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A systematic review of the
pharmacological modulation of
autobiographical memory
specificity

Emma Cawley*, Giulia Piazza, Ravi K. Das and

Sunjeev K. Kamboj

Research Department of Clinical, Educational and Health Psychology, University College London,

London, United Kingdom

Background: Over-general autobiographical memory (AM) retrieval is

proposed to have a causal role in the maintenance of psychological disorders

like depression and PTSD. As such, the identification of drugs that modulate

AM specificity may open up new avenues of research on pharmacological

modeling and treatment of psychological disorders.

Aim: The current review summarizes randomized, placebo-controlled studies

of acute pharmacological modulation of AM specificity.

Method: A systematic search was conducted of studies that examined

the acute e�ects of pharmacological interventions on AM specificity in

human volunteers (healthy and clinical participants) measured using the

Autobiographical Memory Test.

Results: Seventeen studies were identified (986 total participants), of which

16 were judged to have low risk of bias. The presence and direction of e�ects

varied across drugs and diagnostic status of participants (clinical vs. healthy

volunteers). Themost commonly studied drug—hydrocortisone—produced an

overall impairment in AM specificity in healthy volunteers [g=−0.28, CI (−0.53,

−0.03), p = 0.03], although improvements were reported in two studies of

clinical participants. In general, studies of monoamine modulators reported

no e�ect on specificity.

Conclusion: Pharmacological enhancement of AM specificity is inconsistent,

although monaminergic modulators show little promise in this regard.

Drugs that reduce AM specificity in healthy volunteers may be useful

experimental-pharmacological tools that mimic an important transdiagnostic

impairment in psychological disorders.

Systematic review registration: PROSPERO, identifier CRD42020199076,

https://www.crd.york.ac.uk/prospero/display_record.php?ID=

CRD42020199076.
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Introduction

Autobiographical memory (AM) refers to the store of

self-related knowledge and memories for personal experiences

(Conway and Pleydell-Pearce, 2000; Tulving, 2002). It is central

to an individual’s sense of self, identity, and their capacity

to understand their place in the world. Dysfunctions in AM

processing may therefore have serious implications for mental

wellbeing. Much of the interest in AM has focused on the

(deficits in) retrieval of specific AMs (i.e., spatiotemporally

unique memories of personally experienced events). Although

particularly well-characterized in depressive (Williams et al.,

2007) and traumatic stress disorders (Moore and Zoellner, 2007;

Ono et al., 2016), reduced retrieval of specific AMs, otherwise

known as overgeneral AM, is found in a range of psychological

disorders (e.g., Jones et al., 1999; Berna et al., 2016; Barry

et al., 2021). In sufferers of depression, for example, maladaptive

processing of memories for personal experiences and self-related

knowledge may include overgeneral AM, reduced recollection

of positive AM, and enhanced (repetitive and involuntary)

access to negative self-representations and AMs (Dalgleish and

Werner-Seidler, 2014). While these particular biases represent

distinct phenomena, they all rely on dysfunctional or biased

memory retrieval processes (Brewin, 2006), which are likely

further compounded by negative affective biases (e.g., Hitchcock

et al., 2020) and impaired or overgeneralized encoding of

experiences (Dillon and Pizzagalli, 2018; Kumar et al., 2018;

Murphy et al., 2019; Ai et al., 2020).

Pharmacological agents have been used to model

neuropsychological dysfunctions in encoding or consolidation

stages of memory processing (e.g., Kamboj and Curran,

2006). Such approaches have been invaluable in the study

of organic brain disorders like Alzheimer’s disease through

the ability to replicate the commonly observed memory

encoding/consolidation impairments that characterize

these disorders (e.g., Haider et al., 2016). Psychological

disorders, however, are characterized by more complex

patterns of hyper- and/or hypomnesia that reflect dysfunctional

memory storage and retrieval, yet evidence suggests that

acute impairments to episodic memory retrieval can also be

induced pharmacologically (e.g., Strange et al., 2003; Kuhlmann

et al., 2005; Hurlemann et al., 2007; Diekelmann et al., 2011;

Rimmele et al., 2015; Kroes et al., 2016). Retrieval dysfunction

has largely been induced by agents targeting stress-related

hormones and neurotransmitters [i.e., endogenous regulators of

glucocorticoids and (nor)adrenaline]. These findings highlight

the potential for developing pharmacological models of and,

by extension, potential therapeutic targets for dysfunctional

retrieval. However, unlike episodic encoding impairments

in Alzheimer’s, for example, there are currently no accepted

experimental-pharmacological models of the transdiagnostic

dysfunctional retrieval processes observed in common

psychological disorders like depression, anxiety, and PTSD.

AM specificity and psychological disorder

In Conway and Pleydell-Pearce’s (2000) influential model

of AM, which aims to account for variation in AM specificity,

specific AM retrieval involves the reactivation of self-related

knowledge from a hierarchical store. Executive processes

evaluate the current contents of memory in relation to their

relevance to current goals and are involved in terminating the

search when the search goals (to retrieve a specific episode) are

achieved. The ability to recall specific AMs is most commonly

assessed using the Autobiographical Memory Test (AMT;

Williams and Broadbent, 1986). Cued memories are considered

specific if they contain unique temporal (specific event lasting <

1 day) or spatial (a specific location and arrangement of objects

and people) episodic details. Reliability and validity of the AMT

has been assessed across test re-test intervals ranging from 1 to

5 months (Raes et al., 2009b), and a study of 40,000 memories

in young teenagers found that the AMT operates well over a

wide range of scores and delivers a reliable continuous measure

of overgeneral (i.e., non-specific) AM (Heron et al., 2012). The

AMT reliably measures the single factor of AM specificity in

both healthy (Heron et al., 2012) and clinical samples (Griffith

et al., 2012).

AMT performance in psychological disorders is

characterized by a tendency to retrieve a larger number

of general relative to specific AMs in response to word

cues. Based on this pattern of AMT performance, Williams

(2006) and Williams et al. (2007) adapted Conway and

Pleydell-Pearce’s (2000) model to account for the overgeneral

AM retrieval observed in emotional disorders (Williams

et al., 2007; see also Ono et al., 2016). The Williams

model emphasizes three critical mechanisms of cognitive

maladaptation which, alone or in combination, contribute

to overgeneral AM retrieval: capture and rumination (a

tendency to perseverate on a negative, analytic form of memory

processing), functional avoidance (a tendency for memory

search to be truncated to prevent full affective activation

accompanying specific retrieval), and “executive control”

(impairment in tracking of specificity of AMs), the so called

CaRFAX model.

Overgeneral AM has consistently been associated with

depression, PTSD, acute stress disorder, and other psychological

disorders (Moore and Zoellner, 2007;Williams et al., 2007; Barry

et al., 2021). Overgeneral AM has been found to lessen following

natural remission or successful psychological treatment

(Sutherland and Bryant, 2007; Ahern and Semkovska, 2017),

suggesting that reduced specific AM retrieval may represent a

state marker of psychological disorder. However, longitudinally,

overgeneral AM also predicts PTSD symptoms (Bryant et al.,

2007), while prepartum AM non-specificity (i.e., overgeneral

AM) has been associated with more posttraumatic symptoms

in those who had experienced a complicated pregnancy

(Hauer et al., 2009). In an fMRI study of adolescents with or
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FIGURE 1

Page et al. (2021) flowchart of the study selection process.

without documented experience of childhood maltreatment,

AM-related brain activity was not a significant predictor

of future psychosocial functioning, whereas, in those with

maltreatment histories, greater overgeneral AM (assessed using

the AMT) at baseline predicted reduced prosocial behavior at

follow-up (Puetz et al., 2021).

Dysfunctional AM specificity has been suggested to be a

consequence of trauma or depression (the scarring hypothesis,

e.g., Stokes et al., 2004; Crane et al., 2014), or, alternatively,

an antecedent trait, increasing the likelihood of developing

depression or PTSD following a negative experience (the

vulnerability hypothesis, e.g., Hauer et al., 2009). Overgeneral

AM, assessed using the AMT is both associated with, and a

predictor of, higher depressive symptoms at follow-up in clinical

samples (Sumner et al., 2010; Warne et al., 2020; Hallford et al.,

2021).

Understanding the factors that contribute to and potentially

ameliorate dysfunction in AM specificity using the AMT and

pharmacological tools could have implications for the treatment

(or prevention) of several psychological disorders. In particular,

if overgeneral AM has a causal role in symptom maintenance

or deterioration (Hallford et al., 2021), (psycho)pharmacological

treatments that reverse this dysfunction could be employed

in the treatment of personality disorders (Startup et al.,

2001), schizophrenia (Corcoran and Frith, 2003; Barry et al.,

2019; Zhang et al., 2019), obsessive compulsion (Spinhoven

et al., 2009), depression (Dalgleish and Werner-Seidler, 2014),

and traumatic stress disorders (Schönfeld and Ehlers, 2006;

Schönfeld et al., 2007).

Experimental psychological strategies
targeting AM specificity

A number of behavioral interventions potentially target

memory specificity in neuropsychiatric disorders (e.g., life

review/reminiscence therapy; Arean et al., 1993; Memory

Specificity Training; Raes et al., 2009a) based on Williams’s

conceptualization of the causal role of overgeneral memory in

emotional disorders (particularly depression) and in the latter

case is specifically designed to reverse this cognitive phenotype.

A meta-analytic review of the effect of Memory Specificity

Training on symptoms in emotional disorders (Barry et al.,

2019) found a substantial reduction in depressive symptoms,

although these benefits appeared to be relatively short-lived.

This might suggest that a maintenance form of this training is

required in order to achieve lasting effects. In any case, memory

specificity treatment development has significantly benefited

from advances in our understanding of basic cognitive processes

underlying symptoms of psychopathology (e.g., studies of

the CaRFAX model), whereas progress in the development

of pharmacological treatments targeting overgenerality has

been slower. Understanding the neuropharmacological systems
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TABLE 1 Characteristics of the 17 reviewed studies.

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Buss et al.

(2004)

Non-clinical Crossover 22 (0%) 26.27 (0.9) HC (10mg) oral Free salivary cortisol

(nmol/l)

Pre-drug intake (T0),

+60min (T1) (before

memory testing)

GC receptor

agonist

Specificity ↓

Free cortisol levels ↑

60 60 s p/cue Specificity ↓

Neutral cues only

• T0 to T1: Free

cortisol levels ↑

• Mood and

attention tests

(data

not reported)

Schlosser et al.

(2010)

Non-clinical Crossover

(Between

groups by

diagnoses)

16 (50%) 33.31 (7.3) HC (10mg) oral Not included GC receptor

agonist

Specificity ↓ 60 60 s p/cue Specificity ↓

No interaction by

cue valence

MDD –

determined using

the SCID-I and

BDI

16 (50%) 34.88 (7.2) Specificity

↔

Specificity

↔

Young et al.

(2011)

Non-clinical

Non-clinical

Crossover

(Between

groups by

dose)

33 (52%)

33 (52%)

27.89 (5.8)

29.33 (7.8)

HC moderate dose (0.15

mg/kg; mean total dose

10.9mg, SD 2.05) 2-min

intravenous infusion

HC high dose (0.45

mg/kg; mean total dose

31.8mg, SD 8.74) 2-min

intravenous infusion

Free plasma cortisol

and corticosteroid

binding globulin

(µmol/L)

Pre-infusion (T0),

+15 (T1),+30 (T2),

+45 (T3),+75 (T4)

(before memory

testing),+150min

(T5) (after testing)

GC receptor

agonist

Specificity ↓ in

dose-dependent

manner (i.e., stronger

effect in high dose)

Free cortisol levels ↑

75 No limit Specificity ↔

Specificity ↓ No

interaction by

cue valence

• Baseline: Age,

BMI, free plasma

cortisol ↔

• T0 to T4, T5: Free

plasma cortisol

levels ↑ in high

dose only

• T0, T1, T2, T3,

T4, T5: Total and

free cortisol levels

sex difference; ♀↑

• AMT Latency ↔

• California Verbal

Learning Test

(Delis et al.,

1987) ↔

(Continued)

F
ro
n
tie

rs
in

P
sy
c
h
o
lo
g
y

0
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fpsyg.2022.1045217
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


C
a
w
le
y
e
t
a
l.

1
0
.3
3
8
9
/fp

sy
g
.2
0
2
2
.1
0
4
5
2
1
7

TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Wingenfeld

et al. (2012a)

Non-clinical

PTSD –

determined

using the

Structured

Clinical Interview

for DSM-IV Axis

I and II (SCID-I

and II) and PDS

Crossover

(Between

groups by

diagnoses)

65 (65%)

44 (86%)

31.7 (10.3)

30.09 (9.6)

HC (10mg) oral Not included GC receptor

agonist

Specificity ↓

Specificity ↓/↑

equally likely

30 - word

list recall

60 - AMT

60 s p/cue Specificity ↔

Specificity ↑

No interaction by

cue valence

• Baseline: Mood

via BDI*

• Baseline: General

mental ability,

LPS 3 and 4 of

LPS German

intelligence test

↔

• T0 (+24-h delay):

Word list (free

recall) non-

clinical n=61 ↔,

PTSD n=36 ↑

• End of each visit:

perceived

situational stress

and control VAS

Qs: ↔

(Continued)
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Wingenfeld

et al. (2013)

Non-clinical Crossover

(Between

groups by

diagnoses)

40 (100%) 32.9 (10.8) HC (10mg) oral Not included GC receptor

agonist

Specificity ↓ 30 - word

list recall 60

- AMT

60 s p/cue Specificity ↓ No

interaction by

cue valence

• T0 (+24-h delay):

Word list (free

recall) ↔

• Visit 1 and 2

immediate, visit 1

and 2+ 24-h:

Word

Suppression Test

(Terfehr et al.,

2011)

◦ non-clinical

HC n= 19,

placebo n=21 ↔

◦ BPD HC n=

33, placebo n=

34 ↔

BPD –

determined using

the SCID-I and II,

BDI, PDS, CTQ

71 (100%) 28.2 (7.9) Specificity ↑ Specificity ↑

Trend

effect (p=0.06)

No interaction by

cue valence

Fleischer et al.

(2017)

Non-clinical Between

subjects

28 (50%) 24.6 (3.7) HC (10mg) oral Free salivary cortisol

(nmol/l)

Pre-drug intake (T0),

+45 (T1),+75 (T2),

+105 (T3) min

GC receptor

agonist

Specificity ↓

Free cortisol levels ↑

75 n/a Specificity ↔

(Both groups)

• Baseline:

Age*, BMI*,

education*,

smoking*, oral

contraceptives*

• T0 to T1, T2, T3:

Free cortisol

levels ↑

Non-clinical 26 (62%) 24.3 (3.7) Placebo

(Continued)
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Young et al.

(2016)

Mifepristone

results

Non-clinical Crossover 10 (0%) 28 (5) Mifepristone/placebo

(600mg) oral (3 x

200-mg capsules at

midnight, 3 placebo

capsules at 5 am)

Placebo/placebo (6

capsules; 3 at midnight, 3

at 5 a.m.) oral

Free plasma cortisol

(µmol/L)

Day before testing at

3 p.m. (T0) baseline

sample, then during

each test day from

7.30 a.m. to 10 a.m. at

30min intervals (T1),

(T2), (T3), (T4), (T5),

(T6)

GC receptor

antagonist

Specificity ↓

Free cortisol levels ↑

240 (since last

dose)

60 s p/cue Specificity ↑ No

interaction by

cue valence

• Baseline (each

visit): Anxiety,

depression, and

mood via STAI,

HDRS, POMS

• T1 to T6: Free

plasma cortisol

levels ↑

• Each visit: Word

list (free recall)

↔

• fMRI to faces:

ROI amygdala

BOLD ↑

• fMRI to faces

exploratory

whole

brain analyses

Spironolactone

results

Spironolactone/

spironolactone

(600mg) oral (6 x

200-mg capsule; 3 at

midnight, 3 at 5 am)

Placebo/placebo

(see above)

MC receptor

antagonist

Specificity ↓ No

interaction by

cue valence
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Fleischer et al.

(2015)

Non-clinical Crossover

(Between

groups by

diagnoses)

67 (100%) 30.2 (13.1) Fludrocortisone (0.4mg)

oral

Not included MC receptor

agonist

Specificity ↑ 90 60 s p/cue Specificity ↔ (All

groups)

• Baseline: Age*,

education*,

BMI*, smoking*,

oral contraceptives*

BPD 37 (100%) 24.8 (5.8) Specificity ↓

MDD 24 (100%) 35.6 (14.8) Specificity ↑

Carvalho et al.

(2006)

Non-clinical Between

subjects

32 (56%) 23.0 (0.4) Sertraline (50mg) oral Not included Selective 5-HT

reuptake

inhibition

Specificity ↑ 360 60 s p/cue Specificity ↔ (All

groups)

• Baseline: Mood

via BDI, age, sex,

education ↔

• AMT Latency ↔

◦ Visit day+

7-days:

Emotional story

with slides

memory test

(surprise) ↔

Non-clinical 32 (53%) 22.5 (0.4) Bupropion (150mg) oral NE–DA reuptake

inhibition

Specificity ↑ 180

Non-clinical 35 (51%) 23.1 (0.5) Placebo 180 or 360

(Continued)
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Park et al.

(1994)

Non-clinical Crossover 12 (0%) 29 (SD not

reported)

L-alanine (2.75 g),

L-arginine (2.45 g),

L-cysteine (1.35 g),

L-glycine (1.6 g),

L-histidine (1.6 g),

L-isoleucine (4 g),

L-leucine (6.74 g),

L-lysine (5.5 g),

L-methionine (1.5 g),

L-phenyalanine (2.85 g),

L-proline (6.1 g),

L-serine (3.45 g),

L-threonine (3.45 g),

L-tyrosine (3.45 g),

L-valine (4.45 g) Control

drink contained the

depletion mixture

+(1.15 g) L-tryptophan,

oral (in 300 ml water)

Total and free TRP

concentration in

plasma (µmol/L)

Pre-drug intake (T0)

and+235min (T1)

(before memory

testing)

5-HT depletion Not reported 235–330 Not reported Specificity ↔ • T0 to T1: Total

plasma and free

TRP levels ↓

• Mood via VAS ↔

• Cambridge

Neuropsychological

Test Automated

Battery

◦ Paired

Associates

learning

↓ ◦ Visual

Discrimination

learning ↓

• Tower of

London; thinking

time ↓
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Haddad et al.

(2009)

Non-clinical,

remitted

depression – at

least one lifetime

major depressive

episode, but not

met criteria for

previous 6

months,

determined using

SCID-I

Between

subjects

12 (100%) 28.3 (10.3) L-isoleucine (4.2 g),

L-leucine (6.6 g), L-lysine

monohydrochloride

(4.8 g), L-methionine

(1.5 g), L-phenylalanine

(2.9 g), L-tyrosine (3.4 g),

L-threonine (3.0 g),

L-valine (4.8 g), oral (in

200ml water)

Mean % decrease in

total TRP in plasma

(µmol/L)

Pre-drug intake (T0)

and+300min (T1)

(before memory

testing)

5-HT depletion Specificity ↓

Total plasma TRP

levels ↓

300 20 s p/cue Specificity ↓ (Diff

from no drink

at baseline)

Negative

cues only

• Baseline: Mood

via BDI, HDRS

↔

• Baseline: total

TRP levels ↔

• Low baseline

Number

Generation

Task (NGT) score

associated with

T1 Specificity ↓

• T0 to T1: Total

plasma TRP

levels ↓

• T0 to T1: NGT↔

• T0 to T1: Mood

via HDRS-m,

BDI, POMS, VAS

scales ↔

◦ T1: Auditory

Verbal Learning

Test (Rey, 1964)

immediate recall

scores only ↓

T1: Remember–

Know Test

(Anderson, 1968)

accuracy and

mean RT ↔
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Non-clinical,

remitted

depression – see

above definition

12 (100%) 24.6 (5.3) Control drink contained

the depletion mixture

+(2.0 g) of L-tryptophan,

oral (in 200ml water)

Specificity ↔

Alhaj et al.

(2012)

Non-clinical,

family history of

MDD – using the

MINI and BDI,

and adapted

Family History

Research

Diagnostic

Criteria

(Endicott, 1978)

Crossover 19 (95%) 21.4 (2) L-alanine (2.75 g),

L-arginine (2.45 g),

L-cysteine (1.35 g),

L-glycine (1.6 g),

L-histidine (1.6 g),

L-isoleucine (4 g),

L-leucine (6.75 g),

L-lysine

monohydrochloride

(4.45 g), L-methionine

(1.5 g), L-phenylalanine

(2.85 g), L-proline

(12.2 g), L-serine

(3.45 g), L-threonine

(3.25 g), L-tyrosine

(3.45 g) and L-valine

(4.45 g), oral (in 300

ml water) Control drink

contained the depletion

mixture+(1.15 g) of

L-tryptophan, oral (in

300 ml water)

Total and free TRP

concentration in

plasma (µmol/L), and

ratio of tryptophan to

the sum of other large

neutral

amino acids

Pre-drug intake (T0)

and+300min (T1)

(before memory

testing)

5-HT depletion Specificity ↓

Total plasma TRP

levels ↓

300 30 s p/cue Specificity ↔ • T0 to T1: Total

plasma TRP

levels ↓

◦ T0 to T1: Mood

via HDRS-m,

VAS, POMS ↔
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Wingenfeld

et al. (2012b)

Non-clinical Crossover

(Between

groups by

diagnoses)

18 (83%) 35.3 (10) Yohimbine (5mg) oral Salivary alpha

amylase, HR, BP

Pre-drug intake (T0),

+15 (T1),

+75min (T2) (not

specified whether

before/after memory

testing)

alpha-2

adrenergic

antagonist

Specificity ↑ 60 60 s p/cue Specificity ↔

(Both groups)

• Baseline: General

mental ability

via LPS 3 and 4

of LPS German

intelligence test

trend difference

(p= 0.051)

• T0 to T1, T2:

trend effect

(p=0.08) ↓, BP

↑,HR ↔

• T2: Word

Suppression

Test (Terfehr

et al., 2011) ↔

• + 24-h delay:

Word list (free

recall) ↑

MDD –

determined using

the SCID-I, BDI,

CTQ

20 (80%) 35.1 (9.9) Specificity ↑

(Stronger effect than

non-clinical sample)
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Kuffel et al.

(2014)

Non-clinical

MDD – SCID-I,

BDI

Crossover

(Between

groups by

diagnoses)

20 (70%)

20 (70%)

30.8 (9.2)

30.8 (9.2)

Clonidine (0.15mg) oral Salivary alpha

amylase, BP

Pre-drug intake T0,

+15 (T1),

+75min (T2) (not

specified before/after

memory testing)

alpha-2

adrenergic

agonist

Specificity ↓

Salivary alpha

amylase ↓, BP ↓

60 60 s p/cue Specificity ↔

(Both groups)

• Baseline: Mood

via BDI, MDD ↑

• T0 to T1, T2:

Salivary alpha

amylase ↓, BP ↓

• T2: Word

Suppression

Test (Terfehr

et al., 2011) ↔

• T0 (+ 24-h

delay): Word list

(free recall) ↓

Cardoso et al.

(2014)

Non-clinical Crossover 17 (0%) 23.1 (3.5) Oxytocin (24 IU)

intranasal

Not included Increasing

bioavailability of

oxytocin

Specificity ↑

(No prediction of

dose dependent

effects)

110 No limit Specificity

↑ Overgeneral ↓

No interaction by

cue valence

• Final visit+

M=13.57 (SD=

7.25) days:

ratings of AMT

memories

transcriptions on

Likert 1-9,

positive ratings ↑

in 24 IU

dose only
Oxytocin (48 IU)

intranasal

Specificity ↔
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

Wong et al.

(2021) (Study 1)

Non-clinical Crossover 48 (50%) 23.7 (3.52 Oxytocin (24 IU)

intranasal

Not included Increasing

bioavailability of

oxytocin

Specificity ↓ 38 Not reported Specificity ↔ • BDI-II

• Vividness

◦ EEG analysis,

not reported

Wong et al.

(2021) (Study 2)

Non-clinical Crossover 63 (50.79%)24.6 (4.22) Oxytocin (24 IU)

intranasal

Not included Increasing

bioavailability of

oxytocin

Specificity ↓ 90 Not reported Specificity ↔ • BDI-II

• Vividness ↔

• Eye-tracking

analysis,

not reported

Chen et al.

(2020)

Non-clinical

Non-clinical

Between

subjects

20 (50%)

20 (55%)

23.45 (4.1)

22.7 (3.3)

D-cycloserine (250mg)

oral

Placebo

Not included NMDA partial

agonist

Specificity ↑ 180 60 s p/cue Specificity ↑

(Persisted

after 24-h) No

interaction by

cue valence

Specificity ↔

• Baseline:

Age, gender,

education, BDI,

STAI-T, EPQ,

Verbal IQ (STW)

↔

• T0 to T1: Mood

and subjective

effects via

STAI-S, PANAS,

BFS, VAS ↔
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TABLE 1 (Continued)

References Participant

group

Design N (%♀) Mean age

(SD)

Drug Biological

measurement(s)

Mechanism

of action

Hypothesized

effects

Drug

admin

(T0) to

AMT (T1)

(minutes)

Time to

respond

AMT

Outcome

measureAMT

(vs. placebo)

Other

measures

reported

• T1 for DCS vs.

placebo: Facial

Expression

Recognition Task

(FERT) ↔,

Emotional

Categorization

Task positive

word category

only trend effect

(p= 0.058) ↑,

Emotional Recall

Task positive

word recall only

↑, Emotional

Recognition

Memory Task

(EREC) NS,

Facial Dot-Probe

Task ↔

◦ 24-h delay:

STAI-S, PANAS,

BFS, VAS ↔,

FERT ↔, EREC

↔, AMT

Specificity ↑

*Indicates statistically significant (p ≤ 0.05) between group differences at baseline. ↓ = sig. reduction, ↑ = sig. increase, and ↔ = no sig. difference indicate statistically significant (p ≤ 0.05) drug vs. placebo effects on AMT performance and

other assessments.

Hydrocortisone (HC), glucocorticoid (GC), mineralocorticoid (MC), serotonin (5-HT), noradrenaline (NE), dopamine (DA), tryptophan (TRP), international unit (IU), N-methyl-D-aspartate (NMDA), Heart rate (HR), blood pressure (BP), seconds (s),

Body Mass Index (BMI), Posttraumatic stress disorder (PTSD), major depressive disorder (MDD), borderline personality disorder (BPD). Structured Clinical Interview for DSM disorders (SCID), Diagnostic and Statistical Manual (American Psychiatric

Association, 2000), Mini-International Neuropsychiatric Interview (MINI; Sheehan et al., 1998; Lifetime version IDDL; Zimmerman and Coryell, 1987). Beck Depression Inventory (BDI; Beck et al., 1961; Beck et al., 1994), Posttraumatic Stress Diagnostic

scale (PDS; Foa, 1995), Childhood Trauma Questionnaire (CTQ; Bernstein et al., 2003), Leistungsprufsystem (LPS; Horn, 1983), Bond-Lader Visual Analog Scales (VAS), Hamilton Depression Rating Scale (HDRS; Hamilton, 1960), Profile of Mood

States (POMS; McNair et al., 1971, 1992), Spielberger Trait Anxiety Inventory (STAI-T; Spielberger et al., 1971), Eysenck Personality Questionnaire (EPQ; Eysenck and Eysenck, 1976), Positive and Negative Affect Schedule (PANAS; Watson et al., 1988),

the Spot-the-Word task (STW; Baddeley and Emslie, 1993).
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underlying memory specificity might therefore provide key

insights into fruitful avenues for future pharmacological

intervention development.

Hypothalamic-pituitary-adrenal axis
modulation and AM retrieval

Research on the neurobiology of stress and memory has

provided significant insights into the neuropharmacology of

AM by delineating the role of the HPA-axis in modulation

of hippocampal-dependent (i.e., episodic) retrieval. Persistent

hyperactivity of the HPA-axis due to prolonged stress,

depression, or experiences of trauma can lead to significant

structural and functional changes to key regions in emotional

memory processing regions (i.e., the hippocampus, amygdala,

and prefrontal cortex (PFC) (van Eijndhoven et al., 2009;

Schmaal et al., 2016; Wellman and Moench, 2019), which may

then influence episodic memory, including AM.

The hippocampus and amygdala are modulated by

glucocorticoid and adrenergic regulators of the stress response

system (Wang et al., 2013, 2014) and thought to critically

support AM function. In AM retrieval, the amygdala has been

shown to support emotional experience or the reinstatement of

emotion at autobiographical retrieval (Bocchio et al., 2017; Ford

and Kensinger, 2019), while hippocampal structures are thought

to be responsible for accessing and integrating information into

a spatiotemporally contextualized memory trace (for reviews see

Cabeza and St Jacques, 2007; Sheldon and Levine, 2016; Sheldon

et al., 2019). This integration (during encoding and retrieval)

occurs across a broad network of brain structures involved in

self-referential and emotional processing, autonoetic awareness,

scene reconstruction and accuracy monitoring, which may

at least partially explain why dysfunctional AM specificity

has emerged as a transdiagnostic cognitive impairment in

emotional disorders.

Abnormal HPA-axis functioning a common feature across

psychological disorders including major depressive disorder

(MDD; Stetler and Miller, 2011; Iob et al., 2020), PTSD

(Steudte et al., 2011), schizophrenia (Aas et al., 2019) and

borderline personality disorder (BPD; Drews et al., 2019).

Hence, pharmacological research into the neurobiological

correlates of depression and traumatic stress disorders

(e.g., dysregulated HPA-axis functioning) may provide

some clues as to the nature of the neurophysiological and

neurotransmitter/neuromodulator disruption underlying

overgeneral AM.

Cortisol modulation

Stress-related episodic elevations in cortisol, analogous to

those seen in depression (Bhagwagar et al., 2005; Herane-

Vives et al., 2018) can be mimicked by experimentally

elevating the stress-hormone cortisol, either endogenously

(through stress induction procedures) or pharmacologically

(through exogenous hydrocortisone administration). When

cortisol elevation follows memory encoding this commonly

results in improved delayed recall performance for emotionally

salient aspects of memory (e.g., Smeets et al., 2008; Cunningham

et al., 2021). However, when levels are endogenously or

exogenously elevated prior to retrieval this has a deleterious

effect on immediate recall (Smeets et al., 2008; Terfehr et al.,

2011; Schwabe and Wolf, 2014; Merz et al., 2018). Both of

these effects may further follow a non-linear (inverted U) dose-

response relationship, producing seemingly discrepant findings

and highlighting the complex interaction between episodic

stress, hormonal concentrations, and memory processing.

Modulation of membrane receptor
targets

D-cycloserine (DCS), a partial agonist at the glycine

binding site of the NMDA receptor, has long been thought

to facilitate memory consolidation and retrieval (Quartermain

et al., 1994), and has shown promising results in some

studies when combined with behavioral (exposure-based)

therapy (e.g., Inslicht et al., 2021; for reviews see Schade

and Paulus, 2016; Mataix-Cols et al., 2017; Rosenfield et al.,

2019). Typically, probing of monoaminergic, glutamatergic and

oxytocin signaling can only be achieved pharmacologically.

Studies of serotoninergicmodulation are of similar relevance

to AM retrieval given the central role of serotonin in emotional

processing and cognitive functioning (e.g., Hornboll et al.,

2018; Knorr et al., 2019), as well as the proposed disturbance

in serotoninergic functioning in some biological theories of

depression (e.g., Ruhé et al., 2007) and serotonergic basis of its

most common treatments. Acute tryptophan depletion has been

shown to impair episodic retrieval (McAllister-Williams et al.,

2002) yet evidence is mixed (e.g., van der Veen et al., 2006).

The dorsal hippocampus has been linked to an oxytocin-

sensitive forebrain stress circuit, and as a central regulator (via

suppression) of stress-induced neuroendocrine and molecular

responses. As such, oxytocin may warrant investigation in AM

retrieval dysfunction (Windle et al., 2004). In healthy volunteers,

a single dose of oxytocin prior to learning (Herzmann et al.,

2013) and prior to both learning and retrieval (Weigand

et al., 2013) has been found to improve retrieval of negative

emotional material. Both the HPA-axis and locus coeruleus

(LC) -noradrenergic (NA) system are known to regulate

the physiological stress response, yet the impact of LC-NA

system dysregulation on AM specificity remains comparatively

understudied. However, in similar studies of the acute effects

of antidepressant treatments, monoaminergic modulators have

been shown to improve positive information retrieval, in the

absence of generalized improvements in cognitive performance
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(Harmer et al., 2003, 2008; Arnone et al., 2009). In extending

these effects to clinical samples, Harmer et al. (2009) provided

initial evidence that MDD patients may be more sensitive

than healthy controls to episodic memory improvements

following noradrenergic stimulation, as the acute administration

of a noradrenaline reuptake inhibitor reboxetine resulted in

an improvement in positive episodic retrieval in depressed

patients only.

The current review

Our understanding of the cognitive neuroscience of AM

specificity has improved considerably in recent years (Barry

et al., 2018). However, the neuropsychopharmacology of AM

is less well understood. The goal of the current review is

to systematically review findings from published placebo-

controlled studies of the pharmacological modulation of AM

specificity assessed using the AMT. We aim to address a

gap in the AM with the aim of identify the most promising

pharmacological systems for future AM research.

Methods

Preregistration and search strategy

The review methodology was preregistered on the

PROSPERO prospective register of systematic reviews

(reg. no: CRD42020199076). PsycInfo, PsycArticles, Ovid

MEDLINE
R©
, Embase, Scopus and Web of Science Core

Collection databases, the Cochrane trial registry, and the

OpenGrey and Open Access Theses and Dissertations databases

were searched using the following terms: (Autobiographic∗ OR

((personal∗ or self∗ or event∗) adj2 memor∗) OR ((real∗life

or personal∗) adj1 (experience∗ or episodic∗ or event∗)))

AND ((tryptophan or Levotryptophan or l∗tryptophan) OR

(placebo∗ or sham)). Note, “tryptophan” was included as a

specific term since initial scoping searches failed to identify

relevant tryptophan depletion studies known to the authors.

The use of “placebo” was expected to capture placebo-controlled

studies of pharmaceutical preparations. However, the term

“sham” is typically used in tryptophan depletion studies, and

inclusion of this term did indeed capture the TD studies.

Proximity operators were adapted for each database. The

ClinicalTrials.gov registry and World Health Organization

International Clinical Trials Registry Platform were searched

using the terms “autobiographical OR episodic” and “memory”.

The Open Access Theses and Dissertations search was restricted

to English language and doctorate theses only. The above listed

searches were originally run on 2nd July 2020 and up-dated on

5thMay 2022. One additional study was identified between these

searches (Wong et al., 2021). No other restrictions (e.g., date

restrictions) were placed on the search criteria. A pre-registered

aim of the review was to perform a meta-analysis on effects of

various pharmacological treatments on AM retrieval. However,

upon review, we could not justify such a quantitative synthesis

because of the small number of studies (usually only a single

study) that examined each specific drug class, and the lack of a

biological rationale for pooling studies across drug classes that

targeted different neurotransmitter/neuromodulatory systems

with different predicted directional effects on AM. As such, this

aim could not be implemented in full, although a small number

of methodologically homogeneous studies of hydrocortisone

were combined to obtain a provisional effect size for this

drug alone.

Study selection

Search, screening, and selection processes were conducted

according to the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (Page et al., 2021; Figure 1). Titles

and abstracts were independently reviewed by the author (E.C)

and another researcher (G.P). There were no disagreements on

final study inclusions. Eligibility was restricted to randomized,

placebo-controlled studies of adult participants, that including

a pharmacological manipulation administered prior to AM

retrieval. Eligibility was also restricted to studies where AM

retrieval was elicited and scored for specificity using either

the original or a modified version of the AMT to provide

a continuous measure of the number of specific memories

retrieved (Williams and Broadbent, 1986).

The included studies were diverse in terms of participant

characteristics and the neurotransmitter/neuromodulator

system(s) being targeted. Only within-subjects crossover studies

that examined the effects of low dose hydrocortisone in healthy

volunteers could be used to calculate a pooled effect size estimate

(Buss et al., 2004; Schlosser et al., 2010; Wingenfeld et al., 2012a,

2013).

Data extraction and study quality
evaluation

The following study characteristics were independently

extracted by two researchers (EC and GP): study design,

nature of participant group(s), pharmacological treatment

characteristics (drug, dose, route of administration), biological

assessment of systemic drug levels, author-specified predictions

on the effects of the drug on retrieval (i.e., improvement or

reduction in specificity), AMT protocols, AMT performance

(number of specific memories), other outcome and explanatory

variables (Table 1). For outcomes included the pooled analysis of

the effects of hydrocortisone in healthy volunteers, one author

provided means and standard deviations since numerical values
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because these were not reported in the publication (Wingenfeld

et al., 2012a). One study was not included in the pooled analysis

because we were unable to obtain the means and standard

deviations required (Fleischer et al., 2017). Themethods sections

of included studies were independently reviewed by EC and GP

and the Cochrane risk of bias tool (Higgins et al., 2016) was used

to evaluate methodological features of the reviewed studies.

E�ect size determination

Effect sizes on the number of specific AMs generated

after drug and placebo administration were calculated by

dividing mean differences by pooled SDs and applying a

correction for small sample bias (i.e., Hedges’ g). A pooled ES

was determined via a random effects model using maximum

likelihood estimation for the four studies that used low dose

hydrocortisone in healthy volunteers using SPSS (IBM Corp.

Released 2020. IBM SPSS Statistics for Windows, Version 27.0.

Armonk, NY: IBM Corp).

Results

Study and sample characteristics

The literature search yielded a total of 17 studies from 11

publications. A total of n = 986 participants (mean age =

27.65, SD = 4.33) were included across all reviewed studies.

This included data from six studies of clinical participants

involving n = 108 participants with a diagnosis of BPD, n

= 80 with MDD, and n = 44 with PTSD (Schlosser et al.,

2010; Wingenfeld et al., 2012a,b, 2013; Kuffel et al., 2014;

Fleischer et al., 2015; see Table 1). Clinical participants were

commonly recruited via psychiatric centers and the comparator

control participants via local advertising. Diagnoses in studies

of clinical participants were established using the Structured

Clinical Interviewing for the DSM-IV which were also used to

screen and exclude control participants (i.e., based on current or

historic psychiatric diagnoses) in the studies of clinical groups.

Two studies examined participants who were in remission but

at risk of MDD (n = 43) (Haddad et al., 2009; Alhaj et al.,

2012), while the remaining nine studies only included healthy

volunteers (n= 711) (Park et al., 1994; Buss et al., 2004; Carvalho

et al., 2006; Young et al., 2011, 2016; Cardoso et al., 2014;

Fleischer et al., 2017; Chen et al., 2020; Wong et al., 2021).

Methodological characteristics

General study features

Key design and methodological features of the included

studies are summarized in Table 1. Common methodological

strengths included double blinding of drug administration;

(except for Wingenfeld et al., 2013; only participant-blinded),

and counterbalancing of drug conditions in within subject

crossover designs; (except for Haddad et al., 2009). Inclusion

and exclusion criteria were generally well reported in all of the

reviewed studies. With the exception of Haddad et al. (2009)

no other studies explicitly reported on the absence or presence

of missing data in the AMT. Using information published

in each study, it was determined that thirteen publications

had no missing AMT data. However, missingness could not

be determined using the information provided in the three

remaining included studies (Park et al., 1994; Carvalho et al.,

2006; Fleischer et al., 2015).

Autobiographical Memory Test

The AMT protocol and scoring procedures were

generally well-described in all of the reviewed studies.

Small inconsistencies in memory scoring procedures may be

a minor methodological weakness to the overall quality of the

reviewed research, as the type and frequency of details required

for a memory to be rated as “specific” varied slightly across

studies. Only one study indicated that rating of AM responses

was blind (Young et al., 2016). Ten studies reported using

independent raters of participant responses (in most cases using

a subset of memory descriptions; Buss et al., 2004; Schlosser

et al., 2010; Young et al., 2011, 2016; Wingenfeld et al., 2012a;

Cardoso et al., 2014; Fleischer et al., 2015, 2017; Chen et al.,

2020; Wong et al., 2021). Of the ten studies using independent

rating, seven reported indices of inter-rater agreement of AM

scoring which were generally high (0.75–0.97; Buss et al., 2004;

Schlosser et al., 2010; Young et al., 2011, 2016; Cardoso et al.,

2014; Chen et al., 2020; Wong et al., 2021).

Assessment of systemic drug levels

Nine studies included biochemical assays of drug levels

(Park et al., 1994; Buss et al., 2004; Haddad et al., 2009; Young

et al., 2011, 2016; Alhaj et al., 2012; Wingenfeld et al., 2012b;

Kuffel et al., 2014; Fleischer et al., 2017; see Table 1). In all of

these studies, the expected changes in drug (or amino acid) level

were observed.

Risk of bias

Sixteen of the included studies were evaluated to have a low

risk of bias based in items from the commonly used Cochrane

risk of bias tool. One study was found to have a moderate risk of

bias due to not including details on participant or experimenter

blinding to placebo vs. drug treatment (Wingenfeld et al., 2013).

A summarized figure of the risk of bias assessment is provided in

the Supplementary material. It should be noted that none of the
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studies were “clinical trials” and most pre-date the increasingly

common practice of pre-registration of experimental studies.

Two studies were funded by industry sponsors, yet in both

cases the authors reported no influence of sponsorship on

either study (Wingenfeld et al., 2012b; Young et al., 2016).

The contributions of a single author to one study (C. Otte;

Fleischer et al., 2015), and of two authors in another study (K.

Wingenfeld and B. Lowe; Kuffel et al., 2014) were supported by

industry sponsors. However, it should be reiterated that none

of the studies were clinical trials investigating the efficacy of a

medicinal product for a specific indication.

Synthesis of study findings

Pharmacological targets

Studies targeted the glucocorticoid (k = 6),

mineralocorticoid (k = 2), monoaminergic (k = 6),

oxytocinergic (k = 2), and glutamatergic systems (k = 1;

Table 1). It is noteworthy that no studies on cholinergic or

GABAergic modulators, which include the classic amnestic

agents (anticholinergics and benzodiazepines, respectively),

were identified in the search.

Corticosteroid modulation: Glucocorticoid
modulating compounds

Of the seven studies targeting glucocorticoid modulation,

five had methodological similarities, particularly in relation to

the use of a single low oral dose (10mg) of hydrocortisone

(Buss et al., 2004; Schlosser et al., 2010; Wingenfeld et al., 2012a,

2013; Fleischer et al., 2017). Among these, three non-clinical

studies reported statistically significantly impairment of AM

specificity relative to placebo (Buss et al., 2004; Schlosser et al.,

2010; Wingenfeld et al., 2013). However, this effect was not

observed in two other non-clinical studies (Wingenfeld et al.,

2012a; Fleischer et al., 2017). In the only study of intravenous

hydrocortisone in non-clinical participants, a high dose (0.45

mg/kg) led to a reduction in the percentage of specific AMs

and simultaneous increase in categorical (i.e., non-specific) AM

retrieval relative to placebo (Young et al., 2011; see Table 1; this

latter effect was also seen with a three-fold lower dose).

Three of these five low-dose oral hydrocortisone studies

were conducted in participants with a psychiatric disorder

(Schlosser et al., 2010; Wingenfeld et al., 2012a, 2013). In a

small study with MDD patients, no effect of hydrocortisone

was found (Schlosser et al., 2010), although a larger study

with PTSD patients showed significantly higher AM retrieval

relative to placebo (Wingenfeld et al., 2012a; see Table 1). A

similar specificity-enhancement effect was observed in a larger

sample of BPD patients although this did not reach statistical

significance (Wingenfeld et al., 2013; see Table 1). In both cases,

the authors suggest this result may be due to improved reactivity

to exogenous cortisol in these particular clinical populations,

but this cannot be confirmed in either study due to a lack

of additional measures of HPA axis functioning (e.g., basal

cortisol levels).

In a within-subjects crossover study of glucocorticoid

antagonism by mifepristone on AM retrieval (in a non-clinical

sample), reduced glucocorticoid receptor activation significantly

increased the percentage of specific AMs retrieved relative to

placebo, albeit in a small, all-male sample (Young et al., 2016;

see Table 1).

E�ect size for AM specificity e�ect of low-dose
hydrocortisone

The general impairing effect of hydrocortisone on retrieval

specificity among healthy participants in the studies described

above is consistent with the notion of divergent acute effects

of glucocorticoids on encoding vs. retrieval (Roozendaal, 2003).

Data from four within-subject crossover studies using the same

oral dose of hydrocortisone (10mg) and following the same

AMT protocol were pooled to determine an overall effect size

(Buss et al., 2004; Schlosser et al., 2010; Wingenfeld et al.,

2012a, 2013; see Table 1). Although the pooled ES was large,

it was estimated with low precision [g = −0.89, CI (−1.93,

0.16)] and hence, was not significant (p = 0.10) (Figure 2).

Heterogeneity statistics indicated a very large degree of between

study heterogeneity (I2 = 94%), consistent with the small

number of studies and the single outlier study (Buss et al., 2004).

Removing Buss et al. (2004) reduced heterogeneity (I2 = 0%)

and the aggregate ES [g = −0.28, CI (−0.53, −0.03)], (p =

0.03) (Figure 3). However, in this second analysis, the general

impairing effect of hydrocortisone on healthy participants’ AM

retrieval specificity was statistically significant.

Mineralocorticoid receptor preferring drugs

Two studies have investigated drugs with a preference for

mineralocorticoid receptors. Fludrocortisone (0.4mg, oral), a

selective mineralocorticoid receptor agonist had no effect on

specificity in healthy women or in women with MDD and BPD

(Fleischer et al., 2015). However, in a small sample of healthy

men, AM specificity was impaired during mineralocorticoid

receptor antagonism using spironolactone (Young et al., 2016;

see Table 1).

Monoaminergic modulation

Wingenfeld et al. (2012b) hypothesized that blocking the

presynaptic alpha-2-adrenoceptor to increase NA activity using

a low-dose (5mg) yohimbine would improve AM memory

performance at retrieval. Harmer et al. (2009) predicted larger

effects in MDD patients vs. non-clinical controls following

reboxetine. Although a general improvement was observed on
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FIGURE 2

Forest plot for pooled studies of the (acute) e�ect of oral hydrocortisone (10mg) administration in healthy participants on the number of

specific AMs recalled.

FIGURE 3

Forest plot for final pooled studies of the (acute) e�ect of oral hydrocortisone (10mg) administration in healthy participants on the number of

specific AMs recalled.
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delayed (24 h) free recall of a wordlist in healthy and depressed

participants, the effect was stronger in MDD. Yohimbine

had no effect on AM specificity at retrieval in healthy or

depressed participants.

Similarly, a single dose of the NE–DA reuptake inhibitor

bupropion or the selective serotonin reuptake inhibitor

sertraline produced no detectable effects on AM specificity

in non-clinical volunteers (Carvalho et al., 2006; see Table 1).

Kuffel et al. (2014) proposed a potential upregulation of alpha-2

receptors in depressed participants and predicted that clonidine,

an alpha 2 agonist, would impair specificity in both non-clinical

and MDD samples. However, they found no treatment effect on

AM specificity.

Three studies have assessed the effect of low-dose tryptophan

depletion on AM specificity and included analysis of plasma

concentrations which confirmed that the treatment (i.e., acute

tryptophan depletion) was successful in all three. One reported

a significant reduction in specificity due to the treatment but in

negative cue words only (Haddad et al., 2009), while the other

two found no effects of treatment on AM specificity (Park et al.,

1994; Alhaj et al., 2012; see Table 1).

Oxytocin and glutamatergic modulation

A moderate dose of oxytocin (intranasal) improved AM

specificity relative to the high dose and placebo in a single, small-

scale, study of healthy men (Cardoso et al., 2014; see Table 1).

Wong et al. (2021) examined the effect of a moderate oxytocin

dose on AM specificity in two studies of healthy volunteers and

found no effect on the number of specific or overgeneral AMs

retrieved in either study (see Table 1).

In the only identified placebo-controlled study of

glutamatergic regulation of AM, Chen et al. (2020) reported

that pre-retrieval d-cycloserine improved AM specificity, and

this effect persisted for 24 h following drug administration (see

Table 1). No concurrent effects were reported on subjective

mood, emotional facial expression recognition, or word recall.

Discussion

This review provides the first synthesis of studies examining

pharmacological modulation of AM specificity. The systematic

search identified a relatively small number of studies in this

area, commensurate with our limited understanding of the

neuropsychopharmacology of AM retrieval. We hope that this

review will motivate further research on this topic, which

has potential implications for our understanding of, and

the development of treatments for, a range of psychological

disorders. Given the included studies’ diversity in terms of the

neurotransmitter or neuromodulatory systems targeted, it was

generally not possible to quantitatively synthesize the effects. A

critical mass of studies on each primary drug group discussed

here will allow researchers to undertake such quantitative

analyses in the future.

Where a preliminary quantitative synthesis was possible

(on the effects of low dose oral hydrocortisone in non-clinical

participants), study effects were heterogeneous, largely due to

an outlying single study (Buss et al., 2004). Following sensitivity

analysis, the pooled effect size was modest yet statistically

significant, and this impairing effect of hydrocortisone in non-

clinical participants was in the direction predicted by each

study’s authors (impaired specificity). Lower AM specificity

following hydrocortisone administration is consistent with

literature that reports broad retrieval impairments with both

endogenous and exogenously elevated cortisol, for example,

stimulus-response tasks in rodents and in emotional word

list, and probabilistic classification learning in humans (de

Quervain et al., 2007; Atsak et al., 2016; Zerbes et al., 2019). The

current results tentatively suggest that low dose hydrocortisone

could be used to model dysfunctional AM specificity in non-

clinical participants.

In the single study using intravenous hydrocortisone in

healthy volunteers, only a high dose (∼31.8 mg/kg) produced

the expected increase in plasma cortisol, corticosteroid binding

globulin concentrations, and impairment of AM specificity

(Young et al., 2011). The importance of including biological

indicators of treatment efficacy is underscored by Young

et al.’s (2011) study, and so where possible, physiological

baseline differences relevant to the neuromodulator system

under assessment should be recorded in future studies (e.g.,

baseline cortisol levels; Young et al., 2011) and any intended

elevation in cortisol by drug verified biologically. Based on these

findings, future research should aim to replicate these enhancing

and impairing effects at the suggested doses and extend them

to include female and clinical samples. The combination of sex

and sex-hormone levels can influence the effect of exogenous

hydrocortisone on retrieval of aversive memories in healthy

volunteers (e.g., Hennessy et al., 2022), and sex differences are

well-established in PTSD (for reviews see Li and Graham, 2017;

Kornfield et al., 2018) and episodic memory (Ertman et al., 2011;

Soni et al., 2013).

In a large study of PTSD patients, most of whom reported

repeated experiences of childhood trauma, low dose (10mg)

hydrocortisone resulted in significantly improved specific AM

retrieval –opposite to the effect seen in healthy participants

(Wingenfeld et al., 2012a). An enhancing effect of exogenous

hydrocortisone on AM specificity was also observed in BPD

patients (Wingenfeld et al., 2013; see Table 1), implying a

potential common glucocorticoid-mediated disorder in AM

retrieval (and possible treatment target) across these two

disorders. In a similar placebo-controlled crossover study with

healthy controls, PTSD and BPD patients, and using low dose

hydrocortisone, the same research team found that in both

PTSD and BPD patient groups, childhood trauma and symptom

severity were negatively correlated with functional connectivity
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between regions associated with successful autobiographical

retrieval (the hippocampus and dorsomedial PFC) (Metz et al.,

2019).

Considering this evidence, it is possible that the distinct

effects of hydrocortisone in PTSD and BPD vs. healthy

volunteers reflects a developmental-stress-mediated change in

glucocorticoid receptor functioning in chronic and complex

PTSD and BPD, the neuropsychological symptoms of which

can be partially remediated by the administration of exogenous

cortisol. PTSD with and without MDD is associated with lower

daily cortisol output relative to non-trauma exposed controls,

with general trauma exposure associated with enhanced HPA

feedback (Morris et al., 2012; Rauch et al., 2020). Moreover,

stress-induced (endogenous) elevation in cortisol has no such

effect on AM specificity in both BPD patients and healthy

controls (Duesenberg et al., 2019).

It is likely that glucocorticoid receptor expression/sensitivity

is adaptively downregulated in the presence of chronically

elevated cortisol; potentially explaining the opposing effect of

elevated cortisol in clinical samples vs. healthy volunteers. In

the studies reviewed, BPD and MDD patient volunteers were

overrepresented relative to those with PTSD. No manipulation

effects were observed on the AMT for MDD patients, however,

the potential effect of low dose hydrocortisone on AMT

performance in MDD was not investigated in the reviewed

research and may therefore represent a novel avenue for

future study. Childhood (and adult) psychological trauma is

associated with dysregulated cortisol secretion and blunted

cortisol responding, as well as dendritic atrophy (McGowan

et al., 2009; Wellman and Moench, 2019), and experience of

childhood trauma appears to induce glucocorticoid resistance

in those with depression (Nikkheslat et al., 2020). Therefore,

this subgroup of MDD patients (with childhood trauma

exposure-induced glucocorticoid receptor downregulation) may

selectively benefit from a pre-retrieval low dose hydrocortisone

administration to enhance AM specificity similar to those with

PTSD and BPD.

A U-shaped dose-response relationship was reported for the

effects of oxytocin on AM specificity (Cardoso et al., 2014), as

only the moderate dose had an impact (positive) on specificity.

The authors suggest that oxytocin may enhance self-referential

processing with downstream beneficial effects on AM specificity,

and that diminished effects at higher doses may be due to

partial occupation of arginine vasopressin receptors by oxytocin

(Manning et al., 2008, 2012). In a larger sample of men who

underwent Pavlovian fear conditioning, a subsequent 24 IU dose

of oxytocin was shown to enhance fear memory extinction,

and this was associated with a general upregulation of PFC

responding and downregulation in the amygdala (Eckstein et al.,

2015). Thus, moderate doses of oxytocin appear to generally

enhance emotional memory retrieval processes. It is therefore

unclear whether studies of oxytocin will provide any special

insights into the neuropharmacology of AM.

Chen et al. (2020) found that in healthy volunteers, a

single pre-retrieval administration of d-cycloserine (250mg)

improved AM specificity, and this improvement persisted for at

least 24 h. Research on emotional and declarative memory has

recently focused on the relationship between stress and stress-

related hormonal and neurochemical mediators (particularly

glucocorticoids) and increased glutamatergic transmission in

the PFC. This stress-induced increase in glutamatergic function

has been implicated in beneficial effects on cognition and

emotional processes (e.g., enhanced memory consolidation), yet

also dysfunction in such processes through over-activation of

the stress response system in neuropsychiatric disorders (Popoli

et al., 2012; Wellman and Moench, 2019).

Strengths and limitations of the reviewed
studies

There are common methodological strengths across the

reviewed studies despite their limited number and the range of

neuromodulator systems targeted. Overall, the Cochrane Risk of

Bias tool suggested that the studies had a low risk of bias. On

the other hand, our risk of bias assessment was limited because

AMT-specific methodological details were not captured by the

Cochrane tool. While these specific methodological aspects were

generally strong, no study was pre-registered. Preregistration

and standardization of AMT scoring procedures will be key to

providing like-for-like comparisons of drug effects in this field

going forward.

The overall numbers of clinical participants contributing

data to the current review was small. Furthermore, considering

the limited available data for the reviewed drug class

categories, it is not yet possible to determine the effect

(size) of each drug class on AM specificity or possible

moderation by clinical diagnoses. In general, based on the

limited data, hydrocortisone, d-cycloserine, and oxytocin

in particular appear to warrant further investigation in

healthy volunteers. Pre-retrieval hydrocortisone should also

be investigated to potentially improve specificity in clinical

populations, particularly PTSD and BPD patients. While

“positive” findings with these drugs should motivate replication

and extension, further research on the other drug groups

outlined here should not be foreclosed simply because of a

small number of null results. As noted above, sex/sex hormones

play a critical role in emotional memory, and critically, in the

sensitivity to drug effects on emotional memory. An absence

of evidence for pharmacological modulation may simply reflect

an inability of some study designs to detect such modulation

because of a failure to account for sex (hormones). As such,

future studies should incorporate sex as an explanatory factor

into their study design (potentially as a moderator in the pre-

registered data analysis plan).
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Where possible, future pharmacological research

probing the neurobiology of AM specificity (e.g., using

low dose hydrocortisone) should assess baseline endogenous

neuromodulator functioning. Significant baseline (endogenous)

differences in targeted modulators may alter cognitions

(e.g., biases toward negative retrieval and/or reduced overall

AM retrieval) and potential efficacy of a pharmacological

intervention on specific AM retrieval. For example, baseline

hair cortisol is positively correlated with PTSD symptoms and

sleep disturbances in those with subsequent trauma exposure

(Sopp et al., 2021).

Depending on the drug class category investigated, exploring

the role of neuromodulator systems in specific AM retrieval may

also benefit from the concurrent assessment of cue-response

latency and physiological arousal. Such measures could be

used to help model the potential influence of general cognitive

performance and to assess corroborating physiological effects of

a pharmacological manipulation alongside AMT performance.

Phenomenological experience during retrieval (e.g., subjective

happiness vs. distress) should also be considered. For example,

the subjective severity of traumatic events (peritraumatic stress)

and distress during retrieval of an associated negative AM can

have a significant impact on the development and course of

PTSD (Vance et al., 2018) and subjectively positive AMs may

be protective against symptom development (e.g., Hamlat et al.,

2015).

Clinical implications

There are four clinical implications of the current findings

that warrant further investigation in larger and/or more

diverse samples. First, low dose hydrocortisone may be

used to model overgeneral AM retrieval deficits seen in

psychopathology in healthy samples. Such pharmacological

approaches to “symptom provocation” are essential for

furthering our understanding of the contribution of specific

neuropsychological phenotypes to psychopathology. They

also have advantages over behavioral methods, which mimic

symptoms for relatively brief periods. Secondly, low dose

hydrocortisone may also be used to improve AM retrieval

deficits in psychological disorders characterized by overgeneral

AM memory. Third, a more comprehensive analysis of

divergence in tonic cortisol concentrations between healthy

and clinical samples, and interaction between baseline levels

and drug effects could improve treatment tailoring. Finally,

that drugs that target oxytocin and glutamatergic systems may

enhance AM specificity in healthy samples.

Conclusions

Dysfunctional (i.e., overgeneral) AM retrieval is a

transdiagnostic symptom in psychopathology and therefore

may be an ideal target for the development of novel

pharmacotherapies. Psychotherapies and trauma-focused CBT

are the current most effective treatments for MDD and PTSD,

respectively (McPherson and Hengartner, 2019; Mavranezouli

et al., 2020). The beneficial effects of these treatments has

been suggested to be rooted in AM processing, in either the

formation and strengthening of competing adaptive AM

representations (i.e., self-related knowledge and memories for

personal experiences) (Brewin, 2006), or through a “rewriting”

process that adaptively alters and/or updates maladaptive

AM representations via memory reconsolidation (Lane et al.,

2015). The development of more-effective psychological

interventions specifically targeting AM retrieval (e.g., Memory

Specificity Training; Raes et al., 2009a) is likely to benefit

from pharmacological approaches, as these represent a novel

pathway to strengthening our mechanistic understanding of AM

specificity and potential catalysts for psychological approaches.
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