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Speech emotion recognition 
based on improved masking 
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Speech emotion recognition (SER) is the key to human-computer emotion 

interaction. However, the nonlinear characteristics of speech emotion are variable, 

complex, and subtly changing. Therefore, accurate recognition of emotions 

from speech remains a challenge. Empirical mode decomposition (EMD), as an 

effective decomposition method for nonlinear non-stationary signals, has been 

successfully used to analyze emotional speech signals. However, the mode 

mixing problem of EMD affects the performance of EMD-based methods for SER. 

Various improved methods for EMD have been proposed to alleviate the mode 

mixing problem. These improved methods still suffer from the problems of mode 

mixing, residual noise, and long computation time, and their main parameters 

cannot be set adaptively. To overcome these problems, we propose a novel SER 

framework, named IMEMD-CRNN, based on the combination of an improved 

version of the masking signal-based EMD (IMEMD) and convolutional recurrent 

neural network (CRNN). First, IMEMD is proposed to decompose speech. IMEMD 

is a novel disturbance-assisted EMD method and can determine the parameters of 

masking signals to the nature of signals. Second, we extract the 43-dimensional 

time-frequency features that can characterize the emotion from the intrinsic 

mode functions (IMFs) obtained by IMEMD. Finally, we input these features into 

a CRNN network to recognize emotions. In the CRNN, 2D convolutional neural 

networks (CNN) layers are used to capture nonlinear local temporal and frequency 

information of the emotional speech. Bidirectional gated recurrent units (BiGRU) 

layers are used to learn the temporal context information further. Experiments 

on the publicly available TESS dataset and Emo-DB dataset demonstrate the 

effectiveness of our proposed IMEMD-CRNN framework. The TESS dataset 

consists of 2,800 utterances containing seven emotions recorded by two native 

English speakers. The Emo-DB dataset consists of 535 utterances containing 

seven emotions recorded by ten native German speakers. The proposed IMEMD-

CRNN framework achieves a state-of-the-art overall accuracy of 100% for the 

TESS dataset over seven emotions and 93.54% for the Emo-DB dataset over seven 

emotions. The IMEMD alleviates the mode mixing and obtains IMFs with less noise 

and more physical meaning with significantly improved efficiency. Our IMEMD-

CRNN framework significantly improves the performance of emotion recognition.
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1. Introduction

Emotion is a kind of physiological and psychological state (Liu 
Z. et al., 2022). Physiological stimulation, subjective experience, 
and facial and behavioral expression all work together to form a 
complete emotional process (Nitsche et al., 2012; Lu et al., 2021). 
Basic emotional states comprise anger, disgust, fear, happiness, 
sadness, and surprise (Ekman and Friesen, 1971). The remaining 
emotions are combinations of these basic emotions, such as 
excitement, embarrassment, and contempt (Krishnan et al., 2021). 
Reliable analysis, recognition, understanding, and expression of 
emotions are significant for communicating and understanding 
information between humans and computers.

Attempts utilizing separate modalities have been made to 
recognize emotions (Aydın et al., 2018; Dominguez-Jimenez et al., 
2020; Li et al., 2020a,b). Accumulating evidence have proved the 
efficiencies of EEG and other physiological signals (such as 
electrocardiograph, galvanic skin response, and respiration) in 
emotion recognition (Quan et al., 2021; Chen et al., 2022). In these 
experiments, physiological signals were simultaneously recorded 
while subjects were presented with diversified emotional stimulus 
materials (such as static pictures, facial expressions, video film 
clips, and acoustic music clips) that induced specific emotions, 
among which the parameters of these stimulus materials would 
also influence the intensity of induced emotions (Kılıç and Aydın, 
2022). For emotion recognition, emotional features of EEG signals 
usually include power spectrum density (PSD), differential 
entropy (DE), rational asymmetry (RASM), differential entropy 
asymmetry (DASM), phase locking value (PLV), and phase lag 
index (PLI; Lu et al., 2021). For other physiological signals, some 
statistical features based on temporal or frequency-domain 
information are usually extracted for emotion recognition (Picard 
et al., 2001; Goshvarpour et al., 2017).

Speech is one of the most natural and intuitive ways of 
emotional communication, which contains rich emotions while 
conveying information (Li et  al., 2020a). Speech emotion 
recognition (SER) is a computer simulation of human speech 
emotion perception and understanding, a key prerequisite for 
human-computer interaction. There are three main methods for 
emotional corpora collection: collecting natural speech from the 
real world (natural speech database), collecting audio recordings 
of subjects acting based on pre-decided affect-related scripts 
(actor-based speech database), and collecting corpora from the 
speaker by creating an artificial emotional situation (elicited 
emotional speech database; Basu et al., 2017). Emotional features 
of speech signals include prosody features, spectral features, and 
timbre features (Li et  al., 2020b). The current SER is mainly 
supervised pattern recognition. Commonly used machine 
learning algorithms include k-nearest neighbor (KNN), support 
vector machine (SVM), linear discriminative analysis (LDA), 
Gaussian naive Bayes, and artificial neural network (ANN).

With the development of deep learning, SER based on deep 
neural networks (DNNs) has begun to attract attention. These 
methods train deep-learning models for speech emotion 

recognition by taking the original emotional speech or hand-
crafted features as the inputs and have achieved fruitful results 
(Anvarjon et al., 2020). Sarma et al. (2018) identified emotions 
from raw speech signals using an interleaving time-delay neural 
network (TDNN) with unidirectional long short-term memory 
(LSTM) and time-restricted attention mechanisms (TDNN-
LSTM-attention). The results outperformed previously reported 
results on the IEMOCAP dataset (Busso et al., 2008). Wang et al. 
(2021) proposed a novel end-to-end SER architecture that stacked 
multiple transformer layers and used log Mel-filterbank energy 
features as the input. This method outperformed prior methods 
by a relatively 20% improvement on the IEMOCAP dataset. 
Deschamps-Berger et al. (2021) presented an end-to-end temporal 
CNN-BiLSTM network and extracted the spectrogram by short-
term Fourier transform (STFT) as the input of the network. This 
method was evaluated on the IEMOCAP and CEMO datasets and 
obtained good results. Kim and Saurous (2018) used two CNN 
layers for local and global convolution, two LSTM layers for 
sequence learning, and 20 features from eGeMAPs (containing 
rhythmic, spectral, and timbre features) as inputs to the model. 
On the Emo-DB dataset, an unweighted accuracy of 88.9% was 
achieved. Wang et al. (2022) extracted traditional hand-crafted 
features from GeMAPS and deep automatic features from the 
VGGish model. Then, they proposed a multi-feature fusion and 
Multi-lingual fusion speech emotion recognition algorithm based 
on the recurrent neural network (RNN) with an improved local 
attention mechanism. The speech emotion recognition accuracy 
is improved when the dataset is small. Hou et al. (2022) proposed 
a collective multi-view relation network (CMRN) based on 
bidirectional gate recurrent units (Bi-GRU) and the attention 
mechanism. In the CMRN, Mel-frequency cepstral coefficients 
(MFCCs), log Mel-frequency spectral coefficients (MFSCs), and 
prosody features are collected as multi-view representations. The 
proposed method performs better than the state-of-the-art 
methods on Emo-DB and IEMOCAP datasets.

For actual voice, automatic feature learning methods using 
deep networks can effectively learn the underlying patterns in the 
data. However, it is not easy to interpret the information obtained 
from these deep networks (Bhattacharjee et al., 2020). On the 
other hand, hand-crafted features used in deep-learning methods 
are mainly extracted based on the STFT. In practical applications, 
speech signals are non-stationary amplitude modulated-frequency 
modulated (AM-FM) signals with rich frequency components and 
temporal rhythm variations (Hsieh and Liu, 2019). The nonlinear 
features of speech emotion are variable, complex, and subtly 
changing (Kerkeni et  al., 2019). However, limited by the 
fundamental uncertainty principle, the STFT cannot get good 
resolution in both time and frequency, and the non-linearity issue 
remains problematic (Kerkeni et al., 2019). Meanwhile, the STFT 
method requires pre-set basis functions and lacks adaptiveness in 
analyzing non-stationary speech (Yang et al., 2018). Therefore, 
reliable recognition of emotions from speech remains challenging.

More recently, empirical mode decomposition (EMD), a 
decomposition method for non-stationary AM-FM signals, has 
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been used to analyze emotional speech signals. EMD adaptively 
decomposes a non-stationary signal into a finite number of 
intrinsic mode functions (IMFs) without losing the original 
properties of signals (Huang et al., 1998). IMFs have been shown 
to manifest the vocal tract structure and the glottal source 
information (Sharma et al., 2018; Karan et al., 2020). At the same 
time, experimental studies have shown that variations in the 
physiological properties of the vocal folds vary significantly across 
emotional patterns (Yao et al., 2020). Therefore, good results are 
obtained for speech emotion recognition based on EMD. Based 
on empirical mode decomposition (EMD) and Teager-Kaiser 
energy operator (TKEO), Kerkeni et al. (2019) extracted two new 
types of features. Combining these two feature sets with cepstral 
features, the unweighted accuracy using the support vector 
machine (SVM) on the Emo-DB dataset is 86.22%. Vieira et al. 
(2020) presented a novel Hilbert–Huang–Hurst coefficient 
(HHHC) feature based on the ensemble EMD (EEMD) to 
represent the emotional states. Experiments on different emotional 
datasets showed that HHHC led to significant classification 
improvements compared to the baseline acoustic features. 
Krishnan et al. (2021) extracted entropy features from principal 
IMFs based on EMD for recognizing emotions on the TESS 
dataset and the linear discriminant analysis (LDA) classifier 
presented a peak balanced accuracy of 93.3%. However, EMD and 
EEMD suffer from the mode mixing problem, which makes the 
physical meaning of IMF unclear (Rilling and Flandrin, 2008), 
thus reducing the performance of EMD-based methods for speech 
emotion recognition. Researchers have proposed several 
improvement methods for the mode mixing problem, such as the 
masking signal-based EMD (MSEMD; Deering and Kaiser, 2005), 
improved complete ensemble EMD with adaptive noise 
(ICEEMDAN; Colominas et  al., 2014), uniform phase EMD 
(UPEMD; Wang et  al., 2018), and robust EMD (REMD; Liu 
P. et  al., 2022). Although these methods alleviate the modal 
aliasing problem to some extent, there are still problems in that 
the method parameters cannot be determined adaptively, there is 
residual noise in the IMFs, and the time complexity of the 
algorithm is high.

It is still challenging for computers to accurately capture 
emotional information in speech (Anvarjon et  al., 2020). 
Therefore, this paper focuses on exploring and proposing an 
effective SER method to help computers develop advanced 
emotional intelligence. In this paper, we  present a novel 
framework, named IMEMD-CRNN, to address the above 
challenges and improve speech-based emotion recognition  
performance.

The contributions of this work are three-fold: (i) 
We propose an improved version of the masking signal-based 
EMD (IMEMD). In the IMEMD, the parameters of masking 
signals are adaptively derived from the natures of the original 
signals. IMEMD obtains IMFs with less noise and more 
physical meaning with significantly improved efficiency. (ii) 
We use IMEMD to extract the timbre features proposed in 
our previous work (Li et  al., 2020b) and Mel-frequency 

cepstral coefficients based on the reconstructed signal 
(SMFCC; Kerkeni et  al., 2019) as the features used in the 
IMEMD-CRNN to characterize speech emotions. These are 
important speech emotion features (Guidi et  al., 2019; 
Kerkeni et al., 2019). (iii) We feed the timbre features based 
on IMEMD into a convolutional recurrent neural network 
(CRNN) to recognize emotions. In the CRNN, we first use 2D 
CNN layers to capture nonlinear local temporal and frequency 
information of the emotional speech. Then, the outputs of the 
CNN module are fed to bidirectional gated recurrent units 
(BiGRU) layers to learn the temporal context information 
further. In the experimental part, we first demonstrated the 
advantages of IMEMD for decomposing non-stationary 
signals through the performance of the different improved 
algorithms for EMD in simulated and real speech emotion 
signals. Then experiments on two popular standard speech 
emotion datasets showed the significance and the robustness 
of our proposed IMEMD-CRNN framework for speech 
emotion recognition.

2. Materials and methods

In this section, our proposed IMEMD-CRNN to predict 
emotion is introduced. Figure 1 shows the framework of IMEMD-
CRNN. As illustrated, IMEMD-CRNN consists of three modules: 
IMEMD-based emotional speech signal decomposition, 
extraction of time-frequency features from IMFs, and speech 
emotion recognition based on CRNN. Arano et al. (2021) show 
that effective hand-crafted features, compared to sophisticated 
deep-learning feature sets, can still have better performance. 
Therefore, we  combine IMEMD-based features with CRNN 
network in order to improve the robustness and accuracy of the 
speech emotion recognition system. The framework of IMEMD-
CRNN is shown in Figure 1. Design details of the three modules 
are introduced below.

2.1. Improved masking empirical mode 
decomposition

This part begins with a brief introduction to EMD and 
MSEMD, and the causes of mode mixing problems are analyzed. 
Then, we describe our proposed IMEMD.

2.1.1. The masking signal-based EMD
The EMD decomposes a non-stationary signal into a finite 

and often small number of IMFs and a residue (Huang et  al., 
1998). The IMFs contain progressively lower frequency 
components of the signal. The given signal x(t) can 
be reconstructed as:

 
x t c t r tkk

n
es

imf( ) = ( ) + ( )=∑ 1  (1)
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where ck(t) (k = 1, …, nimf) represents the kth IMF and res(t) 
indicates the residue of the signal x(t). The sifting process of EMD 
to obtain an IMF from x(t) is as follows (Huang et al., 1998):

Step 1. Initialize r(t) = x(t).
Step 2. Compute all local maxima and minima of r(t).
Step 3. Interpolating the local maxima (minima) by the cubic 

spline to obtain the upper (lower) envelope eu(t) (el(t)) of r(t).
Step 4. Compute the local mean envelope e(t) = [eu(t) + el(t)]/2.
Step 5. Subtract e(t) from r(t) and update r(t) = r(t) − e(t).
Step 6. Repeat steps 2 to 5 until r(t) meets the conditions of IMF.

The mode mixing is that the IMF may contain widely 
distributed scales (Wu and Huang, 2009). Figures 2C–F show the 
mode mixing. The mode mixing is mainly caused by the following 
two situations: (i) intermittency caused by intermittent signal, 
pulse interference, and noise and (ii) different frequency 
components of the signal lying within an octave (Deering and 
Kaiser, 2005; Rilling and Flandrin, 2008). Therefore, many 
improved algorithms for EMD have been proposed to solve the 
mode mixing problem. Deering et al. first proposed using masking 
signals to resolve the mode mixing in EMD (Deering and Kaiser, 
2005). The method is called the masking signal-based EMD 
(MSEMD), which uses a sinusoid signal xm(t) as the masking 
signal. The process of obtaining an IMF by MSEMD is shown in 
Algorithm 1 (Shown in Table 1). Let EMDk (∙) be the operator, 
which produces the kth IMF using EMD. The β, fw, and θ represent 
the amplitude, frequency, and phase of the masking signal, 

respectively. Their detailed computational process is shown in 
reference (Deering and Kaiser, 2005). MSEMD has high 
computational efficiency and can solve mode mixing to some 
extent, but the parameter selection methods of the masking signal 
need to be further improved.

2.1.2. The proposed IMEMD
In this section, we propose a novel method to construct masking 

signals to alleviate mode mixing. Since our proposed method is an 
improved version of the MSEMD, it is called improved masking 
EMD (IMEMD). In IMEMD, obtaining the highest frequency 
component of the original signal is as follows: First, a masking signal 
whose frequency is higher than the highest frequency component of 
the original signal is added to the original signal. Next, the signal is 
decomposed by EMD, and the first IMF obtained contains the 
highest frequency component and the masking signal. Then, the 
masking signal is removed from this IMF to obtain the highest 
frequency component. The proposed IMEMD is given in Algorithm 
2 (Table 2). The value of ε1 (ε1 = 30 dB) is referred to as reference (Liu 
et al., 2017), where ε1 is the decomposition stop threshold.

In Section 2.1.1, we  analyze two main reasons for mode 
mixing: the intermittent components in the signal and the 
components whose frequencies are within an octave. By adding 
an appropriate sinusoidal signal (The duration is equal to the 
original signal) to the original signal, the extrema of the new 
signal are more uniformly distributed. Thus, the mode mixing due 
to intermittent components can be alleviated (Wang et al., 2018). 
At the same time, adding the sinusoidal signal improves the 

FIGURE 1

Overall scheme of the IMEMD-CRNN. In the figure, every 2D CNN block (2D CNN) has 4 parts: a 2D CNN layer, a batch normalization layer (BN), a 
ReLU layer (ReLU), and a 2D max pooling layer (MaxPooling).
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filtering characteristics of the EMD for separating components 
whose frequencies lie in an octave (Xu et  al., 2009). How to 
construct an appropriate masking signal is shown below:

Our proposed masking signal vki(t) is represented as follows:

 
( ) 1sin 2 2ki k k

p

iv t f t
n

ξ π π
 −

= +  
   

(2)

where ξk and fk  are the amplitude and frequency of the kth 
masking signal vk(t), respectively. The parameter np is the number 
of phases (np∈N, np > 1) and i = 1, 2, …, np.

In the proposed IMEMD, ξk and fk  are determined 
adaptively according to the nature of the signal, and they are 
calculated as follows:

A B C

FD E

FIGURE 2

Decomposition of the synthetic signal by five methods. (A) The waveforms of synthetic signals. (B) IMEMD. (C) UPEMD. (D) EEMD. (E) ICEEMDAN. 
(F) REMD. In each subgraph of (B–F), the left is waveforms of IMFs, the right is power spectra of IMFs.

TABLE 1 The algorithm to obtain an IMF by MSEMD.

Algorithm 1 Obtaining an IMF by MSEMD

Function: c(t) = MSEMD (x(t))

Input: x(t)

Output: c(t)

1: Construct a masking signal xms(t) = β sin (2πfwt + θ)

2: Compute c+(t) = EMD1(x(t) + xms (t))

3: Compute c−(t) = EMD1(x(t) − xms (t))

4: c(t) = (c+(t) + c−(t))/2

TABLE 2 The algorithm of IMEMD.

Algorithm 2 IMEMD

Function: {ck(t)} = IMEMD (x(t))

Input: x(t)

Output: {ck(t)}

1: Initialize: np is the number of phases, r0(t) = x(t), k = 1

2:
While ( ) ( )/2 2

1 1x t dt r t dtk ε∫ ∫ <− and rk-1(t) is not 

monotonic Do

3:

( ) ( ) ( )( )EMD /1 1
1

p

c t r t v t n
n

k k ki p
i

 
 = +  
 

−
=
∑

4: rk(t) = rk-1(t) − ck(t)

5: k ← k + 1

6: End while

7: res(t) = rk-1(t)
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TABLE 3 The feature sets extracted by IMEMD for SER.

Category Feature name Dimensions

Timbre features Hilbert spectrum distribution features (SC, SP, SK, SU) 4

Hilbert contour features (SE, ∆SE, ∆2SE) 3

Spectral features SMFCC 12

First derivative of SMFCC (∆SMFCC) 12

Second derivative of SMFCC (∆2SMFCC) 12

 

( )1
0

T
kt

k
A t

T
ξ ξ == ⋅

∑
 

(3)

 

( ) ( )
( )

1

1

T
k kt

k T
kt

A t F t
f

A t
=

=

⋅
=
∑
∑  

(4)

 1

, 1
, 1

k k
k

k k

f f k
f

f f k−

+ =
=  + >  

(5)

where Ak(t) and Fk(t) are the instantaneous amplitude and 
frequency of the IMF obtained by EMD1(rk-1(t)), respectively. T is 
the duration of the signal and f fk k− >1 . Following Huang et al. 
(1998), Ak(t) and Fk(t) are defined as

 
( ) ( )1 k

k
c

y t P d
t
τ

τ
π τ

+∞

−∞
=

−∫
 

(6)

 
A t c t y tk k k( ) = ( ) + ( )2 2

 
(7)

 
( ) ( )

( )
1 arctan

2
k

k
k

y tdF t
dt c tπ
 

= ⋅   
   

(8)

where P indicates the Cauchy principal value integral, and 
yk(t) is the Hilbert transform (HT) of the kth IMF, ck(t).

Equations 2–8 describe the calculation of the frequency, 
amplitude, and phase of the mask signal in the proposed 
IMEMD. For the masking frequency, studies have shown that two 
components with a frequency ratio between 0.5 and 2 can 
be separated when the frequency of the mask signal is higher than 
the frequency of the high-frequency component (Senroy et al., 
2007; Rilling and Flandrin, 2008). For signal x(t), when its two 
adjacent frequency components ftr,k and ftr,k + 1 satisfy

 
1 2

1

< <
+

f
f
tr k

tr k

,

,  
(9)

and the mode mixing occurs after the EMD1(x(t)) operation, 
f f kk tr k> =( )+, 1 1 , hence f ftr k k, < 2 . When k > 1 and the mode 

mixing occurs after the EMD1(rk-1(t)) operation, f fk tr k− >1 ,  (k > 1), 
hence f f ftr k k k, < + −1 . So, the masking frequency fk  in Equation 
5 still satisfies that the frequency of the mask signal is higher than the 
frequency of the high-frequency component. Wang et al. (2018) 
prove that the residual noise can be reduced by using a few sinusoidal 
signals with uniform phase distribution as masking signals. 
Therefore, in obtaining the kth IMF by IMEMD, we construct np 
mask signals whose phases are uniformly distributed over the 2π 
space. Then, the new signals after adding these np mask signals are 
decomposed by EMD, respectively, to obtain np IMFs. The mean of 
these np IMFs is used as the final kth IMF, which can reduce the 
residual of the mask signals in the decomposition results and decrease 
the decomposition error. The effect of the different number of phases 
on the signal reconstruction error is experimentally analyzed in 
Section 3.3.1. In the power quality detection task, the appropriate 
masking amplitude can be determined based on the amplitude of the 
frequency component obtained by fast Fourier transform (FFT) (Wu 
et  al., 2014). Inspired by this, we  use instantaneous amplitudes 
obtained based on the HT to construct masking amplitude. Since the 
HT-based instantaneous amplitudes are time-varying, we average all 
instantaneous amplitudes during T. In Equations 2, 3, the values of 
np (np = 64) and ξ0  (ξ0 = 1.5) are empirical. In Section 3.3, we test 
the effect of different values of np and ξ0  on the IMF estimation.

2.2. Feature extraction based on IMEMD

In this section, we  extract two feature sets for SER using 
IMEMD. The first feature set is the timbre features proposed in 
our previous work (Li et al., 2020b). Timbre features are proven 
to be essential features for SER (Guidi et al., 2019). The other 
feature set is the Mel-frequency cepstral coefficients based on the 
reconstructed signal (SMFCC), which has been proven effective 
in distinguishing different speech emotions (Kerkeni et al., 2019). 
The following are details of two feature sets used in IMEMD-
CRNN. Table 3 shows the details of these two feature sets.

2.2.1. Timbre features based on IMEMD
IMEMD method is first adopted in this section to extract the 

intrinsic mode functions of speech. Then, the timbre feature sets, 
including the Hilbert spectrum distribution features and Hilbert 
contour features, are extracted.
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For each frame of the signal, Hilbert spectrum distribution 
features are calculated as follows
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where Fce[k] is the centroid frequency calculated for the 
instantaneous frequency of one frame in the kth IMF. Eme[k] is the 
mean value of the instantaneous amplitude of one frame in the 
kth IMF.

For each frame of the signal, Hilbert contour features are 
calculated as follows:

 
SE E kme= [ ]( )max
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where Φ  is the total number of frames of the signal. The 
second derivative ∆2SE can be solved by replacing the SE in the 
above equation with ∆SE where Q is the time difference of the first 
derivative, which is usually taken as 2.

2.2.2. Spectral features based on IMEMD
We extract the Mel-frequency cepstral coefficients based 

on the reconstructed signal (SMFCC) (Kerkeni et al., 2019) as 
the features to characterize speech emotions. The 
reconstructed signal is obtained by IMEMD. In order to 
improve the accuracy of speech emotion recognition, we also 
extract the first derivative of SMFCC (∆SMFCC) and the 
second derivative of SMFCC (∆2SMFCC). Because derivative 

features contain some temporal information, research show 
that this information is essential for speech emotion 
recognition (Kerkeni et al., 2019).

First, we use the zero-crossing rate detection method to find 
the signal trend xtr(t), as shown in Equation 16.
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where ZeroCrossc tk ( )  is the zero-crossing rate. Then, xtr(t) is 
subtracted from the original signal, and the rest of the signal is 
used to reconstruct the original signal. The SMFCC is obtained by 
calculating the MFCCs with 12 orders of the reconstructed signal. 
Thus, for the reconstructed signal, the number of SMFCC 
coefficients returned per frame is 12; that is, the dimension of 
SMFCC features is 12.

The ∆SMFCC and ∆2SMFCC describe the trajectories of 
SMFCC over time. When the number of frames of the 
reconstructed signal is Φ , the first derivative of ϕ th frame 

( )SMFCC ϕ∆ is calculated as follows:
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where Q is the time difference of the first derivative, which is 
usually taken as 2. The second derivative is calculated in the same 
way, but it is calculated from ∆ ( )SMFCC ϕ , not SMFCC. Thus, 
the number of dimensions of ∆SMFCC and ∆2SMFCC features is 
also 12.

2.3. Convolutional recurrent neural 
network

The architecture of CRNN in this paper is based on 
Adavanne et  al. (2019) and Cao et  al. (2019). The CRNN 
contains three parts. The first part includes four 2D CNN 
blocks and a reshape layer. Each of these 2D CNN blocks 
consists of a batch normalization layer (BN), a ReLU layer 
(ReLU), and a 2D max pooling layer (MaxPooling). The 
second part has three bidirectional GRUs. The third part has 
three fully connected layers. The output layer uses the 
softmax activation function. The cross-entropy loss is used to 
train the network and is optimized using an Adam optimizer. 
We train the network for 60 epochs with a mini-batch size of 
512. The initial learning rate η0  is 0.001. The architectural 
details of CRNN are shown in Figure 1.
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3. Results and discussion

3.1. Datasets

3.1.1. Synthetic signals
The synthetic signals to evaluate the performance of our 

IMEMD is a classical mode mixing example (shown in Figure 2). 
The synthetic signal xs(t) consists of a sustained pure tone xs1(t) 
and a gapped one xs2(t) with a higher frequency, where their 
frequencies lie within an octave. The data xs(t) = xs1(t) + xs2(t) is 
sampled at 1 Hz rate, 0 500t≤ ≤ , with
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3.1.2. Public datasets
The IMEMD-CRNN system is validated on the Berlin 

Emotional Database (Emo-DB; Burkhardt et  al., 2005) and 
Toronto Emotional Speech Set (TESS; Pichora-Fuller and Dupuis, 
2020). They are the most popularly used databases for emotion 
recognition (Deb and Dandapat, 2019). Both datasets were 
approved by ethical committees. The Emo-DB dataset includes 
535 audio files simulated by 10 actors on 10 German utterances. 
All files are in 16-bit stereo wave sampled at 16 kHz and labeled 
with one of the 7 emotions. The average duration of the utterances 
in this dataset is 3.5 s, and the approximate duration of the 
utterances is 3 s to 5 s. The number of emotional labels across the 
dataset is anger (127), anxiety/fear (69), boredom (81), disgust 
(46), happiness (71), neutral (79), and sadness (62). Audio files in 
the Emo-DB are single-channel audio.

The TESS database is recorded by two actresses aged 26 and 
64. Both actresses speak English as their first language. There are 
2,800 audio samples in the database, including seven different 
emotions: anger, disgust, fear, happiness, pleasant surprise, 
sadness, and neutral. There are 400 data samples for each emotion. 
The sampling rate is 24.414 kHz and is saved in WAV format with 
all audio samples between 2 s and 3 s in length. Audio files in the 
TESS are single-channel audio.

3.2. Preprocessing and evaluation 
metrics

Utterances in TESS and Emo-DB datasets are recorded in a 
noise-less environment; therefore, there is no need to filter and 
denoise the data (Krishnan et al., 2021). Utterances in the two 
datasets are split into equal-length segments of 3 s, and zero 
padding is used for utterances with a duration of less than 3 s 
(Chen et al., 2018). Each utterance is normalized by dividing the 

time-domain signal by its maximum value. For each utterance 
(sampling rate: 16 kHz for Emo-DB, 24.414 kHz for TESS), the 
frame size is uniformly set to 25 ms, and the hop size is 10 ms. To 
improve the performance of our IMEMD-CRNN architecture, 
we use data augmentation techniques to enlarge the size of the 
Emo-DB dataset, and every file is enlarged to 60 augmentations. 
We enlarge the Emo-DB dataset with three data enhancement 
methods: pitch shifting, time shifting, and noise addition. For 
pitch shifting, the range of pitch shift in semitones is [−2, 2]. The 
range of time shift in seconds is [−0.4, 0.4]. We use the Gaussian 
white noise addition, and the range of noise SNR in dB is [−20, 
40]. Each audio is normalized by dividing the time-domain signal 
by its maximum value.

When evaluating our proposed IMEMD, the reconstruction 
error of the reconstructed signal x  relative to the original signal 
x is measured by the relative root mean square error (RRMSE), 
and the calculation formula is as follows:
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To compare with the state-of-the-art SER methods, we use 
unweighted accuracy (UA) to evaluate the performance of 
different SER methods (Zhong et al., 2020).

3.3. Performance of IMEMD

3.3.1. Simulations and comparisons
We compare the results of IMEMD with those of EEMD, 

UPEMD, ICEEMDAN, and REMD in Figure  2 through the 
decomposition of the artificial signal. We only show the first two 
IMFs of these methods as the mode mixing mainly occurs in the 
first two modes of the artificial signal. We set the noise standard 
deviation to 0.4, the ensemble size to 100, and phase number to 16 
for EEMD, UPEMD, and ICEEMDAN, which are similar to those 
in Colominas et al. (2014) and Wang et al. (2018). For IMEMD, 
we set np = 64 and ξ0 = 1.5 through experiments. The number of 
IMF obtained by IMEMD, REMD, UPEMD, ICEEMDAN, EEMD, 
and EMD is 2, 3, 8, 12, 14, and 14, respectively. In Figure 2, when 
separating components whose frequencies lie within an octave, 
the separation degree of each method from high to low is IMEMD 
> UPEMD > ICEEMDAN > EEMD > REMD> EMD. IMEMD 
substantially reduces the mode mixing. The proper value of ξ0 
greatly impacts the performance of IMEMD and in this work, ξ0 
is empirical. In Figure 3, three case studies are performed to show 
the effect of ξ0 on mode estimation by IMEMD. The values of 
other parameters are the same as in Figure 2. Figures 3A–C show 
the decomposition of the synthetic signal by IMEMD when ξ0 is 
taken as the most appropriate value, ξ0 increase to a large value, 
and ξ0 increase to a small value, respectively. As shown in 
Figure 3B, when the value of ξ0 is too small, there are xs1(t) and 
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xs2(t) in IMF1. In Figure 3C, when the value of ξ0 is too large, xs2(t) 
appears in IMF2 and IMF3. The results in Figures 3B,C are mode 
mixing. These mean that inappropriate values of ξ0 can cause 
mode mixing problems.

In order to better compare the reconstruction errors of 
different methods in a different number of trials (the results are 
shown in Figure 4), we set the frequency of xs2(t) to 0.07. So, 
frequencies of xs1(t) and xs2(t) do not lie within an octave. 
Assisted signals with an amplitude of 0.2 are utilized for EEMD, 
ICEEMD, and UPEMD (Wang et al., 2018). Ensemble sizes of 
EEMD and ICEEMDAN are set to I = 50, 100, 200, 400, 600, 
and 800 (Wu and Huang, 2009; Colominas et  al., 2014). 
Masking signals with phase numbers np = 2, 4, 8, 16, 32, and 64 
are used in UPEMD and IMPEMD (Wang et  al., 2018) to 
explore the effect of phase numbers on the decomposition 
results of the algorithms. Moreover, 10 sifting iterations are 
used to extract IMFs for all methods. In order to quantify the 
performance of the methods, all methods are decomposed 100 
times to obtain the statistical average results (shown in 
Figure 4). Figure 4 shows that when np > 32, reconstruction 
errors (the value is 7.25 × 10−17) of xs(t) by IMEMD are smaller 
than those of ICEEMDAN (the value is 7.38 × 10−17). For all 
values of np, reconstruction errors of xs(t) by IMEMD are about 
one-tenth of the reconstruction errors of xs(t) by 
UPEMD. When the number of phases np ranges from 2 to 64, 
the reconstruction errors of xs1(t) and xs2(t) reconstructed by 
IMEMD have little changes, and the reconstruction errors of 
xs(t) reconstructed by IMEMD decrease. When np  = 64, the 
reconstruction errors of these signals decomposed by IMEMD 
are small enough and smaller than these of the compared 
algorithms. Moreover, the time complexity of IMEMD is 
increasing as np increases, so we  set the value of np in the 
IMEMD to 64. Reconstruction errors of xs(t) using EEMD are 
greater than 0.07. This may be because the signal contains a lot 
of residual noise. Therefore, the results of EEMD are not drawn 
in Figure 4A. Figures 4B,C plot errors of recovering xs1(t) and 
xs2(t), respectively. As shown in Figure 4, IMEMD is better than 

A B C

FIGURE 3

Decomposition of the synthetic signal by IMEMD. (A) The 0ξ =1.5. (B) The 0ξ =0.1. (C) The 0ξ =3.

A

B

C

FIGURE 4

Performances of recovering known components on synthetic 
signal xs(t). All five methods are decomposed 100 times to obtain 
the statistical average results and shown using boxplots. 
(A) Reconstruction errors of synthetic signal xs(t). 
(B) Performances of recovering xs1(t). (C) Performances of 
recovering xs2(t). In each subgraph of (A–C), the symbol “*” 
represents the mean value of the corresponding 100 
decomposition results.
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A B C

FIGURE 5

The power spectra of the first 9 IMFs obtained by decomposing the emotional speech signal by different methods. (A) IMEMD. (B) ICEEMDAN. 
(C) UPEMD.

the other methods. The reconstruction error of xs1(t) and xs2(t) 
obtained by REMD is the largest among all the compared 
algorithms. For xs1(t), the reconstruction error obtained by 
REMD is more than 12 times higher than that of EEMD, which 
has the second-highest reconstruction error. For xs2(t), the 
reconstruction error obtained by REMD is more than 1.2 times 
higher than that of UPEMD, which has the second-highest 
reconstruction error. Therefore, the results of REMD are not 
drawn in Figures 4B, 3C. The boxplots in Figure 4 show that the 
distribution of results obtained by IMEMD and UPEMD is 
more concentrated than that obtained by ICEEMDAN and 
EEMD. This is because perturbations used by IMPEMD and 
UPEMD are deterministic, while ICEEMDAN and EMD use 
random noise. So IMEMD and UPEMD can obtain 
reproducible decompositions. In conclusion, the IMEMD 
proposed in this paper reduces the mode mixing effect, 

provides reproducible decompositions, and has less 
computational time.

3.3.2. Emotional speech and comparisons
IMEMD is applied to real emotional speech (from the 

Emo-DB dataset) shown in Figure 5. Figure 5 shows the power 
spectra of the first 9 IMFs. The spectra of IMFs by each algorithm 
are normalized by dividing the spectra by their maximum 
magnitudes. As shown in Section 3.3.1, the reconstruction errors 
of EEMD and REMD are large. Therefore, IMEMD is only 
compared with UPEMD and ICEEMDAN. The phase number of 
np = 64 is used in IMEMD and UPEMD. The ensemble size of 
ICEEMDAN is I = 100. We  set ξ0 = 1.5 for IMEMD and the 
amplitude of assisted signals to 0.2 for UPEMD and ICEEMDAN.

In Figure 5, the mode mixing of IMEMD is less than that of 
other methods. For ICEEMDAN and UPEMD, there is mode 
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mixing between IMF2 and IMF3, and between IMF4 and IMF5. The 
number of IMFs obtained by IMEMD, UPEMD, and ICEEMDAN 
is 14, 15, and 23, respectively, which proves that IMEMD can return 
a more compact representation than other methods. Noise residuals 
and mode mixing effects have bad effects on the frequency 
distribution of the IMFs, resulting in the spectrum becoming blurry 
(Sandoval and De Leon, 2017). So, the performance of IMEMD is 
better than that of UPEMD and ICEEMDAN.

3.4. Performance analysis of 
IMEMD-CRNN system

In this section, the proposed IMEMD-CRNN method is 
applied to the two publicly available Emo-DB and TESS datasets for 
speech emotion recognition experiments to show the significance 
and the robustness of the IMEMD-CRNN method. In the upcoming 
subsections, the experimental results will be described in detail.

3.4.1. Performance on the Emo-DB dataset
The utterances on the Emo-DB dataset are spoken by 10 actors 

intended to convey one of seven emotions. These seven emotion 
labels are anger, anxiety/fear, boredom, disgust, happiness, neutral, 
and sadness. We first preprocess each utterance (The preprocessing 
method is shown in Section 3.2). Secondly, the signal is decomposed 
by IMEMD to obtain IMFs. Then, we extract Hilbert spectrum 
distribution features, Hilbert contour features, SMFCC features, the 
first derivative of SMFCC, and the second derivative of SMFCC 
from IMFs (The feature extraction method is shown in Section 2). 
The dimension of features is 43. We use leave-one-speaker-out 
(LOSO) 10-fold cross-validation to provide an accurate assessment 
of the proposed IMEMD-CRNN model (Hou et al., 2022). In the 
LOSO 10-fold cross-validation method, utterances of 8 speakers are 
used as training set, one speaker is selected as the validation data, 
and utterances of the left-out speaker are used as the testing set. 
We repeat this procedure 10 times. The final classification accuracy 
is the average of the 10 folds. The initial values of hyperparameters 
of the CRNN model are referred to Adavanne et al. (2019) and Cao 

et al. (2019). We  further utilize the validation set to debug the 
hyperparameters to obtain optimal hyperparameters.

Table 4 shows the recognition results of the proposed method 
with state-of-the-art (SOTA) methods. The unweighted accuracy of 
our method reaches 93.54%, greater than the SOTA method by 
1.03%. To verify that the improvement in accuracy of the proposed 
method is statistically significant compared to the SOTA method 
(the method proposed by Hou et al. (2022)), a paired-sample t-test 
is used. The null hypothesis is that the pairwise difference between 
the UA of the two methods has a mean equal to zero. The significance 
level α of the hypothesis test is set to 0.05. The value of p of the 
paired-sample t-test is 0.01 (p < 0.05). Therefore, the improvement 
in the accuracy of IMEMD-CRNN compared with SOTA method is 
statistically significant. As shown in Table 4, combining hand-crafted 
features with deep learning is higher than the methods where the 
original signals are directly fed into the deep networks. The results 
demonstrate that effective hand-crafted features combined with 
deep-learning networks can build a more accurate and robust speech 
emotion recognition system. The accuracies obtained using our 
method for each emotion are anger (90.9%), anxiety/fear (96%), 
boredom (92.4%), disgust (97.6%), happiness (90%), neutral (92.8%), 
and sadness (95.1%). The results indicate that our proposed 
IMEMD-CRNN framework has the best performance for disgust 
and the worst performance for anger and happiness. Some angry 
samples are identified as happiness and anxiety. A part of happy 
samples is recognized as angry and anxious. This may be because all 
three emotions are relatively strong and, therefore, easily misclassified.

3.4.2. Performance on the TESS dataset
To compare with other SER methods, we use randomized 

10-fold cross-validation to train and validate our method on the 
TESS dataset. The final performance is the averaged results of the 
10 folds. The preprocessing and feature extraction steps are the 
same as the Emo-DB database. The initial values of 
hyperparameters of the CRNN model are referred to Adavanne 
et al. (2019) and Cao et al. (2019). We further utilize the validation 
set to debug the hyperparameters to obtain optimal 
hyperparameters. Table 5 shows the results of comparing the 

TABLE 4 Comparison of different SER methods on the EMO-DB dataset.

Methods Input feature UA (%)

Deb and Dandapat (2019) MFCCs and their first- and second-order difference 85.10

Suganya and Charles (2019) Raw audio recording 85.62

Kerkeni et al. (2019) Modulation spectral and modulation frequency features based on EMD and TKEO, and cepstral features. 86.22

Chen et al. (2018) Log Mel-spectrogram 87.81

Muppidi and Radfar (2021) RGB Mel-spectrogram 88.78

Kim et al. (2018) 20 features in the eGeMAPS 88.90

Mustaqeem and Kwon (2021) Raw audio recording 89.37

Zhong et al. (2020) Log Mel-spectrogram 90.67

Hou et al. (2022) Prosody features, MFCCs, MFSCs 92.51

Proposed Timbre features, spectral features 93.54
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proposed method with the state-of-the-art method on the TESS 
dataset. From Table 5, it can be seen that the proposed method 
achieves a UA value of 100% in the TESS database; the UA value 
is improved by 4.21% compared to the best comparison method. 
We also use the paired-sample t-test to compare the results of 
IMEMD-CRNN and the method proposed by Chatterjee et al. 
(2021). The significance level α of the hypothesis test is set to 0.05. 
The value of p of the paired-sample t-test is 6.24 × 10−7 (p < 0.05). 
Therefore, the improvement in the accuracy of IMEMD-CRNN 
compared with the SOTA method is statistically significant.

4. Conclusion

This paper proposes a novel framework named IMEMD-
CRNN to accurately extract emotional information from speech 
and effectively identify different emotions. The IMEMD-CRNN 
contains three parts. IMEMD is first used to extract physically 
meaningful IMFs from speech signals. Then, we extracted time-
frequency features from the IMFs that can effectively express speech 
emotions. Finally, CRNN is employed to further model the speech 
emotion information in the time-frequency features to realize the 
recognition of emotion. Comprehensive experiments on the 
synthetic signals, the Emo-DB dataset, and TESS dataset verify the 
effectiveness of the proposed scheme. Simultaneously, simulations 
and emotional speech experiments indicate that our IMEMD 
mitigates mode mixing and improves decomposition accuracy 
under low computational cost. More importantly, we compare our 
proposed scheme with some state-of-the-art SER methods. The 
results show that our method can accurately extract speech emotion 
features and significantly improves the performance of SER. The 
proposed IMEMD-CRNN framework has potential applications in 
psychology, physiology, signal processing, and pattern recognition 
involving speech-based affective computing. In future work, to 
further reduce the mode mixing and improve the ability of IMEMD 
to decompose signals, the addition of optimization algorithms to 
the IMEMD will be investigated.
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TABLE 5 Comparison of different SER methods on the TESS dataset.

Methods Input feature + Classifier UA (%)

Krishnan et al. (2021) Entropy features based on EMD + SVM 81.67

Krishnan et al. (2021) Entropy features based on EMD + LDA 93.30

Chatterjee et al. (2021) MFCCs +1D CNN 95.79

Proposed Timbre and spectral features + CRNN 100
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