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Analysis of proportions using
arcsine transform with any
experimental design

Louis Laurencelle1 and Denis Cousineau 2*

1Département des sciences de l’activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC,
Canada, 2École de psychologie, Université d’Ottawa, Ottawa, ON, Canada

Introduction: Exact tests on proportions exist for single-group and two-group
designs, but no general test on proportions exists that is appropriate for any
experimental design involving more than two groups, repeated measures, and/or
factorial designs.

Method: Herein, we extend the analysis of proportions using arcsine transform to any
sort of design. The resulting framework, which we have called Analysis of Proportions

Using Arcsine Transform (ANOPA), is completely analogous to the analysis of variance
for means of continuous data, allowing the examination of interactions, main and
simple e�ects, post-hoc tests, orthogonal contrasts, et cetera.

Result: We illustrate the method with a few examples (single-factor design, two-
factor design, within-subject design, and mixed design) and explore type I error rates
with Monte Carlo simulations. We also examine power computation and confidence
intervals for proportions.

Discussion: ANOPA is a complete series of analyses for proportions, applicable to any
design.

KEYWORDS

proportions, arcsine transform, factorial designs, repeated-measure designs, Anscombe

transform

Introduction

Proportions and their related representation, percentages, are ubiquitous. Some claim that

“the percentage is the most useful statistic ever invented” (Buchanan, 1974, p. 629) but it

may not be the most intuitive as we get statements such as “Baseball is 90% mental and the

other half is physical!” (attributed to Yogi Berra; Knapp, 2009). Despite their pervasiveness,

analyzing proportions is still difficult for most researchers, with no agreed-upon techniques, no

agreed-upon confidence intervals, and no agreed-upon approach to statistical power planning.

An analysis of proportions exists for 1-group designs, performed using a binomial test or

its normal approximations, and also for 2-group designs (Liddell’s maximum-likelihood test,

Liddell, 1976; Laurencelle’s exact Bayes test, Laurencelle, 2005, 2021a). Copas (1989) examined

the case with a single factor having any number of groups (commonly called a one-way design).

Some advocated the use of regression with a binomial distribution, also known as logistic

regression or beta distribution, underlying the data (Grizzle et al., 1969; Crowder, 1978; Allison,

1999; Beh, 2001; Agresti, 2003; Ferrari and Cribari-Neto, 2004). However, these approaches are

not based on exact mathematical foundations, have limitations, and cannot be easily generalized

to situations involving factorial designs, repeatedmeasures (such as pre-post designs), andmixed

designs. More critically, none of them can be additively decomposed to run contrast analyses or

multiple comparison tests.

Instead of testing proportions, an alternative is to aggregate the raw data through a function,

let us call it f, that makes the observations amenable to statistical testing. In studies where

proportions are examined, the raw datum xi can have two values: success or failure. The number

of successes in a group of observations is noted as s and the number of failures is noted as r, for

a total group size of n = s + r. One frequently-used aggregate, p = f(s, n) = s / n, is called the
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observed proportion, with p between 0 and 1. It is equivalent to a

simple average, p =
∑n

i=1 xi/n, when the scores are coded with “1s”

and “0s,” as is commonly done (and likewise, with this coding, s =
∑n

i=1 xi). The difficulties with this aggregate are 2-fold because: (i)

the variance of p is linked to its expectation and (ii) its distribution is

skewed when the expectation (or population proportion) differs from

0.50. Thus, comparing groups with different proportions necessarily

entails heterogeneous variances, in violation of homoscedasticity, a

condition required of most statistical procedures.

An early solution, proposed by Zubin (1935) following

preliminary work on trigonometric transforms by Fisher (1922),

is to use a different aggregate function f that stabilizes variance,

making it a constant independent of the observed proportion, and

that normalizes the sampling distribution, bringing it closer to a

normal (Gaussian) distribution (Johnson and Kotz, 1969; Chen,

1990). Zubin’s original proposal was based on the arcsine transform,

f (s, n) = sin−1(
√
s/n ), with results—expressed in radians—ranging

from 0 to π /2 ≈ 1.57. This proposal was later refined by Anscombe

(1948), who proposed the aggregate function A, defined as

A = f (s, n) = sin−1





√

√

√

√

s+ 3
8

n+ 3
4



 (1)

Using this transformation, and for large n (we will return to this

later), the asymptotic variance of A is 1 / (4 (n + ½)), independent

of the population proportion. Because this is a theoretical variance,

we note it as varth(A). See Freeman and Tukey (1950) and Chanter

(1975) for alternatives to Equation 1; also see Wang and Fingert

(2012) and Laurencelle (2021b), who reviewed the properties of

these transformations, and Laurencelle (2021c), who reviewed their

distributional properties.

The strongest advantage of using the arcsine transform is that its

asymptotic variance (for large n) is known and does not have to be

estimated from the data (Gabriel, 1963). As such, and because the

error variance of the transform is independent of the data, a normal z

test can be proposed for single-group and two-group designs for the

null hypothesis of no difference (examined in Laurencelle, 2021a,b,c).

In what follows, we show that a wide range of tests is actually

achievable, reproducing the whole array of those made possible by

implementing the ANOVA logic (extending Gabriel, 1963). Building

on the ANOVA logic, interactions, main effects, simple effects, post-

hoc tests, contrast effects, et cetera, can be tested on transformed

proportions. This framework is called herein ANOPA, which stands

for Analysis of Proportions Using Arcsine Transform. It is based

on formal mathematical demonstrations; the purpose of this article

is to show that it constitutes a complete framework for analyzing

proportions in any design.

In the following three sections, we illustrate how to perform a

test when there is a single factor with p levels (a one-way ANOPA),

when there are two crossed factors (a two-way ANOPA), and when

there is a repeated-measures factor. On the OSF site accompanying

this text, https://osf.io/gja9h/ (Cousineau and Laurencelle, 2022), we

provide a fourth illustration with a mixed design (within-between

two-way ANOPA).We then consider statistical power when planning

experiments whose dependent variable is a binary outcome (e.g.,

success or failure). Finally, we show how to obtain confidence

intervals that can serve as error bars in summary plots.

Hereafter, factors are noted with abstract upper-case letters, P and

Q, and their number of levels with italic lower-case p and q (to avoid

any confusion, the p-value will always be presented with the qualifier

“-value”). For each of the following sections, the reader can find the

relevant R code to perform the computations and make the plots on

OSF at: https://osf.io/gja9h/. Herein, we present all the results with

four decimals, even though this level of precision is unrealistic in

small samples (see Altman and Bland, 1996; Cousineau, 2020), only

so that interested readers can check their computations. The first

three examples are based on fictitious data.

A single factor with p levels

An illustration

The following example on “incubation” is to be considered,

where 97 participants are given a difficult problem to solve but

have to complete an unrelated, distracting task for 5min before

providing a solution. The problem is to find the optimal apartment

to rent from lists of attributes describing four apartments, with some

attributes being desirable and others being neutral or unappealing.

The dependent variable is whether the participant succeeded in

determining the optimal apartment or not. In one group, participants

are distracted by trying to complete a crossword puzzle; in a second

group, they tackle a Sudoku; in a third, they chant a chakra and, in

the last, they simply concentrate on their breathing. The results are

compiled in Table 1 and illustrated in Figure 1 (how the confidence

intervals were obtained will be discussed in the last section).

As can be seen, the two most discrepant proportions are 0.64

(Sudoku condition) and 0.19 (Breathing condition). The difference-

adjusted 95% confidence interval of the former [0.34, 0.90] does

not contain the later result (and vice versa, 0.64 is not contained in

[0.01, 0.43]), suggesting a significant difference (see Baguley, 2012;

Cousineau et al., 2021, for the purpose of difference adjustment).

To formally determine if there is any significant influence of the

unrelated tasks on the success rate, we ran a one-way ANOPA

as follows.

This analysis is very similar to an ANOVA except that it does

not bear on mean results but on Anscombe-transformed aggregates.

Similarly to ANOVAs, the sum of squares of factor P and its mean

square is obtained with:

SSP =
p

∑

i=1

(

Ai − A
)2 = (p− 1) var(Ai) (2)

MSP = SSP/(p− 1) = var(Ai) (3)

in which Ai denotes the aggregate score of the i
th group, A denotes

the average Ai, var(Ai) is the variance across the Ai scores, SSP is the

sum of squares, and MSP the mean square based on p − 1 degrees of

freedom. Note that the MSP variance is not multiplied by the number

of participants, contrary to standard ANOVA.

For the error term, we use the fact that the variance of Anscombe-

transformed data is known theoretically, depending only on the

group sizes, i.e., varth(Ai) = 1/(4 (ni+ 1
2 )), where ni is the number of

observations in the ith group, so that

MSe = mean
(

varth(Ai)
)

= 1

p

p
∑

i=1

1

4(ni + 1
2 )

(4)
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TABLE 1 Number of successes and group size for the four groups of the incubation experiment along with proportions (p) and Anscombe-transformed

scores (A).

Number of Number of

Success (s) participants (n) p = s/n A = sin−1

(
√

s+ 3
8

n+ 3
4

)

Crosswords 10 30 0.3333 0.6198

Sudoku 14 22 0.6364 0.9188

Chants 7 18 0.3889 0.6779

Breath 5 27 0.1852 0.4557

Variance 0.0368

FIGURE 1

Proportions from the incubation experiment. The error bars show
di�erence-adjusted 95% confidence intervals of the proportions
(obtained with the package superb for R, Cousineau et al., 2021, as
explained in the OSF website: osf.io/gja9h, folder FirstIllustration).

a very close approximation is to use 1/(4(ñ + 1
2 )) where ñ is the

harmonic mean of the groups’ sizes. For the error variance, there is

no degree of freedom because this variance is not measured from the

data; it is determinedmathematically by the transformation used. The

only other situation where an error variance has no uncertainty is

when the entirety of the population has been measured; by analogy

with this situation, we will state that the degrees of freedom of the

error variance are infinite. Finally, the F ratio is obtained as usual with

FP = MSP

MSe
(5)

We used a subscript P to indicate that this F-value is related to the

factor P; however, in articles, F ratios are generally reported without

a subscript.

The fact that the mean squared error decreases with an increased

sample size makes ANOPA more powerful at detecting effects when

samples are larger. Indeed, dividing a mean squared effect by a

smallermean squared error term yields a larger F, which ismore likely

to exceed a decision threshold.

We summarize the results of the study on incubation in

Table 2. The test statistic is F(3, ∞) = 3.51. Depending on the

software or handbook used, it can be a bit difficult to get the p-

value corresponding to an F with “infinite” denominator degrees

of freedom (although it is sometimes given in the last line of

some tables listing critical values). However, for such a quotient

F, the multiplication by the degrees of freedom of the numerator

yields a chi-square variate (Forbes et al., 2010), so the p-value

for gP = (p−1)Fp can be more easily obtained from a chi-square

distribution with p – 1 degree of freedom. Either way, we find

a significant p = 0.0145, confirming the impression we got from

Figure 1.

A further look at the data using Tukey’s HSD paired

comparison technique shows that the sole pairwise difference

reaching significance (q = 4.524, p-value < 0.01) is between the

Sudoku and Breath conditions (see the OSF page for computations

using R).

Expressing e�ect sizes

A convenient measure of effect size in this design is the f 2,

the quotient of the effect’s variance per observation over the error

variance. The f 2 measure can be converted to a proportion of

variance, an eta-square measure, with η2 = f 2/(1+ f 2).

To estimate f 2 from the data,

ˆf 2 = σ̂ 2
P

σ̂ 2
e

≈ MSP

ñ MSe
(6)

can be used, where σ̂ 2
P is obtained from the variance of the Anscombe-

transformed scores as before, var(Ai) = MSP, and where σ̂
2
e estimates

the error variance, that is, σ̂ 2
e = ñ × MSe. In other words, f̂ 2 is

identical to Equation (5) except that the impact of the number of

participants in each cell is removed to have a standardized effect size.

In the present example, we already had σ̂ 2
P = 0.0368; we

additionally found that σ̂ 2
e = 23.3399 × 0.0105 = 0.2446, from which

we obtain ˆf 2 = 0.1505 and η̂2 = 0.1308. The magnitude of this effect

size is to be appraised as usual (here, a fairly large effect).

Type I error rates in single-factor designs

To get a general idea of the effectiveness of the one-way ANOPA

to control for false rejection of the null hypothesis, we ran a

simulation study in which we estimated the empirical type I error

rate. We varied the total sample size nTotal =
∑p

i=1 ni. For small

samples, the Anscombe transformation does not fully normalize the
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TABLE 2 One-way ANOPA table.

SS df MS F p-value

Group (P) 0.1104 3 0.0368 3.5124 0.0145

Error - ∞ 0.0105

Using William’s correction cP = 1.0086, we obtain F(3,∞) = 3.4825, p = 0.0151.

data, and the sampling variance stays somewhat below the theoretical

variance (Laurencelle, 2021b). As the results will show, one-way

ANOPA is conservative when the total sample size is not large

enough. We also varied the number of groups p from 2 to 5 together

with the hypothesized population probability π of success, which was

equal for all groups in each simulation run as we were examining

the incorrect rejections of the null hypothesis. Finally, to explore

unequal group sizes, we increased (or decreased) the probability

of being in the first group (the prevalence rate, herein just called

prevalence, noted ψ) ranging from 0.5 (half as small) to 2.0 (twice

as large). The prevalence of the other p – 1 group was increased

or decreased accordingly. With this approach, the total sample size

is fixed, but the amount of data within groups fluctuate randomly

across simulations. In total, there were 4 (number of conditions p)

× 4 (population proportion π) × 5 (prevalence ψ) × 12 (samples

sizes n) = 960 conditions each replicated 500,000 times. Appendix A

on OSF at https://osf.io/gja9h/, folder Appendices provides the details

of the simulations.

Figure 2 shows some of the results (left panel) as well as results

with a correction factor (right panel; the correction factor is explained

in the following paragraph). The complete results with and without

the correction factor are found in Appendix A.

Overall, one-way ANOPA reaches a type I error rate of 0.05 when

the total sample size nTotal is large enough for the sampling variances

to match the theoretical variances. When samples are too small, the

test is conservative. See below for a rule of thumb regarding sufficient

sample size.

The results also show that when nTotal is slightly higher than

sufficient, type I error rates momentarily rise over 0.05, reaching

∼0.06 rejection rate, before returning to 0.05 for a larger nTotal. This

undesirable trend is small and can be ignored. If it is important that

type I error rates do not exceed the decision threshold α, a correction

factor may be used. A correction factor obtained from Williams’s

(1976) examination of the χ2 distribution is given by:

c = 1+ p2 − 1

6 ñ (p− 1)
(6a)

where ñ is the harmonic mean of the number of participants in each

group, p in the numerator is the number of cells in the design, and

p − 1 in the denominator is the degree of freedom. This correction

factor is to be used to divide the F or chi-square statistics before

assessing the p-value. This correction factor is higher than 1 (reducing

the test statistic) and tends to 1 (no reduction) for large samples. This

correction factor rapidly becomes immaterial for non-trivial small

groups (for example, it is worth 1.0086 for the illustration of this

section).

As seen in the right panel of Figure 2, the correction factor

eliminates the momentary excess in the type I error rates, with most

conditions tending smoothly toward 5%. The one exception is when

the population proportion is very small (0.1) or very large (0.9), as all

the results are mirror images for proportions above 0.5. Prevalence

had an adverse but small effect on the type I error rate: whether one

group is overly represented (prevalence of 2 to 1 relative to the other

groups) or underrepresented (prevalence of 0.5 to 1 relative to the

other groups) in the total sample, the type I error rate increases to

about 5.3%. For the other three prevalence levels (0.75, 1, and 1.5),

there is no visible deviation from 0.05. Finally, the correction factor

enhances the conservatism of the test for very small samples.

Su�cient sample sizes

Following estimates of the total sample size at which corrected

type I error rates reached α, we derived this rough rule of thumb from

the simulations to determine what the total sample size should be:

nsufficient = ⌈20 p+ 50× | sin−1(
√
pextreme)− sin−1(

√
0.5) |⌉ (7)

where pextreme is the most extreme proportion observed (away from

0.5), p is the number of groups, and ⌈x⌉ denotes the first integer

greater than or equal to x. In other words, it is recommended to have

at least 20 participants per group, and this number is increased as the

observed pextreme proportion deviates from 0.5. For two groups, the

total sample size should be between 40 and 60. For five groups, the

total sample size should be between 100 and 139.

As an example, in the previous illustration, there were four groups

(requiring at least 4 × 20 = 80 total participants), and the most

extreme observed proportion of 0.19 adds 50 × | sin−1(
√
0.19) −

sin−1(
√
0.5) | = 50 × 0.334 = 16.7186 participants, for a

recommended total sample size of 97. The total sample size in the

illustration was actually 97, just the recommended sufficient number

of participants. Also keep in mind, that as seen in the simulations, the

groups should be approximately of equal size, with the ratio of the

largest to the smallest group sizes being 1.5 or less.

Two between-group factors

An illustration

In this second section, we considered an examination of the

proportions of young adults with dyslexia who graduate from college.

The participants were divided based on whether they obtained an

early (elementary school) or a late (high school) diagnosis of dyslexia

and also on their socio-economic status (SES; low, medium, high).

The design is therefore 2 × 3 with six independent groups. The

observations are compiled in Table 3, and the observed proportions

are illustrated in Figure 3. As seen in these data, low-SES participants

tend to have better graduation rates. Although the difference-adjusted

95% confidence intervals are wide, the low-SES group as a whole

looks distinct from the other two SES levels, something that will be

confirmed formally in the upcoming two-way ANOPA.
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FIGURE 2

Type I error rate of the one-way ANOPA with (on the right) the correction factor and (on the left) without the correction factor in some of the conditions
of the full simulations (here, the number of groups is four, the population proportion is 0.3, the prevalence of the last group relative to the other groups
ranges from 0.5 to 2 (colored lines), and total sample sizes on the horizontal axis vary from 20 to 2,000 on a log scale. Each point is based on 500,000
simulations. For instance, with n = 100 and four groups, prevalence of 1, there were on average 25 participants per group.

TABLE 3 Graduation number (sample size between parentheses) of young adults with dyslexia based on diagnosis moment and socioeconomic status (SES).

Moment of diagnostic

Early Late

SES Data p A Data p A

Low 75 (89) 0.8427 1.1591 84 (92) 0.9130 1.2656

Middle 62 (77) 0.8052 1.1100 52 (72) 0.7222 1.0131

High 40 (52) 0.7692 1.0652 42 (63) 0.6667 0.9532

Also shown are the proportions (p) and the Anscombe-transformed scores (A).

FIGURE 3

Proportions from the graduation study. The error bars show
di�erence-adjusted 95% confidence intervals of the proportions
(obtained with the package superb for R, Cousineau et al., 2021, as
explained in the OSF website: osf.io/gja9h, folder SecondIllustration).

We began with the between-subject sum of squares using the

groups’ aggregates Aij (the ith moment of diagnostic and the jth SES),

which is given by:

SSBetween =
p

∑

i=1

q
∑

j=1

(

Aij − A••
)2 = (p q− 1) var(Aij) (8)

where p = 2 and q = 3 in the illustration, where Ā•• is the grand

mean across both factors, and where var(Aij) is the variance across the

6 Anscombe-transformed scores. The global variance is next broken

down into Moment of diagnostic sum of squares (here labeled P),

an SES sum of squares (here labeled Q), and an interaction sum of

squares, labeled P× Q:

SSP =
p

∑

i=1

q
(

Ai• − A••
)2

= (p− 1) q var(Ai•)

SSQ =
q

∑

j−1

p
(

A•j − A••
)2

(9)

= (q− 1) p var(A•j)

SSP×Q =
p

∑

i=1

q
∑

j=1

(Aij − Ai• − A•j + A)2

= SSBetween − SSP − SSQ

in which A•j = 1
p

∑p
i=1 Aij are the q marginal means across factor

P, Ai• = 1
q

∑q
j=1 Aij are the p marginal means across factor Q,

A•• = 1
pq

∑p
i=1

∑q
j=1 Aij is the grand mean, and var(Āi•) is the

variance across the p means, whereas var(Ā•j) is the variance across
the qmeans. From these and the degrees of freedom, we obtained the
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mean squares in the usual fashion:

MSP = SSP/(p− 1) = q var(Ai•)

MSQ = SSQ/(q− 1) = p var(A•j)

MSP×Q = SSP×Q/((p− 1)(q− 1))

(10)

Regarding the error term, we again used the theoretical variance,

assuming that nij is large enough (a number addressed in the

simulation study below):

MSe = mean
(

varth(Aij)
)

= 1

pq

p
∑

i=1

q
∑

j=1

1

4(nij + 1
2 )

(11)

in which nij is the number of observations in cells i, j of the design.

The sum of squares decomposition and the degrees of freedom for

each term are illustrated with this schematic:

Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Degrees of freedom

SSBetween ............................................p q− 1

SSP ................................................p− 1

SSQ ...............................................q− 1

SSP×Q .....................................(p− 1)(q− 1)

SSe .....................................................∞
Test statistics are given by:

FP = MSP

MSe

FQ = MSQ

MSe

FP×Q = MSP×Q

MSe































or































gP = (p− 1)
MSP

MSe

gQ = (q− 1)
MSQ

MSe

gP×Q = (p− 1)(q− 1)
MSP×Q

MSe

(12)

in either an F form (left) or a chi-square form (right). The chi-square

form only requires the numerator degrees of freedom to assess its

significance, whereas the F form has infinite degrees of freedom to

the denominator.

The two-way ANOPA table is given in Table 4 along with

Williams’ corrections in the note (described below). As can be

seen, factor SES has an effect [F(2,∞) = 6.39, p < 0.002], but

factor Moment of diagnostic has no effect [F(1,∞) < 1], and there

is no interaction between the two [F(2,∞) = 2.14, p = 0.12].

These results are in good agreement with the results depicted

in Figure 3 when taking into account the difference-adjusted 95%

confidence intervals.

Type I error rates with two between-subject
factors

To examine type I error rates in two-way ANOPA, we chose

to focus on the interaction effect. As in the previous section,

we generated random samples. However, instead of varying the

prevalence of the last group, we held it constant at ¾ and varied

instead the number of levels of the second factor (q; 2, 3, or 4 levels).

We explored total sample sizes larger than 50 only. There were 4

(number of levels of p) × 3 (number of levels of q) × 4 (population

proportions π) × 11 (sample sizes n) = 528 conditions, with each of

them replicated 500,000 times.

Williams’s (1976) correction factor for an interaction term is

given by

c = 1+ (p× q)2 − 1

6 ñ (p− 1)(q− 1)
(6b)

where (p− 1) (q− 1) is the degrees of freedom of the examined effect,

and p× q is the number of cells concerned by this correction.

In the population simulated, there is no true interaction effect P×
Q and no true main effects of factors P and Q. Everything else is as in

the previous simulation study described in Appendix A.

Figure 4 shows some results of the simulations without correction

(left) and with the correction factor (right). The complete results are

found in Appendix A. Again, without the correction factor, the type

I error rates momentarily exceed α = 0.05, the chosen decision level,

reaching up to 0.061 in some conditions shown in Appendix A Figure

B1. The correction factor keeps the type I error rate below 0.0505 in

all tested conditions; on the other hand, it accentuates the decrease

of the type I error rate below the nominal alpha level for smaller

samples, reducing the chance of detecting real significance (i.e., the

test is more conservative for small samples).

The total sample size sufficient to reach the theoretical variance is

larger, but there are alsomanymore groups (p× q groups) than in the

previous study. The rule of thumb of Equation 7 is still roughly valid

to provide a sufficient sample size per group in a two-way design.

A within-subject design

An illustration

As a third illustration, we considered a situation in which 30

participants receive one of three drugs and a placebo in a random

order to see if they are experiencing a period of delirium or not (“1”

here means that at least one event is happening).

The results are shown in Figure 5 along with correlation- and

difference-adjusted 95% confidence intervals (more on these error

bars in the last section). The results seem to indicate that the cBau

drug favors the presence of at least one episode of delirium, affecting

50% of the participants, whereas it does not exceed 35% with the

other drugs.

This study uses a within-subjects design, in which individual data

or events are generally correlated. For instance, some participants

may be more susceptible to the syndrome, irrespective of the drug

taken. To estimate the amount of correlation, it is necessary to

have access to the raw data coded with “0s” and “1s:” these are

given in Table A1 available on the OSF site, osf.io/gja9h/, folder

ThirdIllustration.

Correlation (at least when it is positive) is beneficial to

statistical inference because it helps subtract a substantial

portion of the between-subject variance from the between-

condition error term, thus increasing statistical power. Remember

that the reliability of repeated measures increases with the

number of such measures, as embodied by the Spearman-

Brown prophecy formula (Anastasi and Urbina, 1997). As

an example, the definition of Cronbach’s (1951) famous

internal consistency index must be considered. Also called

coefficient alpha (α, not to be confused with the decision
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TABLE 4 Two-way ANOPA table.

SS df MS F p-value

Between group 0.0611 5

Moment (P) 0.0017 1 0.0017 0.5010 0.4791

SES (Q) 0.0445 2 0.0222 6.3949 0.0017

P× Q 0.0149 2 0.0074 2.1400 0.1177

Error - ∞ 0.0035

Using William’s correction for factor P, cP = 1.0011, we obtain F(1,∞) = 0.5004, p = 0.4793, for factor Q, cQ = 1.0015, we obtain F(2,∞) = 6.3853, p = 0.0017, and for factor P× Q, cP×Q = 1.0066,

we obtain F(2,∞) = 2.1261, p = 0.1193.

FIGURE 4

Type I error rate of the two-way ANOPA with (right) and without (left) the correction factor in some of the conditions of the full simulations (here, the
number of levels of the first factor is 4, the population proportion is 0.3, the number of levels of the second factor ranges from 2 to 4 (colored lines), and
sample sizes on the horizontal axis vary from 50 to 2,000 on a log scale. Each point is based on 500,000 simulations.

threshold α), it is

α = k

k− 1

(

1− S

V

)

(13)

where V = var
(

x•j
)

, the variance of the n sums of responses, one

sum per participant, with x•j =
∑k

i=1 xij, and S =
∑n

j=1 var(xi•) the
sum of the k individual variances, with xi• =

∑n
j=1 xij in which xij

denotes the ith score (success or failure, 1 to k) of the jth participant

(1 to n). Herein, k is the number of repeated measures (k is akin

to the number of levels p in the between-group design). As the

number of items grows, V increases more rapidly than S, owing to

the positive correlations between measures across participants, and

the ratio 1 − S/V tends toward 1. Let the symbol α1 denote the

mean variance-weighted correlation coefficient between measures.

The Spearman-Brown formula links the two quantities through the

formula:

α = kα1

1+ (k− 1)α1
(14)

in which α1 (named unitary α in Laurencelle, 1998) can be seen as the

contribution of a single item to the overall consistency of the set. In

the very restricted case where all items’ variances are equal, then α1
equals r̄, the average Pearson correlation between the pairs of items

(proof is given in deVellis, 2003, p. 36; also see Cousineau, 2019).

In the most general case, by isolating α1 in Equation (14), i.e.,

α1 = α/(k − (k − 1)α), and inserting Equation (13), we obtained

the general expression for α1:

α1 =
V − S

(k− 1)S
(15)

FIGURE 5

Proportions from the study looking at the e�ects of three drugs on the
presence of delirium episodes. The error bars show correlation- and
di�erence-adjusted 95% confidence intervals (obtained with the
package superb for R, Cousineau et al., 2021, as explained in the OSF
website osf.io/gja9h, folder ThirdIllustration).

This measure is a general measure of correlation in designs

with repeated measures (Laurencelle, 1998; Goulet-Pelletier and

Cousineau, 2019).

From these considerations, we can see that the error variance can

be partitioned according to α1 into an unsystematic part (1−α1) and
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a participant-related part (α1). Removing the latter part, we obtain a

purer, smaller, and more specific estimate of error variance.

Returning to the ANOPA based on a one-way, repeated-measure

design, we use the following formulas:

SSP =
k

∑

i=1

(Ai − A)2 = (k− 1) var(Ai)

MSP = SSP/(k− 1) = var(Ai)

SSe = (1− α1)
k

∑

i=1

varth(Ai) =
k

∑

i=1

1− α1
4(n+ 1

2 )

MSe = SSe/k = (1− α1)mean
(

varth(Ai)
)

= 1− α1
4 (n+ 1

2 )

(16)

in whichAi denotes Anscombe-transformed scoresA(xi, n) for the ith

measurement, A denotes the mean score over all the Ai, var(Ai) is the

variance across the p-transformed scores, SS is the sum of squares,

MS is the mean square, and n is the number of observations in the

different conditions (all equal in a repeated-measure design). Finally,

as before,

FP = MSP

MSe
or gP = (k− 1)

MSP

MSe

whereas, FP follows an F distribution with k−1,∞ degrees of

freedom, gP follows a chi-square distribution with k−1 degrees

of freedom.

Returning to the example, Table 5 shows the aggregated scores.

The variance of the x•j totals, V, is 1.5966, and the sum of the k

variances, S, is 0.8563, yielding an α1 of 0.2881. Table 6 shows the

one-way ANOPA for repeated measures. The result is significant (p-

value of 0.0276). When the correction factor (Equation 6a) is used,

the p-value increases to 0.0284.

To summarize this third illustration, we found a significant

difference [F(3,∞) = 3.043, p = 0.0276] between conditions, with or

without the correction factor. Post-hoc HSD tests performed on OSF,

folder ThirdIllustration, suggest that cBau and eaPoe are the only two

conditions with a significant difference (Tukey’s HSD q= 4.0888, p=
0.0200, here computed without the correction factor, or q= 4.0747, p

= 0.0225 with the correction factor; note that the square root of the

correction factor must be used in post-hocHSD tests).

Type I error rate in within-subject designs

We did a final Monte Carlo study to examine the behavior of

the type I error rates in within-subject designs as a function of the

amount of correlation between the items. We ran the simulation first

without and then with the correction factor. In every simulation, we

estimated α1 from the data. Appendix A provides additional details.

Figure 6 shows examples of the results, whereas the complete results

are given in Appendix A.

As seen before, the test is conservative when the sample size is not

sufficiently large. When two measurements are used, the simulations

show small areas where type I error rates exceed 0.05 (reaching

5.8% when there are 30 simulated participants), suggesting that the

correction factor is not entirely adequate in this design. Except when

there are two measurements, the results are little influenced by

their number. This implies that the sufficient sample size to reach

theoretical variance is based on the number of independent groups

(here only one), not the number of levels of the factor. As the

simulations reported had 30 or more participants, meeting the 20-

participants-per-group rule of thumb, it explains why the areas where

the type I error rate exceeds 0.05 are small.

The correction factor is effective in eliminating the excess above

0.05 only when there are more than two measurements; with two

measurements, there is no visible difference with or without the

correction factor.

Statistical power analyses

In planning a new study, it is customarily recommended to

estimate the sample size required to optimize the odds of detecting

an effect if there really is one (Laurencelle, 2007; Brysbaert, 2019).

To that end, the usual steps are: (i) get access to relevant published

information and determine the expected results; (ii) convert them

into a standardized effect size; (iii) set the decision threshold and

desired power (conventionally labeled α and 1 – β), from which the

needed sample size is mathematically deduced.

In ANOVA, the effect size generally used is f 2, the ratio of the

variance of the effect to the error variance (or its square root, f;

Cohen, 1988, 1992). If prior results or a meta-analysis can suggest

the magnitude of the population effect size, then the power analysis

must be performed on that estimate.

The same process can be followed with ANOPA. As before, the

variance induced by the effect must be computed after the expected

proportion values have been Anscombe-transformed. Then, this

variance is divided by the harmonic mean of the planned number of

participants per group. Also, because the expected effect variance is

stipulated as a population variance (rather than a sample variance),

its divisor is the number p of conditions, not p – 1.

For example, let us suppose that a replication of the study on

incubation (first illustration) is to be performed. Let us assume that

the expected proportion corrects for the replications (rounding the

results of the first illustration) are 0.32, 0.64, 0.40, and 0.16.

The variance of the effect, noted σ 2
P , is the putative population

variance between the four Anscombe-transformed scores, that is,

0.0302. The same result is obtained by computing the sample variance

on the Anscombe-transformed proportions var(Ai) and multiplying

it by (p−1)/p to make it a population variance, where p is the number

of levels considered, in this case, four.

Regarding the error variance, noted σ 2
e , it is ñ× 1/(4 ñ) when the

additive term 1
2 is considered negligible. Taken together,

f 2 = σ 2
P

σ 2
e

≈
p−1
p var(Ai)

ñ× 1/(4ñ)
= 4

p− 1

p
var(Ai) (17)

which is independent of the sample size in need of planning. In

the present example, f 2 = 0.1281 and thus, f =
√
0.1281 = 0.3579.

According to Cohen’s guidelines (Cohen, 1992), this is a moderate-to-

large effect size. Entering f, α, and 1−β into a power computation tool

such as G∗Power (Mayr et al., 2007), we obtained the recommended

sample size. With the following f = 0.3579, α = 0.05, and 1 − β =
0.80, we were invited to recruit 92 participants (the exact number is

actually 89.13 but as G∗Power assumes equal group sizes, the result

was rounded up to the nearest integer participant within each group;
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TABLE 5 Number of successes for the three measurements in the drug study for delirium treatment (n = 30).

Number of success (s) p = s/n A = sin−1

(
√

s+ 3
8

n+ 3
4

)

cBeau 15 0.5000 0.7854

eaPoe 6 0.2000 0.4727

R&V 8 0.2667 0.5491

Placebo 10 0.3333 0.6198

Variance 0.0178

Also shown are proportions and Anscombe-transformed scores (A).

TABLE 6 One-way within-subject ANOPA table.

SS df MS F p-value

Treatment (P) 0.0534 3 0.0178 3.043 0.0276

Error - ∞ 0.0058

The correlation α1 is 0.2881. Using the correction factor cP = 1.0069, we obtain F(3,∞) = 3.0217, p = 0.0284.

FIGURE 6

Type I error rate of the one-way within-subject ANOPA with (right) and without (left) the correction factor in some of the conditions of the full
simulations (here, the number of measurements is 4, the population proportion is 0.3, the population correlation ρ ranges from 0.0 to 0.3 (colored lines),
and sample sizes on the horizontal axis vary from 20 to 2,000 on a log scale. Each point is based on 150,000 simulations.

also, in a priori power computation with G∗Power, it is not possible
to set the denominator degrees of freedom to∞; doing so would have

reduced the number of participants needed to 88).

Alternatively, the non-centrality parameter λ required for the

power calculation can be computed directly using λ = ntotal × f 2

which, assuming a sample size of 100, equals 12.8076. With this λ, α

= 0.05, a numerator degree of freedom of 3 and a large number for

the denominator degrees of freedom, G∗Power indicates a power of
86.53% (under F-tests: Generic F-test).

As a validation, we estimated power by running a simulation

with the population proportions set to 0.32, 0.64, 0.40, and

0.16 (noted above), and 100 simulated participants. We found a

rejection of the null hypothesis in 87.5% of the simulations over

1,000,000 replications, supporting the power analysis conclusion. The

simulation used the correction factor; without it, we found 87.7%

rejection of the null hypothesis (with both standard errors of the

simulation results being smaller than 0.1%).

As a final note, it must be remembered that the sufficient sample

size nsufficient (e.g., Equation 7) to reach theoretical variance must also

be met so that, when planning a study, the largest of both analyses

(power analysis and sufficient sample size) must be retained. Here,

Equation 7 imposes a minimum of 99 participants, with the most

different prediction from 0.50 being 0.16.

Confidence intervals and plots of
adjusted confidence intervals

More and more, researchers are invited to present their results

graphically. One reason for this is to take some distance from

the dichotomized interpretation of results introduced by decision

thresholds (significant vs. non-significant; Trafimow et al., 2018;

Amhrein et al., 2019). Another reason is to bemore sensitive to trends

and patterns of results that are not easily apparent from dichotomized

decisions based on p-values (Loftus, 1993). To be meaningful,

aggregates and other summary statistics must be presented with

accompanying measures of imprecision, such as standard errors

or confidence intervals, among others. In this section, we show

how standard errors and confidence intervals can be obtained for

proportions (extending Hogg and Craig, 1978).

The standard error is a measure of the variability or uncertainty of

a summary statistic. For a given Anscombe-transformed aggregate,
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the standard error is theoretically given by the square root of the

variance, varth(A(s, n)) = 1/(4(n + 1
2 )), so that standard error in the

ith group for Anscombe-transformed proportions is

SEi =
0.5

√

ni + 1
2

;

it depends only on sample size, so larger samples give more precise

estimates, with narrower confidence intervals.

The g test statistics, (p−1)F = (p−1)
∑p

i=1(Ai−Ā)2/((p−1)MSe),

is, under homogeneity of variances, equal to

p
∑

i=1

(

Ai − Ā

SEi

)2

This is a sum of squared z-scores. Both assumptions (homogeneity of

variance and normality of the distribution) are actually guaranteed

for Anscombe-transformed scores with a sufficient n. Hence, the

Gaussian z distribution can be used to get γ × 100% confidence

interval limits as:

[

A+ z 1
2−

γ
2
× SEA, A+ z 1

2+
γ
2
× SEA

]

(18)

Chen (1990) and Lehman and Loh (1990) examined the behavior

of approximate confidence intervals for proportions. As proportions

are discrete (with a sample of size 10, for example, observed

proportions could be 0.0, 0.1, 0.2, et cetera, but cannot achieve

intermediate values), these authors showed that the most accurate

confidence intervals will actually sometimes be a little too liberal, and

sometimes a little too conservative. Chen (1990) showed that arcsine-

based confidence intervals have almost the least varying coverage

rates and suggested replacing the weights 3/8 and 3/4 with other

weights. However, the reduction in coverage variability is immaterial.

In unreported simulations, coverage of the 95% confidence interval

given in (18) never went below 94.2% and never exceeded 95.8%.

An alternative method to get confidence intervals is based on the

pivot method of (see Clopper and Pearson, 1934; Leemis and Trivedi,

1996). This technique’s coverage for a 95% confidence interval will

never be below 95% but can be as conservative as 98%.

Equation (18) defines a stand-alone confidence interval because it

is to be used when a result is compared to a pre-specified value of

interest. However, the whole point of ANOPA is to compare results

with each other, not to fix values. Consequently, we need confidence

intervals that allow for comparing results.

The difference-adjusted confidence interval is the adequate

interval when comparing independent groups and interpreting their

mutual differences. To obtain it, the interval width in Equation 18

is multiplied by
√
2 = 1.41, which makes it 41% longer. Figures 1,

3 were made with difference-adjusted confidence intervals. One way

to interpret these intervals is to look for inclusion: if one result is

included in the adjusted confidence interval of another result, these

two results are probably not statistically different at the γ level,

typically 95% (Cousineau, 2017).

In within-subject designs, knowledge about the correlation

between repeated measures can be used to improve the precision of

results. Many techniques have been developed that account for the

presence of correlation in repeated measures designs, notably Loftus

andMasson (1994), and Cousineau-Morey (Cousineau, 2005; Morey,

2008). However, all these techniques boil down to a multiplication

of the standard error value by
√
2(1− r) (Cousineau, 2019), with r

being a measure of correlation (we use α1 in the context of ANOPA).

Thus, the stronger the correlation, the shorter the error bars. The

correlation-and difference-adjusted confidence intervals implement

this technique, allowing the comparison of correlated measurements

with each other. Figure 5 was made with those confidence intervals.

Cousineau et al. (2021) demonstrated the mathematical validity

of these adjusted confidence intervals with respect to statistical

inference.

The Anscombe-transformed scores and their adjusted confidence

intervals can be plotted directly. However, the typical reader might

prefer to see proportions rather than Anscombe-transformed scores

on the vertical axis. In that case, it is possible to compute the

transformed scores interval limits, then reverse the transformation

so that a plot of proportions can be made. This is what was done

in Figures 1, 3, 5. A simple way to un-transform the confidence

limits is with
(

sin( limit )
)2
. A more accurate way, which takes into

consideration the terms 3/8 and 3/4, is found on the OSF website,

although the difference is barely discernible. Finally, it should be

noted that in Figures 1, 3, 5, we did not use a linear scale for the

vertical axis but an arcsine scale. This is mostly visible in Figure 3:

the intervals around 0.5 are narrower than the intervals around

0.9. This scale is showing Anscombe-transformed scores linearly,

so inverting the transformation on the confidence limits does not

introduce distortions.

The R package “superb” can be used to get such plots (Cousineau

et al., 2021) as explained on https://dcousin3.github.io/superb/

articles/VignetteC.html. With “superb” the adjusted intervals are

obtained by adding options so that no programming is required.

Conclusion

ANOPA is a complete series of analyses for proportions,

applicable to any design. It is based on Anscombe’s (1948) arcsine

transformation, whose error variance is theoretically known. To

that end, the sample must be of sufficient size; an approximate

rule was given to estimate the sufficient sample size. ANOPA

is based on a few assumptions: that the measures are binary,

and the effects on the Anscombe-transformed scores are additive.

Sampling must be done as with ANOVAs: the participants are drawn

independently of each other. There is no normality assumption and

no homogeneity of variance assumption in ANOPA; these are built

into the arcsine transform.

Simulations indicate that the groups have to be roughly equal in

size (a ratio between the largest and the smallest group up to 1.5 to

1 being acceptable); also, the proportions tested should not be too

extreme when the sample is small. In these circumstances, ANOPA is

never liberal, that is, its type I error rate never exceeds the decision

threshold, making this test very reliable.

In this text, we provided examples of a one-way between-

subject design (first illustration), a two-way between-subject design

(second illustration), and a one-way repeated-measure design (third

illustration). Interested readers will find on the OSF website, https://

osf.io/gja9h/ (folder MixedDesign), a fourth example illustrating a

mixed (one-factor within-subject and one-factor between-subject)

design based on unpublished research data from G. Trudel and her

colleagues. In a fifth example, how to perform simple effects analyses

in a two-way design following a significant interaction is shown (OSF
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website, folder LogisticRegression; the ANOPA analysis is compared

to logistic regression in that example). These examples should help

the researchers test more complex designs.

The analyses without correction factors sometimes show type I

error rates exceeding the decision threshold, however, deviations are

small (never exceeding 6.3% for a 5% decision threshold); the worst

cases are found with five groups (we did not simulate more groups)

in one-way ANOPA. A simple correction factor has been proposed,

which has been shown to be very effective for un-extreme population

proportions (within 0.2 and 0.8): in these simulations, the type I

error rate never exceeded the 5% threshold by more than 0.4%. The

correction factor was mathematically derived by Williams (1976).

Warton and Hui (2011) examined similar questions and found

that for extremely tiny samples (two groups of 3 or two groups

of 6), a logistic regression analysis had more chances to detect

an effect. This is not unexpected, as ANOPA is very conservative

for small samples (and logistic regression is very liberal). Yet this

advantage is for sample sizes for which using statistical testing is

quite dubious.1 In Appendix B on OSF at https://osf.io/gja9h/, folder

Appendices, we review many limitations of the logistic regression

analyses and how ANOPA addresses these limitations while offering

many more additional analyses (allowing the detection of main

effects, interaction effects, simple effects, post-hoc tests, orthogonal

contrasts tests, and et cetera).

With the capabilities to assess significance, plan statistical power,

andmake informative plots, proportions are now just another regular

dependent variable in the researchers toolkit.
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