as fast and accurate responses to negative emotions, whereas

EPLF was an indicator of longer looking times leading to correct recognition. ICLF e�ected faster looking time to all emotions at the expense of

recog- nizing happy face expressions. Paths are faded to indicate statistical significance and strength of association. Numerical edge labels

provide standardized estimates.

to emotional stimuli during adolescence (Casey et al.,

2019). Latent cognitive factors were used as predictors to

reliably estimate chronological age in a validation sub-

sample. The Cognitive Maturity Index was calculated as the

residual between observed chronological age and predicted

cognitive age and found to be a reliable predictor of cognitive

skills maturity. A negative residual indicated a delay in

cognitive skills development, whereas a positive residual

indicated an advancement relative to the sample average.

The CMI also reliably predicted life outcomes, such as

IQ, risk for violence, and risk for substance use disorder.

Implications, limitations, and connections of these findings

to previous literature and future directions are discussed

below.

4.1. Latent cognitive factors

In this study, latent cognitive factors underlying cognitive

skills were estimated using a battery of neurocognitive

tasks. Behavioral data collected during performance of the

CPT, WOF, and EFR tasks were modeled with confirmatory

factor analysis to reveal latent factors illustrating inhibitory

control, risk/reward processing, and positive and negative

emotion perceptual processing. Confirmatory factor analysis

was a first step following a model-driven variable reduction

procedure to estimate the weighted partial correlation of

significant predictors related to specific cognitive skills.

The resulting estimate was considered as a weighted

combination of the residual covariance between indicator

variables used to approximate the inferred latent factor,

where the correlation between two indicator variables is

permitted when they are both caused by the underlying

latent variable (Cooper et al., 2019). This approach serves

to reduce the number of variables required to model a

hypothesized cognitive phenomenon and helps minimize

the contribution of residual error on tests of statistical

inference; both useful and necessary requirements for building

predictive regression models that avoid over-fitting with

collinear predictors.
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FIGURE 3

Regularized regression was used to estimate neurocognitive age

in a training sample with leave-one-out cross validation to

estimate linear model hyper- parameters (lambda = 0.083;

L2-norm ridge regression with alpha = 0) minimizing mean

squared error for predicting age with inhibitory control,

risk/reward processing and emotional processing latent factors

in a test sample (50% participants split into train/test datasets).

Model performance was assessed by computing the ratio

between the mean cross-validated error and variance of

observed age in the validation dataset (R2 = 0.51). The

neurocognitive maturity index is computed by subtracting the

predicted neurocognitive age from the chronological age.

4.1.1. Inhibitory control skills

A high inhibitory control latent factor (ICLF) score

was characterized by consistently careful responses in the

CPT, along with overall behavioral caution measured by

the BIS. The significant contribution of the BIS to the

ICLF was also indicative of generic internalizing behavior

and disposition toward caution, supporting previous findings

(Malloy-Diniz et al., 2007; Loree et al., 2015). Careful

responses in the CPT are reflected by greater proactive

control of motor reflexes and careful discrimination between

targets and lures. Discrimination was predicted by an inverse

interaction between response time variance to targets and

false alarm response time, indicating that a rapid response

to early false alarms led to greater caution later in the task,

resulting in overall improvement in target/lure discrimination

and CPT performance (Supplementary Figure 1). This finding

is reinforced by a significant inverse correlation between

discrimination and both (1) a bias to respond to a stimulus,

and (2) a greater response time variation to targets. The inverse

correlation between bias and response time variation with

discrimination suggests participants modified their behavior

and responded with more consistent timing as they learned

the task. Response time standard deviation was selected for

the model a priori because mean reaction time did not

significantly vary trial-by-trial across participants except at

the beginning of a block. Additionally, participants were

instructed to press the response button as fast as possible

and variations in responses were typically only observed circa

false alarm trials during which more cautious participants

would modify their pace to avoid errors. Task performance

improved from wave one to three independent of task learning

effects (Supplementary Figures 2, 3). Inhibitory control did not

covary by sex but was found to correlate positively with SES,

suggesting that elevated social status may temper impulsive

decision-making, supporting previous findings linking lower

inhibitory control with lower SES (Spielberg et al., 2015). Lastly,

advanced pubertal development also indicated greater ICLF

scores, demonstrating a clear developmental effect related both

to time and physical maturation.

4.1.2. Risk and reward processing

The risk/reward evaluation latent factor (RRLF) was

characterized by impulsive risk-taking and a preference for

immediate rewards. Impulsive high risk decisions were preferred

when perceived losses were greater and high risk was concurrent

with high rewards. A higher RRLF score was indicative of longer

deliberation times for low risk decisions compared to high

risk decisions. This response bias toward high risk decisions is

reinforced by a preference for immediate winnings revealed in

the TD task. Risk/reward processing was expected to be inversely

correlated with SES, but no significant relationship was found

in the tested sample. Greater SES typically related to lower

risk-taking on average within the sample, supporting previous

findings (Holmes et al., 2019). No associations were found with

sex, BMI, or pubertal development. A key missing component

are real winnings as part of the WoF task. A higher stakes

context may result in more nuanced risk-taking that breaks

along SES categories.

4.1.3. Emotion processing

Emotional face recognition performance was characterized

with measures of reaction time and the correct identification

of positive and negative emotions. Negative and positive

emotional face processing were found to be inversely

correlated—suggesting participants generally tuned to

facial expressions of negative affect were more likely to

exhibit rapid and inaccurate recognition of positive affect.

Greater EPLF scores were reflected by longer and more

variant reaction times, indicating that participants were more

careful identifying positive compared to negative emotions.

As with elevated inhibitory control, sensitivity to negative

emotions was found to be significantly greater in higher SES

youth. A positive association with ENLF and BMI suggested

greater sensitivity to negative affect in youth with higher body

mass. Furthermore, greater physical maturation measured

with PDS was related to lower EPLF scores, indicating that
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physically mature youth exhibit faster, less variable, recognition

time and poorer accuracy for happy facial expressions. No

relationship between EPLF and SES, BMI, or sex was found. In

summary, these results indicate that physically mature youth

from more prosperous, more educated, households are more

sensitive to recognizing facial expressions of negative affect

but do not possess comparable performance on positive affect

recognition.

4.1.4. Cognitive skills interactions

Structural equation modeling of the interaction between

cognitive latent factors showed elevated inhibitory control,

resulted in lower risky decision making. This finding

demonstrates that a greater degree of inhibitory control

was reflected as a lower propensity for risk-taking. Inhibitory

control was also correlated with greater negative emotion

perceptual processing skill, corroborating that adolescent

cognitive development is concurrent with a greater sensitivity

to negative social reinforcers (such as negative emotional

context, or in this study faces of disgust, anger or fear; Jones

et al., 2014; Rosenbaum et al., 2020). This finding may also

supports claims that cognitive skills development is facilitated

by increased sensitivity to reinforcement signals in the form

of expected positive or unexpected negative outcomes during

social and general task learning (Jones et al., 2014; Rosenbaum

et al., 2020). Social signals, such as facial expressions, have

been demonstrated to attract automatic attention, modulate

hedonia, and serve as reinforcers of socially desired behaviors

(Speer et al., 2007; Teufel et al., 2009). Strong emotional

context during social reinforcement learning has been shown

to capture attention and increase the speed and accuracy

of learning new associations (Roper et al., 2014; Vernetti

et al., 2017). Taking these findings into account, cognitive

maturity appears to be driven by sensitivity to emotional

reinforcers, reduced risk-taking and strong inhibitory control

skills. Overall, our approach demonstrates that latent factors

underlying cognitive skills development in adolescence can

be estimated with standard well-validated cognitive tasks

and instruments. Structural equation modeling revealed

significant interactions between latent cognitive factors, where

inhibitory control is expected to increase monotonically with

age while tempering risk-taking into adulthood. The results

highlight the importance of including cognitive processing

of emotion in models of adolescent brain development. A

normative development of inhibitory control was revealed to

be concordant with emotion recognition ability and sensitivity

bias to perceptions of negative emotional faces. Socioeconomic

status was a significant covariate of cognitive skills development

and calls attention to the importance of attending to social

environmental context in models of adolescent neurocognitive

development.

4.1.5. Individual di�erences in cognitive
maturity

The Cognitive Maturity Index is an individual level estimate

of cognitive skills development. This estimate is relative to the

mean within-sample best-fitted linear growth curve. The CMI

was derived from latent factor estimates of inhibitory control,

risk-taking, reward processing, and emotional recognition

skills. Latent factor analysis provided best estimates of

cognitive control skills for building a predictive model of

adolescent neurocognitive maturity compared to the use of

standard behavioral metrics (i.e., response time, performance)

for predicting age. Improved estimation is credited to the

minimization of measurement error through enforcement of

local independence during latent factor estimation.

Several complementary models of adolescent brain

development describe adolescence as a period of mismatch

between the efficiency of cognitive control and affective salience

of reinforcers (Casey et al., 2008; Luna and Wright, 2016). This

work finds supporting evidence that weaker inhibitory control

interacts strongly with higher risk-taking and desensitization

to emotional faces. Furthermore, individual differences in

cognitive skills directly correlate with participant-level variation

in maturity. Participants with greater inhibitory control, lower

risk-taking, and sensitivity to negative emotions exhibited a

higher CMI relative to their peers.

Greater CMI translated to higher IQ scores and lower risk

for substance use, health problems, and chances of experiencing

violence by adulthood. CMI and SES did not show a significant

correlation, suggesting that social context is not a strong driver

for developmental maturity and may be modulated by status-

specific risk factors. For example, affluent youth have previously

been shown to be more risk tolerant and reward sensitive

(Luthar and Becker, 2002; Luthar, 2003). Although, greater

SES was shown to be related to higher risk-taking and lower

inhibitory control as measured by the latent factor estimates,

social context does not appear to be a significant effector

of observed maturation within the sample. In other words,

individual differences may a show a significant effect of social

status on specific cognitive skills but it does not translate

to reliable differences in chronological vs. cognitive age. Sex

and Pubertal development (PDS) were found to interact as

significant effectors of cognitive maturation. Females exhibited

earlier/faster pubertal development and accelerated cognitive

maturation (i.e., greater inhibitory control, less risk-taking,

emotion sensitization) on average. Males with a higher scale

of physical development were more likely to score high on

the BAS-D, a measure of tenacity and desire for achieving

goals and receiving rewards. Higher BAS-D scores in males

were related to a delayed CMI compared to their peers. This

finding corresponds with evidence that estrogen facilitates

cognitive development and plasticity in women (Hara et al.,

2015). The interaction with physical development and lower
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cognitive maturity rates in men provide a novel window into

associated sex-specific risk-factors. Physically developed teenage

males are often expected to be more mature, because they are

bigger and look like adults. However this work demonstrates

that physically mature men are more likely to be cognitively

delayed relative to their peers, placing them at greater risk

associated with cultural perceptions of masculinity (Chu et al.,

2005).

5. Conclusions

A lack of consensus regarding the dynamics of cognitive

skills development and their effect on adverse outcomes in

emerging adulthood is compounded by the difficulty of defining

when adolescence ends and adulthood begins in regards to

neurocognitive development. In this work, we apply open-

source statistical methods to provide a simple first step

for approximating individual-specific neurocognitive age with

linear latent factor modeling of inhibitory control, risk-taking,

and emotional face perceptual processing skills. This approach

embraces the perspective that maturity is best modeled as

a relative factor and occurs along a continuum well into

adolescence and emerging adulthood. Here we demonstrate

sample-relative estimates of maturity can be derived from

behavioral performance on neurocognitive instruments. There

are several limitations worth mentioning in this work. First off,

the growth curves for cognitive skills were estimated with an

ordinary least squares linear regression model. No quadratic

effects were tested, meaning that non-linear growth curves

could not be assessed. This was chosen because the study

was performed only over three time points, the minimum

required for estimating non-linear mixed effects (Bollen and

Curran, 2006). The three time point limitation minimizes the

chances of a significant goodness-of-fit for cubic or higher-

order growth curves. Furthermore, the CMI is a normalized

estimate computed at each wave relative to the mean expected

age in the sample and thus is an indicator of maturity

only in the context of the sampled population. Significantly

greater sample sizes will be required to extrapolate population

level growth curves. Secondly, the Wheel of Fortune and

Continuous Performance tasks were performed within the

scanner and may not generalize to out of scanner performance.

Follow up work may include validating in- with out-of

scanner performance for these tasks. This work provides

a foundation for others to apply this method with larger

datasets, such as the ABCD project (Casey et al., 2018; Volkow

et al., 2018), to better approximate a population estimate of

adolescent neurocognitive maturity. Fusion with neuroimaging

data may also serve to augment estimates by including

biological mechanisms, to better delineate interactions between

environmental and biological contributions to cognitive skills

development.
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