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Despite the challenges associated with virtually mediated communication, 

remote collaboration is a defining characteristic of online multiplayer gaming 

communities. Inspired by the teamwork exhibited by players in first-person 

shooter games, this study investigated the verbal and behavioral coordination 

of four-player teams playing a cooperative online video game. The game, 

Desert Herding, involved teams consisting of three ground players and one 

drone operator tasked to locate, corral, and contain evasive robot agents 

scattered across a large desert environment. Ground players could move 

throughout the environment, while the drone operator’s role was akin to that 

of a “spectator” with a bird’s-eye view, with access to veridical information 

of the locations of teammates and the to-be-corralled agents. Categorical 

recurrence quantification analysis (catRQA) was used to measure the 

communication dynamics of teams as they completed the task. Demands 

on coordination were manipulated by varying the ground players’ ability 

to observe the environment with the use of game “fog.” Results show that 

catRQA was sensitive to changes to task visibility, with reductions in task 

visibility reorganizing how participants conversed during the game to maintain 

team situation awareness. The results are discussed in the context of future 

work that can address how team coordination can be augmented with the 

inclusion of artificial agents, as synthetic teammates.
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Introduction

Conversing with others involves a convergence of language (Clark, 1996) as well as a 
synchronization of bodies (Hoehl et al., 2021) which enables a shared understanding of a 
topic or a task at hand. Recent research has documented how the coordination of minds 
and bodies during conversation can be  disrupted during remote online interactions 
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(Tomprou et al., 2021). Although the transition to remote work 
during, for example, the COVID-19 pandemic has been disruptive 
for many people (Yang et  al., 2021), remote collaboration is a 
defining characteristic of online multiplayer game communities. 
In multiplayer first-person shooters (FPS) specifically, the voice 
channel is the primary means of communication between team 
members as the expressivity of non-verbal communication, such 
as gesturing, is limited (Tang et al., 2012). Additionally, like teams 
in the workplace, many multiplayer video games consist of players 
taking on specialized roles that uniquely contribute to a team’s 
success (e.g., “tanks” and “healers” in games such as World of 
Warcraft and Overwatch). Further, these teams can either 
be  laterally (e.g., Overwatch) or hierarchically organized (e.g., 
military simulation games like ARMA 3 or Squad). Thus, online 
multiplayer video games provide a rich platform to investigate the 
processes which enable effective team performance, coordination, 
and communication.

Within the psychological sciences, video games have become 
a popular platform to study cognition due to their behavioral 
richness and ability to collect large participant samples (Stafford 
and Dewar, 2014; Griffiths, 2015; Gray, 2017; Brändle et al., 2021). 
However, most of this work has focused on individual cognition 
in solitary games, and less on the interactive processes which 
enable remote group collaboration to be  possible. A notable 
exception is the work of Woolley, Malone and colleagues (Woolley 
et al., 2010; Riedl et al., 2021) which has explored the “collective 
intelligence” factor framework – a team analogue to the concept 
of general intelligence – to understand the attributes differentiating 
high versus low performing teams using the popular video game 
League of Legends (Kim et al., 2017). A major determinant of the 
collective intelligence of teams is the average social perceptiveness 
of team members (Woolley et  al., 2010; Riedl et  al., 2021), 
highlighting the importance of social responsivity and interactivity 
within teams. Another recent example is the work by Guastello 
and colleagues (Guastello et al., 2022) who used Counter-Strike to 
investigate the relationship between team cohesion and autonomic 
synchrony on team performance when facing against a team of 
artificial agents (or “bots”).

The capacity for teams to interact and coordinate effectively 
together is hypothesized to relate to the team possessing “team 
situation awareness” (TSA; Gorman et  al., 2006). The term 
“situation awareness” (SA), historically, has been defined as “the 
perception of elements in the environment within a volume of 
time and space, the comprehension of their meaning, and the 
projection of their status in the near future” (Endsley, 1988, p. 97; 
see also Gorman et al., 2006). Within a team context, TSA refers 
to each team member possessing “the situation awareness required 
for his/her job” (Endsley, 1995; see also Demir et  al., 2017; 
McNeese et al., 2021).

From an “interactive team cognition” (ITC) framework 
(Cooke et al., 2013), teams possess TSA following the formation 
of “interpersonal synergies” (Riley et al., 2011) or coordination 
strategies that are robust to perturbations. Interpersonal synergies 
are lawful couplings between individuals that adapt to variation in 

task context due to naturally occurring motor variability (Romero 
et al., 2015) or differences in constraints due to task (Ramenzoni 
et  al., 2011; Abney et  al., 2015; Davis et  al., 2017) or physical 
(Schwab et al., 2021) demands. The ITC framework is consistent 
with understanding teams as complex adaptive systems (McGrath 
et al., 2000; Ramos-Villagrasa et al., 2018).

Of particular relevance here is that the social coordination 
between team members and TSA can be assessed using various 
recurrence-based methods (Marwan et al., 2007; Richardson et al., 
2014; Gorman et al., 2020). Specifically, recurrence quantification 
analysis (RQA) is an analysis technique that describes the coupling 
dynamics between two systems (e.g., two people having a 
conversation), or a description of a single system’s behavior (e.g., 
a team) such as whether the behaviors are stable or deterministic. 
These descriptions are derived by computing statistics from 
generated recurrence plots (RPs) of the inputted behavioral or 
event time series (e.g., Figure 1 in Method). RQA has been applied 
to understand, for example, the interaction dynamics of 
interpersonal postural coordination during conversation 
(Shockley et al., 2003, 2009), gaze behavior (Richardson and Dale, 
2005), coordination during musical performance (Proksch et al., 
2022) and human-machine interaction (Demir et  al., 2019; 
Nalepka et al., 2021a). RQA has also been applied to task contexts 
where participants are homogenous in their roles, or where 
specific roles are assigned (Louwerse et al., 2012), or where there 
are differences between participants in ability (Davis et al., 2017; 
Schwab et  al., 2021). Although typically unidimensional time 
series are used to construct RPs, recent work has extended RQA 
to the analysis of multidimensional time series data (Wallot et al., 
2016). Within the social coordination and TSA literature, RQA 
has been applied to team problem-solving in tasks such as aerial 
reconnaissance (Demir et al., 2019) and intensive care units and 
submarine crews (Gorman et al., 2020). The results of this research 
have demonstrated that measures derived from RQA (in 
particular, %DET, which measures how often behavioral 
sequences are repeated [see Method]), is sensitive to a team’s skill 
level, or changes to task context that negatively impacts TSA (e.g., 
an unexpected event).

In competitive multiplayer games, verbal communication 
amongst teammates is constant and is used to establish and 
maintain TSA (Tang et al., 2012). These verbal statements (i.e., 
“callouts”) consist of providing up-to-date information about the 
locations of opposing players and are oftentimes directed to the 
entire team – as opposed to specific players. In competitive games 
which allow eliminated players to observe their teammates’ point 
of view (i.e., “spectate”), eliminated players do not sit idly but 
instead contribute a greater share to making callout statements 
regarding the locations of opponents. The role of the spectator is 
like the role of a drone operator in providing critical information 
to military personnel.

Members taking on specific roles can influence a team’s overall 
functioning and performance (e.g., “brokers” in social networks; 
Jackson, 2019). Individual roles are capable of scaffolding 
interactions in the case of caregiver-infant interactions (e.g., 
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Fusaroli et al., 2021), compensate for task-related burdens placed 
on certain individuals (Davis et al., 2017), or dictate the temporal 
order of turn-taking (Abney et al., 2015). Understanding how 
roles impact team functioning and the development of TSA is also 
important if, for example, the goal is to design artificial agents that 
can be  embedded within teams to perform specific roles to 
enhance team collaboration.

The current study explored how specific roles contribute to 
team coordination and communication in a custom-made 
multiplayer video game which consisted of game mechanics 
familiar to commercial FPS games. In the task employed here, 
teams of three individuals had to coordinate to search for and 
corral evasive agents which were scattered across a large virtual 
environment. Participants had a “first-person” perspective of the 
game and utilized keyboard and mouse controls common in the 
FPS genre (Nalepka et  al., 2022). Inspired by the role of the 
“spectator” in multiplayer FPS games, a fourth player was 
introduced who served as a spectator or drone operator in the task. 
This individual was able to observe the views of the three 
participants (referred to as ground players), as well as have access 
to a map that provided veridical information about the ground 
players’ positions, locations of the agents that needed to 
be  corralled, and the location where the agents needed to 
be corralled into.

Of particular interest was the communication dynamics that 
emerge between the drone operator and ground players when 
completing the task, and whether these dynamics relate to team 
performance. The necessity for the operator was manipulated by 
varying the ability of ground players to directly perceive their 
environment when completing the task. This was done with the 
use of environmental “fog” which obscured the ground players’ 
vision, but not the operator’s ability to provide task-relevant 
information with the use of the game map. This experiment was 
part of a larger study which included two additional task 
manipulations. First, the number of agents that needed to 
be corralled was manipulated (9 or 18). Second, on certain trials, 
an additional agent would randomly appear towards the end of the 
trial. The number of targets was not expected to impact the 
structure of the conversation dynamics (but may impact the 
quantity of statements), and the appearance of new agents to 
corral was expected to elicit greater communication from the 
drone operator to notify the ground players.

Categorical RQA (catRQA), a discretized version of RQA, was 
utilized to investigate the communication dynamics of the team, 
as well as the interaction dynamics between the ground players 
and the drone operator separately. The expectation was that an 
increase in task difficulty (e.g., the presence of fog) would result in 
a greater magnitude of conversation between team members, as 
well as more structured patterns of communication (as assessed 
by %DET from catRQA). This increase in communication and 
communication structure was expected to reflect the greater 
necessity to maintain effective TSA to ensure task success, and in 
particular, between ground players and the drone operator, who 
was not affected by the task difficulty manipulations and can 

therefore provide accurate information about the states of the 
task environment.

As alluded to above, this experiment is part of a much larger 
study. The overall aim of the larger study is to model the actions 
and communicative behaviors of teams engaged in complex and 
dynamically evolving task contexts for the development of human-
inspired artificial agents which can be  embedded within such 
teams. A potential application of this work is to reduce the 
demands associated with team training exercises by reducing the 
number of personnel needed (Rigoli et  al., 2022). In order to 
achieve this aim, we first must understand the contextual factors, 
behavioural strategies and communication dynamics which 
impact team performance and explains expertise. This experiment 
is one of the first of many which seeks to answer this question 
(Nalepka et al., 2022).

Materials and methods

Recruitment criteria

Recruitment materials were distributed via e-mail to senior 
undergraduate Psychology, Cognitive Science and Computer 
Science students at Macquarie University, and via social media 
posts to groups targeting undergraduate students. Interested 
individuals were asked to complete a survey where demographic 
information (e.g., age, gender), availability (e.g., days/times during 
the week), computer hardware and software specifications, and 
internet speed information were collected. Potential participants 
who completed the interest survey were contacted if their personal 
computer met the following minimum requirements: Windows 10 
or MacOS Mojave 10.13, with at least 8 GB of system memory 
(RAM), an Intel Core i5 or equivalent CPU, a minimum display 
resolution of 1,280 × 720 (HD), and a responsive internet 
connection (i.e., a ping rate under 100 ms, tested using).1

Participants

Forty individuals (M age = 23.73 years, 35 right-handed) were 
selected to participate in the study and received gift vouchers for 
their participation. All participants were either native (N = 29) or 
fluent (N = 11) English speakers. Twenty-nine (72.5%) of the 
participants reported to play video games weekly (for any 
duration), with 10 (25%) participants reporting that they play 
video games for at least 20 h per week. The participants were 
grouped into ten, four-person teams. Team assignment was 
determined by matching participant day and time availability, and 
all teams included at least one female participant (the sample 
consisted of 20 female, 19 male and one non-binary participant). 
The resultant teams had the follow gender composition: two teams 

1 https://www.speedtest.net
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with one female/three male, five teams with two female/two male, 
two teams with three female/one male, and one team consisting 
of two female participants, a male participant, and a 
non-binary participant.

The study was conducted entirely online due to restrictions 
imposed by the COVID-19 pandemic at the time of data 
collection, with participants completing the experiment using 
their own Windows or MacOS computer. All participants had to 
complete the study from Australia (all participants were either in 
NSW or Victoria) to ensure minimal internet delay (M ping 
rate = 10.4 ms). To facilitate verbal communication, each 
participant was required to have a microphone available. 
Participants were also asked to use a computer mouse (as opposed 
to, for example, a trackpad) to enable greater control of their 
in-game avatars.

Materials and design

Desert herding game
Teams played a networked multiplayer game referred to 

as Desert Herding (Nalepka et al., 2022). The task was inspired 
by previous research exploring corralling behaviors in 
two-person task contexts (Nalepka et al., 2017, 2019, 2021b; 
Rigoli et al., 2020). The game was designed using the Unity3D 
Game Engine (Version 2018.4 LTS; Unity Technologies, San 
Francisco, CA, United States). The game server was hosted on 
Amazon Web Services (AWS) EC2 with Windows 10 (server 
located in Sydney). Participants downloaded a standalone 
version of the game to their personal/home computer and 
connected to the server as clients. Game states, including 
participant movements, were transmitted across the network 
using Mirror (vis2k)2 networking architecture. The game 
could only be played when the experimenter instantiated a 
game session on the server, and thus participants could only 
play the game and complete the experiment during their 
allocated sessions. The server recorded all game state data at 
a sample rate of 90 Hz. In addition to interacting with each 
other in-game, participants could verbally communicate via 
the use of internet teleconferencing software (Zoom Video 
Communications Inc., San Jose, California; set to audio-
only communication).

The game involved locating, corralling, and containing a set 
of robots or target agents (TAs; the spherical robots in Figure 2) 
who freely roamed about a large area of desert terrain (500 × 500 m 
in game space). The goal of the game was for teams to work 
together to locate, corral, and contain the TAs within a fixed 
central containment area (cyan highlighted circle in Figure  2, 
measuring 10 m in diameter). Participants were assigned to one of 
two distinct roles. Three participants completed the task as ground 
players, while the fourth participant played the role of drone 

2 https://github.com/vis2k/Mirror/

operator. Game avatars were identifiable by a unique color 
assigned to each participant (red, blue, black, white). The color 
was also the name participants used in the experiment.

Ground players controlled humanoid game avatars (Figure 3). 
Participants could control their avatars using their mouse to 
control heading direction, and the “W,” “A,” “S,” and “D” keys on 
the keyboard to control forward, left strafe, right strafe, and 
backward locomotion, respectively. When moving, the avatars 
would move at a rate of 10 m·s−1. To allow for finer control, the 
avatar’s movements can be reduced to 5 m·s−1 by holding down the 
“Left Shift” key. Ground players were responsible for corralling 
and containing the TAs within the containment area. Participants 
could influence TAs by moving their avatars within the 
“threatened” radius of the TAs (10 m), causing them to flee in the 
opposite direction. To facilitate coordination between the ground 
players and the drone operator, ground players were also given a 
compass which provided information about their direction of 
heading (Figure 2).

The drone operator emulated a “spectator” common in many 
multiplayer FPS games. The participant playing as the operator 
had a user interface that enabled multiple different views of the 
task environment. Operators could “fly” around the environment 
in “fly-over” view (Figure 4, top), access the first-person view of 
any ground player (by selecting a ground player’s icon with the 
mouse while holding “Left Alt,” Figure 4, middle), or view a 2D 
global map of the task (by pressing the “M” key) (Figure  4, 
bottom). In fly-over view, participants used their mouse to control 
heading direction, and the “W,” “A,” “S,” and “D” keys on the 
keyboard to control forward, left strafe, right strafe, and backward 
movement, respectively, of their camera view. The drone operator 
could also increase/decrease the altitude of the camera using the 
mouse wheel.

The game was split into trials with a maximum duration of 
5 min. If teams could keep all TAs contained within the 
containment area for 5 continuous seconds, the trial would end 
early, and participants would receive feedback that they have 
succeeded. Otherwise, if the trial time expired, the trial would 
end, and participants would receive feedback that they have failed. 
During each trial, participants had access to how much time was 
remaining. At the start of each session, and between each game 
trial, participants’ game avatars were placed into a game lobby 
which overlooked the game field (Figure  3). The game lobby 
contained a display screen which showed participants how many 
trials were completed, including the number of which resulted in 
success/failure. This screen also displayed whether the preceding 
trial led to success or failure. Between trials, participants remained 
in the game lobby for 10 s.

When a trial initiated, ground players were randomly placed 
within 100 m of the containment area, whereas TAs were randomly 
placed within 180 m of the containment area. When left 
unperturbed, the TAs exhibited Brownian motion dynamics, in 
that a random force between 0 to 60 N was applied to the TA in a 
random (x, y) planar direction at a rate of 1 Hz (TAs had 1 kg 
mass). When a participant’s avatar was within 10 m of a TA, an 
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additional force was applied in the direction directly away from 
the participant’s avatar. This force was inversely proportional to 
the distance between the participant’s avatar and the TA (with a 
maximum force of 450 N). Both the Brownian and repulsive forces 
were applied until the TA reached a maximum velocity of 10 m·s−1.

The TAs also provided visual feedback regarding their status 
to participants by changing the color of the ring located around 
the middle of their body. The ring-light was orange when the 
targets were unperturbed (and hence only exhibited Brownian 
dynamics), red when fleeing a nearby participant avatar, blue 
when the TA was contained within the containment area, and 
green when all TAs were contained within the containment area.

Task manipulations
The task was manipulated in three ways. First, the number of 

targets that teams had to locate, corral, and contain was set to 
either 9 or 18 targets (Target Number; Figure 4, bottom for an 
example initial arrangement of 9 targets). Second, the visibility of 
the game environment was altered via the presence of game fog 
(Visibility). In the absence of fog, ground players had near perfect 
visibility and could see >150 m within the game space (Figure 2, 
top). In contrast, when fog was present, ground player visibility 

was restricted to being able to see clearly for approximately 10 m 
(Figure 2, bottom). Fog also hindered the operator’s ability to see 
the environment using fly-over view. Third, for some trials, a new 
TA would randomly appear towards the end of the trial (i.e., in the 
last 90 s, or after all TAs were contained, whichever occurred first; 
Task Perturbation).

Participants completed four sessions. For each session, 
teams completed two blocks, each consisting of 8 trials 
representing all possible combinations of the task 
manipulations (Target Number, Visibility, Task Perturbation). 
For the first two sessions, the drone operator was played by a 
different participant for each block (i.e., by the end of the 
second session, all participants would have had experience 
playing as the drone operator). Following the second session, 
a participant was randomly selected to play as the drone 
operator for the remaining two sessions. For one team, one 
participant did not have practice playing as the drone operator 
during the first two sessions (due to experimenter error). This 
person was designated as the operator for the third and fourth 
session for this team. For the first three sessions, trial order for 
each block was pseudo-randomized. For the fourth and final 
session, all teams completed the same random trial order.

FIGURE 1

Illustration of categorical recurrence quantification analysis (catRQA). (top) Illustration of the different player communication data series analyzed 
using catRQA. (bottom) Illustration of the corresponding recurrence plot (RP) for each data series type. See text for more details.

https://doi.org/10.3389/fpsyg.2022.1039431
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Simpson et al. 10.3389/fpsyg.2022.1039431

Frontiers in Psychology 06 frontiersin.org

Procedure

Teams completed four, 90-min sessions. For this paper, only 
data from the fourth and final session are presented as we were 
predominately interested in skilled-level performance. Participants 
received $30 AUD for each session, and a bonus $40 AUD for 
completing all four sessions with the potential to receive an 
additional $50 AUD if their team had the best performance in 
Session 4 (assessed as the team who completed the most trials 
successfully and most rapidly in the case of a tie). Payment was 
provided in the form of an e-Gift Card.

Each participant was either assigned to be a ground player, or 
the drone operator. Each participant was also assigned a unique 
color to be used throughout the study which fellow participants 
could use to address a particular participant in the study (i.e., red, 
black, blue, or white). For each session, an e-mail was sent 30 min 
prior to the scheduled meeting time containing the link to the 
Zoom meeting as well as instructions for how to control their 
in-game avatars. Upon entering the Zoom meeting, participants 
were renamed to their assigned color by the experimenter and 
were told to keep their video cameras turned off. Once all 
participants reviewed the task instructions and turned their video 

FIGURE 2

Ground player view of task manipulations. Participants playing as ground players used keyboard and mouse controls to navigate their humanoid 
avatars across a large desert environment. Teams consisted of three ground players who were tasked to search, corral, and contain target agents 
(TAs) within the cyan containment area. Ground players’ ability to observe the environment was manipulated by controlling the absence (top) or 
presence (bottom) of environmental fog. Participants either had full visibility of the desert environment (top), or their vision was obscured by fog 
(bottom). Ground players had access to a compass (top right of each image), a timer indicating how much time was remaining in a trial, and a 
nametag (top left of each image) reminding the participant of their name in the experiment.
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camera off, the experimenter began audio recording. The 
experimenter’s microphone was muted during game play. For the 
experiment, an audio file for each participant, the experimenter, 
and the server hosting the experiment environment (for trial 
audio tones used to segment trials from the session long audio 
recording) was recorded as well as a combined audio stream of all 
participants in the team. Both the individual participants’ and 
teams’ combined audio files were recorded to facilitate audio 
transcription and verbal/conversation coding.

Following audio setup, participants were asked to launch the 
Unity application and connect to the game server. After it was 
confirmed that all participants had joined the game session and 
that their internet connection was stable, the 16 game trials 
commenced. Participants were told to complete the trials as fast 
as possible. In the event a player disconnected from the experiment 
(e.g., due to an unreliable internet connection), the experiment 
session was paused and the experimenter troubleshooted the 
issue. Upon the participant rejoining the experiment, the 
experimenter would restart the trial from the beginning. In the 
rare occasion a participant disconnected when the trial was about 
to be completed (e.g., the TAs were contained but not yet for the 
full 5 s), the experimenter would allow the trial to finish. This was 
done so not to frustrate the participants who were about to 
successfully complete a trial. Upon the participant rejoining the 
experiment, the experimenter would then proceed to the next trial.

After completing all trials or after the 90-min session time had 
elapsed, the experimental session was stopped, and the Zoom call 
ended. This procedure was followed for all four sessions. Following 
the fourth and final session, participants were debriefed about the 
purpose of the study and thanked for their participation. The 

recruitment procedures and study methodology were approved by 
the Macquarie University Human Research Ethics Committee.

Audio data extraction and 
communication transcription

The audio stream for each session was segmented into 16 
separate audio files, representing each trial, for each participant’s 
audio file. This was done in a semi-automated manner using the 
Aubio python package3 to automatically detect audible tones 
which were briefly played just before the start (900 Hz) and 
immediately following the end (1,100 Hz) of each trial.

For each individual audio file, a voice activity detection (VAD) 
library was used (WebCRTVAD)4 to determine which 
participant(s) spoke within 30 ms windows. The result was a 
binary time series (0 = silence, 1 = speaking) for each participant, 
for each trial. This procedure was performed using both “mid-
high” and “mid-low” VAD parameter settings, resulting in the 
same pattern in the time series. For the analyses employed here, 
the time series was extracted using the mid-high VAD 
parameter settings.

The audio files were also transcribed in phases to ensure 
accuracy. First, the audio files were sent to an automated 
transcription service (Otter.ai, Los Altos, CA, United  States).5 

3 https://pypi.org/project/aubio/

4 https://github.com/wiseman/py-webrtcvad

5 https://otter.ai

FIGURE 3

View of the game lobby. Participants were embodied as humanoid avatars, whose color was the same as the participant’s name in the experiment 
(the participant playing as the drone operator was referred to as “Operator”). Following each trial, participants were teleported to a game lobby 
where participants received feedback regarding the previous trial, summary of how many trials were successful/unsuccessful, and a timer to 
indicate when the next trial was to begin.
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These automated transcripts were then edited by two independent 
transcribers to correct for any errors or omissions. Para-linguistic 
features were also transcribed such as laughter and verbal ticks 
(e.g., ‘umm’). Unless otherwise noted, all analyses included 
these features.

Following transcription, the transcripts were coded to identify 
(1) the speaker, (2) the recipient, and (3) whether the utterance 
was task-related or task-unrelated. The transcripts were coded 
using NVivo 12. The transcriptions had an inter-rater reliability of 
0.90. The codes for speaker and recipient was 0.87, and task-
related vs. unrelated was 0.92. For differences in the number of 
words/utterances attributed to a particular code, the average 
length was used.

Measures

All completed trials (unsuccessful and successful) were 
included in analysis. The following measures were computed. 
Only data from the fourth session was analyzed.

Team performance
A team’s performance was assessed with two measures. First, 

performance was assessed by the trial’s duration in seconds (Trial 
Duration), where lower values indicated faster trial completion 
times with an upper ceiling value of 300 s for failed trials, 
representing the maximum trial duration. Second, Containment 
Rate was calculated as the number of TAs that were contained at 
the end of the trial, divided by the trial duration. Here, higher 
values corresponded to better team performance.

Team division of labor
A secondary team-level measure to assess team performance 

was to quantify the extent to which teams divided labor by 
partitioning where ground players searched. This division of labor 
was quantified as the proportion of the search area that was 
overlapping between two or more players. Here, 0% would 
indicate that teams cleanly partitioned the search space, while 
100% would indicate that all participants searched the 
same locations.

For each participant, a bounding polygon which encapsulated 
the participant’s avatar movements was created using the 
alphashape python toolbox6 to quantify each participant’s search 
area. The construction of the bounding polygon is an iterative 
process whereby a circle with radius r−1 is “rolled” along the 
extremities of the dataset, producing polygon edges whenever two 
data points intersect the circle. This process is repeated until the 
tightest-fitting single polygon is found (see Figure 5). Failure for 
r−1 to converge will result in the convex hull being used as the 
bounding polygon. The convex hull represents the smallest 
possible convex bounding polygon (whose shape is akin to a 

6 https://pypi.org/project/alphashape/

rubber band wrapped around pegs on a pegboard). Once the 
bounding polygons were created, the proportion of the search area 
that was overlapping was measured as the area spanning the 
overlapping polygons divided by the total search area. For  
this measure, each participant’s movement time series was 
downsampled to 5 Hz and the first second was deleted to remove 
any transient periods in behavior.

Magnitude of verbal communication
The magnitude of verbal communication was computed as the 

proportion of time a given participant was speaking during a trial 
– computed from the binary speaking time series. Separate values 
were computed for the drone operator and the ground players. For 
the three ground players, the proportions were averaged to create 
a singular value for the trial.

Structural dynamics of verbal communication
CatRQA (Dale and Spivey, 2006) was used to measure how the 

dynamics of team communication was impacted by the role 
participants adopted as well as the various task manipulations. 
CatRQA was employed at three different levels: measuring the 
communication dynamics of the drone operator, the ground 
players, and the dynamics at the team level (Figure 1). For the 
drone operator, catRQA was applied on the binary communication 
time series, described above, where “1” indicated that the operator 
was speaking, otherwise ‘0’ (sampled at 30 Hz). For the three 
ground players, a time series was constructed (sampled at 30 Hz), 
where if a ground player was speaking, the sample was coded with 
a unique identifier (i.e., “1,” “2,” “3”). If no ground player was 
speaking, the sample was coded as “0.” If two or more ground 
players were speaking, the sample was coded as “4.” At the team 
level, a similar procedure was followed, whereby speech by the 
drone operator was coded as “1,” “2–4” for the ground players, and 
“5” if two or more participants were speaking at the same time – 
other “0” for silence.

CatRQA was conducted for each time series for each trial. In 
short, catRQA identifies the dynamics of a system by discerning (1) 
whether the states of the system recur over time, and, if recurrent, 
(2) the degree to which the patterning of recurrences are highly 
regular or deterministic (Richardson et al., 2014). This analysis is 
done by performing statistics on recurrence plots (RPs) which, in 
the case of catRQA, is a 2D Boolean matrix with the considered time 
series presented on the x- and y- axes. To ensure that any recurrences 
are due to patterns in participant speaking behaviors, any periods of 
silences (i.e., data coded as “0”) was recoded with a random, 
non-repeating number prior to analysis.

Two catRQA measures were used to assess the dynamics of 
participant communication (the two catRQA measures most 
employed in the literature; (Coco and Dale, 2014; Richardson 
et  al., 2014; Gorman et  al., 2020). The first measure was the 
percentage of recurrent points (%REC) in the generated RPs. This 
measure captures the degree to which the same states of behavioral 
communication are repeated over time. The second measure was 
the percent of recurrent points that formed diagonal lines within 
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FIGURE 4

Drone operator game views. The participant playing as the drone operator had access to three different views of the task environment: fly-over 
view (top), ground player first-person view (middle), and map view (bottom). In fly-over view, participants used their mouse to control heading 
direction, and the “W,” “A,” “S,” and “D” keys on the keyboard to control forward, left strafe, right strafe, and backward camera movement, 
respectively. The drone operator could view the first-person perspective of up to three ground players (middle) by clicking on their player icon 
with the computer mouse while holding the “Left Alt” key. Finally, the map view (bottom) provided veridical information about the location of the 
ground players (the colored arrows) and TAs (the orange circles). The status of the TAs could also be viewed in map view (i.e., the color of the 
circle indicated if the TA was idle [orange], fleeing [red], contained [blue], and green [indicating all TAs were contained]).
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FIGURE 6

Summary of team performance and division of labor measures. Results are reported as a function of the different manipulations (target number, 
visibility, and task perturbation). Error bars represent the standard error of the mean.

the generated RPs, where such lines corresponded to sequences of 
recurrent points. This latter measure is referred to as percent 
determinism, or %DET, because it captures whether the same 
sequences of recurrent states are repeated over time. Here, high 
%DET corresponds to a more structured or deterministic pattern 
of behavioral communication.

Results

All ten teams completed the experiment. For each dependent 
measure, 2 (Target Number: 9, 18) × 2 (Visibility: no-fog, fog) × 2 
(Task Perturbation: No, Yes) repeated measures ANOVAs were 
utilized. Post-hoc analyses were corrected using the Bonferroni 
correction. Violations to sphericity were corrected using the 
Greenhouse–Geisser correction. For some dependent measures 
(e.g., trial duration), the assumption of normality was violated due 
to ceiling or floor effects. Given the robustness of ANOVAs to 

violations of normality, the data was not transformed prior 
to analysis.

Team performance

A detailed summary of the means and standard deviations for 
each team performance measure as a function of condition are 
reported in Figure 6. As can been seen from this figure, teams 
completed trials faster when there were 9, as opposed to 18, TAs 
(F (1, 9) = 308.32, p < 0.001, ηp

2 = 0.97), when there was no 
environmental fog (F (1, 9) = 43.95, p < 0.001, ηp

2 = 0.83), and when 
no additional TA was added to the trial (F (1, 9) = 91.06, p < 0.001, 
ηp

2 = 0.91). There were no significant two-way (all F (1, 9) < 4.56, 
p > 0.061, ηp

2 < 0.34) or three-way interactions (F (1, 9) = 0.928, 
p = 0.36, ηp

2 = 0.09).
Similarly, the rate that participants contained the TAs was 

higher when there were 9, as opposed to 18, TAs (F (1, 9) = 197.70, 

FIGURE 5

Illustration of how proportion overlap of player search was calculated. The position time series of each participant’s avatar (black, red, blue) (left) is 
submitted to the alphashape python toolbox. Concave polygons for each participant are then generated (middle), which represent the 
participants’ search areas. Polygon “fragments” are then obtained by taking the intersection of each pair-wise combination of participant search 
areas and then combined (light grey polygon in right panel). The proportion overlap of a team’s search area is then computed as the area of the 
light grey polygon divided by the total spread (represented as the sum of the dark grey and light grey polygons in the right panel). The cyan circle 
represents the location of the containment area. Adapted from Nalepka et al. (2022).
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p < 0.001, ηp
2 = 0.96), when there was no environmental fog (F (1, 

9) = 60.08, p < 0.001, ηp
2 = 0.87), and when no additional TA was 

added to the trial (F (1, 9) = 95.06, p < 0.001, ηp
2 = 0.91). In addition 

to the main effects, the Target Number × Visibility (F (1, 9) = 7.40, 
p = 0.024, ηp

2 = 0.45), Target Number × Task Perturbation (F (1, 
9) = 5.65, p = 0.041, ηp

2 = 0.39), and Visibility × Task Perturbation 
(F (1, 9) = 5.92, p = 0.038, ηp

2 = 0.40) interactions were also 
significant. As can be seen in Figure 6, participants contained TAs 
at a greater rate when there was 9, as opposed to 18 TAs, both 
when there was, and there was no fog present (all p < 0.01) – 
however, this difference was greater when there was clear visibility. 
Similarly, regardless of the Task Perturbation manipulation, 
participants contained the TAs at a greater rate when there was 9, 
as opposed to 18 TAs (all p < 0.01) – however, this difference was 
greater when there was no task perturbation introduced. Similarly, 
regardless of Task Perturbation, participants contained the TAs at 
a greater rate when there was no fog present than when there was 
fog present (all p < 0.02) – however, this difference was greater 
when there was no task perturbation introduced. There was no 
significant three-way interaction (F (1, 7) = 0.07, p = 0.804, 
ηp

2 = 0.01).

Team division of labor

Teams were able to divide labor more efficiently (i.e., there was 
less overlap in where ground players moved) when there was no 
environmental fog (F (1, 9) = 33.52, p < 0.001, ηp

2 = 0.79), and when 
no task perturbation was introduced (F (1, 9) = 17.208, p = 0.002, 
ηp

2 = 0.66). There was no main effect for Target Number (F (1, 
9) = 3.82, p = 0.082, ηp

2 = 0.30), nor were there any two-way (all F 
(1, 9) < 1.81, p > 0.211, ηp

2 < 0.17) or three-way (F (1, 9) = 3.41, 
p = 0.098, ηp

2 = 0.28) interactions.

Magnitude of verbal communication

As expected, the number of utterances produced by 
participants playing as the drone operator increased when 
environmental fog was present (F (1, 9) = 42.67, p < 0.001, 
ηp

2 = 0.83). This difference was greater when 18 TAs had to 
be corralled and contained, compared to when 9 TAs were present, 
although the Target Number × Visibility interaction was not 
significant (F (1, 9) = 4.24, p = 0.07, ηp

2 = 0.32). No other main 
effects or interactions were significant (all F (1, 9) < 1.04, p > 0.33, 
ηp

2 < 0.11).
The ground players also spoke more when environmental fog 

was present (F (1, 9) = 9.25, p = 0.014, ηp
2 = 0.51), as well when the 

number of TAs to contain increased (F (1, 9) = 6.75, p = 0.029, 
ηp

2 = 0.43). In addition to the main effects, there were marginally 
significant Target Number × Visibility (F (1, 9) = 4.37, p = 0.066, 
ηp

2 = 0.33) and Target Number × Task Perturbation (F (1, 9) = 4.79, 
p = 0.056, ηp

2 = 0.35) interactions. The impact of Visibility and Task 
Perturbation was greater when 18 TAs, as opposed to 9, had to 

be  contained, such that there was more speech when 
environmental fog was present, or if a TA was introduced in the 
trial. No other main effects or interactions were observed (all F (1, 
9) < 0.19, p > 0.67, ηp

2 < 0.03). Table 1 for the means and standard 
deviations for each condition.

Structural dynamics of verbal 
communication

At the team level, recurrent quantification analyses revealed 
that %REC and %DET was impacted by the Visibility manipulation 
(%REC: F (1, 9) = 12.38, p < 0.01, ηp

2 = 0.579; %DET: F (1, 
9) = 15.764, p < 0.01, ηp

2 = 0.638; Figure  7, top). The dynamical 
structure of the team’s communication was more recurrent and 
deterministic, meaning that teams communicated more and 
exhibited more routine patterns of communication, when there 
was environmental fog present. Further, team communication was 
more recurrent when teams corralled and contained 18, as 
opposed to 9, TAs (%REC: F (1, 9) = 5.942, p = 0.038, ηp

2 = 0.398). 
There was no main effect of Task Perturbation for %REC or %DET 
(both F (1, 9) < 2.03, p > 0.19, ηp

2 = 0.184), nor any interaction 
effects (all F < 1, p > 0.5).

When looking at the communication dynamics of the 
participant taking on the role of drone operator, similar results 
were observed (Figure  7, middle). Participants playing as the 
drone operator exhibited more recurrent dynamics (higher %REC: 
F (1, 9) = 55.85, p < 0.001, ηp

2 = 0.861) which was more 
deterministic (higher %DET: F (1, 9) = 12.638, p < 0.01, ηp

2 = 0.584) 
when environmental fog was present, than when visibility was 
clear. In other words, when environmental fog was present, the 
drone operator spoke more and within defined sequences. There 
was also a significant Target Number × Visibility interaction for 
%REC (F (1, 9) = 6.253, p = 0.034, ηp

2 = 0.410). Decomposing the 
interaction, the effect of Visibility was only significant when task 
visibility was low (i.e., fog was present; p < 0.001), and not when 
task visibility was high (p > 0.05).

A marginally significant Target Number × Visibility interaction 
was also found for %DET (F (1, 9) = 5.016, p = 0.052, ηp

2 = 0.358). 
There were no main effect of Task Perturbation for %REC or 

TABLE 1 Magnitude of verbal communication.

Measure
Fog No fog

9 Bots 18 Bots 9 Bots 18 Bots

Perturbation

nTTOP 0.59 (0.11) 0.63 (0.11) 0.49 (0.14) 0.22 (0.10)

nTTGP 0.20 (0.08) 0.19 (0.08) 0.22 (0.10) 0.24 (0.11)

No perturbation

nTTOP 0.63 (0.11) 0.64 (0.11) 0.51 (0.15) 0.47 (0.16)

nTTGP 0.19 (0.08) 0.20 (0.08) 0.21 (0.10) 0.24 (0.11)

Values represent the mean for each condition (averaged across trial and team), with the 
standard deviations reported in parentheses.
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%DET (both F (1, 9) < 1, p > 0.5), nor any other interaction effects 
(all F (1, 9) < 2.475, p > 0.15, ηp

2 < 0.216).
Interestingly, the catRQA analysis for the ground player 

communication time series (see Figure 7, bottom) revealed a very 
different pattern of results. Specifically, ground player 
communication was significantly less recurrent (i.e., ground 
players communicated with each other less) when environmental 
fog was present (F (1, 9) = 9.369, p < 0.02, ηp

2 = 0.51) – the opposite 

of what was found for the operator and at the team-level. Further, 
there was no effect of Target Number or Visibility on %DET for 
ground players (both F (1, 9) < 3.507, p > 0.094, ηp

2 = 0.280). Finally, 
although there was no main effect of Task Perturbation for either 
%REC or %DET (all F < 2.003, p > 0.191, ηp

2 < 0.182), there was a 
significant Target Number × Task Perturbation interaction for 
%REC (F (1, 9) = 5.458, p < 0.05, ηp

2 = 0.378). Similar to what was 
found for the operator and at the team level, the structure of 

FIGURE 7

Summary of catRQA results. Mean %REC and %DET for the team (top), operator (middle) and ground player (bottom) communication data series 
as a function of the target number and visibility conditions. Error bars represent the standard error of the mean.
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ground players’ communication was significantly less recurrent 
(i.e., lower %REC) when the task required the containment of 9, 
as opposed to 18, TAs (F (1, 9) = 10.251, p < 0.02, ηp

2 = 0.532). There 
were no other interactions for either %REC or %DET (all 
F < 2.003, p > 0.191, ηp

2 < 0.182) for the ground players 
communication time series.

Relationship between team performance 
and communication

Finally, linear regression was employed to determine whether 
there was any additional association between the magnitude, 
symmetry, and dynamic structure of verbal communication and 
overall team performance and coordination. Specifically, linear 
regression was employed to evaluate whether any of the above 
detailed communication measures predicted team performance 
(i.e., trial duration and containment rate), after accounting for the 
variance associated with Target Number, Visibility, and Task 
Perturbation. The regression took the following form,

Y f X z ui i X z i i= + ( ) + + +β β β ε0 ,

where the dependent variable, yi was either trial duration, 
containment rate, or team division of labor, β0  was the model 
intercept, f (Xi, βX) represents the independent variables and 
associated coefficients for Target Number, Visibility, Task 
Perturbation, and corresponding two-way and three-way 
interaction factors, ui  was the random effect (intercept) for each 
team, εi  was the additive error term (i.e., remaining variance 
unaccounted for), and z zβ  was the verbal communication 
measure and coefficient of interest (e.g., communication 
magnitude, %REC, etc.).

For the magnitude of ground player communication, the 
analysis revealed a significant positive relationship for trial 
duration (β = 149.89, σm = 63.85, z = 2.35, p < 0.02, CI = [24.76, 
275.03], f2 = 0.113) and containment rate (β = −005, σm = 0.002, 
z = − 2.42, p < 0.02, CI = [−0.009, −0.0009], f2 = 0.104), with a 
greater magnitude of ground player communication resulting 
in worse performance. No such relationship existed regarding 
communication by the drone operator (both trial duration 
and containment rate p > 0.495). No other significant 
relationships were observed for the magnitude of task-
relevant communication.

Consistent with the relationship between the task performance 
measures and the magnitude of ground player communication, 
both trial duration and containment rate were also positively 
related with the %REC of ground player communication 
(β = −3.34, σm = 1.31, z = −2.55, p < 0.02, CI = [−5.90, −0.77], 
f2 = 0.069 and β = −0.071, σm = 0.022, z = −3.2, p < 0.01, 
CI = [−0.114, −0.027], f2 = 0.088, respectively), with more 
recurrent ground player communication associated with worse 
task performance. There was, however, no significant relationships 

between %DET of ground player communication and trial 
duration or containment rate (both p > 0.51).

Interestingly, when considering the communication dynamics 
at the team-level, the relationships were reversed. Specifically, 
there was a significant negative relationship between containment 
rate and %REC of the team-level communication (β = −0.034, 
σm = 0.017, z = −2.01, p < 0.05, CI = [−067, −0.0001], f2 = 0.062), 
such that the more recurrent a team’s communication dynamics, 
the faster they were at corralling and containing the TAs. There 
were no significant effects for any of the other team-level or drone 
operator catRQA communication measures (all p > 0.14).

Discussion

The current study explored team performance and 
communication dynamics in a custom-built cooperative first-
person multiplayer video game. The Desert Herding game required 
teams of four participants to work together to locate, corral, and 
contain evasive TAs scattered throughout a large desert 
environment. Participants playing the game took on one of two 
distinct roles – three ground players who could navigate and 
interact with the game environment, and one drone operator 
whose role was like a “spectator.” Although the operator could not 
directly interact with the environment, they had access to veridical 
information about the task. These role differences created a natural 
knowledge asymmetry between the players, which became 
exaggerated when teams were exposed to environmental fog, 
which uniquely impacted ground players’ ability to locate and 
corral the TAs but had no impact on the drone operator’s ability 
to communicate the states of task-relevant objects using the map.

As expected, the inclusion of environmental fog in the game 
challenged teams’ ability to complete the Desert Herding game. 
Specifically, the time needed for ground players to locate, corral, 
and contain the TAs increased when visibility was poor. 
Additionally, the movements of players when searching was not 
as efficient when exposed to fog, as evidenced by the finding that 
the ground players’ movement areas overlapped more when 
searching for TAs. To compensate for the challenges to task 
performance that the fog caused, both ground players and the 
drone operator increased the number of verbal statements that 
were produced to build and maintain awareness of the locations 
of the TAs, and of other players. Further, due to the knowledge 
asymmetry that existed between the ground players and the drone 
operator, the presence of environmental fog reorganized the 
communication dynamics between the participants. Specifically, 
in the more difficult task condition, ground players directed  
more of their conversation to the drone operator (see 
Supplemental Information for additional analyses). Variation in 
the number of TAs teams had to corral (9 or 18; or when a new TA 
was included towards the end of the trial) did not have an impact 
on the structure of how teams communicated. This is most likely 
because such manipulations did not challenge a team’s ability to 
maintain TSA.
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The reorganization of the conversation dynamics of teams due 
to changes in task visibility was supported by the catRQA results. 
At the team level, greater coordination between team members 
was observed when fog was present (as assessed by both %REC 
and %DET). However, when the conversation dynamics of teams 
was decomposed into their respective roles, the drone operator 
was responsible for the increase in coordination because their 
statements were more frequent (as assessed by %REC) and more 
deterministic (as assessed by %DET). In contrast, the 
communication dynamics within the ground players was less 
structured when fog was present. Indeed, the results from the 
linear regression analysis showed that, after accounting for the 
task manipulation effects, greater and more recurrent verbal 
communication amongst ground players was associated with 
worse task performance.

The inclusion of fog necessitated an increased dependence 
of language to communicate the locations of TAs. The catRQA 
results indicate that the communication patterns teams 
adopted became more stable because the operator played a 
larger role in maintaining TSA. However, this coordination 
strategy did not mitigate the impacts of environmental fog on 
team performance. This may be  due to the difficulty of 
language to communicate nuanced relationships between the 
ground players, the TAs, and their positions in reference to 
the containment location (e.g., communicating the shape of 
a TA cluster and how best to corral them). Anecdotally, the 
participant playing as the drone operator often dictated what 
actions ground players should take but also appeared to 
communicate less about how ground players were positioned 
in relation to each other. This may be a contributing factor 
why participants were not as efficient searching for TAs when 
fog was present. Further, the reliance on the drone operator 
introduced a coordination bottleneck as ground players were 
not able to meaningfully contribute to building TSA due to 
the lack of visibility. This bottleneck required the operator to 
make serial decisions about which individual ground player 
a verbal statement should be directed towards. In contrast, 
when no fog was present, ground players had a greater ability 
to perform tasks independently without the guidance of the 
operator, which then enabled a team’s search to be more like 
a parallel process. In recent work (Nalepka et al., 2022), the 
challenges imposed by fog could be mitigated by giving direct 
access of the in-game map to the ground players – in this 
case, through a head-up display (HUD). This work 
demonstrated that when ground players are given a HUD, 
there was no impact of task visibility on team performance.

This study, consistent with previous research, documents 
the dynamics which define effective team performance and 
coordination. However, in the area of human-autonomy 
teaming (HAT; O’Neill et  al., 2020), there is less research 
focusing on how such dynamic patterns can be generated by 
artificial agents that could serve as synthetic teammates 
(Nalepka et al., 2021a). Applications for HAT include providing 
artificial agents that exhibit human-like behaviors to facilitate 

team training exercises (Rigoli et al., 2020), or adaptable agents 
that can enhance overall team functioning. Previous research 
investigating HAT in a three-person air reconnaissance task 
has documented that participants conversing with an artificial 
agent, via a text-based system, exhibited patterns of 
communication that were more rigid compared to all-human 
teams (Demir et al., 2019). This rigidity was shown to result in 
worse performance when teams had to overcome unexpected 
barriers during the task (Demir et al., 2019). More recent work 
developing artificial agents using deep reinforcement learning 
(i.e., agents whose state-action policies are represented using a 
multi-layer neural network training to optimize a reward 
function) has shown the potential to developing agents that can 
work alongside humans in cooperative, movement-based tasks 
(Carroll et al., 2019; Nalepka et al., 2021a).

Of particular interest is training artificial agents capable 
of spoken conversation. In this way, participants engaged in 
the task can use natural spoken language to interact with an 
artificial agent (and receive verbal feedback), as opposed to 
relying on text-based communication like in previous 
research (Demir et al., 2019). Using the task explored here, 
conversational agents could assume the role of the drone 
operator and provide guidance to ground players or engage 
in the task directly as a ground player. Further, teams could 
be composed of multiple artificial agents who can not only 
converse with humans, but with each other. Previous research 
has explored the development of artificial agents that can 
comprehend (e.g., (Blukis et al., 2018; Misra et al., 2018)) and 
produce language input (e.g., (Abramson et al., 2020, 2021)) 
in instruction-following tasks using supervised learning 
techniques. However, this research, as well as most 
commercially available conversational platforms used today 
(e.g., Amazon’s Alexa, Google’s Dialogflow) rely on dyadic, 
question-response interactions (Seering et  al., 2019). To 
enable conversational agents to function in team-based tasks 
such as the one employed in this study, such agents need to 
be able to monitor the conversations of all team members and 
to develop expertise in anticipating what and when 
information will be requested by the team members (Simpson 
and Crone, 2021).

For artificial agents to become effective teammates within 
mixed human-machine teams, future research needs to 
simultaneously explore the coordination dynamics that 
differentiate high- from low-performing teams in various task 
conditions, as well as develop and assess algorithms which 
enable artificial agents to act and converse with their human 
teammates. Given the challenges associated with remote 
collaboration, teamwork within online, multiplayer video 
games are a promising paradigm to explore human- and 
human-autonomy teaming. Although derided by the FPS 
gaming community due to their incompetence, artificial agents 
(or “bots”) of the future have the potential to contribute 
meaningfully as synthetic teammates (or opponents) to 
enhance team interactions.
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