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We present a new machine learning benchmark for reading task classification

with the goal of advancing EEG and eye-tracking research at the intersection

between computational language processing and cognitive neuroscience.

The benchmark task consists of a cross-subject classification to distinguish

between two reading paradigms: normal reading and task-specific reading.

The data for the benchmark is based on the Zurich Cognitive Language

Processing Corpus (ZuCo 2.0), which provides simultaneous eye-tracking

and EEG signals from natural reading of English sentences. The training

dataset is publicly available, and we present a newly recorded hidden testset.

We provide multiple solid baseline methods for this task and discuss future

improvements. We release our code and provide an easy-to-use interface

to evaluate new approaches with an accompanying public leaderboard:

www.zuco-benchmark.com.

KEYWORDS
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1. Introduction

Reading plays a fundamental role in the acquisition of information (e.g.,

encyclopedias) and communication (e.g., emails). As we read, our eyes gaze through

the written sentences in a sequence of fixations and high-velocity saccades to extract

visual information which are forwarded to the brain to obtain meaning. Thus, assessing

where a person looks during reading while recording brain activity non-invasively with

electroencephalography (EEG) provides powerful behavioral and physiological measures

for cognitive neuroscience to further the understanding of human language processing.

Most previous experimental reading research has used hand-picked reading materials

in highly controlled experimental settings (Brennan, 2016; Nastase et al., 2020). The

neural correlates of reading have traditionally been studied with serial word-by-word

presentation with a fixed presentation time, which eliminates important aspects of the

natural reading process and precludes direct comparisons between neural activity and
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oculomotor behavior (Dimigen et al., 2011; Kliegl et al., 2012).

The electrical neural correlates of normal reading of naturally

occurring real-world sentences have been investigated less

frequently due to a number of methodological challenges related

to identifying the exact timing and type of visual stimuli

presented during reading.

Because of recent methodological progress in stimulus

presentation and data preprocessing (Dimigen et al., 2011;

Ehinger and Dimigen, 2019), an excellent temporal resolution,

and low costs, co-registered EEG, and eye-tracking have

become important tools for studying the temporal dynamics

of naturalistic reading (Frey et al., 2018; Hollenstein et al.,

2018). Fixation-related potentials (FRPs), the evoked electrical

responses time-locked to the onset of fixations, have become

important tools for researchers to study various topics including

free-viewing visual perception (e.g., Rämä and Baccino, 2010),

brain-computer interfaces (e.g., Finke et al., 2016), and natural

reading (e.g., Degno et al., 2019). In naturalistic reading

paradigms, FRPs allow the study of the neural dynamics of

how new information from a currently fixated word affects the

ongoing language comprehension process.

In this work, we leverage these novel methodological

advances to offer amachine learning (ML) benchmark challenge,

formulated as a cross-subject classification task, to identify

two reading tasks as accurately as possible. Specifically, the

challenge is to discriminate between normal reading (with the

only task of reading comprehension) and task-specific reading

(TSR; with the purpose of finding specific information in

the text) from eye-tracking and EEG data. Decoding mental

states and detecting specific cognitive processes occurring in

the brain during different reading tasks (i.e., reading task

classification) are important challenges in cognitive neuroscience

as well as in natural language processing (NLP). Applications

of reading task classification include measuring attention and

engagement (Miller, 2015; Abdelrahman et al., 2019), detecting

proper reading vs. skimming (Biedert et al., 2012), as well as

applications related to intent recognition within brain computer

interfaces (Schalk et al., 2008). Other studies have demonstrated

that recognizing reading patterns for estimating reading effort

can improve the diagnosis of reading impairments such as

dyslexia (Rello and Ballesteros, 2015; Raatikainen et al., 2021)

and attention deficit disorder (Tor et al., 2021). Furthermore,

it has been shown that using EEG and eye-tracking signals

facilitates the prediction workload (Lobo et al., 2016) and

investigation of language learning (Notaro and Diamond, 2018).

The accurate distinction of the cognitive processes occurring

in different reading tasks is also important for ML and NLP.

Identifying specific reading patterns can improve models of

human reading and provide insights into human language

understanding and how we perform linguistic tasks. This

knowledge can then be applied to ML algorithms for NLP (e.g.,

information extraction applications). Computational models of

language understanding can be adapted based on the insights

from different reading and language processing tasks. Therefore,

the identification of reading intents can be beneficial for

computational methods of language understanding, but also

for applications such as digital assistant tools, e.g., supporting

translation processes, understanding how learners approach

tasks in adaptive e-learning, and inferring document relevance.

A crucial potential of human physiological data in the

context of NLP is that it can be leveraged to understand and

to improve the manual labeling process required for generating

training samples for supervised ML. For instance, Tokunaga

et al. (2017) analyze eye-tracking data during the annotation

of text to find effective gaze features for a specific NLP task

and Tomanek et al. (2010) build cost models for active learning

scenarios based on insights from eye-tracking data.

Reading task classification can help to improve the labeling

processes by detecting tiredness from brain activity data and

eye-tracking data, and subsequently to suggest breaks or task

switching, or by using cognitive data directly to (pre-)annotate

samples used for training ML models. If we can find and

extract the relevant aspects of text understanding and annotation

directly from the source, i.e., eye-tracking and brain activity

signals during reading, we can potentially replace this expensive

manual labeling work with ML models trained on physiological

activity data recorded from humans while reading. Therefore,

successful reading task classification could support the reduction

of manual labor, improving label quality in ML systems as well

as the job quality of annotators.

Essential for using neurophysiological signals to advance

NLP is the availability of a large dataset providing concurrent

measures of eye-tracking and EEG data, as well as ground truth

labels for ML tasks. For the present benchmark, this is possible

by leveraging a naturalistic dataset of reading English sentences,

the Zurich Cognitive Language Processing Corpus (Hollenstein

et al., 2018, 2020). The ZuCo dataset is publicly available and

has recently been used in a variety of applications including

leveraging EEG and eye-tracking data to improve NLP tasks

(Barrett et al., 2018; Mathias et al., 2020; McGuire and Tomuro,

2021), evaluating the cognitive plausibility of computational

language models (Hollenstein et al., 2019b; Hollenstein and

Beinborn, 2021), investigating the neural dynamics of reading

(Pfeiffer et al., 2020), developing models of human reading

(Bautista and Naval, 2020; Bestgen, 2021).

Recently, ZuCo has also been leveraged for an ML

competition on eye-tracking prediction (Hollenstein et al.,

2021a).This competition revolves around a different task with

a focus on computational language models in the field of natural

language processing. The goal was to predict word-level eye-

tracking features from normal reading such as mean fixation

duration and fixation probability in a regression task. This shows

that the ZuCo dataset has been used successfully for a wide range

of ML tasks.

Moreover, the results of previous single-subject models

for reading task classification (Hollenstein et al., 2021c;
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Mathur et al., 2021) emphasize the potential of this task, but

also highlight the performance gap between research-oriented

single-subject models and more realistic cross-subject scenarios.

The proposed benchmark therefore addresses this gap by

focusing on the latter to improve the inter-subject generalization

capabilities of these machine learning models. The recording of

a new hidden testset with additional participants enables us to

test this task in a suitable manner. Furthermore, by applying

state-of-the-art EEG recording and preprocessing techniques,

we ensure that this benchmark relies on a strong foundation, so

that the resources and efforts of the research community can be

spent wisely.

To conclude, the contributions of our work can be

summarized as follows: First, we formulate a benchmark task

for applying ML techniques to an important problem in

cognitive science, namely, the classification of cognitive tasks.

Second, we provide the data1 and code2 to reproduce our

experiments. We provide a public benchmark and leaderboard

on a new held-out test data. All information can be found here:

www.zuco-benchmark.com. Finally, we propose and discuss

models using various feature sets as baseline models for

this benchmark task. We present detailed analyses of the

results for both eye-tracking and EEG features and discuss the

model performances.

2. Methods

The basis for this ML benchmark task is the Zurich Cognitive

Language Processing Corpus 2.0 (ZuCo 2.0). ZuCo 2.0 was

originally published in Hollenstein et al. (2020). In short,

this corpus contains gaze and brain activity data of 18

participants reading 739 English sentences, 349 in a normal

reading paradigm, and 390 in a task-specific paradigm, in

which the participants actively search for a semantic relation

type in the given sentence as a linguistic annotation task.

This new dataset provides experiments designed to analyze the

differences in cognitive processing between normal reading and

task-specific reading.

In previous work, we recorded a first dataset (i.e., ZuCo

1.0) of simultaneous eye-tracking and EEG during natural

reading (Hollenstein et al., 2018). ZuCo 1.03 consists of three

reading tasks, two of which contain very similar readingmaterial

and experiments as presented in the current work. However,

for ZuCo 1.0 the normal reading and task-specific reading

paradigms were recorded in different sessions on different days.

Therefore, the recorded data from ZuCo 1.0 is not appropriate

1 Benchmark data available here: https://osf.io/d7frw/.

2 Code for baseline methods available here: https://github.com/

norahollenstein/zuco-benchmark.

3 Data available here: https://osf.io/q3zws/.

TABLE 1 Descriptive statistics of reading materials (SD, standard

deviation), including Flesch readibility scores.

NR TSR

Sentences 349 390

Sent. length Mean (SD), range Mean (SD), range

19.6 (8.8), 5–53 21.3 (9.5), 5–53

Total words 6,828 8,310

Word types 2,412 2,437

Word length Mean (SD), range Mean (SD), range

4.9 (2.7), 1–29 4.9 (2.7), 1–21

Flesch score 55.38 50.76

as a means of comparison between normal reading and task-

specific reading, since the differences in the brain activity

data might result mostly from the different sessions due to

the sensitivity of EEG. Therefore, while the data is available

in the same format, it is not recommended to be used for

this benchmark task. In the following section, we describe the

compilation of the ZuCo 2.0 dataset.

2.1. Reading materials

During the recording session, the participants read a total of

739 sentences that were selected from the Wikipedia corpus

provided by (Culotta et al., 2006). This corpus was chosen

because it provides annotations of semantic relations. Relation

detection is a high-level semantic language understanding task

requiring complex cognitive processing. ZuCo 2.0 includes

seven of the originally defined relation types: political_affiliation,

education, founder, wife/husband, job_title, nationality, and

employer. The sentences were chosen with similar sentence

lengths and Flesch reading ease scores (Flesch, 1948) between

the two reading tasks. The Flesch score indicates how difficult

an English text passage is to understand based on its structural

characteristics, i.e., number of words and number of syllables. A

higher Flesch score means the text is easier to read. The dataset

statistics are shown in Table 1.

Of the 739 sentences, the participants read 349 sentences

in a normal reading paradigm and 390 sentences in a task-

specific reading paradigm, in which they had to determine

whether a certain relation type occurred in the sentence or

not. Table 2 shows the distribution of the different relation

types in the sentences of the task-specific annotation paradigm.

Purposefully, there are 63 duplicates between the normal reading

and the task-specific sentences (8% of all sentences). The

intention of these duplicate sentences is to provide a set of

sentences read twice by all participants with a different task in

mind. Hence, this enables the comparison of eye-tracking and
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brain activity data when reading normally and when annotating

specific relations. During both tasks, the participants were able

to read in their own speed, using a control pad to move to

the next sentence and to answer the control questions, which

allowed for natural reading. Since all subject read at their

own personal pace, the reading speed varies between subjects.

Figure 1 shows the average sentence length, reading speed, and

omission rate for each task.The sentence length (i.e., the number

of words per sentence) was controlled in the selection of reading

materials, so that it would not differ significantly between the

two tasks (NR mean = 19.6, SD = 8.8; TSR mean = 21.3, SD =

9.5; p = 0.02 in a two-sided t-test).

2.1.1. Normal reading
In the first task, participants were instructed to read

the sentences naturally, without any specific task other than

comprehension. An example sentence is “He served in the

United Stated Army inWorldWar II, then got a law degree from

Tulane University.” The control condition for this task consisted

of single-choice questions about the content of the previous

TABLE 2 Distribution of relation types in the task-specific reading.

Relation type Sentences

Political affiliation 45 (9)

Education 72 (10)

Wife 54 (12)

Job title 65 (11)

Employer 54 (10)

Nationality 60 (8)

Founder 40 (8)

Total 390 (68)

The right column contains the number of sentences, and the number control sentences

without a relation in brackets.

sentence. Twelve percent of randomly selected sentences were

followed by a comprehension question with three answer

options on a new screen, for example, “Which university did

he get his degree from? (1) Austin University, (2) Tulane

University, (3) Louisiana State University.”

2.1.2. Task-specific reading
In the second task, the participants were instructed to search

for a specific semantic relation in each sentence they read.

Instead of comprehension questions, the participants had to

decide for each sentence whether it contains the relation or not,

i.e., they were actively annotating each sentence. An example

sentence containing the relation founder is “After this initial

success, Ford left Edison Illuminating and, with other investors,

formed the Detroit Automobile Company.” Seventeen percent

of the sentences did not include the particular relation type

and were used as control conditions. All sentences within one

recording block involved the same relation type. Each block was

preceded by a short practice round, which described the relation

type and was followed by three sample sentences, so that the

participants would be familiar with the respective relation type.

2.2. Linguistic assessment

As a linguistic assessment, the vocabulary and language

proficiency of the participants was tested with the LexTALE

test (Lexical Test for Advanced Learners of English, Lemhöfer

and Broersma, 2012). This is an unspeeded lexical decision

task designed for intermediate to highly proficient language

users. The average LexTALE score over all participants was

88.54%. Moreover, we also report the scores the participants

achieved with their answers to the reading comprehension

control questions and their relation annotations. The detailed

scores for all participants are also presented in Table 3.

FIGURE 1

Sentence length (words per sentence), reading speed (seconds per sentence) and omission rate (percentage of words not fixated) comparison
between normal reading (NR) and task-specific reading (TSR) of the sentence in ZuCo 2.0.
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TABLE 3 Subject demographics for ZuCo 2.0, LexTALE scores, scores of the comprehension questions, and individual reading speed (i.e., seconds

per sentence) for each task.

ID Age Gender LexTALE Comp. scores Reading speed

NR TSR NR TSR

YAC 32 female 76.25% 82.61% 83.85% 5.27 4.96

YAG 47 female 93.75% 91.30% 56.92% 7.64 8.73

YAK 31 female 100.00% 74.07% 96.41% 3.83 5.89

YDG 51 male 100.00% 91.30% 96.67% 4.97 3.93

YDR 25 male 85.00% 78.26% 96.92% 4.32 2.32

YFR 27 male 85.00% 89.13% 94.36% 6.48 4.79

YFS 39 male 90.00% 91.30% 96.15% 3.96 2.85

YHS 31 male 90.00% 78.26% 97.69% 3.30 2.40

YIS 52 male 97.50% 89.13% 98.46% 5.82 2.58

YLS 34 female 93.75% 91.30% 92.31% 5.57 5.85

YMD 31 female 100.00% 86.96% 95.64% 7.50 6.24

YRK 29 female 85.00% 97.83% 96.15% 7.35 7.70

YRP 23 female 82.50% 78.26% 90.00% 7.14 8.37

YSD 34 male 95.00% 93.48% 94.36% 5.01 2.87

YSL 32 female 71.25% 84.78% 83.85% 6.73 6.14

YTL* 36 male 81.25% 80.43% 94.10% 7.48 3.23

Mean 34 44%m. 88.54% 86.36% 91.94% 5.84 4.81

The * next to the subject ID marks a bilingual subject.

2.3. Participants

The subjects from ZuCo 2.0 are provided as training data

for the current benchmark. For the ZuCo 2.0, we recorded data

from 19 participants and discarded the data of one of them

due to technical difficulties with the eye-tracking calibration.

Another two subjects were discarded during data cleaning and

preprocessing. Thus, we share the data of these 16 participants.

All participants are healthy adults (between 23 and 52 years

old; 10 females). Details on subject demographics can be found

in Table 3. Their native language is English, originating from

Australia, Canada, UK, USA or South Africa. Two participants

are left-handed and three participants wear glasses for reading.

All participants gave written consent for their participation and

the re-use of the data prior to the start of the experiments. The

study was conducted under approval by the Ethics Commission

of the University of Zurich.

2.3.1. ZuCo 2.0 held-out testset
To provide a true hidden dataset for the current benchmark,

we recorded data from 10 additional participants (i.e., a held-

out testset). They underwent the identical procedure as in the

ZuCo 2.0 dataset. All participants are healthy adults [mean age

= 31.8 (SD = 5.11), four females]. All participants are right-

handed. Their native language is English, originating from UK,

Canada or USA. For an overview on subjects demographics,

comprehension scores and reading speed please refer to Table 4.

All participants gave written consent for their participation and

the re-use of the data prior to the start of the experiments.

2.4. Procedure

Data acquisition took place in a sound-attenuated and dark

experiment room. Participants were seated at a distance of 68

cm from a 24-inch monitor (ASUS ROG, Swift PG248Q, display

dimensions 531× 299mm, resolution 800× 600 pixels resulting

in a display: 400 × 298.9 mm, a vertical refresh rate of 100 Hz).

All sentences were presented at the same position on the screen

and could span multiple lines. The sentences were presented

in black on a light gray background with font size 20-point

Arial, resulting in a letter height of 0.8 mm. The experiment

was programmed in MATLAB 2016b (MathWorks, Inc. 2000),

using PsychToolbox (Brainard, 1997). A stable head position

was ensured via a chin rest. Participants were instructed to

stay as still as possible during the recordings to avoid motor

EEG artifacts. Participants completed the tasks sitting alone in
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TABLE 4 Subject demographics for the new held-out test dataset, LexTALE scores, scores of the comprehension questions, and individual reading

speed (i.e.,seconds per sentence) for each task.

ID Age Gender LexTALE Comp. scores Reading speed

NR TSR NR TSR

XAH 25 female 95.25% 91.30% 93.58% 5.58 3.94

XBB 37 male 95.75% 82.60% 93.84% 6.88 5.67

XBD 32 male 89.00% 91.30% 96.15% 7.31 4.48

XDT 25 male 97.50% 86.95% 93.85% 8.24 8.54

XLS 28 male 85.00% 89.13% 94.87% 7.52 5.68

XPB 29 male 97.50% 86.95% 91.02% 7.87 6.53

XSE 31 female 90.00% 89.13% 96.15% 7.23 3.75

XSS 42 female 97.50% 89.13% 96.67% 7.49 6.21

XTR 34 female 93.75% 89.13% 96.15% 9.18 5.91

XWS 35 male 100.00% 89.13% 95.64% 6.65 4.29

Mean 31.8 60%m. 94.13% 88.48% 94.79% 7.40 5.50

the room, while two research assistants were monitoring their

progress in the adjoining room. All recording scripts including

detailed participant instructions are available alongside the data.

During both tasks, the participants were able to read in their

own speed, using a control pad to move to the next sentence

and to answer the control questions, which allowed for natural

reading. All 739 sentences were recorded in a single session for

each participant. The duration of the recording sessions was

between 100 and 180 min, depending on the time required to set

up and calibrate the devices, and the personal reading speed of

the participants. Participants were also offered snacks and water

during the breaks and were encouraged to rest. We recorded 14

blocks of∼50 sentences, alternating between tasks: 50 sentences

of normal reading, followed by 50 sentences of task-specific

reading. The order of blocks and sentences within blocks was

identical for all subjects. Each sentence block was preceded by a

practice round of three sentences and followed by a short break

to ensure a clear separation between the reading tasks. For the

held-out test dataset, all blocks were merged and the order of the

sentences was shuffled before sharing the data on OSF. This is

done to prohibit the possibility that challenge participants would

simply train a model to identify an experimental block rather

than the type of reading for each sentence.

2.5. Data acquisition

2.5.1. Eye-tracking acquisition
Eye movements and pupil size were recorded with an

infrared video-based eye tracker (EyeLink 1000 Plus, SR

Research) at a sampling rate of 500 Hz and an instrumental

spatial resolution of 0.01◦. The eye tracker was calibrated with a

nine-point grid at the beginning of the session and re-validated

before each block of sentences. Participants were instructed to

keep their gaze on a given point until it disappeared. If the

average error of all points (calibration vs. validation) was below

1◦ of visual angle, the positions were accepted. Otherwise, the

calibration was redone until this criterion was reached.

2.5.2. EEG acquisition
We recorded the high-density EEG data at a sampling rate

of 500 Hz with a bandpass of 0.1–100 Hz, using a 128-channel

EEG Geodesic Hydrocel system (Electrical Geodesics). The Cz

electrode served as a recording reference. The impedance of each

electrode was checked before recording and was kept below 40

k�. Additionally, electrode impedance levels were checked after

every third block of 50 sentences (approximately every 30 min)

and reduced if necessary.

2.6. Data preprocessing and feature
extraction

2.6.1. Eye-tracking preprocessing and feature
extraction
2.6.1.1. Eye-tracking preprocessing

The eye tracker computed eye position data and identified

events such as saccades, fixations, and blinks. Saccade onsets

were detected using the eye-tracking software default settings:

acceleration larger than 8,000◦/s2, a velocity above 30◦/s,

and a deflection above 0.1◦. The eye-tracking data consists

of (x, y) gaze location entries for each individual time point

(Figures 3A, B). Coordinates were given in pixels with respect to

Frontiers in Psychology 06 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1028824
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hollenstein et al. 10.3389/fpsyg.2022.1028824

FIGURE 2

Violin plots showing means, distributions, and ranges of the reading time measures per word for each task and each eye-tracking feature (x-axis)
in milliseconds.

the monitor coordinates [the upper left corner of the screen was

(0, 0) and down/right was positive]. We provide this raw data as

well as various engineered eye-tracking features.

2.6.1.2. Eye-tracking feature extraction

For this feature extraction, only fixations within the

boundaries of each displayed word were extracted. A Gaussian

mixture model was trained on the (y-axis) gaze data for each

sentence to improve the allocation of eye fixations to the

corresponding text lines. The number of text lines determined

the number of Gaussians to be fitted within the model.

Subsequently, each gaze data point was clustered to thematching

Gaussian and the data were realigned. As a result, each gaze

data point is clearly assigned to a specific text line. Data points

distinctly not associated with reading (minimum distance of 50

pixels to the text) were excluded. Additionally, fixations shorter

than 100 ms were excluded from the analyses, because these

are unlikely to reflect fixations relevant for reading (Sereno and

Rayner, 2003). On the basis of previous eye-tracking corpora,

namely the GECO corpus (Cop et al., 2017) and ZuCo 1.0

(Hollenstein et al., 2018), we extracted the following features:

(i) gaze duration (GD), the sum of all fixations on the current

word in the first-pass reading before the eye moves out of

the word; (ii) total reading time (TRT), the sum of all fixation

durations on the current word, including regressions; (iii) first

fixation duration (FFD), the duration of the first fixation on the

prevailing word; (iv) single fixation duration (SFD), the duration

of the first and only fixation on the current word; and (v) go-

past time (GPT), the sum of all fixations prior to progressing to

the right of the current word, including regressions to previous

words that originated from the current word. See Figure 2 for

a visualization of the feature ranges of each reading task. For

each of these eye-tracking features, we additionally computed

the pupil size. Furthermore, we extracted the number of fixations

and mean pupil size for each word and sentence. Additionally,

on the sentence level, we extracted the mean and maximum

saccade velocity, saccade amplitude and saccade duration. On

the word level, saccade velocity, amplitude, and duration were

extracted for in-going, outgoing, as well as saccades within a

word. Finally, on the sentence level, omission rate is calculated,

representing the proportion of words which were not fixated

within each sentence.

2.6.2. EEG preprocessing and feature extraction
2.6.2.1. EEG preprocessing

Before the EEG preprocessing, data from all 14 blocks

(seven NR and seven TSR) were first merged to avoid high

predictive power based on the differences resulting from the

preprocessing itself. To avoid loss of data by the subsequent

automated preprocessing pipeline, the files of each recording

blocked were screened to exclude highly artifactual data.

Therefore, each block was temporarily filtered using a 2 Hz high-

pass filter. Subsequently, outlying data points were removed
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FIGURE 3

Visualization of eye-tracking and EEG data for a single sentence. (A) Prototypical sentence fixation data. Red crosses indicate fixations; boxes
around the words indicate the wordbounds. (B) Fixation data plotted over time. (C) Raw EEG data during a single sentence. (D) Same data as in
(C) after preprocessing.

if they exceeded a threshold of three standard deviations

above or below the mean of the data. Only if the standard

deviation of this temporarily pre-cleaned data was below a

cut-off of 100 µV, the original corresponding block was used

in the merging process. Applying this criterion, 4.02% of all

blocks were excluded. The EEG preprocessing was conducted

with the open-source MATLAB toolbox preprocessing pipeline

Automagic (Pedroni et al., 2019), which combines state-of-the-

art EEG preprocessing tools into a standardized and automated

pipeline. The EEG preprocessing consisted of the following

steps: First, bad channels were detected by the algorithms

implemented in the EEGlab plugin clean_rawdata.4 A

channel was defined as a bad electrode when recorded data

from that electrode was correlated at <0.85 to an estimate

based on other channels. Furthermore, a channel was defined

as bad if it had more line noise relative to its signal than

all other channels (four standard deviations). Finally, if a

channel had a longer flat-line than 5 s, it was considered

bad. These bad channels were automatically removed and later

interpolated using a spherical spline interpolation (EEGLAB

function eeg_interp.m). The interpolation was performed

as a final step before the automatic quality assessment of

the EEG files. Next, data were filtered using a 2 Hz high-

pass filter and line noise artifacts were removed by applying

Zapline (de Cheveigné, 2020), removing seven power line

components. Subsequently, independent component analysis

(ICA) was performed. Components reflecting artifactual activity

were classified by the pre-trained classifier ICLabel (Pion-

Tonachini et al., 2019). Components that were classified as any

class of artifacts (line noise, channel noise, muscle activity, eye

4 http://sccn.ucsd.edu/wiki/Plugin_list_process

activity, and cardiac artifacts) with a probability higher than

0.8 were removed from the data. Subsequently, residual bad

channels were excluded if their standard deviation exceeded a

threshold of 25 µV. Very high transient artifacts (>100 µV)

were excluded from calculating the standard deviation of each

channel. However, if this resulted in a significant loss of channel

data (>50%), the channel was removed from the data. After this,

the pipeline automatically assessed the quality of the resulting

EEG files based on four criteria: First, a data file was marked

as bad-quality EEG and not included in the analysis if the

proportion of high-amplitude data points in the signals (>30

µV) was larger than 0.20. Second, more than 20% of time points

showed a variance larger than 15µV across channels. Third,

30% of the channels showed high variance (>15 µV). Fourth,

the ratio of bad channels was higher than 0.3. After Automagic

preprocessing, 13 electrodes in the outermost circumference

(chin and neck) were excluded from further processing as they

capture little brain activity and mainly record muscular activity.

The discarded electrode labels were E1, E8, E14, E17, E21,

E25, E32, E48, E49, E56, E63, E68, E73, E81, E88, E94, E99,

E107, E113, E119, E125, E126, E127, and E128. Additionally,

10 EOG electrodes were separated from the data and not

used for further analysis, yielding a total number of 105 EEG

electrodes. Subsequently, the data was converted to a common

average reference.

2.6.2.2. EEG and eye-tracking synchronization

In a next step, the EEG and eye-tracking data were

synchronized using the “EYE-EEG" toolbox (Dimigen et al.,

2011) to enable EEG analyses time-locked to the onsets of

fixations and saccades, and subsequently segment the EEG

data based on the eye-tracking measures. The synchronization
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FIGURE 4

Topographical plots showing the mean EEG activity across all subjects from ZuCo 2.0. Averaged sentence level features are plotted in each
reading condition as well as the di�erence between the tasks (NR minus TSR; scalp viewed from above, nose at the top). Only for the purpose of
this visualization, relative power values are plotted (i.e., power in each frequency band divided by the average power between 1 and 50Hz),
showing the expected typical power distribution across the scalp.

algorithm first identified the “shared" events. Next, a linear

function was fitted to the shared event latencies to refine

the start- and end-event latency estimation in the eye tracker

recording. Finally, the synchronization quality was ensured by

comparing the trigger latencies recorded in the EEG and eye-

tracker data. All synchronization errors did not exceed 2 ms (i.e.,

one data point). Remaining eye artifacts in data were removed

with Unfold toolbox (Ehinger and Dimigen, 2019) according to

a method described in Pfeiffer et al. (2020). The effect of this

preprocessing can be seen from Figures 3C, D.

2.6.2.3. EEG feature extraction

To compute oscillatory power measures, we band-pass

filtered the continuous EEG signals across an entire reading

task for four different frequency bands, resulting in a time-

series for each frequency band. The distinct frequency bands

were determined as follows: theta_1 (4–6 Hz), theta_2 (6.5–

8 Hz), alpha_1 (8.5–10 Hz), alpha_2 (10.5–13 Hz), beta_1

(13.5–18 Hz), beta_2 (18.5–30 Hz), gamma_1 (30.5–40 Hz),

and gamma_2 (40.5–49.5 Hz). Afterwards, we applied a

Hilbert transformation to each of these time-series resulting

in a complex time series. The Hilbert phase and amplitude

estimation method yields results equivalent to sliding window

Fourier transformation and wavelet approaches (Bruns, 2004).

We chose specifically the Hilbert transformation to maintain

temporal information for the amplitude of the frequency bands

to enable the power computation of the different frequencies

for time segments defined through fixations in the eye-tracking

data. Finally, for each sentence as well as for each word within

each sentence, and for each frequency band, the EEG features

consist of a vector of 105 dimensions (one value for each EEG

channel). On the level of individual words, these frequency

band power features were calculated based on fixations of GD,

TRT, FFD, SFD, and GPT (see above). For each EEG feature,

all channels were subject to an artifact rejection criterion of

90 µV to exclude trials with transient noise. To descriptively

compare the EEG activity and the extracted frequency band

power between the NR and TSR sentences, the average of each

condition as well as the differences (NR minus TSR) for the

different sentence-level EEG features are plotted in Figure 4.

2.7. Data access

The raw and preprocessed EEG and eye-tracking data, as

well as the features extracted from the preprocessed EEG and

eye-tracking are provided for this benchmark. For the training

data, the information about the task (normal reading or task-

specific reading) is also available. Please note that for the held-

out test dataset, we can only provide the preprocessed data

and the extracted features. As the raw data were collected in

different blocks of normal reading and task-specific reading, the

participants could otherwise infer the outcome from the block

separation. All the data can be accessed via OSF: https://osf.io/

d7frw/.

3. Benchmark task

3.1. Task definition

We propose an ML benchmark for reading task identification.

As described in Section 2, the ZuCo corpus provides data

from two reading paradigms, normal reading (NR) and task-

specific annotation reading (TSR). Consequently, we frame

the problem as binary classification task with labels Y ∈

{NR, TSR}. The training data consists of sentences labeled
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depending on which reading task they belonged to during the

experiment. Each sentence is represented by a feature set X.

The input features should be eye-tracking or EEG features, or

a combination thereof.

The goal of the benchmark task is to build a binary classifier h to

predict the label Y for each sentence given only the features X:

h :X −→ {NR, TSR}. (1)

Due to the naturalistic experiment design and the co-

registration of EEG and eye movement signals, feature

extraction is possible on various levels. There are no restrictions

to the type and dimension of the input features or the model.

3.2. Performance metrics

The classifier’s performance is evaluated by the classification

accuracy, defined as the number of correct predictions divided

by the total number of predictions. Since previous results

have shown high performance on models trained and tested

within-subject but low performance on cross-subject models

(Hollenstein et al., 2021c), this benchmark aims to address

this gap by focusing on the latter to improve the inter-subject

generalization capabilities of the models. We propose a cross-

subject evaluation, where each subject in the held-out testset

is evaluated by a model trained on all subjects in the training

split (i.e., the original ZuCo 2.0 dataset). Therefore, the main

benchmark metric is defined as the mean classification accuracy

across all subjects in the testset. As a second metric, we choose

the F1-measure. In our classification setup, we do not distinguish

between a positive and a negative class, i.e., there is no clear

majority or minority class. For that reason, we choose to

evaluate our classifier using the macro-averaged F1-scores. The

benchmark task is evaluated on models from the following three

categories: models trained on EEG features, models trained on

eye-tracking features, and models trained on a combination of

EEG and eye-tracking features.

3.3. Benchmark setup

We host the ZuCo benchmark on Eval-AI (Yadav et al.,

2019) – an open source AI challenge platform for evaluating

and comparing machine learning and artificial intelligence

algorithms. The link to the reading task classification challenge

and more information on how to participate is available

here: https://github.com/norahollenstein/zuco-benchmark.

This solution will help other researchers to participate in our

machine learning challenge and enable us to automate the

evaluation of the future submissions.

3.3.1. Evaluation strategy
Researchers that want to participant in the benchmark task

can submit predictions from their models for the hidden testset.

We specified the challenge configuration, evaluation code, and

information about the data splits. Predictions for the testset

labels can be submitted in the JSON file.

3.3.2. Leaderboard
The public leaderboard will include the scores on the

chosen evaluation metrics as well as references to upcoming

publications. Upon submission, the predictions will be handed

over to challenge-specific workers that compare the predictions

against corresponding ground-truth labels using the custom

evaluation script provided by our team.

4. Baseline methods

4.1. Textual baselines

We set three minimal baselines for this benchmark task:

(i) a random baseline, (ii) a word embedding baseline, and

(iii) a text difficulty baseline. We will use the first one as

the basis for model comparison, while the latter two serve

merely as control conditions to validate the dataset and exclude

linguistic properties as a possible confound in the reading task

classification benchmark.

4.1.1. Random baseline
We compute a random baseline to assess the chance level

of predicting the correct class. We randomly sample the labels

according to the distribution of the training data. That means

the label NR is chosen with a probability of pNR = 390
739 ≈ 0.53

and TSR is chosen with pTSR = 1− pNR ≈ 0.47.

4.1.2. Word embedding baseline
Even though the experimental design of ZuCo ensured the

similarilty of the sentences in terms of sentence lengths and

text complexity, we aim to ensure the sentences in the data are

not easily separable merely by their linguistic characteristics.

Therefore, we compare our models to a textual baseline as

a sanity check. For this purpose, we use pre-trained textual

representations, namely, the state-of-the-art contextualized

BERT word embeddings (Devlin et al., 2019). We concatenate

the embeddings of all words in a sentence and feed them into

the LSTMmodel.

4.1.3. Text di�culty baseline
We also provide a baseline based on text readability.

Although the sentences for both reading tasks were chosen to
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FIGURE 5

Flesch reading ease (FRE) scores for the NR and TSR sentences
used in the ZuCo 2.0. dataset.

be of similar length and from the same text genre, we want to

ensure that both tasks are not separable merely by the difficulty

of the sentences. Therefore, we implement a text difficulty

baseline, which classifies the sentences into NR and TSR based

on their Flesch reading ease score (FRE; Flesch, 1948). This score

indicates how difficult an English text passage is to understand

based on the average number of words in a sentence and the

average number of syllables in a word:

FRE = x− y

(

words

sentences

)

− z

(

syllables

words

)

(2)

where x, y and z are language-specific weighting factors (for

English x = 206.835, y = 1.015, z = 84.6). We compute

FRE scores for each of the English sentences in the ZuCo data.

Figure 5 shows the distribution of the FRE across the sentences

of ZuCo 2.0.

4.2. EEG and eye-tracking models

We also present a set of initial models using EEG and eye-

tracking features as a starting point for future models.5 For each

sentence in the dataset, the model input is composed of a vector

of eye-tracking and/or EEG features corresponding to a single

sentence in the dataset. Each sample in the training set is labeled

with the reading task it was recorded in, normal reading (NR) or

task-specific reading (TSR).We investigate the potential of using

sentence-level eye-tracking and EEG features for the reading

task classification. Hollenstein et al. (2021c) compared sentence-

level and word-level features for this task previously and showed

5 The code is available here: https://github.com/norahollenstein/zuco-

benchmark.

that sentence-level features perform better. However, challenge

participants are also invited to use word-level and other features

(see discussion in Section 6 for suggestions). The advantages

of sentence-level features consist of the possibility of using

simpler machine learning models and reduced training times

(Hollenstein et al., 2021c). Sentence-level features are defined as

metrics aggregated over all words in a given sentence.

4.2.1. Eye-tracking features
We include two types of sentence-level eye-tracking

features. The features are summarized in Table 5. First,

the fixation-based features - omission rate, number of

fixations and reading speed - are aggregated metrics

normalized by sentence length, i.e., the number of words

in a sentence. Analogous to the word-level models, we also

include saccade-based features. These include the mean

and maximum duration, velocity and amplitude across all

saccades that occurred within the reading time of a give

sentence. We test these features individually and combined

to investigate the performance increase achieved by adding

more features.

4.2.2. EEG features
The sentence-level EEG features take into account the

EEG activity over the whole sentence duration (even when

no words were fixated). We aggregate over the preprocessed

EEG signals of the full reading duration of a sentence. Each

subfrequency band (e.g., alpha_1 and alpha_2) were averaged

to get one power measure for each frequency band, i.e.,

theta (4–8 Hz), alpha (8.5–13 Hz), beta (13.5–30 Hz), and

gamma (30.5–49.5 Hz). The sentence-level EEG features are

described in Table 6. We experiment with both aggregate

metrics, i.e., the mean across all electrodes, and individual

electrode features.

Examples of these features across all subjects, split by class

(normal reading vs. task-specific reading) are shown in Figure 6

for ZuCo 2.0.

4.2.3. Principal component analysis
We use principal component analysis (PCA) to reduce

the dimensionality of the EEG features. In an initial attempt,

we fitted PCA on all training subjects and applied it to

both the training and test split. This, however, led to no

significant improvements in classification accuracy. Thus, we

fit PCA to each subject individually. To prevent overfitting

to the test subjects, we only consider subjects in the training

data to determine the number of components. We fit PCA

for each subject separately and calculate the number of

components that explain 95% of the variance. We then

choose the number of components of PCA as the median
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TABLE 5 Sentence-level eye-tracking features.

Name Definition Values

Fixation features

omission_rate Percentage of words in a sentence that is not fixated 1

fixation_number Number of fixations in the sentence divided by the number of words 1

reading_speed Sum of the duration of all fixations in the sentence divided by the number of words 1

Saccade features

mean_sacc_dur Sum of the duration of all saccades in the sentence divided by the number of words 1

max_sacc_dur Maximum saccade duration per sentence 1

mean_sacc_velocity Sum of the velocity of all saccades in the sentence divided by the number of saccades 1

max_sacc_velocity Maximum saccade velocity per sentence 1

mean_sacc_amplitude Sum of the amplitude of all saccades in
the sentence divided by the number of saccades

1

max_sacc_amplitude Maximum saccade amplitude per sentence 1

Combined features

Combined ET features Concatenation of all eye-tracking features 9

We use the combination of all features for our models.

TABLE 6 Sentence-level EEG features.

Name Definition Values

Mean features

theta_mean Mean theta band features averaged over all electrodes 1

alpha_mean Mean alpha band features averaged over all electrodes 1

beta_mean Mean beta band features averaged over all electrodes 1

gamma_mean Mean gamma band features averaged over all electrodes 1

eeg_means Mean frequency band features averaged over all electrodes, resulting in 1 feature value for each of the
8 frequency bands

8

Electrode features

electrode_features_theta Mean theta1 and theta2 values of all 105 electrodes 105

electrode_features_alpha Mean alpha_1 and alpha_1 values of all 105 electrodes 105

electrode_features_beta Mean beta_1 and beta_1 values of all 105 electrodes 105

electrode_features_gamma Mean gamma_1 and gamma_1 values of all 105 electrodes 105

electrode_features_all Concatenation of the four features above 420

Combined features

ET & EEG mean features Concatenation of sent_gaze_sacc and eeg_means 17

over all subjects in the training data, which makes it robust

against outlier subjects. The result is a reduced dimensionality

from 105 to 41 of both training and test data. Figure 7

shows that the amount of variance explained by the first

components varies significantly between subjects. The first

component, for instance, accounts for ∼24% of the variance for

subject YTL, whereas it accounts for 49% of the variance for

subject YAC.

To analyze how much the individual electrodes influence

the principal components, we again fit PCA for each subject of

the training data, such that the resulting components explain

95% of the variance. Assuming we have n original features and

m principal components c, where each component is a linear

combination of the original features, i.e., cj =
∑n

i β
j
ixi, j ∈

1 . . .m. We then extract the amount of variance explained (vj)

by each component cj and its weights β
j
i . We sum up all β

j
i
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FIGURE 6

Examples of feature distributions across all subjects for the NR and TSR sentences included in the ZuCo 2.0. dataset.

FIGURE 7

Variance explained with increasing number of PCA components
for the training subjects in ZuCo 2.0.

weighted by vj, such that the resulting βi =
∑m

j vjβ
j
i represents

the relevance of feature xi.

Following this procedure, we split the results into frequency

bands and present the corresponding topography plots averaged

over all training subjects in ZuCo 2.0 in Figure 8.

4.2.4. Model
The input to the sentence-level model is a single vector

representing each sentence. We scale the feature values to a

range between {0, 1}. We train a support vector machine for

FIGURE 8

Topographical distribution of electrode importance for the
principle components, divided into the 4 di�erent frequency
bands. Electrode importance is calculated by determining the
influence of each electrode on the principle components and
weighting them by amount of explained variance.

classification with a linear kernel. We use the scikit-learn

SVC implementation.6 For the cross-subject evaluation, the

models are trained on all samples from all subjects in ZuCo

2.0 and tested on the samples from new subjects in the held-

out testset.

6 https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.

html
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TABLE 7 The mean accuracy and F1-score over all subjects for each

feature-set in the benchmark task.

Feature set Accuracy F1

Random 0.50 0.50

FRE baseline 0.53 0.35

BERT baseline 0.65 0.64

Eye-tracking features 0.69 0.67

Eye-tracking and EEG mean features 0.68 0.66

Concatenated EEG electrode features 0.55 0.46

Concatenated EEG electrode features (with
PCA)

0.58 0.56

5. Results

5.1. Results of textual baselines

As described in the previous section, we set three minimal

baselines for this benchmark task: (i) a random baseline, i.e.,

chance level for binary classification, (ii) a word embedding

baseline, namely BERT word embeddings, and (iii) a text

difficulty baseline, based on the Flesch reading ease score (FRE).

The random baseline for binary classification is at 0.50 accuracy.

The word embedding baseline yield a classification accuracy

of 0.65 for ZuCo 2.0. The text difficulty baseline is also above

random performance with a classification accuracy of 0.53

for ZuCo 2.0. Table 7 shows the accuracy and F1-score for

all baselines.

5.2. Results of EEG and eye-tracking
models

As described in Section 3, we consider three different feature

sets, EEG, eye-tracking, and the combination of all features. For

each feature set and each subject, we report the accuracy and the

F1-score. For each subject in the hidden testset, we compute the

results via bootstrapping, sampling 500 times with replacement,

and using a sample size equal to the original data. For all results,

we report the comparison to the random and textual baselines

as well as the 95% confidence intervals for each subject. Table 7

shows a summary of the results. The corresponding tables with

the detailed numbers for all subjects and feature sets are shown

in Appendix 1.

First, the results for the eye-tracking features are shown in

Figure 9. These results clearly show all subjects outperforming

the random baseline and FRE control model except for one

subject each for accuracy and F1-score. All subjects except one

perform better than the random baseline, and three subjects

perform significantly better than the BERT word embedding

control model. The mean accuracy across all subjects in the

testset is 0.69, and the mean F1-score is 0.67. Furthermore, the

results for the combined eye-tracking and EEG mean feature set

in Figure 10 do not yield an increase in performance compared

to using only the eye-tracking features (mean accuracy: 0.68;

F1-score: 0.66). Interestingly, the best and worst performing

subjects vary between different feature combinations, and

between accuracy and F1-score.

Next, we show the results using the concatenated EEG

electrode features7 in Figure 11. With this feature set, the mean

accuracy across all subjects in the testset is 0.55, and the mean

F1-score is 0.46. The accuracy scores are notably higher than for

the F1-score. Finally, when using the same features but applying

the PCA preprocessing, the models yield the results presented

in Figure 12. The scores for the accuracy are similar but have a

slightly higher mean of 0.58 (compared to 0.55 without PCA).

However, the F1-scores with PCA are significantly higher with a

mean of 0.56 (compared to 0.46 without PCA). While with these

EEG electrode features the models outperform the random and

text difficulty baseline for some test subjects, they do not achieve

to outperform the strong embedding baseline. Additionally, we

experimented with combining the BERT embeddings with the

EEG and eye-tracking feature sets in the SVMmodels. However,

the combination of linguistic and physiological features did not

yield any improvements.

6. Discussion

The present benchmark challenge has the main goal of

advancing reading task classification through eye-tracking and

EEG data. The challenge participants are invited to develop

ML models to identify whether subjects are reading a sentence

with the goal of reading comprehension (i.e., normal reading)

or whether the subjects are reading a sentence to search for

a specific semantic relation in the sentence (i.e., task-specific

reading). The objective is to investigate which eye movement

and brain activity features are most suited to solve this problem.

Understanding the physiological aspects of the reading process

(i.e., the cognitive load and reading intent) can advance our

understanding of human language processing and general

attentional processes. On the other hand, natural language

processing and machine learning would benefit, as classifiers

that outperform current textual baselines could improve the

quality and process of collecting annotated data (e.g., through

gaze-aided unsupervised labeling).

Several previous studies have used ML models to accurately

perform a reading task classification. Cole et al. (2011) used eye-

tracking data to discriminate between a scanning task and a

reading comprehension task. Furthermore, Biedert et al. (2012)

developed a real-time classifier able to distinguish reading from

7 These figures show the results for absolute EEG power. The results for

relative EEG power are depicted in the Appendix 1 in Figure 13.

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.1028824
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hollenstein et al. 10.3389/fpsyg.2022.1028824

FIGURE 9

The mean accuracy (left), mean F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the concatenated eye-tracking features.

FIGURE 10

The mean accuracy (left), mean F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the eye-tracking and EEG mean features.

FIGURE 11

The mean accuracy (left), mean F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the concatenated EEG electrode features without PCA pre-processing.
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FIGURE 12

The mean accuracy (left) mean, F1-score (right) with corresponding 95% confidence intervals and textual baselines are plotted for each subject
in the held-out test dataset using the concatenated EEG electrode features after pre-processing with PCA.

skimming patterns. In a related study, Kelton et al. (2019)

investigated the influence of different content and tasks on

the performance to determine whether subjects are reading or

skimming a news article. Other neuroimaging methods such as

fMRI have been combined with eye-tracking to examine the

neural basis of sentence comprehension (e.g., Bonhage et al.,

2015) or the discrimination between normal and non-word text

(Choi et al., 2014). In another fMRI study, which simultaneously

recorded eye-tracking data, Ceh et al. (2021) observed that

internally and externally directed cognition are characterized

by distinct brain activity. In addition, several research groups

provide publicly available fMRI data to study naturalistic reading

comprehension (Dehghani et al., 2017; Lopopolo et al., 2018;

Pereira et al., 2018; Shain et al., 2020; Nastase et al., 2021).

While functional MRI has a better spatial resolution compared

to EEG, is a very costly method with restricted real-life usability.

Whereas eye-tracking and EEG systems are of lower cost and can

be used in more naturalistic situations. Several other publicly

datasets recorded eye-tracking (e.g., Cop et al., 2017; Luke and

Christianson, 2018; Jäger et al., 2021) or EEG from continuous

speech stimuli (e.g., Broderick et al., 2018; Brennan and Hale,

2019). These datasets provide the possibility to improve and

evaluate machine learning systems for NLP. However, to the

best of our knowledge, the ZuCo dataset is the largest publicly

available dataset that features simultaneous eye movement and

EEG data recorded in a naturalistic reading setup. One recent

addition is the CoCoNUt dataset by Frank and Aumeistere

(2022), which contains 200 Dutch sentences with combined

EEG and eye-tracking recordings. However, the selection of

sentences is not completely natural, as it is guided by sentence

length and word frequency. Thus, ZuCo is specifically tailored

to leverage EEG and eye-tracking data to improve natural

language processing tasks in a naturalistic setting. The field

of machine learning contains a range of tasks on different

modalities such as language (text), computer vision (video,

images), and speech recognition (audio). Recently, Akbari et al.

(2021) have shown superior performance of ML models with

multimodal representations on downstream tasks such as image

classification. Therefore, from an NLP perspective, another

extension to this benchmark could be to investigate whether

leveraging multimodal embeddings is beneficial for reading

task classification.

In a recent study, the ZuCo data has been used already for

reading task identification (Mathur et al., 2021) using a complex

convolutional network, which is evaluated on a fixed cross-

subject scenario on the sentences from ZuCo 2.0. However, the

relatively poor performance of their model evaluated in a fixed

cross-subject scenario, still leaves room for improvement and

opens research questions regarding the selection of features.

Hollenstein et al. (2021c) have recently presented extensive work

on reading task classification, corroborating the advantages of

the ZuCo dataset for this ML task. The authors found that,

while high accuracy can be achieved on within-subject models,

the performance drops for cross-subject evaluations. There

is clearly room for improvement in the performance of the

results presented in this work. However, these are still very

promising results considering the complex nature of human

physiological data.

A current bottleneck in machine learning is the lack

of generalization capabilities of these models, meaning that

the models perform poorly on data from other domains

that are not included in their training data. For instance,

ML models perform less accurately across languages, across

image or text domains, or across subjects. The latter is of

great importance in neuroscientific research which aims at a

principled understanding of human brain activity as a response

to complex stimuli (Nastase et al., 2019), as well as for practical

applications such as brain-computer interfaces (Chiang et al.,

2019). Specifically, when trained on physiological data, the rules

identified by ML models for a given task ideally hold for the

entire population. Considering the ever-increasing complexity

of ML models due to their large number of parameters,
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they are prone to overfit to their training set (which does

not characterize the entire population), leading to spurious

correlations. Therefore, to validate the gained insights on the

physiological data, ML models need to be evaluated on held-

out subjects as a proxy to the model’s generalization capability.

These results inspired the proposed benchmark based on the

ZuCo dataset. The benchmark task and baseline models follow

the rules suggested by Scheinost et al. (2019) to take into account

subject-specific differences in predictive modeling.

In the current paper, we provide evidence that both eye-

tracking and brain activity data can improve reading task

classification compared to purely text-based baselines. The

best-performing model is based on sentence-level eye-tracking

features. Combining eye-tracking and EEG mean features yields

promising results, but not better than only eye-tracking features.

One explanation for this is that the combination of eye-tracking

and EEG features decreases the signal-to-noise ratio even more

than for only one type of cognitive processing signal. Another

explanation is that the eye-tracking and EEG signals contain

redundant information. This is always a risk when using co-

registered data of EEG and eye-tracking signals within the same

task. Specifically, eye movement artifacts could be contained in

the EEG data. However, in this work, we use state-of-the-art

methods to remove eye movement artifacts in the EEG data

(through ICA and Unfold). In short, there are possible gains in

performance to be achieved bymore sophisticated combinations

of eye movement and brain activity features.

There are various ways to leverage eye-tracking and EEG

data. Currently, we extracted high-level eye-tracking features

based on fixations (e.g, number of fixations and omission rate)

and on saccades (e.g., mean velocity and maximum amplitude).

The ZuCo dataset provides additional reading-related features

such as mean fixation duration, total reading time or go-past

time, but also pupil size information or even the raw data

could be used in future approaches. Using raw data has shown

great promise to model eye-tracking data (e.g., Jäger et al.,

2020), and one of the main advantages of the ZuCo dataset is

that it allows feature extraction on different levels. Moreover,

our EEG features include mean features aggregated over all

electrodes as well as electrode-based frequency measures, which

have been shown to improve NLP tasks in the past (Hollenstein

et al., 2019a, 2021b; Sun et al., 2020; Wang and Ji, 2021).

Nonetheless, we want to highlight that preprocessed EEG data

permits the examination of additional measures, such as source-

level based features (e.g., source-level power estimates) and

functional connectivity measures at the level of the underlying

neuronal generators. Other EEG analysis methods allow the

extract measures of spatio-temporal dynamics of brain activity

(e.g., microstates) (Michel and Koenig, 2018) and event-related

potentials such as N400 components (Frank et al., 2013; Brouwer

et al., 2017). Interestingly, Hollenstein et al. (2021c) found

that gamma band features worked best in a within-subject

setting. However, we found that concatenating all EEG electrode

features is more beneficial in a cross-subject setting. Finally,

the cross-subject performance can be further increased by using

a dimensionality reduction (PCA) on the concatenated EEG

features. Future methods could focus on new approaches for

EEG feature selection and aggregation.

The simultaneous recording of EEG and eye-tracking

allows us to investigate specific feature sets on different levels

of analysis, e.g., sentence level, word level, fixation level.

Nevertheless, one should note that the ZuCo dataset includes

reading individual sentences rather than full document, which

influences the reading behavior. Reading studies with longer

text spans should be considered in future work. Additionally,

the naturalistic setup of the experiments used in this work

are crucial for this benchmark task and for neuroscience in

general (Nastase et al., 2020). Not only does it increase the

ecological validity of the recordings by allowing natural reading

without controlling the individual reading speed, but it also

supports the extraction of signals on various linguistic levels

(Hasson and Egidi, 2015; Brennan, 2016; Alday, 2019; Kandylaki

and Bornkessel-Schlesewsky, 2019; Hamilton and Huth, 2020).

Frey et al. (2018) investigated how two different reading tasks

modulate both eye movements and brain activity. In line with

our findings, their results show that eye movement patterns were

top-downmodulated by different task demands. Moreover, their

brain activity analysis suggests that the decision-making process

during task-specific reading elicits a greater load in working

memory than the one generated in a normal reading task. In

summary, eye-tracking and EEG data offer an immensely diverse

amount of potential measures, which might contain unique

valuable information. Thus, we aim to inspire benchmark

challenge participants to explore and extract alternative features

from the available preprocessed data.

7. Conclusion

We presented a new ML benchmark using eye-tracking and

EEG data to classify reading tasks. The goal of the benchmark

challenge is to distinguish between normal reading and task-

specific reading in a cross-subject evaluation scenario. We

provide multiple initial models for this task and show that

ML models trained on eye-tracking and EEG features can

outperform strong textual baselines.

The standardized Zurich Cognitive Language Processing

Corpus (ZuCo) dataset facilitates the creation of such a machine

learning benchmark. We use the ZuCo 2.0 dataset as training

data. To make our benchmark task more robust, we have

additionally recorded further eye-tracking and EEG data from

natural reading from additional subjects in a hidden testset.

ZuCo’s rich structure and high-density coverage of simultaneous

EEG and eye-tracking signals can also help to advance other

areas that study the combination of gaze position and brain

activity to identify variations in attention, reading patterns and
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reading intents, as well as participants’ compliance with the task

demands and cross-subject variability.

Our dataset and benchmark setup allows us to easily add

additional machine learning tasks to the leaderboard in the

future. For instance, we can add additional NLP tasks since the

ZuCo datasets provide ground truth labels for sentiment analysis

or relation detection from text. Additionally, adding tasks such

as eye movement and ERP prediction would be beneficial for

various research communities. For example, the prediction of

eye movement patterns has gained interest also in the NLP

community (Hollenstein et al., 2021a). The main goal of this

work is to create a platform for discussion and future research

on a common benchmark task for reading task classification

based on eye movement and brain activity data. We hope that

this benchmark allows other researchers to make progress in this

interdisciplinary research field.
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