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The relative difference of resting EEG frontal alpha activation between left and 

right hemispheres (FAA; i.e., asymmetry) correlates with global approach and 

avoidance tendencies. FAA may relate to problems with executive and affective 

functioning in children with neurodevelopmental differences, including 

autism and ADHD. We  (1) characterize relative left vs. right FAA in autistic, 

ADHD, and neurotypical children (NT) and (2) investigate whether FAA predicts 

“hot” executive function or emotion dysregulation. Participants were 97 7- to 

11-year-old autistic, ADHD, and NT Children. Children with ADHD displayed 

greater left (relative to right) FAA compared to autistic and neurotypical 

children. Children with ADHD displayed greater challenges with “hot” EF on 

a gambling task than autistic children, whereas children with co-occurring 

autism and ADHD had greater parent-reported emotion dysregulation than 

NT and autism-only groups. Greater left FAA predicted worse hot EF for all 

children but was not significantly related to emotion dysregulation. Regardless 

of clinical diagnosis, relatively greater left FAA relates to hot EF. While hot EF 

deficits may be  specific to ADHD rather than autism, both together confer 

additive risk for emotion dysregulation. Future research should explore the 

functional relation between FAA, reward processing, and affect for children 

with different EF-related neurodevelopmental differences.
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Introduction

Identifying early childhood risk factors of later functional 
impairment can inform prevention intervention efforts during 
children’s early years, which represent a period of increased 
neuroplasticity (Wakschlag et al., 2019). Increasingly, the National 
Institute of Mental Health’s Research Domain Criteria (RDoC) 
perspective encourages a focus on dimensional risk that spans 
traditional diagnostic categories, can be  measured at multiple 
levels, and explains functional impairment (Insel et al., 2010). For 
example, while one might characterize neurodevelopmental 
disorders as discrete diagnostic categories [i.e., attention-deficit/
hyperactivity disorder (ADHD); autism spectrum disorder 
(ASD)], children with neurodevelopmental disorders may 
be more dimensionally characterized as having challenges with 
impulsivity, hyperactivity, social interaction, and/or emotion  
dysregulation.

Emotional dysregulation is a powerful predictor of mental-
health-related functional impairment (e.g., Mazefsky et al., 2013; 
Graziano and Garcia, 2016). Emotional regulation is the ability to 
change or calm one’s emotional state and involves the dual 
development of both bottom-up approach/avoidance reactivity 
and top-down executive control (Zelazo and Carlson, 2012; 
Grabell et  al., 2017; Wakschlag et  al., 2018). Some emotion 
regulation ability may be inexorably linked to trait-based emotion 
reactivity, whereas other emotion strategies are cognitive in nature 
and are more malleable (Jahromi et al., 2012). Both ADHD and 
ASD are associated with increased emotion regulation challenges 
(Shaw et al., 2014; Conner et al., 2021; Day et al., 2022), but the 
mechanisms by which this is the case are unclear. In ADHD, 
reduced top-down executive control may contribute to increased 
emotion dysregulation (Shaw et  al., 2014). In ASD, decreased 
emotion regulation may mechanistically related to ASD 
characteristics in part due to reduced brain activation during 
cognitive appraisal of emotive faces (Richey et al., 2015).

Frontal alpha EEG asymmetry is one long-studied 
physiological index of emotional reactivity within the RDoC’s 
Arousal and Regulatory Systems domain (Wheeler et al., 1993; 
Coan and Allen, 2004; Gatzke-Kopp et al., 2014). Brain activity in 
the alpha frequency band reflects individual differences in 
awareness and attention (Hanslmayr et al., 2011), and may play a 
role in both emotion reactivity and regulation (Wheeler et al., 
1993). Frontal alpha asymmetry (FAA) is operationalized as the 
relative difference in frontal alpha activation between left and right 
hemispheres and is thought to reflect approach (left) and 
avoidance (right) impulses. FAA measured during a resting state 
is viewed as a temperament or “trait” measure of approach/
avoidance emotional reactivity. Resting FAA predicts clinically 
significant individual differences in internalizing and externalizing 
symptomatology in children (Baving et al., 2002; Blackhart et al., 
2006; Gatzke-Kopp et al., 2014).

However, FAA may more accurately index the top-down 
executive control aspect of emotion regulation than bottom-up 
emotion reactivity. The asymmetric inhibition model  

(Grimshaw and Carmel, 2014) explains the relation between FAA 
and the executive function-dependent aspects of emotion 
regulation. They cite EEG studies using source localization 
procedures to highlight that FAA may most directly reflect the 
activity of the dorsolateral prefrontal cortex (dl-PFC). The dl-PFC 
is centrally involved in executive functioning, including behavioral 
inhibition, and is active during the cognitive appraisal of emotion. 
According to the model, the left dl-PFC acts to inhibit avoidance-
based motivational urges as they distract from one’s intentional 
goals, while the right dl-PFC acts to inhibit approach-based 
motivation as they distract from one’s intentional goals. In this 
manner, relatively lower left (and therefore, higher right) FAA 
reflects poorer executive control of internalizing emotions like 
sadness and anxiety, while relatively lower right (and therefore, 
higher left) FAA reflects poorer executive control of externalizing, 
approach-oriented emotions like anger and joy. There is ample 
literature to reflect this left-externalizing vs. right-internalizing 
FAA pattern (see Grimshaw and Carmel, 2014 for a review).

FAA may contribute differentially to cascading clinically 
impairing challenges with affective regulation in children with 
different neurodevelopmental disorders. At least 50% of autistic 
children and 33% of children with ADHD present with 
co-occurrence of anxiety and depression, including 15–20% with 
a mood disorder by preschool or elementary school (Salazar et al., 
2015; Schendel et al., 2016). Executive function (EF) deficits are 
highly linked to the behavioral regulation of emotion in both ASD 
and in all children (Demetriou et al., 2019). EF is a core deficit in 
ADHD (Seidman, 2006) and linked to emotion dysregulation in 
these children (Garcia et al., 2020). Autistic children also have less 
developed executive function (Demetriou et al., 2019), including 
delay of gratification (Faja and Dawson, 2013), a skill that involves 
the top-down inhibition of a prepotent response in the “hot” or 
emotionally valenced context of reward.

There is clear evidence of diagnostic group differences in 
resting FAA for ADHD, but findings are mixed for autism. 
Children with ADHD demonstrated greater relative left FAA 
during a behavioral inhibition task than did NT children (Ellis 
et  al., 2017), which suggests that they have higher approach 
motivation or less inhibited avoidance motivation than NT 
children. Similarly, adults with ADHD have greater relative left 
FAA than NT adults (e.g., Keune et al., 2015). In autism, a study 
of 6- to 18-month-olds at higher likelihood for ASD by virtue of 
having an older sibling with ASD found that these infants had 
relatively greater right FAA than “low likelihood” infants at 
6 months, but that this pattern faded by 12 months (Gabard-
Durnam et al., 2015). Children aged 9–14 years with ASD and no 
intellectual impairment were found to have relatively greater left 
midfrontal activation than typically developing children (Sutton 
et al., 2005). A similar study of 8- to 15-year-old children with 
ASD and below average to superior verbal IQ found no 
diagnostic group differences in the number of children with 
relative left versus right FAA, measured dichotomously (Burnette 
et  al., 2011). To summarize, group differences in FAA are 
complicated by measurement (i.e., dichotomous vs. continuous 
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asymmetry; lateral vs. midfrontal) and cognitive ability. 
Inconsistent findings also potentially strengthen the hypothesis 
that FAA may better reflect transdiagnostic characteristics than 
diagnostic categories.

It appears that FAA predicts emotion dysregulation for 
children in general, but it is unclear whether diagnostic group 
(autism, ADHD) moderates the strength of this relationship. For 
all children, emerging evidence supports the relation between 
relatively greater resting right FAA and broad measurements of 
later internalizing symptoms (Diego et al., 2006; Smith and Bell, 
2010) as well as relatively greater resting left FAA and later 
externalizing symptoms (Smith and Bell, 2010). There is mixed 
evidence as to whether the relation between FAA and emotion 
dysregulation differs for autistic children compared to 
neurotypical (NT) children or children with ADHD. In a study of 
autistic adolescents, Schiltz et al. (2018) found that individuals 
with relatively greater right FAA had greater anxiety symptoms, 
which is consistent with previous literature on FAA and anxiety in 
the general population. However, in the two studies of FAA in 
slightly younger children with ASD and NT development, the 
relation between asymmetry and internalizing symptoms in ASD 
is less clear. Specifically, for their ASD samples, both studies found 
that increased relative left FAA was correlated with greater general 
anxiety (Sutton et al., 2005) and higher OCD and anger-related 
symptoms (Burnette et al., 2011), which is opposite what would 
be  expected. Finally, while left FAA may predict behavioral 
inhibition in ADHD (Ellis et  al., 2017), there has been little 
research on whether FAA predicts EF in emotionally valenced 
contexts (i.e., “hot” EF) in autism.

The current study

Understanding diagnostic group and transdiagnostic 
differences in FAA may help the field better understand 
heterogeneity in autism as well as co-occurring mental-health 
challenges (Schiltz et al., 2018). If FAA either differs by diagnostic 
classification or predicts individual differences in executive 
functioning or emotion dysregulation, it would represent a risk 
factor that is easily measurable at an early age, may identify 
subgroups of children, and may predict differential responses to 
intervention. The goals of this study were to:

 1. Characterize relative left vs. right frontal alpha activation 
(FAA) in children with autism, ADHD, co-occurring 
autism and ADHD, and neurotypical development (NT). 
Specifically, we hypothesized that children with ADHD will 
show greater relative left FAA than other children. We did 
not make a directional hypothesis about FAA in autistic 
children because previous findings are mixed.

 2. Investigate the extent to which children’s FAA predicts 
“hot” EF during a behavioral task. Because hot EF tasks 
involve approach/avoidance decision-making within an 
emotionally valenced environment, we predicted that FAA 

will be  related to hot EF for all children regardless 
of diagnosis.

 3. Relate children’s FAA to parent-report measures of their 
emotion dysregulation. We  predicted that FAA will 
be  related to emotion dysregulation, given prior work. 
We  hypothesized that this relation will be  stronger for 
children with ADHD than autism, given the more 
consistent evidence of a relation between FAA and mental-
health challenges in ADHD compared to autism.

Materials and methods

Participants

Participants were 97 7- to 11-year-old children with autism 
spectrum disorder (ASD; n = 29), attention-deficit/hyperactivity 
disorder (ADHD; n = 27), co-occurring autism and ADHD 
(n = 16), and neurotypical development (NT; n = 25). Participants 
were 8.30–8.93 years old on average, 74–93% male (n = 82), and 
67–84% White (depending on group). Demographic 
characteristics are reported in Supplementary Table 1. Participants 
were recruited through a research registry, clinical referrals, 
community sources, and word of mouth. Exclusion criteria 
included colorblindness, inability to complete procedures in 
English, below-average cognitive ability, sensory or motor 
impairments that impeded ability to complete the test battery, 
medical disorders or medications that impact the central nervous 
system, history of seizures or use of seizure medication, and 
prolonged prenatal substance exposure. Other medication use 
(stimulant and non-stimulant) was non-exclusionary and did not 
differ by group (see Faja et al., 2021). The study was conducted at 
a hospital in New England and approved by its Human Subjects 
Division. All parents provided written consent and children 
provided written assent to participate.

This sample size allows for the detection of medium to large 
effect sizes with the ANCOVA (one covariate) and regression 
approaches planned for this study. Prior literature supports the 
expectation of medium to large effect sizes (e.g., Sutton et al., 2005; 
Ellis et al., 2017).

Procedure

Parents of participants completed a phone screening to 
establish eligibility. Diagnostic status and cognitive ability were 
assessed during the first visit, and findings were supervised and 
reviewed by a licensed psychologist. Over two additional visits, all 
participants completed a battery of executive function (EF) and 
social cognition tasks while parents completed questionnaires 
about children’s behavior and functioning. A subset of participants 
completed additional visits for an intervention study; only baseline 
data are considered here.
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Measures

Participants in the present study completed clinical 
characterization, EEG resting data collection, and the Hungry 
Donkey gambling task (see below). Participants’ parents then 
completed a questionnaire about their children’s behavioral and 
emotional functioning.

Clinical characterization
All participants completed assessments of cognitive and 

adaptive functioning using the Vineland Adaptive Behavior 
Scales, Second edition (Vineland-2; Sparrow et al., 2005), and the 
Wechsler Abbreviated Scale of Intelligence-2 (WASI-2; Wechsler, 
2011), which also assured verbal ability.

All children in the ASD group had an existing diagnosis of 
ASD. Diagnosis was confirmed according to DSM-5 (American 
Psychiatric Association, 2013) criteria based on expert clinical 
judgment, the Autism Diagnostic Interview-Revised (ADI-R; 
Rutter et  al., 2003), and the Autism Diagnostic Observation 
Schedule, second edition (ADOS-2; Lord et al., 2012). ADHD 
symptoms were assessed as a continuous variable, using the 
ADHD subscale of the Child Behavior Checklist (CBCL; 
Achenbach and Rescorla, 2001). There is little agreement on how 
to quantify ADHD symptoms in autistic children; as such, a 
T-score of 65 was used as a cut-point to identify children within a 
borderline clinical range of ADHD for the ADHD group 
(Achenbach and Rescorla, 2001), in line with other work 
(Andersen et al., 2013; Cremone-Caira et al., 2021). Children with 
a confirmed autism diagnosis and T-scores ≥65 on the CBCL 
ADHD subscale were determined to have clinically significant 
ADHD symptoms and were included in the ASD + ADHD group.

Resting EEG data collection
Participants completed 2 minutes of alternating eyes open, 

eyes closed resting EEG data collection. During eyes open periods, 
children were asked to fixate on a central cross on a screen directly 
in front of them. Neural responses were continuously recorded via 
a Net Amps 400 (Electrical Geodesics, Inc.) using the 128-channel 
HydroCel sensor net 2.0 (HSN).

Resting EEG data preprocessing
EEG data preprocessing and power analyses were conducted 

using the Batch EEG Automated Processing Platform (BEAPP; 
Levin et al., 2018). Data were first bandpass filtered using a high 
pass (1 Hz) and low pass (100 Hz) filter and then downsampled 
from 500 to 250 Hz.

Next, data were artifact detected and corrected using the 
Harvard Automated Preprocessing Pipeline for EEG (HAPPE), a 
pipeline optimized for short recording EEG data collected from 
young children with neurodevelopmental disorders (Gabard-
Durnam et al., 2018). HAPPE first applied linenoise removal to the 
data at 60 Hz, and next performed detection and removal of bad 
channels. Artifacts in the data, such as eyeblinks and eye or muscle 
movements, were automatically detected using first 

wavelet-enhanced independent component analysis (w-ICA) and 
then ICA with the multiple artifact rejection algorithm (MARA; 
Winkler et al., 2011, 2014). The following channels, in addition to 
the 10–20 electrodes, were used for ICA with MARA: 34, 28, 16, 1, 
47, 51, 37, 60, 72, 30, 6, 117, 105, 116, 32, 98, 97, 85, 87, and 75. 
Electrodes were spread evenly across the scalp, and the number of 
electrodes was chosen relative to our recording length to maximize 
ICA performance and prevent overfitting of the algorithm (Särelä 
and Vigário, 2003). Following artifact removal, bad channels were 
interpolated and each channel was re-referenced to the average of 
all channels.

Data were then segmented into 2 s windows. Segments were 
inspected again for artifact and segments with an amplitude 
greater than 40 μV were not included in the final data analysis. A 
40 μV cutoff reflects the smaller amplitude that results from the 
wavelet thresholding and ICA steps during artifact detection 
(Gabard-Durnam et al., 2018).

EEG power analysis
Using a fast Fourier transform with a 1 s Hanning Window, 

we  computed the power spectrum for each segment for all 
electrodes: For each electrode, power across all segments was 
averaged for the alpha frequency band (8–13 Hz). Data within the 
alpha frequency band (8–13 Hz) from electrodes indexing left and 
right frontal activation (F3 and F4) were filtered and processed 
using BEAPP (Levin et al., 2018).

Left and right relative activation

The alpha frequency band (8–13 Hz) from electrodes indexing 
left and right frontal activation (F3 and F4) was extracted. F3 and 
F4 were selected to align with the convention in this literature, 
which allows for more direct comparison (Coan and Allen, 2004; 
Sutton et  al., 2005; Reznik and Allen, 2018). Absolute power 
(mean power per hertz) was derived. Alpha power reflects the 
inverse of activation. Asymmetry in children’s FAA was calculated 
using residual values (Coan and Allen, 2004; Reznik and Allen, 
2018). Residual values are more sensitive than traditional 
difference scores (Meyer et al., 2017). Left residual power values 
were residual values from a model of right power predicting left 
power (i.e., left power, controlling for right). Right residual power 
values were residual values from a model of right power, 
controlling for left. The inverse of each value was taken (i.e., the 
inverse of power is activation). Each variable (right and left 
residual) therefore represents unique frontal hemispheric 
activation. No significant difference in FAA by gender was found, 
p = 0.92.

Hungry donkey task: “Hot” executive function
The Hungry Donkey gambling task (Supplementary Figure 2) 

assesses children’s strategic long-term decision-making in the 
heightened emotional context of reward and is conceptualized 
here as a “hot” executive function (EF) measure (Crone and van 
der Molen, 2004). Children fed a cartoon “hungry” donkey by 
selecting freely from one of four doors across a total of five blocks, 
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with 20 trials per block. Two doors were advantageous and 
resulted in a net gain (lesser vs. greater) of apples. Two doors were 
disadvantageous and resulted in a net loss (lesser vs. greater) of 
apples. This was therefore a reward contingency learning task that 
pitted immediate rewards against a net reward over time (on 
advantageous doors).

Contingency reward learning was operationalized as the ratio 
of advantageous to disadvantageous decisions made across the 20 
trials of the final block (once children had a chance to learn door 
contingencies). For example, a score of −20 would indicate that a 
child made all disadvantageous decisions for the final block.

Parent questionnaire of emotion dysregulation
Participants’ caregivers completed the Child Behavior 

Checklist (CBCL; Achenbach and Rescorla, 2001), from which the 
18-item Emotion Dysregulation Index (EDI) was derived (Samson 
et al., 2014). The CBCL is a normed parent-report questionnaire 
that assesses behavioral and emotional functioning. The EDI is an 
18-item scale derived from CBCL items across subscales that 
indexes transdiagnostic emotion dysregulation and has been 
validated with autistic children (Samson et al., 2014; Berkovits 
et al., 2017).

Results

Relative frontal alpha activation differs by 
diagnostic group

A one-way ANCOVA was conducted and found a trend 
toward a statistically significant difference between diagnostic 
groups on FAA, controlling for WASI-2 IQ, F(3, 96) = 2.45, 
p =  0.057, partial η2 = 0.07. Planned least significant difference 
(LSD)-corrected post-hoc pairwise comparisons of adjusted means 
revealed that children with ADHD displayed greater left (relative 
to right) FAA compared to both autistic, p = 0.020, and 
neurotypical children, p = 0.022, but not children with 
ASD + ADHD, p = 0.234 (Figure 1).

FAA predicts “hot” executive function

A one-way ANCOVA found a statistically significant 
difference between diagnostic groups on contingency reward 
learning during the Hungry Donkey task, controlling for WASI-2 
IQ, F(3, 82) = 2.97, p = 0.037, partial η2 = 0.10. Post-hoc pairwise 
comparisons of adjusted means revealed that children with 
ADHD displayed greater challenges with “hot” EF than did 
autistic children, p = 0.009 (Figure 2). Other post-hoc comparisons 
were non-significant.

A multiple regression model controlling for IQ revealed that 
for all children, higher relative left FAA predicted worse reward 
contingency learning, β = 0.32, p = 0.002 (Figure 3). Moderation by 
group was non-significant, ps > 0.05.

FAA does not significantly predict 
emotion dysregulation

A one-way ANCOVA revealed a statistically significant 
difference between diagnostic groups on CBCL Emotion 
Dysregulation Index (EDI) score, F(3, 92) = 11.91, p <  0.001, 
partial η2 = 0.28. Of note, an additional 40 children who had 
caregiver-report data only were available for this analysis; results 
do not change when including these participants [F(3, 136) = 21.86, 
p < 0.001, partial η2 = 0.33; NT n = 33; ASD n = 46; ADHD n = 36; 
ASD + ADHD n = 26]. Post-hoc pairwise comparisons of adjusted 
means indicated that children with co-occurring autism and 
ADHD had greater caregiver-reported emotion dysregulation 
than NT children, p = <0.001, and children with autism alone 
p < 0.001 (Figure 4).

A multiple regression model controlling for IQ revealed that 
for the full sample, FAA was not significantly related to parent-
reported emotion regulation, β = 0.15, p = 0.11. Moderation by 
diagnostic group was also non-significant, ps > 0.05.

Discussion

Children with ADHD displayed greater left (relative to right) 
frontal alpha activation (FAA) compared to both autistic and 
neurotypical children. While children with ADHD displayed 
greater challenges with “hot” EF (reward contingency learning) 
than did autistic children, children with co-occurring autism and 
ADHD were reported to have greater emotion regulation 
challenges than neurotypical (NT) children and children with 
autism alone. Higher relative left FAA predicted worse reward 
contingency learning for all children, but it was not significantly 
related to parent-reported emotion dysregulation. The strength of 
these relations did not differ by diagnostic group.

Our hypothesis that children with ADHD would display 
greater left (relative to right) FAA compared to both autistic and 
neurotypical children was supported and is consistent with the 
literature (e.g., Keune et al., 2015; Ellis et al., 2017). However, 
we did not find an omnibus effect or any differences for autistic 
individuals compared to other groups. There is additional 
evidence that neurodevelopmental group differences in FAA 
may be moderated by both participant characteristics and task 
context. For example, researchers found a gender difference 
such that 4- to 8-year-old males with ADHD had relatively 
greater resting left FAA than NT males, while females with 
ADHD had relatively greater right FAA than NT females 
(Baving et al., 1999). Compared to NT children, 7- to 14-year-
old children with ADHD had relatively greater left FAA during 
failed trials of a go/no-go task, a measure of inhibition, but not 
during other trials, although FAA was not measured at rest 
(Ellis et al., 2017).

We found that children’s relative left FAA was related to their 
executive function in a “hot,” emotionally valenced context. 
We also found that reward contingency learning scores during the 
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Hungry Donkey task were worse for children with ADHD 
compared to all other groups, suggesting that this type of hot EF 
may be an ADHD-specific deficit. However, the relation between 

greater relative left FAA and hot EF performance held across all 
children. In other words, relatively greater approach motivation 
(or a lack of adaptive inhibition to avoidance) relates to reward 

FIGURE 1

Group differences in left frontal alpha activation (relative to right). Children with ADHD displayed greater left (relative to right) FAA compared to 
both autistic, p = 0.020, and neurotypical children, p = 0.022, but not children with ASD + ADHD, p = 0.234. *p < 0.05. Error bars are +/− one standard 
error.

FIGURE 2

Group differences in reward contingency learning on the hungry donkey task. Children with ADHD displayed greater challenges with “hot” EF than 
did autistic children, p = 0.009. *p < 0.05. Error bars are +/− one standard error.
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contingency learning, regardless of neurodevelopmental 
diagnosis. This suggests that children who are better at inhibiting 
the extent to which their emotional reactivity affects their behavior 

may make better long-term decisions “under pressure.” That this 
finding is not specific to—or stronger for—children with ADHD, 
but rather extends to all children, suggests one of two things: that 

FIGURE 3

Higher relative left (vs. right) FAA predicts less advantageous decision-making across diagnostic groups. For all children, higher relative left FAA 
predicted worse reward contingency learning, β = 0.32, p = 0.002.

FIGURE 4

Diagnostic group differences in emotion dysregulation. Children with co-occurring autism and ADHD had greater caregiver-reported emotion 
dysregulation than NT children, p = <0.001, and children with autism alone p < 0.001. FAA was not significantly predictive of emotion dysregulation. 
*p < 0.05. Error bars are +/− one standard error. Difference between ASD + ADHD and ADHD groups trends toward significance (p = 0.06).
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the effect of EEG-indexed emotional reactivity on in-the-moment 
EF behaviors is transdiagnostic, or that its effect is stronger and 
more detectable in relation to behavioral tasks than to more global 
or parent-report measures. For example, He et al. (2010) found 
that infants’ relative left FAA (i.e., increased approach motivation) 
was associated with increased anger via a behavioral observation 
measure (rather than parent-report measure). This is one of the 
few studies in children to demonstrate a link between frontal 
asymmetry and behaviorally measured action urges in emotionally 
valenced situations.

We observed differing levels of emotion dysregulation by 
diagnostic group, but FAA appears to be unrelated to emotion 
dysregulation in our sample. In contrast, Richey et  al. (2015) 
found that for adults with ASD, activation in the dl-PFC (the same 
area that is theorized to be indexed by EEG FAA) indexed via 
fMRI was reduced when viewing emotive faces, compared to 
neurotypical adults. Therefore, while we  found evidence for a 
neural mechanism (i.e., FAA) by which approach motivation may 
be related to reward contingency learning, we do not find a neural 
mechanism for emotion dysregulation. We also do not find group 
differences in FAA levels or the relation between FAA and our 
affective variables of interest, suggesting that FAA-based neural 
mechanisms may be transdiagnostic.

Children with co-occurring autism and ADHD had the 
highest reported challenges with emotion regulation, pointing 
toward an additive effect of neurodevelopmental differences on 
outward signs of emotion regulation. This kind of additive effect 
has rarely been observed (England-Mason, 2020). That FAA 
does not significantly predict or underpin these diagnostic 
differences in emotion dysregulation may point toward 
diagnosis-specific functional pathways for emotion 
dysregulation. For example, individuals with ASD but relatively 
low symptom severity may have increased internalizing or 
externalizing symptomatology as a result of the effort needed to 
“compensate” for social communication challenges inherent to 
the disorder (Livingston et al., 2019). While for children with 
ADHD, emotional reactivity may be more directly linked with 
impulsivity-related EF deficits, and some researchers even posit 
an “irritable subtype” of ADHD, for which emotion regulation 
challenges are central (Karalunas et al., 2019). More research is 
needed to explore these possibilities.

Limitations and future directions

Limitations of this study include its cross-sectional design, 
lack of measurement of other potential covariates beyond IQ 
(e.g., social communication, baseline negative affect, cold EF), 
relatively small sample size, and reliance on caregiver report for 
emotion dysregulation and ADHD classification. While FAA, as 
a brain-based measure, is conceptualized as a more proximal 
influence on EF and emotion regulation than behavioral indexes 
of these variables, this study could draw stronger conclusions if 
children were studied longitudinally and at younger ages, when 

EF and emotion regulation first develop. To better understand the 
relation between FAA, reward processing, and affective 
functioning, future work should seek to understand whether the 
structure or strength of these processes fundamentally differs for 
children with different EF-related neurodevelopmental 
differences. For example, this study did not include a measure of 
EF outside of an emotionally valenced context (i.e., “cold” EF), or 
examine whether, as in adolescents with ADHD, negative affect 
moderates the degree to which FAA predicts diagnostic 
characteristics (Alperin et  al., 2019). Future research should 
explore both “hot” and “cold” EF skills in autistic children and 
children with co-occurring ADHD.

This study does not include a measure of social 
communication, another important potential correlate of 
functional impairment in autism and ADHD. There have been 
mixed findings as to whether FAA relates to social impairment, 
and if so, whether the relation is mediated by emotion regulation 
challenges. For example, while Sutton et al. (2005) found that 
higher right FAA related to greater social communication 
challenges, Burnette et al. (2011) found that higher right FAA 
related to fewer restricted and repetitive behaviors. These findings 
are complicated by differences in the operationalization of 
FAA. More work is needed to understand how and if FAA may 
relate to social communication in children with 
neurodevelopmental disorders.

Conclusion

This study was one of the first to examine whether children’s 
relative left or right frontal alpha activation (FAA) was related to 
their executive function (EF) in a “hot,” emotionally valenced 
context. We found that for all children, greater relative left FAA, 
or more approach-oriented motivation, related to worse 
functioning during a hot EF task. While there has been much 
more research linking FAA to internalizing and externalizing 
symptoms, we did not find a relation between FAA and emotion 
dysregulation-based symptoms in our sample, for all children or 
for children with ADHD or ASD specifically. Instead of comparing 
children by diagnostic category, commonly observed variability in 
functional impairment in children with neurodevelopmental 
disorders may be better explained by using an RDoC approach to 
explore dimensional characteristics in approach/avoidance 
reactivity, executive function, and clinically impairing 
emotion dysregulation.
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