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Introduction: Cognitive flexibility is the ability of an individual to make 

behavioral adjustments in response to internal and/or external changes. While 

it has been reported in a wide variety of species, established paradigms to 

assess cognitive flexibility vary between humans and non-human animals, 

making systematic comparisons difficult to interpret.

Methods: We developed a computer-based paradigm to assess cognitive 

flexibility in humans and non-human primates. Our paradigm (1) uses a classical 

reversal learning structure in combination with a set-shifting approach (4 stimuli 

and 3 rules) to assess flexibility at various levels; (2) it employs the use of motion 

as one of three possible contextual rules; (3) it comprises elements that allow a 

foraging-like and random interaction, i.e., instances where the animals operate 

the task without following a strategy, to potentially minimize frustration in favor 

of a more positive engagement.

Results and Discussion: We show that motion can be used as a feature 

dimension (in addition to commonly used shape and color) to assess cognitive 

flexibility. Due to the way motion is processed in the primate brain, we argue 

that this dimension is an ideal candidate in situations where a non-binary rule 

set is needed and where participants might not be able to fully grasp other 

visual information of the stimulus (e.g., quantity in Wisconsin Card Sorting 

Test). All participants in our experiment flexibly shifted to and from motion-

based rules as well as color- and shape-based rules, but did so with different 

proficiencies. Overall, we believe that with such approach it is possible to 

better characterize the evolution of cognitive flexibility in primates, as well 

as to develop more efficient tools to diagnose and treat various executive 

function deficits.
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Introduction

In order to survive and reproduce, animals need to be able 
to flexibly adjust their behavior in response to changes in the 
environment. The ability to perform these adjustments is 
known as cognitive flexibility (Highgate and Schenk, 2021) and 
it is considered to be one of the fundamental components of 
executive functions (Nyhus and Barceló, 2009; Stoet and 
Snyder, 2009; Miyake and Friedman, 2012; Diamond, 2013; 
Manrique and Call, 2015; Glisky et  al., 2021). Whether 
behavioral adjustments are required because an established 
response has stopped producing the desired outcome (e.g., a 
monkey that finds no more seeds while browsing through the 
fallen leaves), or because internal needs have changed (e.g., a 
monkey feels thirst while foraging), most organisms need to 
be  able to inhibit current behavioral responses (e.g., stop 
browsing for seeds) so that novel and more appropriate 
responses can be put in place (e.g., search for a new patch of 
leaves with potentially more seeds or go to the nearby pond to 
drink). Cognitive flexibility has therefore been reported in a 
large variety of species, such as fish (Miletto Petrazzini et al., 
2017; Buechel et  al., 2018; Fuss and Witte, 2019), birds 
(Rayburn-Reeves et  al., 2013; van Horik and Emery, 2018; 
Reichert et al., 2020; Aljadeff and Lotem, 2021; Loconsole et al., 
2021), insects (Strang and Sherry, 2014; Wenig et al., 2021), 
mice and rats (Bryce and Floresco, 2021; Caglayan et al., 2021; 
Odland et al., 2021), octopuses (Bublitz et al., 2021), various 
mesocarnivores (Stanton et al., 2021), non-human primates 
(Mahut, 1971; Dias et al., 1996a; Izquierdo, 2004; Kuwabara 
et al., 2014; Shnitko et al., 2017; La Camera et al., 2018; Watzek 
et al., 2019; Weiss et al., 2019; Grant et al., 2021), and humans 
(Xue et  al., 2013; Lange et  al., 2018; Lawrence-Sidebottom 
et al., 2020; Takeda and Fukuzaki, 2021; Weiss et al., 2021). 
Most of the paradigms developed to assess cognitive flexibility 
fall in one of two categories: set-shifting or reversal-learning 
(for a review see Uddin, 2021). In both, participants are first 
taught which of multiple visual stimuli lead to a correct 
response, through a process of trial and error and based on 
simple binary correct/incorrect feedback. When this rule is 
acquired, the rule changes. As participants need to disengage 
from the ongoing behavior and flexibly adapt to the new 
association, their response and performance after the rule 
change is quantified to provide a measure of the participants’ 
flexibility (Rayburn-Reeves et al., 2017; Shnitko et al., 2017). In 
more detail, in set-shifting paradigms, like the Wisconsin Card 
Sorting Test (Grant and Berg, 1948; Nelson, 1976; Stuss et al., 
2000; Prentice et al., 2008; Nyhus and Barceló, 2009; Lange 
et al., 2018; D’Alessandro et al., 2020; Uddin, 2021), human 
participants are asked to sort cards according to one of several 
contextual rules (e.g., the card’s shape, color, or number of 
objects) that are changed unpredictably by the experimenter. 
In reversal learning tasks, participants learn which one of two 
stimuli is the correct one (discrimination phase) and once their 
performance is stable, namely when a certain criterion is met, 

the rule is reversed and the correct stimulus becomes the 
incorrect one (reversal phase). While reversal learning 
approaches (with one binary rule) have been used with both 
humans and non-human animals, most set-shifting paradigms 
(with multiple rules) are optimized for humans and do not 
generalize well to other animals (see Uddin, 2021 for a review). 
Set-shifting tasks for non-human primates require animals to 
shift only between two rules (namely the shape and the color 
of a stimulus), as opposed to human versions of the tasks that 
require participants to shift between three rules (color, shape, 
and quantity). As a result, to the best of our knowledge, a direct 
comparison of set-shifting abilities of humans and non-human 
primates is not available.

To fill this gap, we developed a task that integrates elements 
from both reversal learning and set-shifting approaches and 
that can assess cognitive flexibility of both species without 
species-specific adaptations. Our multidimensional shifting task 
(MDS) makes use of two main features: (1) it uses motion as a 
third visual feature dimension, in addition to color and shape; 
(2) it employs an array of four stimuli (1 target, 1 distractor and 
2 neutral stimuli). With this task, we were able to assess and 
rank the cognitive flexibility of 11 captive Rhesus macaques and 
25 human participants. Our results show that monkeys maintain 
a high level of engagement with the task within and between 
sessions. We also found that efficiency in learning the rule is 
similar across the three features (shape, color, and motion), 
which suggests that motion is suitable as an additional feature 
dimension for cognitive assessment of both humans and 
monkeys. Ultimately, we computed a custom-made index of 
cognitive flexibility across different types of shifts (intra-
dimensional or extra-dimensional); across feature dimensions 
(shape, color, and motion), and across species (humans and 
monkeys). We  found that humans and monkeys cluster on 
opposite sides of the scale; that cognitive flexibility is 
independent from the visual feature used to assess it; and that 
only humans show intra- to extra-dimensional differences.

Materials and methods

Participants

A total of 25 human participants (13 males and 12 females, 
mean age = 28 years old) and 14 rhesus macaques (Macaca 
mulatta, all male, mean age = 11 years old) were tested. All 
participants first went through a training procedure and once they 
completed training, they went forward with the testing. While 
both training and testing happened on the same day/session for 
humans, it took on average 6 days for monkeys to complete both 
training and testing procedures (Supplementary Table S2). The 
testing part ended when three cycles (discrimination-reversal 
pairs) from each feature dimension were completed.

Human participants were given written instructions before 
the experiment and they all read and agreed to a consent form 
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while the participation was completely voluntary and they were 
informed that they can stop anytime they want. The participants 
were tested in a light controlled room and they stabilized their 
head on a chin rest to ensure the same distance from the screen 
across participants, and they were asked to respond to the task 
with a mouse click. After the experiment, participants received a 
compensation that was depending on the length of the session, as 
well as a performance-based bonus.

We have included 11 monkeys in the analysis because two 
animals did not interact with the device enough to allow 
meaningful quantification of performance and technical problems 
prevented data collection from one other animal. The animals 
were rewarded with their favorite fluid reward for each correct 
answer and they received free water, fresh fruits, vegetables, and 
nuts after each session.

Research with non-human primates represents a small but 
indispensable component of neuroscience research. The scientists 
in this study are aware and are committed to the great 
responsibility they have in ensuring the best possible science with 
the least possible harm to the animals (Roelfsema and Treue, 2014; 
Treue and Lemon, 2022). All animal interactions carried out in 
this study, housing conditions, and the animal care comply with 
the regulations of the regional government office 
Niedersaechsisches Landesamt für Verbraucherschutz und 
Lebensmittelsicherheit (LAVES) under the permit number 
33.19–42,502–04-18/2823. The animals were group-housed (two 
or three animals) in the facilities of the German Primate Center 
(DPZ) in Goettingen, Germany. The facility provides the animals 
with an enriched environment including a multitude of toys and 
wooden structures, natural as well as artificial light and exceeding 
the size requirements of the European regulations, including 
access to outdoor space. The animals’ psychological and veterinary 
welfare was monitored by the DPZ’s staff veterinarians, the animal 
facility staff, and the lab’s scientists, all specialized on working with 
non-human primates. The animals were always provided ad 
libitum monkey chow which was dispersed around the cage to give 
them the opportunity to forage. No invasive procedure was 
necessary during the development, testing, and the general use of 
the devices and our experimental procedure.

Testing apparatus for monkeys

A custom-made, stand-alone, autonomous, touchscreen 
device was used for data collection. The device is an updated 
version of the eXperimental Behavioral Instrument (XBI), that 
was developed in-house (Calapai et al., 2017; Berger et al., 2018). 
The XBI can be attached directly to the home enclosure of the 
animals and can be used to run cognitive experiments, behavioral 
training, as well as enrichment protocols (Figure 1). The version 
of the XBI used in this study comprises a centralized computational 
unit (MacBook Air, Apple – 2018), a 15″-touchscreen, and a 
custom-made microcontroller to acquire touchscreen information 
and to control the fluid reward system.

The experimental task

The experimental task was developed and administered with 
the open-source software MWorks1, which allows for flexible real-
time control of a variety of standard and custom-made cognitive 
tasks. Each trial was initiated by the animal touching the start trial 
stimulus (white square) located at the bottom of the screen 
(Figure 1C). Then, four different stimuli were presented on the 
screen simultaneously, each at a different location, but equally 
distanced from each other. Each stimulus had one of four different 
shapes, one of four different colors, and contained a cloud of dots 
moving in one of four different directions (Figure 1D). In a given 
trial, each stimulus was composed of a unique combination of 
these three feature dimensions. One of the stimuli was the target, 
and if touched, the trial terminated, a unique acoustic feedback 
was provided, and a drop of fluid reward was delivered (fruit juice 
diluted at 33%, 0.25 mL drop size). Another stimulus was a 
distractor which if touched terminated the trial after delivering a 
unique acoustic feedback but no fluid reward. The remaining two 
stimuli were what we call neutral distractors that disappeared upon 
touch without terminating the trial and they did not provide 
acoustic feedback or fluid reward. The task was composed of 
discrimination and reversal stages, always coupled together (in 
succession) and comprising together a cycle (Figure 1E). At every 
cycle one of the three features was pseudo-randomly set to be the 
relevant one for both the discrimination and reversal stages. Once 
both stages were completed, another cycle was started and another 
feature was randomly assigned to be the new relevant one. At 
every trial all four categories of all three features appeared on the 
screen in randomized combinations, while target and distractor 
were set to two categories of the relevant feature (for example 
color yellow and green) until the stage was completed. When a 
performance of 80% correct responses across the last 10 trials was 
reached, the discrimination stage was considered to be completed. 
At this point the second stage of the cycle started, the reversal 
stage, in which the rewarded and unrewarded categories of the 
relevant feature were swapped (e.g., circle now represents the 
target and cross the distractor, see Figure 1C). This rule change 
occurred without indication to the participants whom can only 
infer it by the sudden reverse in feedback. After also the reversal 
was completed, according to the same threshold as the 
discrimination stage, another cycle began with a different relevant 
feature (in 80% of the cases) or with the same feature (in 20% of 
the cases). If the relevant feature in the current cycle was the same 
as the one in the previous cycle, then we labeled this shift as intra-
dimensional shift. On the other hand, if the features did not match, 
we labeled this shift as extra-dimensional shift. We have allowed 
for chance-aided progress in our task such that participants were 
able to complete a stage without following a strategy, i.e., via 
random interactions. This approach was especially crucial to 
prevent subjects from being stuck at a particular stage and to 

1 http://mworks-project.org
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potentially decrease the likelihood that animals would disengage 
from the task when stuck. The stages that are completed by chance 
were then filtered out before data analyses.

Prior to the testing phase, an automatized training protocol 
instructed the participants on the basics of the task [AUT from 
Berger et  al. (2018)]. During this training phase participants 
navigated a series of pre-programmed training steps in which 
specific elements and rules of the task were gradually introduced 
based on their performance. They were presented with a more 
difficult step only when their performance on the current step 
reached 80% (in the last 10 trials). Specifically, the three visual 
features employed in our task were added one by one at successive 
steps, with for instance, stimuli at the first step of the training 
procedure having the same color and motion but differing only in 
their shape and then in all three dimensions (shape, color, and 

motion) at later steps (Shnitko et al., 2017). We used 3 different 
series of steps (which we refer here as different training types), in 
which the features were introduced in different orders to account 
for a potential influence of order on the participant’s performance 
in the main testing task. AUT1 first trained shape, then color, then 
motion; AUT2 trained color first, then motion, and finally shape; 
AUT3 started with motion, then color, and shape at the end.

Data collection

Human participants were tested in a dedicated psychophysics 
setup at the Cognitive Neuroscience Laboratory at the German 
Primate Center, for a single session. They underwent the same 
procedure as the animals, with the difference that human 

A
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FIGURE 1

Touchscreen device and experimental task. (A) The device seen from the front and the back (B) an animal interacting with the device in his home 
environment seen through the front and side cameras (C) the task design. In this particular stage, the attended feature is shape with cross being 
the target and circle the distractor. If target or distractor is touched, the reward is delivered for target selection only but both options terminate the 
trial. Different auditory feedback is given for target and distractor touches. On the other hand, if one of the neutral stimuli (star or triangle in this 
case) is selected, it disappears and the trial continues until either a target or a distractor is chosen as illustrated in the figure. For the sake of 
simplifying the figure, the sequence of events for selecting a triangle is not illustrated in the figure but the trial would continue in a similar fashion 
as in the case for the selection of star (D) the three feature dimensions used in the experiment (E) the timeline of a complete assessment loop.
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participants used a mouse instead of a touch screen and the start 
button in this case was placed in the middle of the screen. Animals 
were tested opportunistically and on consecutive downtime days 
from their main experimental routine (for an average of 6 sessions 
each lasting on average 121 min). During the testing, companion 
animals were not present or moved to a different section of the 
enclosure, while testing animals had access to the XBI from the 
main compartment of their home enclosure. Tested animals were 
always kept in their home enclosure in visual and acoustic contact 
with the conspecifics. On average, animals completed the training 
in the first 3 sessions and the testing continued on following days 
until data from at least 3 cycles from each feature dimension were 
collected (Figure 1E). We included in our analysis 11 out of 14 
animals (2 animals did not complete the training and 1 animal did 
not interact with the device) and 25 out of 26 humans (due to 
technical issues during data collection for 1 participant). All 
analyses were performed using MATLAB (2020) and R version 
4.x, R Core Team (2021) was used for GLM modeling, while the 
matlab package gramm (Morel, 2018) was used for plotting.

Data analysis

We conducted a series of three statistical analyses. First, 
we assessed the likelihood of each stage to have been completed 
by chance (Chance-level estimation). We then assessed the number 
of choices (note that multiple choices can be made in a given trial) 
needed to complete a given stage, across a number of factors; and 
evaluated systematic effects of these factors as well as their 
interactions (Second-step modeling). Finally, for each stage that was 
not solved by chance we measured a simple cognitive flexibility 
index dividing the total number of stages performed by the total 
number of trials performed (see Equation 1, Cognitive flexibility 
index – CFI). The following sections will describe these three 
analyses in detail.

Chance-level estimation

During the experiment, a stage ended when at least eight 
correct trials out of 10 consecutive trials were performed. At this 
point the contextual rule was changed, according to mechanics 
described above (see Experimental Task). We evaluated whether 
stages were completed as a result of a stochastic process or by the 
participants having reached an understanding regarding the 
contextual rule. To this end, we fitted a Generalized Linear Model 
(GLM) with binomial error structure and logit link function 
(McCullagh and Nelder, 1989) to the sequence of individual 
touches, with the response being whether the individual touched 
the target or not, separately for each individual stage. The ultimate 
aim of this model is to estimate how the probability to touch the 
target changed over the course of a stage, to estimate the 
probability to touch the target at the last touch of a stage and 
whether this probability was significantly above chance (see 

Supplementary Figure S4, see below for the description). To 
account for the fact that the probability to touch the target 
increased within a single trial, we  included 1 divided by the 
number of the available stimuli (logit-transformed; i.e., 
logit(x) = log(x/(1-x))) as an offset term (McCullagh and Nelder, 
1989). To avoid fitting problems with offset terms being infinite, 
we excluded touches for which the probability of choosing the 
target was one. We fitted such a model for each individual stage. 
The reasoning behind this model was the following: if the 
individual learns over the course of the stage, its probability to 
touch the target will gradually increase. In this case the slope 
estimate of the GLM will be positive. Alternatively, the individual 
might touch the target accidentally several times in the beginning 
of the stage and continue to do so, in which case the estimate for 
the intercept will be  positive and significant. We  decided to 
evaluate whether the individual achieved an understanding of the 
task in the current stage by means of the following approach: after 
fitting the model, we first determined, in link space, the probability 
of touching the target (and its standard error) at the very last touch 
(i.e., after potential learning took place). In link space, the 
likelihood function of the probability can be assumed to have the 
shape of a normal distribution with a mean of log(pt/(1-pt)) and a 
standard deviation being the estimated standard error of log(pt/
(1-pt)), whereby both log(pt/(1-pt)) and its standard error result 
from the fitted model and pt is the estimated probability to touch 
the target at the very last touch of the stage. Based on this normal 
distribution, we finally determined the probability of pt to be at 
chance level (i.e., 0.3; see below) or below for that given stage, and 
if this was less than or equal to 0.05, we  considered that the 
individual had learned the rule of that stage. Note that this 
criterion corresponds to a Bayesian approach assuming flat priors 
and deciding that the individual had mastered the current stage if 
its performance is between 0.3 and 1 with a probability 95%. In 
that sense, one could also state that applying the above criterion 
means to be 95% confident that the individual had employed the 
contextual rule. In other words, when the probability of touching 
the target at the very last touch of a stage was larger than 0.3 (i.e., 
above chance) with 0.95 confidence, we considered the stage being 
solved by rule.

To clarify more in detail, we determined the chance probability 
for touching the target as follows: (1) the probability to touch the 
target at the first touch of a trial (pt1) is 1/4. To touch the target 
with the second touch of a trial (pt2), the individual first has to 
touch one of the two neutral stimuli and then the target. Hence, 
the probability to touch the target at the second touch is (2/4) 
*(1/3) and at the third touch of a trial (pt3) is (2/4) *(1/3) *(1/2). 
Analogously, the probabilities to touch the distractor with the first, 
second, and third touch (pd1, pd2, and pd3) are as the same as for 
the target. As a result, the overall chance probability to touch the 
target can be determined as the weighted sum of the number of 
target touches in each of the six possible outcomes, divided by the 
weighted sum of the total number of touches in each of the six 
possible outcomes: pt = (pt1*1 + pt2*1 + pt3*1 + pd1*0 + pd2*0 
+ pd3*0)/ (pt1*1 + pt2*2 + pt3*3 + pd1*1 + pd2*2 + pd3*3) =0.3. 
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This was also confirmed by a simulation run with the same 
transition parameters used in the experiment.

Second-step modeling

After the chance-level estimation we  determined for each 
stage, at which point (touch) the probability of choosing the 
correct stimulus reached the value of 0.8. When this estimated 
touch number was equal or smaller than zero, we excluded the 
stage from further analysis, which resulted in the exclusion of 128 
stages. We also excluded stages in which the estimated number of 
touches, needed to reach 0.8 probability of touching the target, 
was larger than the maximum number of touches across all 
sessions, which resulted in the exclusion of 120 stages. Finally, 
we  excluded the last cycle of each session. The final data set 
comprised of 2,182 estimated number of touches, needed to reach 
a 0.8 probability to touch the target, which were then modeled as 
a function of cycle index (across the whole experiment), species 
(monkey or human), stage type (discrimination or reversal), 
feature dimension (color, motion, or shape), and training order 
(AUT1, AUT2 or AUT3). Given that the effect of cycle index could 
depend on the particular combination of the other four, we also 
included all interactions up to the fifth order into the model. In 
addition, the model included a random intercepts effect for the 
identity of the individual. Finally, to avoid an overconfident 
model, we included random slopes (Schielzeth and Forstmeier, 
2009; Barr et al., 2013) of cycle index, stage type, and relevant 
feature as well as also all their interactions up to the third order. 
We  could not include parameters for the correlations among 
random intercept and slopes as a respective model failed to 
converge. With the aim of evaluating all the fixed effects in the full 
model and avoid confounds deriving from multiple testing 
(Forstmeier and Schielzeth, 2011), we  first compared the full 
model with a null model having the intercept and training type as 
fixed effects and a random effect part identical to that of the full 
model. If this comparison reveals significance, we can conclude 
that at least one of the terms (main effects or interactions) present 
in the full model but absent in the null model significantly affected 
subject performance.

Statistical implementation

All statistical analyses were carried out in R (version 4.2.x; R 
Core Team, 2021). The Chance-level estimation models were fitted 
using the function glm. The second-step modeling consisted of a 
Generalized Linear Mixed Model (GLM; Baayen, 2008) with 
gamma error distribution (Bolker, 2008) and logit link function 
(McCullagh and Nelder, 1989). We fitted the model using the 
function glmer of the package lme4 (version 1.1–29; Bates et al., 
2015) with the optimizer “loptwrap.” Prior to fitting, 
we z-transformed cycle index to a mean of zero and a standard 
deviation of one to ease model convergence and achieve easier 

interpretable estimates (Schielzeth, 2010). In order to obtain value 
of ps for individual fixed effects in a given model, we dropped 
them, one at a time, and compared the simplified models with the 
given model (R-function drop1). All model comparisons utilized 
a likelihood ratio test (Dobson, 2002). We  determined model 
stability by dropping individuals from the data set one at a time, 
fitting the full model to each of the subsets and finally comparing 
the derived estimates with those obtained for the full data set. This 
revealed the model to be  of good stability (see 
Supplementary Material). We determined 95% confidence limits 
of model estimates and fitted values by mean of a parametric 
bootstrap (N = 1,000 bootstraps; function bootMer of the package 
lme4). The sample analyzed with this model comprised a total of 
2,182 0.8 values (one per stage) for 36 individuals (25 humans and 
11 monkeys). The response was not overdispersed given a model 
(dispersion parameter of 0.64).

Cognitive flexibility index

In order to compare the cognitive flexibility across species, 
stimulus features, and types of shifts, we computed a cognitive 
flexibility index (CFI) for each participant, based on the stages 
solved by rule (see chance-level estimation):

 
Cognitive Flexibility Index number of stages

number of tria
    

  
=

lls  
(1)

Here the number of trials, considered to be a proxy for the 
number of attempts made at finding the stage’s rule, was 
normalized by the number of stages solved by rule (with an 80% 
confidence). Finally, we assessed statistically significant differences 
in CFIs between the different rule and shift types. Given that all 
the CFI distributions resulted to be  non-normally distributed 
we  used non-parametric tests. We  used a Wilcoxon paired 
two-sided signed rank test to assess CFI differences across rule 
types (color, motion, shape) for humans and monkeys separately. 
To test difference between intra- and extra-dimensional shifts 
we used a non-paired rank sum test due to unequal number of 
samples of each of the two shifts for each individual. All p values 
were compared to an alpha level that was adjusted according to the 
number of tests run in each analysis.

Results

We assessed cognitive flexibility of 26 participants (25 humans 
and 11 macaque monkeys) with a custom-made, touchscreen-
based task that combines design elements of classical reversal-
learning and set-shifting procedures. In order to assess cognitive 
flexibility of humans and monkeys on a non-binary set of rules, 
we  employed motion along with color and shape as feature 
dimensions. Given that motion has never been used in this context 
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before, we also structured our task in a way that rule changes 
would automatically occur after repeated interactions at chance 
level. This was instrumental to prevent participants (especially 
animals) from being stuck at potentially difficult rules. We started 
by determining the animals’ level of general engagement in the 
experimental sessions. We looked at number of trials per session 
and per minute, the time at which the most engagement took 
place and the number and length of breaks (defined as an inter-
trial-interval of more than 30 s), and included all stages regardless 
of them being completed following the rule or by chance. Figure 2 
depicts the animals’ level of general engagement to be taken as a 
description of the conditions under which the cognitive 
assessment was carried out. Although the levels of interaction, as 
quantified by the number of trials performed per session 
(Figure 2A) and per minute (Figure 2B) and the number of breaks 
per hour (Figure 2D) were variable across animals, each animal 
had a consistent interaction level within and across sessions 
(Figures  2C,E,F). We  have performed a similar analysis for 
humans to determine their general engagement level as well 
(Supplementary Figure S2).

We observed a strong side bias towards the stimulus located 
at the bottom of the screen, for monkeys only, across testing 
(Figure 3A) and training stages (Figure 3C). We computed the 
side bias by counting the occurrences of the first touch of each 
trial with respect to the stimulus location (up, down, left and 
right). Finally, we found no correlation between the strength of 
side bias and the magnitude of animals’ flexibility.

Moreover, the second-step modeling revealed a clearly 
significant full-null model comparison (χ2 = 185.6, df = 69, 
p < 0.001) indicating that cycle number and/or species (monkey or 
human) and/or stage (discrimination or reversal) and/or feature 
(color, direction, or shape) and/or any of the interactions between 
them or with training type significantly contributed to the 
response. Moreover, the model revealed a clear difference between 
species, whereby monkeys needed more trials than humans to 
reach a 0.8 probability of choosing the correct stimulus (151 
touches on average for monkeys and 5 for humans; median of 
medians per individual  - see Supplementary Table S1; 
Supplementary Figure S3). Finally, the effect of cycle number on 
the number of touches needed to reach the 0.8 threshold varied 
depending on the particular combination of species, stage type 
(discrimination or reversal), relevant feature, and training type. 
However, given that such effects were usually associated with 
considerable uncertainty, these results should be taken only as 
proof of concept that with such tasks it is possible to trigger 
reversal-learning as well as set-shifting effects. More information 
and visualizations about the results from the second-step modeling 
are available in the Supplementary material. In order to quantify 
cognitive flexibility, we focused only on those stages which were 
solved by following the rule, ignoring those that were solved by 
chance. To achieve this, we used the probability values from the 
chance-level estimation analysis (see Data Analysis in Materials 
and Methods) to separate the two. With this modeling analysis 
we assessed the evolution of trials’ outcome to find the likelihood 

of such sequence being produced by a stochastic process or by the 
participants knowledge of the contextual rule. As a result, 
we  quantified whether, and in how many stages, participants 
performed differently than chance. Figure  4A shows the 
percentages of stages for which there is at least an 80% probability 
that they were completed by rule. We  decided to use an 80% 
threshold in order to be conservative in filtering out pure chance 
stages, but not too strict to remove all stages that were solved by a 
combination of chance and rule. In Figure 4B we further separated 
the rule-based stages by the three task-relevant features (color, 
motion, and shape). We found that the proportion of rule-based 
stages between the two species was significantly different 
(Wilcoxon rank sum test, for color: test = 599.5, p = 2.52E+08; for 
motion: test = 597, p = 3.68E+08; for shape: test = 600; p = 2.24E+08; 
all with N = 36, 25 humans vs. 11 monkeys; and corrected to an 
alpha level of 0.017) but not significantly different within 
individuals of the same species (paired, two-sided, Wilcoxon rank 
sum test), suggesting that from the participants point of view the 
three features provided equivalent cognitive challenges. Note that 
we have also run a simulation with a stochastic agent for 100,000 
simulated stages (Supplementary Figure S5) and found that while 
humans and monkeys performed a median of 10 and 41 trials 
respectively before the rule spontaneously changed, in this 
simulation the rule changed after 50 trials, i.e., it took 50 trials for 
the agent to complete a stage. However, we  believe that the 
modeling approach described in the Methods section captures a 
fairer representation of the participants’ behavior. The modeling 
is indeed able to better disentangle stages comprised exclusively 
by random trials from stages where participants interacted 
randomly at the beginning of the stage and purposefully towards 
the end.

With the cognitive flexibility index (see cognitive flexibility 
index – CFI in Materials and Methods) based only on the stages 
solved mostly by rule, we  compared performances across 
species, contextual rules, and shift types. In Figure  5A all 
participants are sorted according to their respective CFI and, as 
expected, the two species are clearly separated from one 
another. In Figure  5B, the CFI values are represented as a 
function of feature dimension. We  observed a significantly 
higher CFI in humans in shape stages compared to motion 
stages and no other statistically significant differences across the 
three features and the two species was observed (see Table 1). 
Finally, we  investigated whether our paradigm, and relative 
flexibility index, could replicate known differences between 
intra-(ID) and extra-dimensional (ED) rule shifts. To test this 
hypothesis, we computed the CFIs separately for each species 
and each feature. While humans showed significantly higher 
CFIs for intra-dimensional shifts compared to extra-
dimensional ones (see Table  2) we  observed no significant 
differences in ID and ED in monkeys. Finally, note that in order 
to perform this analysis, both the humans’ and the monkeys’ 
dataset were split in two, one with ED shifts and one with the 
ID shifts. In particular in the monkeys’ dataset, this resulted in 
small sample sizes.
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Discussion

Set-shifting and reversal learning paradigms have been 
extensively used in neuroscience and psychology. Across species, 
they have allowed an efficient characterization of cognitive flexibility 
of different populations, including clinical ones (Waltz and Gold, 
2007; McKirdy et al., 2009; Remijnse et al., 2009; Izquierdo and 
Jentsch, 2012; Reddy et al., 2016). They have also been used to assess 
the psychological wellbeing of non-human primates (Judge et al., 
2011; Pomerantz et al., 2012). However, while reversal learning has 
been used with both humans and non-human animals, most 
set-shifting paradigms do not generalize well to non-human animals 
(see Uddin, 2021 for a review). In order to evaluate various aspects 
of cognitive flexibility from a comparative perspective we developed 
a task that contains both set-shifting and reversal learning features. 
Similar to more established set-shifting procedures (e.g., Wisconsin 
Card Sorting Test – WCST) we used four visual stimuli made from 

four unique combinations of three visual features: shape, color, 
direction of visual motion, each with four categories (e.g., upward, 
downward, rightward, and leftward motion). On the other hand, 
we structured the trials with a reversal-learning-like approach in 
mind, by assigning contextual rules as rewarded and unrewarded to 
two categories of a given feature (discrimination phase) and 
reversing the rule once the discrimination was learned (reversal 
phase). With this unified approach we were able to assess how both 
monkeys and humans switched between multiple rules. We here 
report the cognitive flexibility of both humans and rhesus macaques, 
assessed with such a unified approach.

Use of motion as an additional visual 
dimension for cognitive tasks

We included motion as a feature dimension (in addition to the 
commonly used shape and color) to be able to assess non-binary 

A B C

D E F

FIGURE 2

General level of engagement (monkeys only). (A) Number of trials performed by each animal with each data point representing one testing 
session (B) median number of trials per minute with variation across sessions expressed as interquartile range (C) average trials per hour for 
each session (across all animals) as function of consecutive sessions (D) median number of breaks per hour with variation across sessions 
expressed as interquartile range (E) event plot of all trials with each color representing one animal and each row representing a single session. 
Time is normalized to the session end. (F) Each dot represents the median trial time (normalized to the session end) of each session and animal. 
For each trial of each session, we first normalized all timestamps of each trial start to the session duration and then computed the median of 
the resulting distribution. Finally, we computed the median of all the medians and found that across all animals and sessions the median time 
point at which half of the trials were performed was 0.41 of the session’s duration, the dashed line on the figure.
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rule switches. Visual motion information is processed in a very 
similar way as color and shape in the primate brain (Self and Zeki, 
2005; Handa et al., 2010; Van Essen et al., 2019) and thus provides 
a more compatible feature dimension when combined with color 
and shape, compared to the use of quantity (Grant and Berg, 1948; 
Nelson, 1976; Stuss et al., 2000; Prentice et al., 2008; Nyhus and 
Barceló, 2009; Lange et al., 2018; D’Alessandro et al., 2020; Uddin, 
2021). Quantity might not only be particularly difficult to infer for 

animals in general and non-human primates in particular (Nieder, 
2020), but it might also require substantially different types of 
computation and relatively higher cognitive effort and 
competences, compared to color and shape (Dias et al., 1996a; 
Nagahama, 2005; Kuwabara et al., 2014). Motion, on the other 
hand, seems more appropriately comparable to color and shape, 
as motion has been shown (1) to be  easily detected and 
discriminated by NHPs and (2) to be processed early along the 

A

B

C

FIGURE 3

(A) Side bias for monkeys in testing stages. (B) Side bias for humans in testing stages. (C) Side bias for monkeys in training stages.

A B

FIGURE 4

Percentages of stages solved by rule – at an 80% confidence threshold – across both species (A) and feature dimensions (B). The stars indicate 
statistical significance at a paired Wilcoxon rank sum test.
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A B

C D

FIGURE 5

Participants sorted by cognitive flexibility index (CFI) across species (A) and rules (B). Star indicates statistical significance at a paired Wilcoxon rank 
sum test, with an alpha level of 0.0083 (corrected for multiple comparisons). (C,D) show CFI as function of rules in intra-dimensional (ID) and 
extra-dimensional (ED) shifts. Stars indicate statistical significance at a Wilcoxon rank sum, non-paired, two-sided test.

TABLE 1 Overview of the results of the Wilcoxon paired, two-sided, signed rank test on CFI differences across rule types (color, motion, and shape) 
for humans and monkeys separately (Figure 5B).

Species Comparison Test statics Value of p N p < 0.05/6

Humans Color/motion 241 0.0347 25 n.s.

Color/shape 104 0.1155 n.s.

Motion/shape 21 0.0001 sig.

Monkeys Color/motion 18 0.6523 9 n.s.

Color/shape 35 0.1641 n.s.

Motion/shape 39 0.0547 n.s.

Significant differences are denoted by sig. in the last column in which the value of p of each comparison is compared to an alpha level that is adjusted for multiple comparisons (0.008).

TABLE 2 Overview of the results from the Wilcoxon rank sum, non-paired, two-sided test on CFI differences between intra-dimensional and extra-
dimensional shifts, separately for rule types (color, motion, shape) and humans and monkeys separately (Figures 5C,D).

Species ID/ED 
comparison Test statics Value of p N of ID N of ED <0.05/6

Humans color 575 0.0081 20 25 Sig.

motion 693 0.0004 22 25 Sig.

shape 699 0.0002 22 25 Sig

Monkeys color 105 0.4474 9 11 n.s.

motion 75 0.1056 7 9 n.s.

shape 98 0.8194 9 11 n.s.

Significant differences are denoted by sig. in the last column in which the value of p of each comparison is compared to an alpha level that is adjusted for multiple comparisons (0.008).

https://doi.org/10.3389/fpsyg.2022.1047292
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Yurt et al. 10.3389/fpsyg.2022.1047292

Frontiers in Psychology 11 frontiersin.org

visual hierarchy. We found that while participants were able to 
find and use motion rules as well as shape and color rules, 
suggesting that motion provides a cognitive challenge comparable 
to color and shape, they did so with variable and significantly 
different levels of efficiency, across species, features, and shift types.

Foraging-like approach to potentially 
minimize frustration

Given that, to the best of our knowledge, this is the first time 
that a set-shifting task with three rules is used with NHPs and that 
our animals were fluid controlled only for the duration of the 
session, it is reasonable to expect animals to refrain from interacting 
when the task becomes too difficult. We adopted two main measures 
to potentially minimize such frustration in favor of a more pleasant 
engagement. First, in order to avoid animals being stuck with 
certain contextual rules, we  allowed the rule to spontaneously 
change after a certain number of interactions. In this study, the 
likelihood of the rule to spontaneously change after 80 trials was 
around 80%. With this approach animals that faced difficulties to 
understand the rule (or that had a momentary lapse in motivation 
to seek the rule) were given another chance with a new rule. During 
data analysis the stages aided by this algorithm were quantified and 
excluded from the calculation of the cognitive flexibility index. 
Second, with every trial we presented four stimuli, two of which 
were distractor stimuli (neutrals) that did not terminate the trial 
when selected, but simply disappeared. This was instrumental to 
allow the animals to adopt a foraging-like strategy in which making 
a wrong choice (1) does not lead to a reward but (2) does not 
prevent the animal from reaching it within the same trial and (3) it 
might provide additional help to obtain the reward. While a 
description of the specific strategies in the use of such neutral 
stimuli is beyond the scope of this paper, we believe that this aspect 
is at the core of the sustained engagement level we observed across 
most of our animals. On the other hand, it has to be noted that all 
the animals, but none of the humans, quickly developed a strong 
bias towards the stimulus closer to the bottom of the screen, which 
was selected first in over 50% of the trials. Unfortunately, given that 
the trial start button was also positioned at a location overlapping 
with the position of the bottom stimulus, it is not entirely clear 
whether such bias resulted mainly from a strategy or a design 
choice. Future experiments, with fewer and/or a different stimulus 
configuration, will likely be able to disentangle these two possibilities.

General engagement level with 
cage-based cognitive assessment in 
monkeys

We observe a sustained level of engagement within and between 
sessions across all animals. As animals were provided with ad 
libitum water and food after each session, we  argue that such 
engagement might not be solely attributable to the sugary fluid the 

animals received as reward. We  instead argue that such high 
engagement is partly due to the self-paced nature of our assessment. 
Animals could choose how and when to interact with the device 
and when to take breaks to perform other activities or simply detach 
from the task altogether. On the other hand, 2 out of 14 animals did 
not interact with the device enough to complete the training 
procedure, despite ample access. Finally, before the assessment itself, 
some form of automated training procedure was necessary to bring 
all the animals to the same level of understanding (Berger et al., 
2018; Calapai et al., 2022). Overall, the entire procedure is feasible 
as an opportunistic testing routine, i.e., to be carried out in the 
animal’s downtime from other experimental procedures.

Intra-dimensional and extra-dimensional 
shifts with more than two rules

As a proof of concept, we  provide a quantification of our 
participants across different types of set-shifting behaviors, namely 
intra- and extra-dimensional shifts (Shnitko et al., 2017; Ciampoli 
et al., 2021; Weiss et al., 2021), known to be associated with different 
areas of the frontal cortex in primates (Dias et al., 1996b; Hampshire 
and Owen, 2006; Robbins, 2007). To the best of our knowledge, 
studies with non-human primates in which intra- and extra-
dimensional shifts are compared with each other, make use of 
paradigms in which it is not possible to dissociate a rule switch from 
a reversal (Shnitko et al., 2017). This is due to the binary nature of 
most paradigms developed for animals that often present two types 
of stimuli (rewarded or unrewarded), two possible rules (mostly 
shape and color), and two categories from such rule. When 
compared to set-shifting paradigms developed for humans, in which 
multiple rules and multiple objects are presented at every trial, results 
obtained from animal versions of these tasks are difficult to 
generalize to humans. Analogously, comparing shifts within the 
current contextual rule to shifts from different rules is problematic 
when only binary choices are available. In the case of intra- vs. extra-
dimensional shifts, for example, each category (e.g., blue and red) 
and each feature (e.g., shape and color), negate each other, making 
the process of rule searching quicker and more efficient compared to 
a non-binary scenario. Finding that the blue stimulus is not rewarded 
anymore, for example, not only means that the category blue is now 
the non-rewarded one, but implicitly suggests that the red stimulus 
is now the correct one. By extension, if the color rule is not the 
relevant one, then the shape must be  the one. In a non-binary 
scenario, like in our paradigm, if the relevant rule or category is not 
relevant anymore, the participants are required to search for more 
evidence. Thus, with the increased number of attempts required in 
non-binary paradigms, the nature of such attempts truly 
differentiates a rule switch from a rule flip in general and intra- vs. 
extra-dimensional shifts in particular. We  have observed a 
discrepancy between humans and monkeys when we compared 
their performance for intra- and extra-dimensional shifts. While 
humans performed better during intra-dimensional shifts compared 
to extra-dimensional shifts for each and every feature/contextual rule 
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(Figure  5C), monkeys showed no difference between the shifts 
(Figure 5D). We believe that this might be because of the different 
types of approaches humans and monkeys use to find the rule. 
Humans might be using the two strategies we mentioned above: rule 
flip and rule switch, at different times during the task. For instance, 
they might be doing a rule flip when the reward contingencies of 
target and distractor are flipped upon reversal but doing a rule switch 
when a cycle (discrimination-reversal pair) is completed and another 
cycle with a new contextual rule starts. On the other hand, monkeys 
might be  performing similarly for intra- and extra-dimensional 
shifts as they are potentially switching the rule all the time and 
considering each and every stage as novel even if it is a reversal stage 
and thus the reward contingencies are flipped only. While this is 
merely speculative, this difference between animals and humans in 
operating one or multiple strategies to change rule is in itself a sign 
of significantly higher cognitive flexibility of humans over monkeys.

Limitations of the study

Our paradigm combines a reversal-learning-like structure 
(namely a succession of discrimination and reversal blocks) with a 
set-shifting-like configuration of stimuli and contextual rules 
(namely presenting four stimuli and three possible rules at every 
trial). Our aim was to unify these paradigms into a single non-binary 
set-shifting paradigm that can be used across different species of 
primates, including humans with different types of rule shifts, like 
intra-dimensional vs. extra-dimensional shifts, as well as various 
switch costs (Altmann, 2007; Rayburn-Reeves et al., 2011, 2013, 
2017). While we were able to assess, compare, and characterize most 
of these aspects, we could not reliably measure the switch cost at the 
reversal point in monkeys (one of the hallmark signatures of typical 
reversal-learning paradigms). The switch cost is typically intended 
as the cost (in terms of number of attempts required) that participants 
pay when a rule is reversed unbeknownst to them. In classical 
reversal learning tasks switch costs decrease as a function of attempts, 
choices, or trials, and it is used as a proxy for the ability of a given 
subject to disengage from an acquired rule. While we could indeed 
observe switch costs in our humans, most of our animals showed 
patterns of responses that we  deemed to be  too noisy for a 
reliable quantification.

Incidentally, we also observed a strong preference, across most 
animals, for the stimulus at the very bottom of the screen. This 
behavior might had been triggered by the position of the trial start 
button, which monkeys needed to touch to initiate each trial. Even 
though the start trial and the bottom stimulus never overlapped in 
time, they largely did so in space. From the perspective of the 
monkeys, it seems reasonable to assume that selecting this stimulus 
constituted substantially less effort than selecting the others, placed 
far away from the location of the trial start button. This likely resulted 
in an inflated number of choices of bottom stimuli in the animal data 
that made a quantification of the switch cost unreliable. We believe 
that both these issues are related to the foraging-like architecture of 
the paradigm. While the side bias could very well be  a foraging 

strategy rather than an experimental issue; we  here nonetheless 
provide suggestions that could alleviate both issues at once. First, a 
better positioning of the stimuli could prevent animals from 
developing effort-related foraging strategies. Such balancing of the 
effort required to reach each stimulus could be achieved by showing 
the stimuli in a radius that is equidistant from the trial start. Second, 
reducing the number of options (namely of stimuli on the screen) 
from four to three could reduce the task-related cognitive overload. 
As a consequence, animals could have more resources to focus on 
finding the contextual rule from the trial start. Third, a stricter 
threshold to advance to the next rule (in our study: 80% hit rate across 
the last 10 trials) could be used as an incentive for the animals to 
engage less casually with the task. Nonetheless, we advise caution 
when increasing the difficulty of such tasks when conducting self-
paced cognitive assessment (or training) of captive animals with 
limited fluid control. Animals might indeed assume that the difficulty 
level does not justify their effort and decide to stop engaging altogether.

Conclusion

In conclusion, we  assessed cognitive flexibility of adult 
humans and captive rhesus macaques by using a novel set-shifting 
paradigm with three visual dimensions (shape, color, and motion) 
and with a foraging approach (neutral stimuli and chance-aided 
advancement). We found that monkeys engaged with the task 
voluntarily despite having minimal dietary restriction and that 
humans and monkeys could both use motion information as 
flexibly as shape and color information across extra-dimensional 
and intra-dimensional shifts. Due to a side bias observed across 
the vast majority of animals, we could not reliably quantify switch 
costs in monkeys. Our study shows that the motion direction of a 
visual stimulus on a screen can be easily and effectively used by 
both monkeys and humans as a feature dimension in a complex 
cognitive task. This is especially relevant when assessing 
set-shifting abilities of both species beyond the classical shape-
color dichotomy. With such an approach, aspects from common 
reversal-learning approaches and set-shifting approaches can 
be combined and quantified within a unified paradigm.
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