
Frontiers in Psychology 01 frontiersin.org

A practical introduction to using 
the drift diffusion model of 
decision-making in cognitive 
psychology, neuroscience, and 
health sciences
Catherine E. Myers                1,2*, Alejandro Interian 3,4 and  
Ahmed A. Moustafa 5,6

1 Research and Development Service, VA New Jersey Health Care System, East Orange, NJ, United 
States, 2 Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, 
Rutgers University, Newark, NJ, United States, 3 Mental Health and Behavioral Sciences, VA New 
Jersey Health Care System, Lyons, NJ, United States, 4 Department of Psychiatry, Robert Wood 
Johnson Medical School, Rutgers University, Piscataway, NJ, United States, 5 Department of Human 
Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, 
Johannesburg, South Africa, 6 School of Psychology, Faculty of Society and Design, Bond University, 
Robina, QLD, Australia

Recent years have seen a rapid increase in the number of studies using 

evidence-accumulation models (such as the drift diffusion model, DDM) in the 

fields of psychology and neuroscience. These models go beyond observed 

behavior to extract descriptions of latent cognitive processes that have been 

linked to different brain substrates. Accordingly, it is important for psychology 

and neuroscience researchers to be  able to understand published findings 

based on these models. However, many articles using (and explaining) these 

models assume that the reader already has a fairly deep understanding of 

(and interest in) the computational and mathematical underpinnings, which 

may limit many readers’ ability to understand the results and appreciate 

the implications. The goal of this article is therefore to provide a practical 

introduction to the DDM and its application to behavioral data – without 

requiring a deep background in mathematics or computational modeling. 

The article discusses the basic ideas underpinning the DDM, and explains 

the way that DDM results are normally presented and evaluated. It also 

provides a step-by-step example of how the DDM is implemented and used 

on an example dataset, and discusses methods for model validation and for 

presenting (and evaluating) model results. Supplementary material provides R 

code for all examples, along with the sample dataset described in the text, to 

allow interested readers to replicate the examples themselves. The article is 

primarily targeted at psychologists, neuroscientists, and health professionals 

with a background in experimental cognitive psychology and/or cognitive 

neuroscience, who are interested in understanding how DDMs are used in 

the literature, as well as some who may to go on to apply these approaches 

in their own work.
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Introduction

An important domain in cognitive psychology and cognitive 
neuroscience is decision-making: the process of recognizing 
features of the situation in which we find ourselves, considering 
numerous possible alternative responses, selecting and executing 
one response, observing the outcomes, and adjusting our behavior 
accordingly. Disruption to any of these processes can affect 
decision-making, with real-world consequences; examples include 
addiction, where individuals make decisions to sacrifice long-term 
health for short term benefits of the addictive substance or 
behavior (Bechara, 2005; Balodis and Potenza, 2020), but 
abnormal decision-making has also been implicated in disorders 
ranging from depressive and anxiety disorders (Chen, 2022) to 
borderline personality disorders (Hallquist et  al., 2018) to 
Parkinson’s disease (Frank et al., 2007; Moustafa et al., 2008) to 
suicidality (Jollant et al., 2011; Brenner et al., 2015; Dombrovski 
and Hallquist, 2017). Better understanding of the cognitive and 
brain substrates of abnormal decision-making in these populations 
is key to improving both psychological and pharmacological 
treatments as well as treatment adherence.

One approach to understanding decision-making is through 
computational models, such as the drift diffusion model (DDM; 
Ratcliff, 1978; Ratcliff and McKoon, 2008; Ratcliff et al., 2016), 
which was originally developed to describe how well-trained 
participants make rapid decisions between two possible response 
alternatives. Such computational models attempt to impute 
information about latent cognitive processes based on observable 
decision-making behavior. By providing a mathematical 
framework to describe behavior, computational models can allow 
researchers to make explicit the underlying mechanistic processes 
that give rise to observable actions (Montague et al., 2012; Millner 
et al., 2020).

Although first described over 50 years ago, the DDM has 
recently enjoyed widespread use, partly due to the development of 
powerful and freely-available software implementing 
computationally-intensive model-fitting algorithms, and partly 
due to an accumulating literature documenting that the DDM can 
indeed shed light on latent cognitive processes that are not 
necessarily evident from traditional hypothesis-driven methods 
of behavioral data analysis (Deghan et al., 2022), and that have 
been linked to specific brain regions (Mulder et al., 2012; Mueller 
et al., 2017; Weigard and Sripada, 2021; Gupta et al., 2022).

The DDM is thus of broad interest in cognitive psychology 
and cognitive neuroscience (Evans and Wagenmakers, 2020), 
which has led to a burgeoning literature including many primary 
research reports that use the DDM to complement traditional 

statistical analysis of the behavioral data. Unfortunately, most if 
not all such articles assume readers’ familiarity with modeling 
jargon and graphical conventions (such as “parameter recovery 
studies,” “non-decision times,” and “hairy caterpillars”), hindering 
the ability of many readers to fully understand these results and 
their implications. Our own experience in different research 
institutions has suggested that many in the fields of psychology 
and neuroscience are somewhat intimidated by unfamiliar 
computational models, or by the time and effort that seems to 
be required to understand these models and their use.

The current article thus aims to provide a reader-friendly 
introduction to the DDM and its use. The article discusses the 
basic ideas underpinning the DDM, provides a step-by-step 
example of how the DDM is implemented and used on an example 
dataset, and discusses methods for model validation and 
conventions for presenting (and evaluating) model results. The 
goal is to provide sufficient background for a reader to critically 
read and evaluate articles using the DDM – without necessarily 
mastering the detailed mathematical underpinnings. However, for 
those readers who wish to go a little deeper, the Supplemental 
Material provides R script to allow readers to run the examples 
discussed in the text, and to generate the data figures and tables 
shown in the article (see Appendix).

Importantly, the current article is not meant to offer a 
comprehensive review of the DDM literature (for good reviews, 
see, e.g., Forstmann et al., 2016; Ratcliff et al., 2016; Evans and 
Wagenmakers, 2020; Gupta et al., 2022), nor a general tutorial on 
good computational modeling practices (see, e.g., Daw, 2011; 
Heathcote et al., 2015; Wilson and Collins, 2019); however, it may 
provide a useful springboard for cognitive psychologists and 
neuroscientists considering the use of the drift diffusion model, 
and related computational models, in their own research.

Overview of the drift diffusion 
model

Speeded decision-making tasks in cognitive psychology 
require well-trained participants to rapidly choose between two or 
more competing responses. Examples include lexical decision 
tasks (press one key if the stimulus is a word or another if it is a 
non-word), Stroop tasks (press a key corresponding to the color 
in which a word is printed, ignoring the semantic content), and 
saccadic flanker tasks (move the eye in the direction indicated by 
a central stimulus, ignoring the directionality of flanker stimuli).

On such tasks, even well-trained participants show a speed-
accuracy tradeoff: they may increase accuracy at the expense of 
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slower (more careful) responding, or make very quick decisions 
that are more likely to be erroneous (Schouten and Bekker, 1967; 
Wickelgren, 1977). This speed-accuracy tradeoff appears to be at 
least partially under conscious control, because a participant can 
perform differently when instructed to emphasize speed vs. 
accuracy (Ratcliff and Rouder, 1998; Voss et al., 2004; Milosavljevic 
et  al., 2010; Katsimpokis et  al., 2020). This complicates the 
interpretation of behavioral data. Additionally, differences in 
response time across groups might reflect different underlying 
mechanisms (Voss et al., 2013). For example, two patient groups 
might both have slower mean reaction times (RTs) than a healthy 
comparison group, but in one patient group this might reflect 
more cautious decision-making, and in the other it might reflect 
disease-related slowing of motor responses. Ideally, what is needed 
is a way to evaluate data that considers not only accuracy and 
speed, but the interaction between them.

To address these issues, a complementary approach to 
analyzing the observed behavioral data is to use computational 
models that attempt to extract latent cognitive parameters that, 
together, could produce the observed distribution of RT and 
accuracy data.

The drift diffusion model (DDM), first described by Ratcliff 
and colleagues (Ratcliff, 1978; Ratcliff and McKoon, 2008; Ratcliff 
et al., 2016), is one example of a broader class of models called 
evidence accumulation models. These models conceptualize 
decision-making as a process in which, on each trial, individuals 
accumulate evidence favoring one or another possible response, 
until enough evidence accumulates to reach a criterion or 
threshold, at which point a decision is made and the corresponding 
response is initiated. Evidence accumulation models are 
sometimes called sequential sampling models, reflecting the idea 
that the nervous system repeatedly (sequentially) obtains bits of 
information (samples) from the environment, until a threshold of 
evidence is reached. The speed-accuracy tradeoff reflects a balance 
point determining when to stop sampling the environment and 
make a decision based on the data at hand.

Like all computational models, the DDM is defined by a series 
of mathematical equations, containing a number of parameters, 
that can be assigned different values. An easy way to think of 
parameters is as dials (or control bars) on a stereo system that each 
control one aspect of the sound (e.g., treble, bass, volume), and 
can be adjusted individually so that together they result in the 
desired effect. Similarly, parameters in an evidence accumulation 
model may control aspects such as how fast evidence is 
accumulated, a built-in bias for one response alternative over 
another, and a tendency to emphasize speed or accuracy. Each of 
these parameters can be adjusted in the model, affecting how the 
model behaves.

In the sections below, we walk through major steps in the 
modeling process, following the flow-chart in Figure 1. First, 
the remainder of this section provides a high-level description 
of the DDM, its parameters, and its use in cognitive psychology. 
Then we consider a concrete example of how the DDM might 
be applied to a simple two-choice decision-making task, and 

step through the process of model-fitting to estimate parameter 
values for each participant in our dataset, followed by model 
validation and model selection approaches. Finally, we discuss 
how the model results can be  reported and subjected to 
statistical analysis. We  conclude with some thoughts about 
evaluating published research using the DDM and other 
computational models.

Parameters in the drift diffusion model

The DDM starts with the assumption that the RT on each trial, 
defined as the time from stimulus onset until execution of the 
motor response, can be decomposed into three parts (Figure 2A): 
the time required for the nervous system to detect or encode the 
stimulus (often denoted Te), the time to reach a decision about 
how to respond to that stimulus (Td), and the time required for 
the nervous system to execute the chosen motor response (Tr). 
Thus, on a given trial, the observed reaction time is the sum of 
these three components: RT = Te + Td + Tr.

Although it might in principle be possible to measure Te and 
Tr separately, normally the encoding and response time are 
lumped together into a single parameter representing non-decision 
time (Ter): that portion of the RT that occurs independently of the 
decision-making process Td. Given this simplification, 
RT = Ter + Td. Typical values of Ter lie in the range 0.1–0.5 s, partly 
depending on the complexity of stimuli and the specific motor 
responses involved (e.g., people can generally execute saccades 
faster than keypresses). It’s usually assumed that Ter may differ 
across individuals, but is relatively constant across trials for one 
individual performing one task.

The other component of RT is decision time (Td), which is the 
time to make a decision (after the stimulus is encoded, but before 
the chosen response is executed). On a single trial, noisy 
information is accumulated across time while the process travels 
along a corridor bounded by the two possible responses 
(schematized by red line Figure  2B). As progressively more 
information is accumulated, evidence in favor of one response will 
“push” the decision process closer to the corresponding boundary. 
When one of the boundaries is reached, the corresponding 
response is selected, and time to reach that boundary defines the 
decision time Td on that trial.

By convention, the lower boundary is assigned a value of 0 on 
the y-axis and distance to the upper boundary is defined by a 
parameter representing boundary separation (a). Larger values of 
a mean that the decision-making process must travel further (up 
or down) to reach a boundary. The effect of larger a is thus that 
decision-making will be slower and more cautious: slower because 
more evidence is required before a distant boundary is reached 
and a response is triggered, and higher accuracy because it will 
be rare for the decision process to “mistakenly” cross the wrong 
boundary (Lerche et al., 2020). Boundary separation is in arbitrary 
units, but is often assumed to range from about 0.5–2. It is often 
assumed that the degree of boundary separation is at least partly 
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under conscious control, depending on whether there is an 
emphasis on speed (low a) or accuracy (high a).

On each trial, the decision process starts from a location on 
the y-axis defined by a parameter denoting a relative starting point 
(z) that ranges from 0 (lower axis) to 1 (upper axis). If z = 0.5, the 
starting point is equidistant from the two boundaries. However, if 
z approaches 1 (or 0), the decision process starts off close to the 
upper (or lower) boundary on every trial, meaning that less 
information is required in order to reach that boundary and 
initiate the corresponding response. The starting point z therefore 
reflects a response bias in favor of one or the other response.

The decision-making process in the DDM is assumed to 
be  noisy (schematized by the jagged red line in Figure  2B), 
reflecting noisy sensory inputs, stochastic variation in the firing 
rate of neurons in the decision-making centers of the brain, and 
even momentary fluctuations in attention. This noise means that 
the same stimulus may not generate the same decision time, or 
even the same response, every time it occurs – leading to 
variations in RT and response accuracy across trials; multiple 
trials with different decision times Td are schematized as multiple 
red lines in Figure 2C. Across many such trials, the average rate at 
which evidence accumulates toward the correct boundary is 

defined by a parameter denoting drift rate (d), schematized as the 
slope of the heavy black line in Figure 2C. Drift rate is a measure 
of speed of information processing, which may vary depending on 
task difficulty. For easy tasks with highly discriminable stimuli, 
there should be a high drift rate (steep slope up or down), and the 
evidence should accumulate quickly and reliably toward the 
correct boundary, resulting in fast RTs and high accuracy. For 
more difficult tasks or more ambiguous stimuli, the drift rate may 
be  lower (less steep), meaning that evidence accumulation is 
slower and noisier, resulting in slower and more variable RTs.

As summarized in Table 1, then, the parameters of the DDM 
map onto different cognitive processes: speed-accuracy settings 
(boundary separation a), response bias (starting point z), 
information processing speed (drift rate d), and non-decision time 
(Ter). These parameters are sometimes called “free parameters,” in 
the sense that they can take on different values (“freely”) – and just 
like the knobs on a stereo, changing each parameter affects 
DDM behavior.

For example, let us consider a task, schematized in Figure 3A, 
in which the subject is instructed to execute one response r1 as 
quickly as possible whenever stimulus s1 is shown, but a different 
response r2 whenever stimulus s2 is shown.

FIGURE 1

Overview of key steps in the modeling process. Typically, choices relating to model design and implementation should be made at task design 
stage, before collection of empirical data. Then, after data collection and data cleansing, model-fitting is conducted to estimate “best-fitting” 
parameters for each participant that allow the model to most closely replicate that participant’s accuracy and reaction time (RT) distributions, 
followed by model validation and model selection procedures, before the modeling results are reported and subjected to conventional statistical 
analysis.
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As shown in Figure 3B, increasing the starting point (z) will 
move the starting point closer to the upper boundary, meaning 
that the evidence accumulation process has farther to travel to 
reach the r1 boundary than to the r2 boundary, making it easier 
(and faster) to decide in favor of r2 on any trial. Such a prepotent 
response bias for r2 might be created if, say, r2 responses are much 
more frequent or highly-rewarded in the task.

As shown in Figure 3C, decreasing the boundary separation 
(a) would make both responses faster, without necessarily 
favoring one over the other. It also increases the error rate, 
because it’s easy to for noise to push the decision-making process 
across either boundary. A reduced boundary separation might 
happen if, say, the subject had been instructed to respond quickly, 
even at the expense of reduced accuracy. Increasing a would have 
the opposite effect of increasing response caution and producing 
slower RTs.

As shown in Figure 3D, increasing the drift rate for one type 
of stimulus (here, d.s2) would result in faster evidence 
accumulation on s2 trials, while decreasing the other (here, d.s1) 
would result in slower evidence accumulation on s1 trials. Drift 
rates are typically slower (less steep) under more difficult task 
conditions, with decreased stimulus discriminability, or in the 
presence of distracting stimuli.

Finally, increasing or decreasing non-decision time Ter would 
affect overall RT, without otherwise affecting the decision-making 
process. For example, patients with motor dysfunction might have 
increased Ter (and overall RT), independent of decision-
making considerations.

Together, the values of the DDM parameters Ter, a, z, and 
d interact to affect overall task performance, including both 
accuracy and RT. To use the stereo example again, the auditory 
effect of changing one parameter (bass) may be very different 

A

B

C

FIGURE 2

Schematic of the drift diffusion model (DDM). (A) Total reaction time (RT) on each trial is assumed to reflect the time required for the nervous 
system to encode the stimulus (Te), the time to make a decision (Td), and the time to execute the selected motor response (Tr). The encoding and 
response time are typically combined into a single parameter, Ter, representing non-decision time on each trial, so that RT = Ter + Td. (B) On each 
trial, the DDM assumes a process of noisy evidence accumulation, represented here as a red line, traveling from a starting point (z) toward 
boundaries representing two possible responses. When the decision-making process encounters one of the boundaries, the corresponding 
response is triggered, and the time to reach that boundary is the decision time Td for that trial. In this schematic, the upper boundary is crossed 
and Response 2 is chosen. The separation between the two boundaries (a) is one factor determining Td: the greater the boundary separation, the 
further the evidence accumulation process has to travel to reach a boundary, leading to longer decision times on average. The starting point z also 
influences Td: if z is placed closer to one boundary, it is easier to reach that boundary than the opposite boundary, leading to a response bias 
favoring the nearer boundary. (C) Schematic of the DDM decision-making process for several trials on which the correct response is Response 2 
(upper boundary). Noise in the evidence accumulation process means that trials with the same stimulus may have different Td (and hence different 
RT), represented here as various red lines, and may on occasion even reach the opposite boundary, triggering an incorrect response, represented 
here as a blue line. The drift rate (d) is the average slope of the evidence accumulation process across a large number of trials.
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depending on whether the value of another (volume) is low or 
high. To understand these complex interactions, rather than 
using schematics such as Figure 3, the DDM can be instantiated 
as a computer program, which includes equations describing 
the drift diffusion process, and specific values of each 
parameter Ter, a, z, and d. The model is then applied to the 
behavioral task: On each trial, the model is presented with a 
stimulus (e.g., s1 or s2), and the diffusion process starts from 
z and is allowed to run (in effect, creating a trace such as the 
ones shown in Figure 2C) until it crosses one or the other 
boundary at time Td, and triggers the corresponding motor 
response (r1 or r2), resulting in reaction time RT = Ter + Td. 
Over a series of such trials, usually the same stimuli in the 
same order as experienced by a human participant, the model’s 
responses and RTs are recorded, producing “simulated data.” 
The accuracy and RT distributions in the simulated data can 
then be compared against the accuracy and RT distributions 
in the empirical data, to see how well the model replicates or 
“fits” the empirical data. Typically, the goal is to fine-tune the 
parameter values until the model’s accuracy and RT 
distributions are as close as possible to the empirical data – a 
process called model-fitting or parameter estimation.

Elaborations of the drift diffusion model

Before going on, it’s worth noting that the above description 
considers a “standard” DDM with four free parameters Ter, a, z, 
and d. More elaborate versions can be considered. For example, in 
many cases, it makes sense to consider different drift rates for 
different trial types or conditions. For example, a lexical decision 
task might have two types of stimuli (s1 = nonwords and 
s2 = words) but also have easy and hard trials, depending on 
whether the trigrams are visually degraded or not, or whether the 
non-words are pronounceable or not. In such cases, it may make 
sense to allow different drift rates for each combination of stimulus 
conditions, with the expectation that (for most participants), there 
will be a steeper drift rate for trials under the easy condition than 
the harder condition. In the schematic of Figure 3A, then, instead 
of having one drift rate for each stimulus (d.s1 and d.s2), we might 
have one for each configuration of stimulus and condition (d.
s1.hard, d.s1.easy, d.s2.hard, d.s2.easy).

Versions of the DDM have also been considered that include 
additional free parameters specifying the amount of trial-by-trial 
variation in the DDM parameters (Forstmann et  al., 2016); 
however, simpler models ignoring this variability can often 
account for observed behavior as well as (and more parsimoniously 
than) more complex models (e.g., Dutilh et al., 2019).

Drift diffusion model parameters 
correspond to latent cognitive processes

The purpose of performing model-fitting to estimate 
parameter values is to provide some insight into the underlying 
cognitive processes. These processes are latent in the sense that 
we cannot observe them directly, only impute them based on the 
participant’s pattern of behavior. These latent processes may 
be very important for understanding the cognitive neuroscience 
of decision-making. For example, they may map onto different 
brain systems, and may vary in principled ways in patient groups 
with different neuropsychological disorders.

In a computational model, we have the advantage that those 
cognitive processes are made explicit, in the form of the parameter 
values governing the model’s behavior. This can provide a way to 
identify specific cognitive mechanisms that underlie 
group differences.

A main reason for the recent popularity of the DDM is that 
the linkage between these DDM parameters and cognitive 
processes has been validated in a number of cognitive 
psychology studies, showing that changes in task conditions 
can alter DDM parameters in a principled way (e.g., 
Milosavljevic et al., 2010; Mulder et al., 2012). For example, 
participants instructed to “work especially carefully and avoid 
mistakes,” that is, to emphasize accuracy over speed, show 
larger boundary separation a, corresponding to greater 
response caution (Voss et  al., 2004), while participants 
working under time pressure, i.e., emphasizing speed over 

TABLE 1 Free parameters in a “standard” drift diffusion model (DDM), 
and associated latent cognitive processes.

DDM
parameter

Parameter 
name

Typical range 
of values

Cognitive 
processes

a Boundary 

separation

0.5–2 (in arbitrary 

units)

Response caution: 

higher a emphasizes 

accuracy over speed, 

lower a emphasizes 

speed over accuracy.

z Starting point 0…1 (as 

proportion of a)

Response bias: starting 

point nearer to one 

boundary leads to 

faster and more 

common decisions 

favoring that response.

d Drift rate −5…+5 (values 

<0 slope down to 

lower boundary)

Speed of evidence 

accumulation 

processing: can 

be affected by task 

difficulty, stimulus 

discriminability, 

attention.

Ter Non-decision 

time

0.1–0.5 s (cannot 

exceed total RT)

Neurological processes 

for registering 

(encoding) sensory 

stimuli and for 

executing motor 

responses.

Naming conventions for these parameters sometimes vary across software packages; for 
consistency, the above parameter names are used throughout this article.
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accuracy, show reduced boundary separation a (Milosavljevic 
et al., 2010). When trials are manipulated so that one response 
is more frequent or more highly rewarded, the starting point 
z shifts to favor that response (Ratcliff and McKoon, 2008; 
Mulder et  al., 2012; Arnold et  al., 2015). When stimulus 
discriminability is varied, making the task harder or easier, 
this is reflected in changes to the drift rate d (Ratcliff and 
McKoon, 2008), while participants deprived of sleep for 24 h 
also show decreased drift rate (Johnson et  al., 2021). 
Introducing a motor response handicap, such as requiring a 
single finger be used for all keyboard responses (Voss et al., 
2004) or requiring multiple keypresses for each response 
(Lerche and Voss, 2019), increases Ter; similarly, varying the 
response modality (so that participants respond by eye 
movements, key pressing, or pointing on a touchscreen), 
affects Ter but not the other parameters (Gomez et al., 2015). 
Together, all these studies suggest that the DDM parameters 
do capture recognizable – and at least partly separable – 
cognitive processes.

The DDM has also been used to explore cognitive processes 
even when differences in observable behavior alone (e.g., 

participants’ response accuracy and RT) do not discriminate 
groups (Zhang et al., 2016). The DDM can also help disentangle 
different processes of information processing; for example, it 
has been repeatedly documented that older adults have longer 
RT than younger adults and that this is associated not only with 
higher non-decision times (Ter) but also with increased 
response caution (larger a; see Thiesen et al., 2021, for meta-
analysis). Although originally developed to address data 
representing asymptotic performance on speeded response 
tasks where RT is fast (e.g., <1 or 1.5 s) and within-session 
learning is negligible (i.e., the decision rule is already known 
and practice effects are minimal), the DDM is increasingly also 
being applied to more complex tasks with longer (e.g., 1–3 s) 
RTs (Palada et al., 2016; Lerche and Voss, 2019; Lerche et al., 
2020), to tasks that involve explicit learning across trials 
(Millner et  al., 2018; Miletić et  al., 2021), and even to data 
obtained from non-human animals (Brunton et  al., 2013; 
Schriver et al., 2020).

In sum, there is a considerable and growing body of literature 
using the DDM to elucidate cognitive processes that affect 
decision-making.

A B

C D

FIGURE 3

Graphical illustration of the effects of changing DDM parameters. (A) A “standard” DDM model, defined by boundary separation a, relative starting 
point z, and two drift rates d.s1 and d.s2 for trials associated with stimulus s1 or s2, respectively. The remaining parameter, non-decision time (Ter), 
is not shown but is assumed to represent a fairly constant contribution to overall RT, independent of the decision-making processes. Increasing or 
decreasing Ter will affect average RT regardless of other task considerations. (B) Changing the starting point z, by moving it closer to one 
boundary, introduces a response bias. Here, z moves closer to the upper boundary; on each trial, the evidence accumulation process has farther 
to go to reach r1 than r2, creating a response bias favoring r2 responses. (C) Reducing boundary separation a reduces the distance that the 
evidence accumulation process has to travel to cross a boundary. This will tend to result in faster responses and potentially more errors, since it is 
easier for noise to push the evidence accumulation process across the wrong boundary. Reduced a is therefore interpreted as reduced response 
caution: less evidence required before selecting either response. Increasing a has the opposite effect of increasing response caution: more 
evidence will be required before the evidence accumulation process crosses either boundary. (D) Increasing drift rate (here, d.s2) means that the 
evidence accumulation process will travel more quickly (steeply) toward the corresponding boundary: evidence accumulation is more efficient 
and, in effect, the task condition is easier. As a result, RTs on s2 trials will generally be faster. Decreasing a drift rate (here, d.s1) has the opposite 
effect: evidence accumulation on s1 trials is less efficient and the process proceeds more slowly toward the r1 boundary. As a result, RTs on s1 
trials will generally be slower. Manipulating any model parameter individually can thus affect both accuracy and speed; model-fitting procedures 
find the configuration of parameter values (a, z, d.s1, d.s2, and Ter) that together provide the most accurate description of the observed accuracy 
and RT distributions.
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Getting started with the drift 
diffusion model: A concrete 
example

Suppose that we  are going to collect data from human 
participants on a simple task with two stimuli (or classes of 
stimuli) s1 and s2 that map to two responses r1 and r2, 
respectively. The task has 500 trials, including 150 s1 and 350 
s2 trials, so that s2 (and r2) occur more frequently than s1 
(and r1). We will assume that participants could realistically 
achieve 100% accuracy, but the requirement to respond as 
quickly as possible introduces errors due to the speed-
accuracy tradeoff. We might be interested in comparing two 
groups of participants (say, patients vs. healthy controls), and 
we  might plan to analyze the behavioral data using one 
ANOVA (or non-parametric equivalent) to compare accuracy 
across groups, and another to compare RTs across groups. 
However, being aware of the speed-accuracy tradeoff, and also 
because we are interested in the underlying cognitive processes 
that produce any observed group differences, we also plan to 
apply a computational model, the DDM.

Model definition

Having decided to use the DDM, the first question is: 
which free parameters will we consider? As noted in Table 1, 
DDMs usually include at least four free parameters: 
non-decision time Ter, boundary separation a, response bias 
z, and (at least one) drift rate d. Given that our task involves 
two different stimuli (or classes of stimuli) s1 and s2, we likely 
want to allow separate drift rates (d.s1 and d.s2) for trials with 
our two types of stimuli.

Both simpler and more complicated models are possible. 
For example, we  already noted above an example where 
we might want multiple drift rates corresponding to multiple 
task conditions. On the other hand, if we think s1 and s2 should 
be equally discriminable, we might assume only a single drift 
rate (equivalent to assuming d.s1 = −d.s2: i.e., the two drift rates 
are of equal steepness, but slope in opposite directions, one 
down to r1 and the other up to r2). Our resulting model would 
therefore have only three free parameters that could vary across 
subjects: Ter, a, and a single drift rate d. Similarly, if we think 
there is no reason to assume a response bias, we might consider 
consider fixing z at 0.5. In this case, z would no longer be “free” 
to vary across participants, but would have the same value 
for everyone.

For now, though, let us focus on a “default” DDM with five 
free parameters: Ter, a, z, d.s1, and d.s2, while noting that other 
versions are possible. In fact, our DDM will look very much like 
that in Figure  3A, although different participants may have 
different values of the free parameters – such as the examples 
schematized in Figures 3B–D – that in turn produce individual 
differences in behavior.

At this point in the process, we would also typically consider 
what approach we  plan to use for model-fitting, and whether 
software is available; for the DDM, several options exist that will 
be considered in more detail in the section on “Model-fitting in 
the DDM,” below.

Empirical data

Continuing our example, let us assume we  have a test 
dataset obtained from one participant on our task. (The test 
datafile is provided in the Supplemental material: see Appendix).

From these behavioral data, we could plot this participant’s 
overall accuracy. As shown in Figure 4A, this participant made 
about 76% correct responses to s1 but about 83% correct responses 
to the more frequent stimulus, s2. We  could also plot the 
distribution of RTs for correct and incorrect responses to each 
stimulus. Figure 4B shows unimodal RT distributions with right 
skew: most responses occur within 250–750 msec, but a small 
proportion take 1 s or longer (and none occur faster than 
220 msec). There also tends to be slightly faster mean RT on error 
responses, which is often the case when participants sacrifice 
accuracy for speed.

Sometimes, the RT histograms of Figure  4B are instead 
presented as probability density functions (PDFs), as shown in 
Figure 4C, in which the height at any given point on the x-axis 
corresponds to the likelihood of a response occurring at that 
RT. PDFs are often plotted with correct and error responses on the 
same graph, scaled so that the area under the curves sums to 1. 
This makes it easy to see not only the relative rates, but also the 
relative timing of correct and incorrect responses.

Figure 4D shows a slightly different way of visualizing the 
same data: cumulative distribution functions (CDFs) which plot 
at each RT the probability that a response has occurred at or 
before that RT. No RTs occur faster than about 0.2 s, and all RTs 
– for both stimuli, correct and incorrect responses – have occurred 
by about 1.5–2 s. (In Figure 4D, the curves are scaled to asymptote 
at 1, indicating that 100% of responses have occurred; sometimes, 
CDFs are instead scaled so that the height at asymptote represents 
the likelihood of each response; in this case, the curve is called a 
“degraded CDF.”)

While the plots in Figure 4 do convey useful information 
about the empirical data, they do not take into account the 
speed-accuracy tradeoff. In this simple task, it seems likely 
that our participant could have achieved 100% accuracy if 
instructed to work slowly and carefully – and conversely, 
might have made even more errors if instructed to respond 
even more quickly. This makes it problematic if we wished to 
compare a group of subjects (e.g., healthy controls) against 
another (e.g., neurological or psychiatric patients): perhaps 
one group has higher accuracy, but is this because they were 
more willing to sacrifice speed? And can we infer anything 
useful about the underlying cognitive processes in each group? 
For this, we turn to the DDM.
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Data cleansing

Before applying the DDM to our empirical data, we have one 
more step to consider: data cleansing. RT distributions are 
typically unimodal but right-skewed, as illustrated in Figure 4B, 
with a few very long RTs but no very short RTs.

It is widely assumed that genuine RTs have a theoretical 
minimum of about 100–150 msec, representing the time needed 
for the physiological processes of stimulus perception and motor 
response execution, and bounded by the speed of neuronal 
transmission in the nervous system (Luce, 1986; Whelan, 2008; 
Woods et al., 2015). Decision-making time (Td) would add (at 

least) tens of msec to this lower bound. However, empirical data 
files often contain a few “very fast” RTs of <100 msec, which could 
be the result of anticipatory responding initiated before stimulus 
onset, or even a very delayed response from a prior trial. There 
may also be “extremely slow” RTs, which could occur because the 
participant is briefly inattentive (e.g., a distracting noise in the 
background or a sneeze). Unfortunately, such outlier RTs can 
strongly influence the outcome of hypothesis tests on RT data 
(Ratcliff, 1993) as well as biasing any attempts at model-fitting 
(Ratcliff and Tuerlinckx, 2002). Therefore, it is common to 
perform data cleansing to attempt to reduce the effect of outlier 
RTs (Ratcliff, 1993; Whelan, 2008).

A B

C D

FIGURE 4

Test dataset. Here, the participant completed a task that intermixes 150 trials with stimulus s1 (correct response = r1) and 350 trials with 
stimulus s2 (correct response = r2). (A) In this example, the participant achieved 76% accuracy on s1 and 83% accuracy on s2. (B) Frequency 
histograms showing right-skewed RT distributions for each stimulus and response. (C) The RT data plotted as probability density functions 
(PDFs), in which height of the curve at any point on the x-axis reflects the probability of a response occurring at that RT. Here, PDFs are 
scaled so that the total area under the curves sums to one, resulting in “taller” PDFs for the more frequent correct than incorrect response. 
(D) The same data plotted as cumulative distribution functions (CDFs), showing the probability that a response has occurred at or before 
each RT; here, curves asymptote at about 2 s, showing that all RTs have occurred by that point. (C) Plotted using functions in the DMC 
package for R.
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Various techniques for reducing the effect of outlier data have 
been proposed, but a common solution is to define absolute 
cut-points for very-short and very-long RTs, and drop from the 
dataset any trials with RTs outside those limits. Ideally, cutoffs 
should be chosen that eliminate obvious outliers while retaining 
as many data points as possible as possible (ideally, no more than 
1%–2% of trials should be dropped). The choice of appropriate 
cutoff criteria for a specific study will of course vary, but common 
cutoffs are often RT < 100 or 200 msec and RT > 1 or 1.5 s; studies 
have suggested that findings may be relatively robust to minor 
differences in the exact cutoff values (e.g., Ratcliff et al., 2018).

Alternate methods for reducing the effect of outliers, such as 
transforming the data to normalize the data, or using cutoffs based 
on standard deviation or interquartile range, are possible, and can 
seem less ad hoc, but may greatly reduce power and can introduce 
biases of their own (Ratcliff, 1993; Ulrich and Miller, 1994).

In our test dataset, we inspect our data file (e.g., histograms of 
Figure 4B), and find no obvious outlier RTs, and we can move on.

Model-fitting in the drift diffusion 
model

At this point, we are ready to use the DDM to estimate the 
parameter values that best describe our empirical data and – 
we hope – the participant’s underlying cognitive processes. The 
task at hand can be  thought of as finding a configuration of 
parameter values in the DDM that, together, cause it to generate 
simulated data that are as close as possible to the empirical data 
shown in Figure 4, accounting for both accuracy rates and for the 
distributions of correct and incorrect RTs.

Overview of the process

We start by proposing some “reasonable” values for the DDM 
parameters. For example, we might set boundary separation at an 
arbitrary value of a = 1 and starting point at z = 0.5 (no a priori 
bias for either response); given that RTs in the data seem to range 
from about 0.25–1.0 s, we might estimate non-decision time at 
Ter = 200 msec (assuming the decision time Td always takes at 
least an additional few dozen msec, so our fastest RTs would 
be  about 220–250 msec); for drift rate, we  might set d.s1 < 0, 
reflecting that the evidence accumulation on s1 trials should 
proceed downward (toward r1), and d.s2 > 0, so that evidence 
accumulation on s2 trials should proceed upward (toward r2). 
Here, for illustration, we’ll set d.s1 = −1 and d.s2 = +1.25.

To simulate a single trial with stimulus s1, we  plug these 
parameter values into the DDM equations, start the evidence process 
at z with a boundary separation of a and drift rate of d.s1, allow the 
diffusion process to operate until a boundary is crossed at time Td, 
and then record both accuracy (was the correct response “r1” 
generated?) and overall RT (Ter + Td) for this trial. In this example, 
we find that the response r1 is indeed chosen, with an RT of 0.382 ms.

Since the evidence accumulation process in the DDM is 
noisy, we would repeat a second time, and get a slightly different 
RT (and potentially even a different response). In all, we repeat 
500 times (150 with s1 and 350 with s2, just as in the empirical 
data), resulting in distributions of predicted RTs for correct and 
incorrect responses, and a predicted accuracy rate (how often the 
correct response was selected). These predictions (from the 
DDM) are then compared to the accuracy and RT distributions 
in the empirical data (from the participant) to determine how 
well the model fits the empirical data.

For example, Figure 5A plots accuracy (how often the DDM 
chose the correct response to each stimulus) and Figure 5B shows 
the distribution of RT obtained for each stimulus, for correct and 
incorrect responses. These predicted data can be  visually 
compared with the empirical data (Figures 4A,B).

In this example, on s1 trials, the DDM chose the correct 
response (r1) 77% of the time – very close to the 76% accuracy in 
the empirical data. On s2 trials, the DDM chose the correct 
response (r2) 75% of the time – a little lower than the 83% 
accuracy in the empirical data. The histograms for the predicted 
data also look similar to those from the empirical data, although 
not perfect: for example, the mean for correct responses to s1 is 
about 0.44 s, which is a little faster than the mean 0.54 s in the 
empirical data.

We could also plot PDFs and CDFs of the predicted data, to 
see how closely these overlap the PDFs and CDFs from the 
empirical data. For example, the empirical data could be divided 
into quantile “bins,” for example, based on the RT at which the 
fastest 10%, 30%, 50%, 70%, 90%, and 100% of RTs have occurred. 
For our test dataset, this would result in an approximation to a 
degraded CDF shown by the black lines in Figure  5C. The 
simulated data generated by the DDM can be plotted in the same 
way (red lines in Figure 5C). In this example, the correspondence 
between empirical and predicted data is not great. For example, 
according to Figure  5C-left, 90% of incorrect responses to 
stimulus s1 have occurred by about 800 msec; the model, 
however, predicts that 90% of error responses to s1 will have 
occurred by about 600 msec. In other words, the particular set of 
DDM parameter values used to generate these predicted data do 
not reproduce the empirical RT data very accurately.

All of the above has allowed us to assess how well the DDM 
reproduces a single participant’s data, given a single set of 
parameter values in the model. We could then slightly perturb one 
or more of our parameter values – say, changing a from 1 to 1.01 
– and run the DDM again to see if the new combination of 
parameter values provided a better approximation to the 
participant’s data. After iterating over a large number of possible 
parameter values, we would obtain the best possible fit: a set of 
values for a, z, Ter and drift rates d.s1 and d.s2 that together allow 
the DDM to most closely replicate the empirical data.

Needless to say, estimating the optimal values for multiple free 
parameters is a formidable computational challenge, one that is 
complicated by the fact that changes to one parameter may affect 
the optimal value of another parameter. Fortunately, several 
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methods have been devised, many of which are currently available 
as open-access software packages.

Specific methods and computational 
packages for parameter estimation using 
drift diffusion model

This section reviews several methods of parameter 
estimation for DDM that have been widely used in the 

literature, and that have been implemented as freely-
available software.

χ2 method
An early, and mathematically tractable, approach to estimating 

DDM parameters is the χ2 method (e.g., Ratcliff and Tuerlinckx, 
2002), which compares a histogram of RT distributions in the 
empirical data to those predicted from the model under a given 
set of parameter values (as in Figure 5C). For those familiar with 
the χ2-test in inferential statistics, that method distributes the 

A

C

B

FIGURE 5

Results from a single run of the DDM, given a particular set of parameter values. On each trial, evidence accumulation occurs in the DDM until a 
boundary is crossed, triggering a response; the response and RT = Td + Ter are recorded for each trial. Just as in the behavioral task completed by 
our participant, there are 150 s1 trials and 350 s2 trials. (A) The predicted data has accuracy rate similar to, but not identical to, the actual accuracy 
in the empirical data (red dots). (B) The predicted data also has RT distributions similar to, but not identical to, those in the empirical data (compare 
Figure 4B). (C) One way of quantifying model fit is by dividing the empirical RT distribution into quantile “bins,” e.g., the RT at which the fastest 10, 
30, 50, 70, 90, and 100% of RTs have occurred, plotted here as black triangles (for correct and incorrect responses to each stimulus). The 
simulated (predicted) data obtained from the DDM are divided into the same bins, plotted here as red circles, and connected by red lines to 
simulate a CDF. If the predicted data fit the empirical data very well, the red circles would overlie the black triangles. Here, the fit between 
empirical and predicted data is not great. For example, the model predicts too many correct responses and also too few slow RTs, compared to 
the empirical data. Predicted data obtained using the RWiener and rtdists package for R.
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empirical data into a number of bins or categories, and then 
compares that distribution against the distribution predicted by 
the null hypothesis; the χ2 statistic is a measure quantifying the 
difference in distributions, and if χ2 is large enough, the null 
hypothesis of no difference between distributions can be rejected. 
Conversely, if the distributions are similar (i.e., small χ2), then the 
model is said to provide a good fit to the empirical data.

The goal is to identify a set of DDM parameter values that, 
together, minimize χ2 – minimizing the difference between 
empirical data and DDM predictions. Without delving too 
deeply into the mathematical methods, suffice to say that this 
can be done via an optimization routine. Many optimization 
routines involve iterative search: start with an initial rough 
estimate of the parameter values, calculate how well the model 
using those values fits the data, and then iteratively perturb one 
or more of the values, to see if this provides a better fit: if yes, 
then the new values are adopted for the next pass; if no, then the 
old values are retained and a different perturbation is tried. 
Early in the search, when the fit is likely to be  poor, minor 
perturbations of parameter values may produce large 
improvements in fit; but the search is said to converge when 
values for all parameters have stabilized and no further 
perturbations can be identified that improve fit by more than a 
very small value (e.g., 10−7). At this point, the value of χ2 is 
returned as a metric of goodness-of-fit, and the corresponding 
parameter values are taken as the optimal or “best-fitting” 
parameter estimates for the empirical data.

The χ2 method is one of the estimation methods instantiated 
in the freely available fast-dm package (Voss and Voss, 2007; Voss 
et al., 2015) and it can also be used with the rtdists package in R 
(Singmann et al., 2016).

The main advantages of the χ2 approach are computational speed 
and relative robustness to outlier RTs. The robustness to outliers 
reflects the fact that the first and last bins are “open” in the sense that 
there is no lower bound for RT in the quantile bin that contains the 
fastest responses, and no upper bound for RT in the bin that contains 
the slowest responses; therefore even a very extreme outlier (say, 
RT = 0 s or RT = 10,000 s) would not dramatically affect the results. 
However, the χ2 approach requires a large number of trials to produce 
a reliable estimate (e.g., at least 500 trials) and may be especially 
problematic if there are relatively few error responses (e.g., <12 trials 
in any quantile bin; Voss et al., 2015).

For these reasons, the χ2 approach to parameter fitting has 
become less widely used in recent years, as other methods have 
become available, and as computing power has increased. 
However, it’s worth understanding this method because RT 
quantiles (such as those in Figure  5C) are often plotted in 
publications that have used other model-fitting methods.

Maximum likelihood estimation
A popular method for estimating DDM parameters uses 

maximum likelihood estimation (MLE) to generate estimates for 
each parameter. MLE may be most familiar to readers as a means 
to identify parameter values (beta weights) in regression models, 

to minimize difference (error) between the predicted and 
empirical outcomes. The principle is the same here.

Formally, MLE tries to find a set of parameter values that, 
together, maximize the probability that the outcome of the model 
matches the empirical data on all trials. This probability is referred 
to as the likelihood estimate, L; more commonly, researchers 
report the log of that value, which is called the log-likelihood 
estimate LLE.

The goal then becomes to find the set of parameter values that, 
together, maximize LLE for the model applied to a given dataset. 
Again, this is normally done by optimization routines that work 
by iterative search: constructing a (possibly random) set of 
“starting values” for the parameters and evaluating LLE, then 
perturbing one or more parameters by a small amount and 
re-evaluating LLE, until no further improvements in LLE can 
be  obtained by perturbing any of the parameters. (Some 
researchers prefer to speak in terms of minimizing negative LLE, 
rather than maximizing positive LLE, but the resulting parameter 
estimates will be the same.)

For example, Figure 6 shows accuracy and RT distributions 
obtained after using MLE to optimize the model parameters 
against our test dataset. The figures show that the predicted 
data matches the overall accuracy of the empirical data pretty 
well, although predicting slightly too few correct responses to 
s1 and slightly too many correct responses to s2, and also 
captures the modes and general shape of the RT distributions 
reasonably well.

Freely-available software implementing MLE for DDM 
includes the fast-dm package (Voss and Voss, 2007; Voss et al., 
2015) as well as the RWiener (Wabersich and Vandekerckhove, 
2014) and rtdists (Singmann et al., 2016) packages for R.

MLE approaches have been successfully used in a large 
number of DDM studies, and can be used even when there are 
relatively few (e.g., <50) trials available from each participant 
(Lerche et al., 2017); however, MLE can be very sensitive to 
outlier RTs (especially very fast RTs), and so careful thought 
must be  given to data cleansing. MLE algorithms are also 
vulnerable to local minima, meaning that they can converge 
to a set of parameter values where no small perturbations can 
further improve LLE, even though this may not be the optimal 
solution. For this reason, it’s often a good idea to run the MLE 
procedure multiple times, with different starting values, to 
make sure the same solution is found each time.

Bayesian approaches
Recently, the advent of open-source platforms for Bayesian 

statistics have given rise to a number of Bayesian approaches for 
estimating DDM parameter values (for readable introductions to 
Bayesian methods, see Kruschke and Liddell, 2018; Wagenmakers 
et al., 2018b). In brief, these methods follow a Bayesian approach 
starting with initial estimates (i.e., “prior distributions” or simply 
“priors”) about reasonable values for each parameter that are 
iteratively updated to produce “posterior distributions” (or simply 
“posteriors”) for those parameters.
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Often, very vague and uninformative priors are used, so that 
minimal pre-existing knowledge is assumed and even a small 
amount of data will “overwhelm” the priors, meaning that the 
posteriors depend much more on the data than on the researcher’s 
choice of priors; additionally, several different priors may be tried, 
to show that the prior assumptions do not greatly influence the 
posteriors/conclusions. For example, the prior for z might simply 
specify that it is a value somewhere in the range from 0.0 to 1; the 
priors for drift rate might specify broad normal distributions with 
mean 0; etc. (see Figure 7A).

Whereas the χ2 and MLE methods attempt to estimate a single 
“best-fitting” value for each parameter, Bayesian approaches 
generate posterior distributions for each parameter, including 
both a point estimate (e.g., mean or median) and a measure of 
confidence in that estimate (e.g., the standard deviation SD or 
confidence interval CI). For example, Figure 7B shows posterior 
distributions (or simply “posteriors”) for the five DDM parameters; 
for visual comparison, the priors are plotted as red lines, and at 
this scale they now appear as nearly flat lines near y = 0. For 
example, whereas the prior estimate for z treated all values in the 
range from 0 to 1 as equally plausible, the posterior estimate for z 
has mean 0.60, indicating a mild but definite response bias (toward 
the upper boundary and r2); the narrow width (SD = 0.2) indicates 
high confidence that the true value lies in the body of the posterior. 
In this case, we  can say that information from the data has 
“overwhelmed” the priors, resulting in much more closely 
specified posteriors.

Calculating posterior distributions is extremely 
computationally intensive, and direct solution is generally 
intractable: i.e., there is no known mathematical way to directly 
calculate the posteriors from the priors and the data. Instead, 
approaches such as Markov Chain Monte Carlo (MCMC) 
methods leverage computer power to generate approximate 
solutions (for a readable introduction to MCMC methods, see van 
Ravenzwaaij et al., 2018).

In brief, MCMC methods estimate a distribution by repeatedly 
drawing “sample values” to form a “chain” of values for each 
parameter. A simple version of MCMC might run as follows: At 
the first step or iteration of the chain, a value is selected at random 
for each parameter from the prior distributions, and the resulting 
model is evaluated (here, the DDM would be  run and LLE 
computed). At the next iteration, the distribution of one of the 
parameters is perturbed slightly, perhaps by slightly altering its 
mean or SD, and new parameter values are drawn at random from 
the distributions, and the model is run again. If the result is an 
improvement (e.g., improved LLE), then the updated parameter 
values are used for the next step in the chain; otherwise, the old 
parameter values are retained. The process is repeated hundreds 
or thousands of times, until no further improvements are 
discovered, at which point the process is said to have converged 
on a solution: a set of distributions (posteriors) for each parameter.

If we are examining a DDM with five free parameters (a, z, 
Ter, d.s1, d.s2), then typically all the parameter values are updated 
at each iteration (often, by holding all the other parameters 

constant at their current values while we perturb and evaluate 
each one in turn). Therefore, each sample in the chain contains 
updated values for all the parameters.

Typically, multiple chains are run, often using the rule of 
thumb to run three times as many chains as there are free 
parameters; thus, for a DDM with five free parameters we may run 
15 chains. Results from 15 such chains are shown in Figure 7B, 
one colored line per chain. The figure shows that, at the first 
iteration, there is a wide variety parameter values drawn from the 
priors; but within a few dozen iterations, the parameter values in 
all chains begin to converge to common values, and LLE rapidly 
increases for all the chains.

For example, the prior for Ter is a uniform distribution in the 
range from 0.1–1.0 s (refer Figure 7A). At the start of each chain, 
a value for Ter is chosen at random from that distribution; 
because the prior is vague, starting points can vary widely, as 
shown at the extreme left of the Ter traceplot in Figure 7B. Across 
200 iterations, though, all the chains gradually converge to new 
estimates of Ter with means close to about 0.2 s. This rapid fine-
tuning of Ter and the other parameters produces corresponding 
improvement in LLE, reflecting progressively better model fit. 
Here, by about the 200th iteration, all the chains are meandering 
around the same point, without any large deviations or upward 
or downward trends.

Because of the wide variability in possible starting points, the 
beginning of each chain (e.g., the first 200 iterations shown in 
Figure 7B) is often discarded (as “burn-in”), and then the chains 
run for a few more hundreds (or thousands) of iterations, so that 
the posterior predictions are based on the (hopefully stable) ends 
of the chains, as shown in Figure 7C. Note the change in scale on 
the y-axes from Figures 7B,C as the chains “zero in on” a very 
narrow distribution of values for each parameter, resulting in only 
minor fluctuations in LLE from one iteration to the next.

Formally, the state when the distribution does not change 
(much) across iterations is known as convergence. Convergence 
can be visually assessed by inspecting the traceplots of the chains, 
which should look like the “fat, flat, hairy caterpillars” of 
Figure  7C: minor fluctuations around a mean value with no 
systematic upward or downward tendencies (compare the 
unconverged chains in the early iterations of Figure 7B).

Convergence can also be assessed quantitatively. One widely-
used measure of convergence is the Gelman-Rubin R̂ (“R-hat”) 
statistic (Gelman and Rubin, 1992) which assesses the similarity 
of within-chain vs. between-chain variability. Values of  
R̂ approaching 1 indicate convergence; a common criterion for 
good convergence is R̂ < 1.1. (In the example from Figure 7, after 
1,000 iterations, R̂ = 1.03.)

Given successful convergence, the posterior distributions can 
be reported (e.g., Figure 7D), and/or the mean or median of the 
posteriors can be used as point estimates of the parameters.

Freely-available software implementing Bayesian approaches 
to DDM includes the python-based HDDM (Wiecki et al., 2013) 
and the Dynamic Models of Choice (DMC) package for R 
(Heathcote et al., 2019).
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Bayesian approaches to DDM may be  more robust in 
recovering model parameters than other methods, such as MLE 
and χ2 methods, when a limited numbers of trials are available 
(Wiecki et al., 2013). Bayesian approaches also provide not only 
parameter estimates (mean or median of the posterior 
distributions), but also quantify the uncertainty in those estimates 
(standard deviation or 95% confidence interval of the posterior 
distributions). Like MLE algorithms, Bayesian methods based on 
iterative sampling may be  vulnerable to getting stuck in  local 
minima, although this risk is ameliorated by use of multiple chains 
to ensure convergence (e.g., the “hairy caterpillars” of Figure 7C 
indicate that all the chains are converging around the same 
stable estimates).

Hierarchical methods
The above methods for estimating DDM parameters all 

assume that parameters are fit to each participant’s data 
independently. An alternate approach is hierarchical modeling, 
which addresses individual differences while also pooling 
information across individuals to generate group-level parameter 
estimates (Vandekerckhove et  al., 2011; Wiecki et  al., 2013; 
Johnson et al., 2017). Hierarchical approaches may be particularly 
useful where within-group variability is much lower than 
between-group variability, or where only a small number of trials 
are available for each participant; however, hierarchical models 
may not be valid if there are only a few participants in each group. 
The Bayesian model approaches in some software packages, 
including HDDM and DMC, provide for hierarchical 
model fitting.

So, which method should be used?

Each of these methods for estimating parameters has strength 
and weaknesses. Table  2 summarizes a few of the key 
considerations when determining whether to use χ2, MLE, or 
Bayesian methods. Choice of an appropriate method for a given 
dataset typically represents a compromise among these 
considerations, as well as the researchers’ familiarity with a 
particular approach and access to software. Fortunately, the 
availability of well-documented software packages, and 
widespread availability of powerful computers, means that all 
these methods are within the reach of an investigator willing to 
invest the time required to learn their use.

In most cases, an investigator with access to reasonable 
computer power is likely to choose between MLE and Bayesian 
approaches. These approaches do not require the large number of 
trials required by the χ2 method, although they are more 
vulnerable to outlier RTs. For this reason, data cleansing is 
important to mitigate the effects of outliers.

In general, MLE and Bayesian approaches should return 
comparable results, although parameter estimates may differ 
both due to randomness (noise) in the estimation routines and 
also due to scaling factors adopted by different software  
packages.

For example, both MLE (via the RWiener package in R) and 
Bayesian MCMC (via the DMC package in R) were used to 
estimate the five DDM parameters for our test dataset. As shown 
in Table 3, both methods return nearly identical estimated values 
parameters for a, z and Ter; estimated values of drift rate differ 

A B

FIGURE 6

Results of model-fitting using maximum likelihood estimation (MLE). The set of DDM parameter values is identified that, together, maximizes the 
likelihood of the model producing same response as the participant on each trial. Given these “best-fitting” parameters, (A) accuracy levels for s1 
and s2 in the predicted data were quite similar to those of the empirical data (red dots), and (B) RT distributions for each combination of stimulus 
and response were also quite similar in predicted and empirical data. DDM results obtained using RWiener package in R.
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A B

C D

FIGURE 7

Bayesian approaches to estimating DDM model parameters. (A) First, prior distributions or “priors” (initial estimates) are generated for each model 
parameter. Here, the prior for non-decision time Ter simply specifies that it is a value in the range from 0.1 to 1.0 s, with all values in that range 
equally likely (uniform distribution); similarly, the prior for starting point z is a value in the range from 0 to 1.0 (as a proportion of boundary 
separation, a). The priors for drift rates are specified as broad normal distributions with means of 0; the prior for a is a normal distribution with 
mean of 1, truncated at 0 and 2 (because boundary separation is in arbitrary units but can never be <0). These priors are all intentionally vague, so 
that they have minimal influence on the posteriors. Note that, in these graphs, drift rates d.s1 and d.s2 are plotted as >0 if they slope in the 
direction of the correct response. (B) MCMC is applied to the dataset from Figure 4, using priors as defined in (A): 15 “chains” are formed starting 
from the prior distributions and progressively updating, with model fit evaluated at each step. Traceplots of values for the 5 DDM parameters over 
the first 200 iterations are shown as one colored line per chain. Initially, there is wide variation across chains in the initial values drawn for each 
parameter from the priors; however, over the first 200 iterations, parameter values start to converge to similar values in all chains. For example, Ter 

(Continued)
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slightly, but the relative relationships are preserved: d.s1 is in the 
opposite direction to, and steeper than, d.s2 in both methods.

The bottom line is that, in many cases, the general conclusions 
from the DDM should be roughly the same, regardless of which 
specific approach (or software package) is used to generate parameter 

estimates. For many purposes, the choice will simply reflect the 
approach and/or software package with which the investigator is 
most comfortable.

Now it’s time for a big reveal: the original “empirical” test 
dataset (shown in Figure 4) was itself generated from a DDM 
with predefined parameters: a = 1.2, d.s1 = −1.25 (sloping 
down toward the lower boundary), d.s2 = +1.1 (sloping 
toward the upper boundary), z = 0.6, and Ter = 0.2. That 
means that we have the luxury of knowing the correct answer: 
if the DDM is functioning as advertised – if it is truly able to 
“infer” parameter values by inspecting the data generated – 
then the parameter estimates should be very close to the true 
(or “generating”) parameter values. In fact, Table 3 shows that 
both instantiations of the DDM do, indeed produce 
parameter estimates that are very close to the 
generating parameters.

Of course, if this dataset had been generated by a human 
being, we would not have the luxury of knowing the generating 
parameters – the entire point of using the DDM would be  to 
attempt to infer these latent parameter values from the empirical 
data. But the ability of the DDM to accurately recover parameters 
from a test dataset greatly increases our confidence that that the 
methods can be applied to this type of data.

Running the drift diffusion model on a 
group of empirical data files

All the work we have done so far has rested on attempting 
to fit the DDM to a single data file, and a “simulated” data file 
at that. Now let us assume we were going to fit the model to a 
group of data files obtained from multiple participants an 
experiment. For the purposes of example, let us consider 
n = 10 empirical data files obtained from our simple task 
(included in the Supplemental material; see Appendix). 
We will also assume that we have already performed a data 
cleansing step, to identify any trials with very-short or very-
long RT (none were identified). We then run our DDM (with 
five free parameters a, z, d.s1, d.s2, Ter) using MLE (via the 
RWiener package in R) to find best-fitting parameters for each 
data file. The results are shown in Table  4, along with the 

Figure 7 (Continued)

(which the priors merely specify as ranging between 0.1–1.0 s) quickly converges to a mean value near 0.2 s. As the parameters begin to converge, 
log-likelihood estimates (LLE) for each chain also improve rapidly, indicating improving model fit. (C) Following the initial 200 trials (which are 
discarded as “burn-in”), an additional 1,000 iterations are run; the traceplots for each parameter now resemble “fat, flat, hairy caterpillars”: relatively 
horizontal with small, random scatter around a common mean value, which is a visual indicator that estimates for the parameters have converged. 
Meanwhile, LLE for the chains is also relatively stable within and across chains: compare scale of y-axes in (C) vs. (B). (D) The resulting posterior 
distributions or “posteriors” for each parameter. The mean/median of posteriors can be taken as a point estimate of the parameter value, and the 
width is a measure of uncertainty in that estimate. Compared to the priors, posteriors should be unimodal and fairly narrow: Note the difference in 
x-axis and y-axis scales from (A) to (D). For visual comparison, the priors are plotted in (D) as red lines, and at this scale they appear as nearly flat 
lines near y = 0. For example, whereas the prior estimate for z treated all values in the range from 0 to 1 as equally plausible, the posterior estimate 
for z has narrowed to a distribution with mean 0.60 and SD 0.02, indicating a mild but definite response bias (toward the upper boundary and r2). 
DDM results and figures from DMC package for R; all plots are arbitrary units except Ter, which is in sec.

TABLE 2 Comparison of some key features among three approaches 
to estimate DDM parameters.

χ2 method Maximum 
likelihood 
estimation 
(MLE)

Bayesian 
approaches 
(based on 
MCMC 
sampling)

Computational 

tractability

Relatively fast Moderate Can be very slow

Sample size 

required

Requires large 

number of trials 

per subject (e.g., 

at least 500 trials 

with at least 12+ 

per quantile bin)

Can be used with 

as few as about 

40–50 trials per 

subject, at least 10 

trials per condition

May be more 

robust than other 

methods when 

limited number of 

trials available

Outlier RTs Relatively robust 

to outlier RTs

Very sensitive to 

outlier RTs 

(especially fast 

RTs)

Moderately 

sensitive to outlier 

RTs

Other (+ and −) 

considerations

− Loss of 

information due 

to use of 

quantile bins, 

rather full RT 

distribution

+ General 

principles of MLE 

are likely familiar 

to a wide swath of 

researchers

+ Allows to 

quantify not only 

parameter 

estimates, but 

uncertainty 

(variability) in 

those estimates

+ Available 

methods for 

hierarchical model-

fitting

− Steep learning 

curve for 

researchers not 

familiar with 

Bayesian methods
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maximum LLE obtained for each data file, given those best-
fitting parameters.

Validating the model

The estimated parameters in Table  4 represent the 
configuration of parameter values (a, z, d.s1, d.s2 and Ter) that, 
together, allow the DDM to most closely approximate each 
individual participant’s behavior on the task. At this point, there 
are a few ways in which we should validate our model, bolstering 
confidence that the DDM is actually discovering parameter values 
that describe the underlying processes that generated the data.

Sanity check

Before going any further, the importance of a simple sanity 
check cannot be overstated. Do the model results even make sense?

One type of sanity check has already been mentioned: in the 
context of Bayesian MCMC methods, researchers often report R̂ 

and/or show “hairy caterpillars” to document convergence (e.g., 
Figure 7C), and may plot posterior distributions to show that the 
parameter estimates are unimodal and (ideally) low in variance 
(e.g., Figure 7D). For MLE methods, optimization routines also 
usually report whether a predefined criterion for convergence has 
been met for each file.

If the parameter estimation process did not converge, then 
obviously the parameter estimates cannot be trusted. Sometimes, 
failure to converge just indicates an unlucky choice of starting 
point, and if the optimization routine is re-run with a different 
randomly selected starting point, convergence may be achieved. 
In this case, it’s customary for authors simply to note how many 
attempts (re-starts) were required before convergence 
was achieved.

Assuming convergence, the next step should always be  a 
sanity check of the parameter estimates obtained. For example, 
non-decision time Ter cannot be  lower than the empirically-
observed behavioral RT (since RT = Ter + Td and Td cannot be less 
than zero), and boundary separation a is in arbitrary units but 
cannot be <0 (since it represents a distance or separation). In 
Table 4, the values of a, z and Ter all meet these minimal criteria.

If there is more than one drift rate, sign (direction) and 
steepness (slope) should be consistent with observed accuracy and 
relative response speeds. In Table 4, for all subjects, d.s1 < 0 and 
d.s2 > 0, meaning that in each case the drift rate slopes toward the 
correct boundary. The magnitude (absolute value) of the drift rates 
suggests that the evidence accumulation process on s1 trials is 
somewhat steeper than on s2 trials. This might reflect something 
about the underlying nature of the task (e.g., perhaps it is harder 
to distinguish and decide to respond to s2 stimuli than s1 stimuli). 
In any case, the drift rates in Table 4 look reasonable too.

In sum, then, our parameter estimates all appear plausible. In 
general, any parameter values that violate common sense likely 
indicate that the model has failed, regardless of what fit metrics 
may be reported.

Predictive check

A next important step to establish model validity is a 
predictive check, in which the parameter estimates obtained from 
the empirical data are used to generate simulated datasets. 
Specifically, a DDM with the estimated parameter values is run on 
the same task (same number and type of trials as in the original 
task) and the model’s predicted response and RT recorded for each 
trial. This could be done one or more times for each data file, or 
for a few representative data files selected at random, or even using 
the group means for the parameter estimates.

The simulated data should mimic key features of the 
behavioral data, such as accuracy and mean/SD of RTs for correct 
and incorrect responses to each stimulus. PDFs (or RT histograms) 
and CDFs for simulated data can also be visually compared against 
the empirical data (similar to comparison of predicted vs. 
empirical data in Figure 6).

TABLE 3 Parameter estimates for DDM with five free parameters, 
applied to the dataset of Figure 1, using MLE and Bayesian MCMC 
(means of posterior estimates are shown), and “true” generating 
parameters.

Median estimated parameter values

a d.s1 d.s2 z Ter

MLE 1.17 −1.35 0.94 0.6 0.201

Bayesian MCMC 1.23 −1.49 1.16 0.6 0.202

True (generating) 

values

1.2 −1.25 1.1 0.6 0.2

MLE, maximum likelihood estimate (calculated via RWiener package in R); MCMC, 
Markov Chain Monte Carlo (calculated via DMC package in R); Ter given in seconds; 
other DDM parameters (a, d.s1, d.s2, z) given in arbitrary values.

TABLE 4 Parameter estimates obtained from the DDM, using MLE to 
maximize LLE for each data file separately.

Estimated parameters LLE

a z d.s1 d.s2 Ter

1 1.09 0.46 −3.93 1.27 0.21 185.2

2 1.91 0.48 −3.66 1.97 0.25 70

3 1.85 0.51 −5.3 1.8 0.16 128.5

4 1.19 0.55 −3.62 2.09 0.17 287.1

5 1.1 0.46 −4.01 1.27 0.21 189.7

6 1.65 0.49 −2.41 2.43 0.25 140.5

7 1.2 0.44 −2.01 2.02 0.21 129.5

8 0.78 0.4 −1.01 1 0.23 220.4

9 0.83 0.53 −3.2 1.53 0.18 331.9

10 0.85 0.43 −1.2 0.11 0.18 135.6

Mean 1.25 0.48 −3.04 1.55 0.2 181.8

SD 0.42 0.05 1.36 0.67 0.03 79.6

Parameter estimates obtained using RWiener package in R.
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If the model predicts the empirical data well, the plots for 
simulated and empirical data for each participant will be highly 
overlapping. If we have a large dataset, rather than inspect each 
simulated data file individually, it may be enough to “spot-check” 
a few representative cases, and then look at some summary 
statistics, such as mean percent accuracy and median RT in the 
simulated vs. empirical data. Yet another possibility is shown in 
Figure  8: For each data file, there should be  very close 
correspondence between the percent accuracy to s1 and to s2 in 
the empirical vs. simulated data, and similarly the median RT for 
correct and incorrect responses in the empirical data should 
be closely matched in the simulated data. In the current example, 
Figure 8 shows extremely high correlation between empirical and 
simulated data on percent accuracy and median RT on correct 
responses (all r > 0.97); for RT on incorrect responses, the 
correlation is lower, particularly for s1, reflecting the relatively 
low number of error responses on which these calculations 
are based.

The fact that the simulated data share many of the features 
with the empirical data cannot, of course, prove that they were 
generated in the same way – but failure would almost certainly 
argue that the model is not valid. So, predictive checks are a 
conventional first step in model validation.

Parameter recovery study

After generating the simulated data, a parameter recovery 
study can be  conducted, in which the DDM is applied to the 
simulated data, to see whether the parameter values which 
generated those simulated data can be correctly recovered by the 
DDM (e.g., Ratcliff and Childers, 2015; Lerche et al., 2017; White 
et al., 2018b).

Table 5 shows the results of just such a parameter recovery 
study: using the estimated parameters from each participant 
(Table 4) to generate 10 simulated datasets, and then running the 
DDM on those simulated datasets to infer or “recover” those 
parameter values. In a perfect world, the parameter values 
estimated from the simulated data will match the generating 
parameters quite closely: high correlation (Pearson’s r) between 
generating and recovered parameters is considered “good” if 
r > 0.75 or “excellent” if r > 0.90 (White et  al., 2018b). For the 
current example, as shown in Figure 9, the correlations between 
generating and recovered parameters would all be  considered 
excellent (all Pearson’s r > 0.9).

A successful parameter recovery study confirms that the 
model-fitting procedure is able to reliably estimate (“recover”) the 
parameter values that generated the simulated data. This cannot, 
of course, guarantee that the model has accurately estimated 
parameter values from the empirical data, but it does increase our 
confidence that the model is (at least) capable of correctly 
recovering parameters given data such as these. If the model 
cannot even replicate the generating parameters for simulated 
data, where we know what the true values for each parameter are, 

then we certainly cannot trust that it is accurately estimating the 
parameters for human participants, where the generating 
parameters are not known!

Model selection

The previous section focused on how we find a set of estimated 
parameter values that provide the “best possible” fit for each file in 
our empirical data. It’s also important to ask just how good that 
“best possible” fit actually is. Model selection typically refers to a 
process of systematically comparing different instantiations (or 
versions) of that model, with different free parameters, to 
determine which provides the best way of understanding the data.

For example, in the preceding sections, we used a DDM with 
five free parameters, including a, z, Ter and separate drift rates 
d.s1 and d.s2 for s1 and s2 trials, and we obtained pretty good 
results, validated both by predictive check and parameter 
recovery study; but could we have obtained (almost) as good 
results with a simpler model, say, assuming only a single drift rate 
d, regardless of stimulus?

Other things being equal, we would typically favor the simpler 
model with fewer free parameters, as a simpler way to describe the 
data, and also because models with more free parameters have a 
higher risk of overfitting the data. Overfitting refers to situations 
where a model can describe an existing dataset with high accuracy, 
but does not generalize well to other datasets. This is a concern not 
only in the DDM, but in all kinds of model fitting, such as linear 
regression: adding a large number of predictor variables to make 
a more complex model may result in overfitting the sample data, 
such that the regression equation obtained makes very accurate 
predictions on the sample data, but not for new datasets. A simpler 
regression model, with fewer predictor variables may sacrifice 
some accuracy but provide better generalization.

So, do we really need two separate drift rates in our model? 
Are the benefits (better model fit) worth the costs (complexity and 
potential overfitting)? To answer this question, we need to evaluate 
two things: first, exactly how “good” a fit does each version of the 
model provide to the data? Second, is one fit “meaningfully” better 
than the other?

Assessing model goodness-of-fit

In order to quantify model fit, several goodness-of-fit metrics 
are available. We  have already discussed one: the maximal 
LLE. The maximal LLE is simply the value of LLE that was 
obtained using the best-fitting parameter values (and it was 
reported for our example study in Table 4).

The trouble with this metric is that the value of LLE depends 
not only on the model goodness-of-fit, but also on the number of 
trials, so it’s not clear how to interpret an arbitrary value of LLE, 
nor what magnitude of difference in LLE values constitutes a 
“meaningful” difference.
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Varying the number of free parameters

Although we cannot necessarily interpret an arbitrary value of 
LLE, we do know that larger values are better, signifying closer fit 
of model to data. One thing we can do is ask whether the model, 
as currently described, is the simplest possible description of the 
data: Can we do even better with more free parameters, or could 
we  do nearly as well with fewer? What is the right level of 
complexity in our model?

For purposes of discussion, let us use the nickname DDM−5 
to refer to our DDM with five free parameters: a, z, d.s1, d.s2, and 
Ter. The “best-fitting” parameters for DDM-5 (using MLE) were 
presented in Table  4, which also showed the maximal LLE 
obtained for each data file, using those “best-fitting” parameters.

We might then consider a DDM with only four free 
parameters: a, z, and Ter but only a single drift rate d to be used 
on all trials regardless of the stimulus. (In this case, we would 
likely assume a sign change: drift rate −d on s1 trials so that the 
evidence accumulation process tends downward to r1, and drift 
rate +d on s2 trials so that the evidence accumulation process 
tends upward to r2, but the magnitude of d does not differ for s1 
and s2 trials, so it can be described by a single free parameter.) For 
purposes of discussion, let us call this version DDM-4 (DDM with 
four free parameters).

We could then conduct model-fitting on our dataset with 
DDM-4, just as we did with DDM-5. Assuming both the model-
fitting process converges, and that the parameter estimates survive 
an initial sanity check, we could then compare the maximal LLE 
obtained under DDM-4 with that obtained DDM-5 (Table 6).

A first, important point is that the maximal LLE obtained 
under DDM-4 will (by definition) be less than or equal to that 
obtained by DDM-5. This is because any solution explored by 
DDM-4 (which constrains d.s1 = −d.s2) should also be explored 
by DDM-5 (which allows the two drift rates to vary independently 
– not excepting those cases where they happen to have the same 
magnitude but different sign).

So, the question here is not whether DDM-4 can provide a 
better fit: we know that it cannot. The question is: can DDM-5 
provide a sufficiently better fit than DDM-4, enough to justify its 
added complexity?

For example, Table 4 showed that the estimated parameters for 
participants #6, #7, and #8 under DDM-5 had drift rates d.s1 and 
d.s2 that were nearly equal in magnitude, though oppositely 
signed, and so DDM-4 (where the two drift rates are forced to 
have the same magnitude) provides just as large LLE as does 
DDM-5. And so, at least for these three participants, there does 
not appear to be  much “advantage” to using the more 
complex model.

FIGURE 8

Validating the model: Predictive Check. Using the estimated parameters for each data file, shown in Table 4, the DDM is used to generate 
“simulated data.” For each empirical file, the simulated data should closely reproduce (left) accuracy as well as features of the RT distribution, such 
as median RT on (center) correct and (right) incorrect responses.

TABLE 5 Parameter recovery test: estimated parameters “recovered” 
from simulated data.

Recovered parameters LLE

a z d.s1 d.s2 Ter

1 1.06 0.48 −4.34 1.2 0.21 198.8

2 1.89 0.5 −3.91 1.8 0.25 53.2

3 1.74 0.52 −5.14 1.73 0.17 129

4 1.23 0.55 −3.69 1.97 0.16 264.5

5 1.09 0.47 −3.69 1.27 0.21 156.8

6 1.62 0.49 −2.31 2.5 0.25 144.8

7 1.22 0.43 −1.82 1.78 0.21 57.6

8 0.8 0.41 −0.83 0.64 0.23 180.3

9 0.82 0.53 −2.87 1.51 0.18 334.1

10 0.85 0.41 −1.07 0.27 0.18 127

Mean 1.23 0.48 −2.97 1.47 0.2 164.6

SD 0.39 0.05 1.43 0.65 0.03 86.3

Parameter estimates obtained using RWiener package in R.
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FIGURE 9

Validating the model: results from parameter recovery study. Scatterplots showing correspondence between estimated parameters (Table 4) and 
recovered parameters (Table 5), for the 10 simulated data files. Correlations of estimated and recovered values are excellent (Pearson’s r > 0.9 for all 
parameters). This increases our confidence that the DDM can accurately recover parameter values for this type of data.
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On the other hand, the larger DDM-5 provides a much better 
fit (larger LLE) for participants #1, #2 and #3. Averaged across all 
10 participants, DDM-5 does provide numerically better mean 
LLE than DDM-4: 181.8 vs. 163.5. What we  need is a way to 
quantify whether this 20-unit improvement in LLE is “significant” 
or “meaningful” – enough to justify our use of the more 
complex model.

Is the more complex model “worth it”?

There are a number of metrics that can be used to address this 
question. One of the most commonly used is Akaike’s Information 
Criterion (AIC), which is an attempt to compare LLE between 
models while penalizing more complex models (Akaike, 1974): 
specifically, AIC = 2 k − 2*LLE, where k is the number of free 
parameters (5 for DDM-5 and 4 for DDM-4). The smaller AIC, 
the better; therefore, the addition of 2k to the LLE results in a 
larger “penalty” (increasing AIC) for models with more free 
parameters. Using this formula, the mean AIC for DDM-5 is 
−354, and that for DDM-4 is −319, so we would conclude that 
the larger model, despite its added complexity, is a better 
description of the dataset.

A related metric, the Bayesian Information Criterion (BIC), 
considers number of parameters k as well as the number of trials 
n in the dataset (Schwartz, 1978): BIC = k*ln(n) − 2*LLE; again, 
lower (more negative) is better. BIC is only valid if n >> k (i.e., 
number of trials much larger than number of free parameters). A 
nice feature of BIC is that there are conventions for interpreting 
BIC values (Kass and Raftery, 1995): as a rule of thumb, if the 
difference in BIC between two models is <2, then the more 
complex model is “not worth it” (more formally, there is no 
positive evidence in favor of the more complex model, and so the 
simpler model should be preferred); a difference in BIC of >2 
indicates positive evidence in favor of the more complex model, 
while BIC difference of >6 is considered strong evidence and >10 
indicates very strong evidence in favor of the complex model.

In our example, DDM-5 has mean BIC of −333 and DDM-4 
has mean BIC of −302. The difference is >30, so we conclude that 
there is very strong evidence favoring the more complex model 
with separate drift rates.

The above results assume that we used MLE as our model-
fitting procedure. When Bayesian methods are used, AIC and BIC 
can be  reported, but some articles instead report Deviance 
Information Criterion (DIC), which is a generalization of AIC for 
use when posterior distributions have been obtained via MCMC 
methods (Spiegelhalter et  al., 2002), or the Watanabe-Akaike 
Information Criterion (WAIC; Watanabe, 2010), which is a 
generalized version of the AIC that can be used when the posterior 
distributions are not normal. In all cases, lower values indicate 
better fit after penalizing for model complexity.

If Bayesian methods have been used, it is also possible to 
report a Bayes Factor (BF), which is a ratio of the marginal 
likelihood of the two models, interpretable as the relative strength 

of the evidence that each model is correct. Values of BF = 1 mean 
the two models are equally likely, while larger values of BF make 
us increasingly confident in supporting the first hypothesis (or 
model). As a rule of thumb, BF > 3 is considered weak evidence 
and BF > 10 is considered strong evidence (e.g., Wagenmakers 
et al., 2018a).

All these metrics – AIC, BIC, DIC, WAIC, BF – are used 
to compare how well two models describe the same data 
file(s). As discussed earlier, there may be some participants for 
whom one model has a much lower metric than the other 
model, but some participants where the reverse is true. Often, 
a decision favoring one model or the other is based on a simple 
majority vote: which model results in best metrics for a 
majority of participants. Always, the burden is on the more 
complex model to justify its use, so if the complex model does 
not clearly provide a better fit, then the simpler model would 
likely be preferred.

And remember: model selection methods only tell us which 
of the models under consideration fits the data best. It does not 
guarantee that any of them are correct (nor that they are better 
than any of the infinitely many other models that might have 
been evaluated).

Now (and only now), present the 
model results

So far, we have estimated best-fitting parameters for our data; 
we  have conducted predictive checks and parameter recovery 
studies to assure ourselves that DDM-5 can accurately recover 
parameters for this type of data; and we have compared DDM-5 
vs. DDM-4 (and possibly some other variations also), and 
concluded that DDM-5 is the best description of our data, 

TABLE 6 Model comparison: Results of model-fitting with DDM-4; for 
ease of comparison, maximal LLE for each file under DDM-5 is also 
shown (reprinted from Table 4).

Estimated parameters, using 
DDM-4

LLE 
(from 
DDM-

4)

LLE 
(from 
DDM-

5)a z d.s1 d.s2 Ter

1 1.08 0.36 −1.87 1.87 0.22 150.6 185.2

2 1.88 0.22 −2.35 2.35 0.24 49.9 70

3 1.74 0.22 −2.36 2.36 0.15 69.2 128.5

4 1.17 0.43 −2.51 2.51 0.17 273.6 287.1

5 1.08 0.36 −1.88 1.88 0.22 153 189.7

6 1.65 0.3 −2.42 2.42 0.25 140.5 140.5

7 1.2 0.36 −2.02 2.02 0.21 129.5 129.5

8 0.78 0.51 −1 1 0.23 220.4 220.4

9 0.83 0.59 −2.01 2.01 0.18 319.4 331.9

10 0.85 0.47 −0.45 0.45 0.18 128.9 135.6

Mean 1.23 0.38 −1.89 1.89 0.2 163.5 181.8

SD 0.4 0.12 0.67 0.67 0.03 84.7 79.6
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providing excellent fits to the data with no unnecessary complexity 
(no more free parameters than are actually needed).

At this point, the parameter estimates from our DDM-5 can 
(finally!) be reported for individual data files and/or summarized 
for each group (e.g., patients vs. controls). These could be  the 
value estimates for each parameter returned by MLE; or, if 
Bayesian methods were used, the results could be presented as 
medians or means of the posterior distributions for each 
parameter, or even plots of the posterior distributions for each 
parameter. For example, perhaps subjects #1–5 constitute the 
control group and subjects #6–10 constitute the experimental 
group in our study; Figure  10 plots the median (and IQR) 
parameter estimates for each group.

The point estimates for each parameter can be also subjected to 
statistical analysis, using analogous methods to those that were used 
to analyze the behavioral data (accuracy and RT). To illustrate, in our 
example study, it appears that a, z, and Ter are generally consistent 
across groups, but that one group has much higher drift rate for s1 
than s2, whereas the other group has equivalent drift rates for the two 
stimulus types. This apparent interaction could be confirmed by 
ANOVA or other inferential statistics.

In the real world, we  might be  interested in comparing 
parameter estimates between patients vs. controls (e.g., higher 
response caution favoring accuracy over speed in schizophrenia; 
Moustafa et  al., 2015) or across task conditions (e.g., mood 
induction shifts response bias in favor of mood-congruent 
responses; White et al., 2018a).

Additionally, just as with the original behavioral data, 
parameter estimates can be examined for relationships with other 
variables of interest (such as demographic, clinical, or 
neurocognitive variables). Some researchers have suggested that 
model parameters can be used as classifiers to distinguish patients 
from controls, and that addition of parameter estimates can 
improve classification beyond standard demographic and clinical 
variables and/or behavioral variables alone (e.g., Zhang et  al., 
2016; Myers et al., 2022 July 28).

Reporting – And critically 
evaluating – The model

The final step in our study would be publishing the results 
and, as with any scientific method, it is important that the report 
be complete enough to allow the reader to critically evaluate the 
methods, the results, and the authors’ interpretation, including 
several key questions.

What modeling approach was used, and 
was it appropriate for the job at hand?

Reporting requirements for the DDM should, at a minimum, 
state what free parameters were considered, and what method of 
model-fitting was used (e.g., χ2, MLE, Bayesian MCMC). Ideally, the 
authors should provide code for validation/replication. The reader 

should be able to evaluate whether the model design was appropriate 
for the cognitive task (and research hypothesis) under study; for 
example, is there an existing literature using these methods with the 
study population? If the authors present a new or modified approach, 
did they explain and justify this process?

For example, the “standard” DDM described here assumes 
rapid responding by well-trained participants, with little 
expectation that learning, practice, or fatigue will modify behavior 
across the study. Is this consistent with the behavioral task 
demands? Also, different models (and model-fitting methods) 
have different requirements, such as number of responses, number 
of total trials, and minimum number of correct/incorrect 
responses per trial type (see Table 2); were these requirements 
met? More generally, is the model likely to shed any light on the 
cognitive processes being investigated by the study hypothesis?

Was the model validated?

Before presenting parameter estimates from the model, the 
authors should validate their model. First, did the authors present 
any theoretical justification for the free parameters being 
considered? Did they conduct predictive tests to show that the 
model can, in fact, generate simulated data that at least 
superficially captures important aspects of the behavioral data? 
Did they conduct a parameter recovery study to demonstrate that 
their model, as described, can accurately recover generating 
parameters? Did they conduct any model selection studies, to 
examine the effect of adding/deleting free parameters and did 
these results convincingly support the version of the model that 
the authors eventually reported?

Sometimes, this information is relegated to an appendix or an 
online supplement, but it is an important part of the modeling 
process, and the reader should be assured that this was done.

Do the model results survive a sanity 
check?

Turning now to the model results, which are often parameter 
estimates (such as Figure 10 or Table 4), usually compared across one 
or more groups or task conditions: Do the reported results seem 
reasonable for this task, given what we know from prior studies in 
the literature? If violin plots or strip plots (or, for Bayesian methods, 
posterior distributions) are presented, are the results unimodal? Is 
there any evidence of floor/ceiling effects that might suggest a 
broader range of possible parameter values needs to be examined?

Is there a thoughtful discussion of model 
limitations?

A good modeling paper (like all good science) will be honest 
about its limitations. At present, the DDM is almost always used 
post-hoc, rarely to test an a priori hypothesis. As such, overfitting 
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is always a concern. Ideally, modeling results obtained in one 
sample should be validated in a new sample, but failing this (or 
until follow-up studies are conducted), authors can try techniques 
such as cross-validation (or “out-of-sample” testing), to fit the 
model to different subsets of the data and test how well it 
generalizes. At a bare minimum, the possibility of overfitting 
should be addressed when interpreting model results.

A second general limitation of DDM is that it can show that 
estimated parameters are sufficient to explain the empirical data; 
but can never prove that this is the case. Latent cognitive processes 
remain latent. Ideally, results from the model identify candidate 
cognitive processes that could then form the basis of future 
hypothesis-driven studies.

The DDM also makes many simplifying assumptions about 
the process of evidence accumulation and decision-making. 
Simplicity is a virtue, but of necessity leaves out complicating 
factors that can include variations in attention, emotion, and other 
processes that may influence decision-making. Standard versions 
of the models assume that the empirical RT distribution reflects a 
large number (dozens if not hundreds) of repeated measurements 
of a well-learned response under constant conditions. If the 
subject learns new response strategies, or loses attention, as the 
session proceeds, this assumption may not be valid. This issue is 
often partially remediated by having a long practice phase before 
“real” data collection starts, so that the RT and accuracy 
measurements reflect performance of a well-learned response.

Perhaps most important: Does the model 
tell us anything non-trivial?

The main point of using computational models is (we hope) to 
uncover information about latent cognitive processes, and possibly 
to link these latent cognitive processes to brain substrates. So, did 
the current results actually provide any insights that would not 

be obvious from the behavior alone? For example, given that one 
group performed more slowly than another, can we understand 
this in terms of specific mechanisms such as increased boundary 
separation, reduced drift rate, and/or increased non-decision time 
– and if so, does this tell us anything interesting about the group in 
question? Even more interesting, can these parameters be mapped 
onto brain substrates or physiological processes?

Importantly, model results can sometimes be informative even 
in the presence of non-significant behavioral results. For example, 
even if two groups performed similarly in terms of accuracy and 
RT, perhaps the model can suggest qualitatively different ways in 
which the groups solved the speed-accuracy tradeoff (perhaps one 
group, with slower Ter due to motor dysfunction, “compensated” 
by reducing boundary separation).

Additionally, while group differences in model parameters can 
sometimes suggest important differences in underlying cognitive 
processes, absence of parameter differences can potentially show 
where a theory falls short, in failing to describe the phenomena of 
interest (Millner et  al., 2020). In this way, the “failures” of a 
computational model can sometimes be as insightful as its successes.

Conclusion

The above limitations notwithstanding, the DDM has become a 
dominant model of speeded decision-making, and some have argued 
that the DDM should replace mean RT and accuracy as default 
measurement tools for cognitive psychology (Evans and 
Wagenmakers, 2020). The DDM and other computational models are 
a useful complement to verbal theories in that they require explicit 
specification of cognitive components, and how these components 
interact (Millner et al., 2020). The idea of DDM parameters that 
correspond to fairly general (if latent) cognitive processes also aligns 
with RDoC (Research Domain Criteria), a research framework 
proposed by the U.S. National Institute of Mental Health (NIMH) for 

FIGURE 10

Box-and-whiskers plots showing DDM estimated parameter results from 10 data files, using MLE. (Left) Boundary separation a and drift rates d for 
s1 and s2, all in arbitrary units. For easy comparison, drift rates are plotted as absolute values; the actual value of d.s1 < 0 reflects slope downward to 
r1 boundary while d.s2 > 0 reflects slope upward to r2 boundary. (Right) Relative starting point z (as a proportion of a) and non-decision time Ter (in 
seconds). Heavy lines indicate median; boxes indicate interquartile range (IQR); whiskers indicate range; dots indicate scores lying >1.5 IQR beyond 
the box.
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investigating mental disorders in the context of basic biological and 
cognitive processes that contribute to a range of neurobehavioral 
functions (Insel et al., 2010; Cuthbert and Insel, 2013).

The reader who has made it thus far will appreciate that using 
and understanding the DDM can take considerable investment 
of time, to understand the basic concepts, to acquire and master 
software, to design experiments that are consistent with planned 
modeling, and to interpret and report results. Yet, like other 
analysis methods in cognitive psychology and neuroscience, 
computational models can repay this investment by providing 
insightful and replicable results that complement standard 
behavioral measures. It is our hope that this article will help 
provide our colleagues in cognitive psychology and neuroscience 
with the background to appreciate and critically evaluate research 
articles that report modeling results, and even to consider using 
these computational models in their own research.
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Appendix

Supporting material

An R script file, used to generate the data-related figures and tables in this article, is provided online at https://osf.io/cpfzj/, along with 
the test data file (testdata.csv) and the 10 empirical data files (empdata1.csv…empdata10.csv) used to generate the results. All data files 
were generated for the purpose of this tutorial and do not constitute human subjects research data.

The R script was verified in October 2022 to run on a Macintosh iMac (Mac OS Catalina 10.15.7) running R version 4.1.2 (R Core 
Team, 2021), and a Dell PC (Windows Enterprise 10) running R version 4.1.1. The script should also run under other releases of R and on 
Linux machines; however, we do not maintain (and cannot guarantee) the R packages used in the script.

This code may be freely used and/or modified for users to run with their own datasets; however, we strongly suggest that users making 
their first foray into computational modeling carefully consult the extensive tutorials and documentation provided with the software 
packages (especially DMC, rtdists, and RWiener, used in the examples here), as well as familiarizing themselves with best practices for 
computational modeling (e.g., Daw, 2011; Heathcote et al., 2015; Wilson and Collins, 2019) and the many excellent DDM review articles 
available (some of which are cited in this article).
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