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Introduction: With the increasing amount of research around Computational

Thinking (CT) and endeavors introducing CT into curricula worldwide,

assessing CT at all levels of formal education is of utmost importance to

ensure that CT-related learning objectives are met. This has contributed to a

progressive increase in the number of validated and reliable CT assessments for

K-12, including primary school. Researchers and practitioners are thus required

to choose among multiple instruments, often overlapping in their age validity.

Methods: In this study, we compare the psychometric properties of two of

these instruments: the Beginners’ CT test (BCTt), developed for grades 1–6,

and the competent CT test (cCTt), validated for grades 3–4. Classical Test

Theory and Item Response Theory (IRT) were employed on data acquired from

575 students in grades 3–4 to compare the properties of the two instruments

and refine the limits of their validity.

Results: The findings (i) establish the detailed psychometric properties of

the BCTt in grades 3–4 for the first time, and (ii) through a comparison with

students from the same country, indicate that the cCTt should be preferred

for grades 3–4 as the cCTt is able to discriminate between students of low

and medium ability. Conversely, while the BCTt, which is easier, shows a

ceiling e�ect, it is better suited to discriminate between students in the low

ability range. For these grades, the BCTt can thus be employed as a screening

mechanism to identify low ability students.

Discussion: In addition to providing recomendations for use

of these instruments, the findings highlight the importance of

comparing the psychometric properties of existing assessments,
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so that researchers and practitioners, including teachers and policy makers

involved in digital education curricular reforms, may take informed decisions

when selecting assessments.

KEYWORDS

Computational Thinking, assessment, primary school, validation, developmental

appropriateness, psychometrics

1. Introduction and related work

Computational Thinking (CT) is more and more often

considered to be an essential twenty-first century skill (Li

et al., 2020), that is as important as reading, writing, and

arithmetic (Wing, 2006) and must be taught at a young age.

Despite the lack of consensus regarding the definition of CT,

CT is traditionally defined by Wing (2006) as “an approach

to solving problems, designing systems, and understanding

human behavior that draws on concepts fundamental to

computing” which was later reformulated by Aho (2012) as

“the thought processes involved in formulating problems so

their solutions can be represented as computational steps

and algorithms.” As such CT has often been associated with

Computer Science (CS), althoughmany researchers consider CT

to be transversal (Mannila et al., 2014; Weintrop, 2016; Denning

and Tedre, 2021; Weintrop et al., 2021b), and not exclusively

related to CS or mathematics (Li et al., 2020). This has lead to

a “tremendous growth in curricula, learning environments, and

innovations around CT education” (Weintrop et al., 2021b). To

be successful, these initiatives rely on the constructive alignment

between the learning objectives, teaching and learning activities,

and assessments (Biggs, 1996). Developing and implementing

effective CT interventions thus requires expanding the portfolio

of developmentally appropriate instruments to assess CT at all

levels of formal education, for use by researchers and educators

alike (Weintrop et al., 2021a).

Developing CT assessments requires having better insight

into what composes this competence, with a competence

referring to “the proven ability to use knowledge, skills, and

personal, social, and/or methodological abilities, in work or

study situations and in professional and personal development”

(European Union, 2006). As such, Brennan and Resnick (2012)

proposed an operational definition of CT by decomposing

CT into three dimensions. The first is CT-concepts, i.e., “the

concepts designers engage with as they program, such as

iteration, parallelism,” (Brennan and Resnick, 2012), which thus

includes sequences, loops, if-else statements and so forth at

the primary school level. These elements can be adequately

assessed through diagnostic and summative tools (Román-

González et al., 2019). The second is CT-practices i.e., “the

practices designers develop as they engage with the concepts,

such as debugging projects or remixing others’ (Brennan and

Resnick, 2012), which thus requires understanding the thought

processes involved in resolving CT problems. These may include

elements of abstraction, decomposition, evaluation, and so forth

and can be adequately assessed through formative-iterative tools

and data-mining tools (Román-González et al., 2019). The third

is CT-perspectives, i.e., “the perspectives designers form about

the world around them and about themselves” (Brennan and

Resnick, 2012), and therefore their perception of CT which can

be adequately evaluated through perception and attitude scales

and vocabulary assessments (Román-González et al., 2019).

Despite the increase in research around CT in the past two

decades, and the various means of assessing CT identified by

Tang et al. (2020) [i.e., “traditional test(s) composed of selected-

or constructed response questions, portfolio assessment(s),

interviews, and surveys”], few validated and reliable instruments

exist for CT, and even less at the primary school level (Román-

González et al., 2019; Basu et al., 2020; Zapata-Cáceres

et al., 2020; Clarke-Midura et al., 2021). This limitation was

highlighted by Tang et al. (2020) in their recent meta review on

CT assessments: out of 96 studies, only 45% provided reliability

evidence and just 18% provided validity evidence. This mirrors

the findings of Bakala et al. (2021) who, in their literature

review on the effects of robots on preschool children’s CT, found

that most studies employed ad-hoc evaluations, typically neither

standardized nor validated. Bakala et al. (2021) attributed this

to the fact that only two recent valid and reliable tests for that

age group existed at the time of their review [the TechCheck by

Relkin et al., 2020; Relkin and Bers, 2021 and the Beginners’ CT

test (BCTt) by Zapata-Cáceres et al., 2020] and recommended

that researchers aim to employ them in future studies. To

further limit the available choices, many existing assessments

are strongly tied to specific CS frameworks (Rowe et al., 2021)

[e.g., Dr., Scratch (Moreno-León and Robles, 2015) or the Fairy

assessments (Werner et al., 2012)]. As stated by Relkin and

Bers (2021) and Rowe et al. (2021), being strongly tied to

specific frameworks means that the instrument risks conflating

with programming abilities. This contributes to a lack of

generalizability and thus limits the range of applications of such

instruments (Tikva and Tambouris, 2021), which for example

should be avoided in the context of pre-post test experimental

designs. It is essential to provide researchers and practitioners
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(e.g., teachers and policy makers involved in digital education

curricular reforms) the means to assess CT:

1. at all levels of education

2. independently from specific studies or programming

environments

3. in a valid and reliable way to ensure that there is sufficient

“evidence and theory [to] support the interpretations of test

scores entailed by proposed uses of tests” (Clarke-Midura

et al., 2021)

4. with an instrument which can easily be administered.

Without these, it is not possible to ensure that CT-related

learning objectives are met, whether in individual interventions

or in the context of large scale CS and/or CT curricular reform

initiatives (El-Hamamsy et al., 2021a,b).

Unfortunately, while an increasing number of instruments

have been recently developed, several do not meet these

criteria (Hubwieser and Mühling, 2014; Bellettini et al., 2015;

Gane et al., 2021; Parker et al., 2021). For example, the

Bebras challenge is sometimes used to assess CT skills, but

has undergone limited psychometric validation (Hubwieser

and Mühling, 2014; Bellettini et al., 2015). Gane et al.

(2021)’s assessment require manual grading and multiple

annotators, thus limiting the test’s scalability and its usability

by other researchers and practitioners. Parker et al. (2021)

assessment which is based on a combination of block-based

and Bebras-style questions, has been piloted with just 57

fourth graders. Finally Chen et al. (2017)’s assessment for 5th

graders appears highly dependent on the robotics programming

context, includes open questions and was administered to

just 37 students, thus including the limitations of all the

aforementioned assessments, in addition to limiting its use in

other CT-related contexts.

Instruments meeting the aforementioned criteria, and

having undergone a psychometric validation and reliability

assessment process at the level of primary school (see section

2.2), include the TechCheck for lower primary school (grades

1–2, ages 6–8, Relkin et al., 2020), the TechCheck-K, which is an

adaptation of the former for kindergarden (ages 4–6, Relkin and

Bers, 2021), the BCTt for grades 1–6 (ages 5–10, Zapata-Cáceres

et al., 2020), the competent CT test (cCTt) for grades 3–4 (ages

7–9, El-Hamamsy et al., 2022a), the Computational Thinking

Assessment for Chinese Elementary Students (CTA-CES) for

grades 3–6 (ages 9–12, Li et al., 2021), and Kong and Lai (2022)’s

CT-concepts test for grades 3–5. A synthesis of these instruments

is provided in Table 1 and shows that these instruments

often differ in the underlying definition of CT employed to

define the test items which makes it complex to compare

them pyschometrically. Furthermore, these instruments are all

relatively new and adopt an unplugged approach, using multiple

choice questions to assess primary school students’ CT abilities.

Furthermore, there is an overlap in their target age ranges.

It is thus important for researchers and practitioners to not

only identify instruments that best assess the learning objectives

of their interventions, but also to understand the limits of

validity of these instruments to make informed decisions for

their own studies. Such instruments are unfortunately not

often compared against one another to determine which may

be more appropriate for a given age range. To the best of

our knowledge, only the TechCheck and TechCheck-K were

compared to establish whether the TechCheck-K would be an

adequate instrument for kindergarden students (Relkin and

Bers, 2021), with the TechCheck being more appropriate for first

and second graders.

In this paper, we are interested in the overlap between

the BCTt and the cCTt for students in grades 3 and 4

as these two instruments overlap in their targets, and are

from the same “family” of CT tests, and thus cover the

same concepts. Therefore, the BCTt and cCTt cannot be

considered complementary within a system of assessments,

and thus require choosing between them. It is therefore

essential to establish their limits of validity for the considered

age group to provide recommendations to help researchers

make an informed decision when selecting CT-assessments

in accordance with their study requirements. Indeed, while

the BCTt was initially developed as an instrument looking to

cover all of primary school, the validation procedure appeared

to indicate that the BCTt was too easy for students in

upper primary school (Zapata-Cáceres et al., 2020). As the

cCTt was derived from the BCTt to adapt the instrument

in terms of format and content to improve its validity for

students in grades 3 and 4 (7–9 year old students), the

present study therefore investigates how the BCTt and cCTt

complement each other in assessing CT in grades 3 and 4,

to propose recommendations for their use for these grades.

More specifically, we look to answer the following research

questions:

1. How do the psychometric properties of the BCTt and the cCTt

compare for students in grades 3–4 (7–9 years old)?

2. How does the psychometric comparison inform us about how

the instruments should be used in grades 3–4 (7–9 years old)?

2. Methodology

2.1. The BCTt, cCTt, and their validation

The BCTt and the cCTt are two 25-item multiple choice

CT assessments1 of progressive difficulty, targeting the CT-

concepts posed by Brennan and Resnick (2012) in their

decomposition of CT into concepts, practices, and perspectives.

More specifically, the two tests evaluate notions of sequences,

simple loops (only one instruction is repeated), complex loops

1 Please note that the full BCTt is available upon request to the co-

authors of Zapata-Cáceres et al. (2020), and the cCTt items are presented

in El-Hamamsy et al. (2022a) with an editable version available upon

request to the co-authors of the article.
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TABLE 1 Synthesis of validated and scalable primary school unplugged CT assessments and corresponding validation processes adapted from El-Hamamsy et al. (2022a).

Test Format Target age group CT definition Validation process Sample Validity

established for

TechCheck (Relkin et al.,

2020) and TechCheck-K

(Relkin and Bers, 2021)

15 item MCQ 1st and 2nd graders (6–9

year old students) and

kindergarden (5–6 year

old students)

Algorithms, Modularity,

Design Process,

Debugging, Control

Structures,

Hardware/Software

Expert validation,

psychometric analysis

(Classical Test Theory

and Item Response

Theory), convergent

validation with the

TACTIC-KIBO

768 5–9 year old students

participating in a

robotics coding

curriculum and 89

kindergarden students

without coding

experience

Full sample

Beginner’s CT test

(Zapata-Cáceres et al.,

2020; Zapata-Cáceres

and Fanchamps, 2021)

25 item MCQ Primary school (5–12

year old students) and

Kindergarden (4–5 years

old students)

Computational concepts,

practices, perspectives

(Brennan and Resnick,

2012)

Expert validation, and

psychometric analysis

(Classical Test Theory)

299 primary school

students from grades 1 to

6 and 5 kindergarden

students

4–7 year old students

The competent CT test

(cCTt) (El-Hamamsy

et al., 2022a)

25 item MCQ Primary school (7–9 year

old students)

Computational concepts,

practices, perspectives

(Brennan and Resnick,

2012)

Expert validation and

psychometric analysis

(Classical Test Theory,

Item Response Theory),

Confirmatory Factor

Analysis

1,519 primary school

students from grades 3 to

4

Full sample

CT Assessment for

Chinese Elementary

Students (CTA-CES, Li

et al., 2021)

25 item MCQ Grades 3–6 (ages 9–12) Abstraction, algorithmic

thinking, decomposition,

evaluation, pattern

recognition,

generalization (Selby and

Woollard, 2013)

Expert validation,

Classical Test Theory,

Item Response Theory,

Construct validity by

comparing two groups of

students, criterion

validity through

correlations with

reasoning, spatial ability,

and verbal ability

280 grade 3–6 students Full sample

Kong and Lai (2022)’s

CT-concepts test

14 item MCQ Grades 3–5 (ages 8–10) Sequences, conditionals,

repetition (Brennan and

Resnick, 2012)

Item Response Theory 13,670 grade 3 to 5

students

Full sample
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(two or more instructions are repeated), conditionals and

while statements (see the distribution of items in Table 2),

with the factor structure pertaining to these concepts having

been validated through Confirmatory Factor Analysis by El-

Hamamsy et al. (2022a). The BCTt was derived from the

CTt (Román-González et al., 2017, 2018, 2019), with changes

in terms of format and content to adapt it to primary school.

In a similar spirit, the cCTt made alterations to the format

and content of the BCTt to more specifically target students in

grades 3 and 4 (El-Hamamsy et al., 2022a). Both instruments,

like their predecessor the CTt, employ grid-type and canvas-

type questions (see Figure 1) and employ the same type of

tasks. The individual questions differ (see Table 2) as the

cCTt (i) favors questions on 4 × 4 grids, (ii) replaces BCTt

questions of low difficulty with questions related to complex

concepts (e.g., while statements), (iii) alters the disposition of

objects on the grids, and responses, with respect to the BCTt

equivalents.

Both the BCTt and cCTt instruments were validated by

starting with an evaluation by experts and making adjustments

based on their suggestions, prior to administration to students in

the target age groups. The BCTt, which was designed for grades

1–6, was administered to 200 students in that age group (Zapata-

Cáceres et al., 2020). The authors found that the test had good

reliablity with Cronbach’s α = 0.824. The results indicated

that the students improved as they got older, and started to

exhibit a ceiling effect in grades 3–42. The results indicated

that the differences were significant between all grades, excepted

those in grades 4–6 who already exhibit a ceiling effect (Zapata-

Cáceres et al., 2020). These results indicate that students begin

to exhibit a ceiling effect either in grade 3 or grade 4. The cCTt,

which was designed for grades 3 and 4, was administered to

1,519 students in that age group and analyzed through Classical

Test Theory and Item Response Theory (El-Hamamsy et al.,

2022a). The results indicated that the grade 4 students scored

significantly better than the grade 3 students (out of 25 pts,

the one-way ANOVA indicates that p < 0.001, 1grades =

+2.9 pts, Cohen’s d = 0.57, µ3 = 12.62 ± 5.18, n = 711;

µ4 = 15.49 ± 4.96, n = 749). The Classical Test Theory results

indicated that the test had good reliability with Cronbach’s α =

0.85, levels of discrimination, and a wide range of question

difficulties. Item Response Theory was employed to support

these findings and indicated that the test was better suited at

evaluating and discrimination between students with low and

medium abilities.

2 In the original validation of the BCTt by Zapata-Cáceres et al. (2020)

they obtained average scores of µgrade1 = 16.52±3.31, µgrade2 = 16.78±2.49,

µgrade4 = 21.57± 3.04, µgrade5 = 21.84± 2.61, µgrade6 = 21.72± 2.62 out of 25.

Please note that their sample did not include grade 3 students.

2.2. Psychometric analysis

The objective of this study is to compare the psychometric

properties of the BCTt and cCTt for students in grades 3 and

4. Classical Test Theory and Item Response Theory are two

complementary (De Champlain, 2010; Awopeju and Afolabi,

2016) approaches typically employed to analyse the validity

and reliability of scales and assessments. The Classical Test

Theory and Item Response Theory (IRT) analyses are conducted

in R (version 4.2.1, R Core Team, 2019) using the following

packages: lavaan (version 0.6-11, Rosseel, 2012), CTT (version

2.3.3, Willse, 2018), psych (version 2.1.3, Revelle, 2021), mirt

(version 1.36.1, Chalmers, 2012), and subscore (version 3.3, Dai

et al., 2022).

2.2.1. Classical test theory

Classical Test Theory “comprises a set of principles that

allow us to determine how successful our proxy indicators are

at estimating the unobservable variables of interest” (DeVellis,

2006). Classical test theory focuses on test scores (Hambleton

and Jones, 1993) and computes:

• Reliability of the scale using Cronbach’s αmeasurement of

internal consistency of scales (Bland and Altman, 1997). In

the context of assessments, 0.7 < α < 0.9 is considered

high and 0.5 < α < 0.7 is considered moderate (Hinton

et al., 2014; Taherdoost, 2016). The drop alpha is computed

per question as it indicates of the reliability of the test

without said question, and thus whether the internal

consistency of the test improves without it.

• Item difficulty index, i.e., the proportion of correct

responses. Please note that this means that a question with

a high difficulty index is an easy question. Determining

whether questions are too easy or too difficult is often

based on arbitrary thresholds which vary around what

are considered to be ideal item difficulties. Indeed, some

researchers have posited that item difficulties should vary

between 0.4 and 0.6 as these are claimed to have maximum

discrimination indices (Vincent and Shanmugam, 2020).

As such, thresholds employed in the literature have varied

around these values, with items being classified as difficult

for a range of thresholds between 0.1 and 0.3, and items

being classified as easy for a range of thresholds varying

between 0.7 and 0.9.

In this study, to remain coherent with the first cCTt

validation in grades 3–4, we consider that questions with a

difficulty index above 0.85 are too easy, while those with

a difficulty index below 0.25 are too hard and could be

revised.

• Point biserial correlation, or item discrimination. This

is a measure of discrimination between the high ability

examinees and low ability examinees. A point-biserial
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TABLE 2 Comparison between the BCTt and the cCTt in terms of question concepts and question types (Table taken from El-Hamamsy et al., 2022a).

BCTt cCTt

Blocks Grid (3× 3) Grid (4× 4) Canvas Total Grid (3× 3) Grid (4× 4) Canvas Total

Sequences 3 1 2 6 1 1 2 4

Simple loops 3 2 0 5 0 4 0 4

Complex loops 0 5 2 7 0 5 2 7

Conditional statements 1 3 0 4 1 3 0 4

While statements 1 2 0 3 1 3 0 4

Combinations 0 0 0 0 0 2 0 2

Total 8 13 4 25 3 18 4 25

FIGURE 1

The two main question formats of the BCTt and cCTt: grid (Left) and canvas (Right) (Figure taken from El-Hamamsy et al., 2022a).

correlation above 0.15 is recommended, with good items

generally having point biserial correlations above 0.25

(Varma, 2006). In this article, we consider a threshold of

0.2, which is commonly employed in the field (Chae et al.,

2019).

Unfortunately, Classical Test Theory suffers from

several limitations, including that the analysis is sample-

dependent (Hambleton and Jones, 1993). As such, analyzing

an instrument from the lens of Classical Test Theory

on two different populations may not yield consistent

results. The literature thus recommends employing Item

Response Theory to complement the results of Classical

Test Theory.

2.2.2. Item Response Theory (IRT)

According to Hambleton and Jones (1993), (i) IRT is

sample independent so scores describing examinee proficiency

are not dependent on the test difficulty, (ii) test items can

be matched to ability levels, and (iii) the test models do

not require strict parallel tests to assess reliability. This is

because IRT models the link between a students’ latent

ability and their probability of correctly answering a question.

Indeed, by evaluating the tests’ questions with respect to latent

ability:

• The results are more likely to be sample independent, and

therefore more likely to generalize beyond a specific sample

of learners (Xie et al., 2019), thus providing consistency

between two different populations.

• Item Response Theory is more adapted to compare

multiple assessments through the latent ability

scale (Jabrayilov et al., 2016; Dai et al., 2020), and

thus including cases where different populations have

taken the tests. Comparing two assessments can indeed

be done in cases where the instruments measure the same

latent traits (Xie et al., 2019), which we believe is possible

in the present case because both instruments measure the

same CT-concepts, using the same symbols. This can be
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verified through Confirmatory Factor Analysis, as done

by Kong and Lai (2022).

Item Response Theory models estimate the probability of a

person of a given ability (measured in standard deviations from

the mean) answering each question correctly. This is visualized

through a logistic Item Characteristic Curve (ICC) for each

question. As Figure 2A shows, an item’s difficulty (bi) is the

x-value (θ) where the ICC reaches a y = 0.5 probability of

answering correctly, and represents the number of standard

deviations from the mean the question difficulty is. Items to the

left of the graph are considered easier while items on the right

are considered harder. According to De Ayala and Little (2022),

“typical item and person locations fall within -3 to +3”, with

easy items having scores below -2, average items having scores

between -2 and +2 and hard items having scores above +2.

Several IRT models exist for binary response data, however

given the low sample size (Sahin and Anil, 2017), we focus

on one parameter logistic (1-PL) and 2-PL models. While 1-

PL models consider that only difficulty varies across items,

2-PL models also take into account that some questions can

discriminate more or less well between students of different

ability, and thus exhibit varying ICC slopes. In the example

in Figure 2B, blue and red items are of equal difficulty bi

(y = 0.5 crossing) and relatively similar discrimination ai,

while items green and purple are of equal difficulty and varying

discrimination. As the blue item is steeper, it has a higher

discrimination than the black and green items. According

to De Ayala and Little (2022), reasonably good discrimination

values range from approximately 0.8–2.5. Indeed, questions

with steeper ICC slopes are better suited at discriminating

between students at a given ability, while questions with lower

discrimination power have more gentle slopes.

Items that discriminate better (steeper ICC slopes) thus

provide more information about the ability level at which

students are likely to start answering correctly, which results in

higher bell shaped Item Information Curves, or IICs. The bell

shaped curves in Figure 2C represent the amount of information

Ii provided for each of the test’s items according to the student’s

ability θ . These IICs vary in bothmaximum value (dependent on

the item’s discriminability, i.e., the ICC slope), and the x-value at

which they reach it (the item’s difficulty). Here, the blue and red

curves, as well as the green and purple curves, have the same

difficulty (they both reach their maximum around x = -2 and x

= 0, respectively), but are of different discriminability: the blue

item discriminates more than the red, the red more than the

green and the green more than the purple (steeper ICC slope,

and higher maximum IIC value).

Taking into account the different test items and the amount

of information provided by each question, one can obtain the

resulting Test Information Function (TIF) and Standard Error

of Measurements (SEM). In Figure 2D, the TIF (blue) is the sum

of the instrument’s IICs from Figures 2B,C, while the SEM is the

square root of the variance. The TIF shows that the instrument

displays maximum information around -2 and provides more

information in the low-medium ability range than in the high

ability range. The SEM (red) is at its lowest where the test

provides the most information (maximum of the TIF) and at its

highest where the test provides the least information (minimum

of the TIF).

Please note that prior to applying IRT, it is recommended

to verify whether the data meets the unidimensionality criteria.

If the unidimensionality criteria is not met, the higher the

misspecification, then the higher the impact on the estimated

parameters, and in particular on the discriminatoin parameter

(with little impact on the difficulty parameter, Kahraman, 2013;

Rajlic, 2019). The unidimensionality criteria can be verified

through Confirmatory Factor Analysis (CFA) as done by Kong

and Lai (2022) for instance. As the input data is binary (with a

score of 0 or 1 per question), the CFA analysis is conducted using

an estimator which is adapted to non-normal data and employs

diagonally weighted least squared and robust estimators to

estimate the model parameters (Schweizer et al., 2015; Rosseel,

2020).

When analyzing the results of IRT, as in the case of

Confirmatory Factor Analysis, and other similar statistical

approaches, multiple fit indices should be considered to establish

the goodness of fit of the model. Model fit indices include the

following metrics:

• The chi-square χ2 statistic which should have pχ2 > 0.05.

However, the larger the sample, the larger the χ2 statistic,

and the lower the p-value (Prudon, 2015; Alavi et al.,

2020). The literature therefore suggests employing the ratio

between the χ2 statistic and the degrees of freedom with

a cutoff at χ2/df ≤ 3 (Kyriazos, 2018). At the individual

item level for IRTmodels, Orlando and Thissen’s signed χ2

statistic (S−χ2) is recommended, with a ratio of χ2/df ≤ 5

being acceptable (Wheaton et al., 1977; Kong and Lai, 2022)

and a ratio below 3 being considered good.

• The root mean square error of approximation or RMSEA

which should be < 0.06 for good fit and < 0.08 for

acceptable fit (Hu and Bentler, 1999; Chen et al., 2008; Xia

and Yang, 2019).

• The standardized root mean square residual or SRMR (Hu

and Bentler, 1999; Xia and Yang, 2019) which should be

< 0.08.

• The comparative fit index (CFI) and Tucker Lewis index

(TLI) with values > 0.95 indicating a good fit, and

acceptable values being > 0.90 (Kong and Lai, 2022).

Finally, more specifically to IRT, are

• Yen (1984)’s Q3 statistic to measure local independence

which requires that none of the pairs of item residuals have

a high correlation to ensure that local independence is not
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FIGURE 2

IRT Theory plots. (A) Item Characteristic Curves for four items of equal discrimination (slope) and varying di�culty (using a 1-PL model on the

cCTt test data). (B) Item Characteristic Curves (ICC) for four items (blue, red, green, purple) of varying di�culty and discrimination (using a 2-PL

model on cCTt test data). (C) Item Information Curves (IICs) for the items in (B). (D) Test Information Function (TIF, in blue) for the four items

from Panels (B) and (C) (IIC, in black), and the standard error of measurement (SEM, in red).

violated for the given model type. Critical values for the

Q3 statistic are often arbitrary (Christensen et al., 2017)

(e.g., 0.2 Christensen et al., 2017; Kong and Lai, 2022 or

0.3 Marais, 2012). As in our case the sample size is small

(around 200 for the cCTt and 300 for the BCTt), and the

number of items is high, the threshold of 0.3 is chosen as

a critical value as the Q3 statistic is expected to be higher

here than in cases with large samples and low number of

items (Christensen et al., 2017). Similarly, as the number

of items is high, the critical values are also expected to be

higher (Christensen et al., 2017). As such, we consider the

0.3 threshold for the present study.

The Q3 statistic is computed once the model with the

best fit has been selected.

• TheM2 statistics by Maydeu-Olivares and Joe “which have

been found to be effective in evaluating the goodness of fit

of IRT models” (Kong and Lai, 2022).

• The IRT reliability for each ability θ which is “closely

related to test information and standard error, as

it concerns the measurement precision and can be

calculated with the equation r = 1 − SEM(θ2)” (Kong

and Lai, 2022) where SEM represents the SEM for

each ability.

• Wainer and Thissen (2001)’s marginal reliability

metric (rxx) which “denotes the ratio of the

true score variance to the total variance,

expressed with respect to the estimated latent

abilities” (Andersson and Xin, 2018).
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TABLE 3 Participants.

Number of participants per grade

Test Gender Grade 3 Grade 4 Undisclosed Total

BCTt

Female 80 82 5 167

Male 78 61 6 145

Undisclosed 62 62

Total 158 143 73 374

cCTt

Female 36 68 104

Male 38 59 97

Total 74 127 201

2.3. Participants and data collection

To compare the instruments, we used data collected by

researchers and practitioners using the BCTt and cCTt in a study

looking to evaluate the impact of a CT intervention conducted in

public schools in Portugal. The recruitment for the intervention

was done in three stages. First a call was sent out to schools and

teachers to ask whether they were interested in participating in

the CT intervention which included a pre-post test assessment

using either the BCTt (in spring 2020) or the cCTt (in spring

2021). Secondly, teachers who were interested were briefed

about the intervention and the assessments before agreeing or

not to participate with their classrooms. Thirdly, consent forms

were sent out to the parents of the concerned students.

The administration of both instruments was done in the

classrooms following the protocol established for the BCTt,

and its adaptation for the cCTt. In order to compare the

instruments and avoid biases from the interventions themselves

(whose goals and outcomes are outside the scope of this article),

we only consider the results of the pre-tests administered to

575 students prior to the interventions (El-Hamamsy et al.,

2022b).3 More specifically, we analyse the results of the BCTt

pre-test administered in March 2020 to 374 students in grades

3–4, and the results of the cCTt pre-test administered in

April 2021 to 201 other students in grades 3–4 (see Table 3).

All participants were enrolled in the same school districts in

Portugal and did not have any prior experience with the CT-

concepts measured with the instruments, as this is not part of

the national curriculum. Please note that while the populations

are not identical, they are considered to be comparable, and

a comparison of both instruments is possible through the

lens of IRT which is sample agnostic (see section 2.2.2) and

complements the results of Classical Test Theory which may be

subject to sample dependency. Comparing the properties of the

instruments on two distinct samples also helps avoid the testing-

effect, i.e., having students’ performance improve on the second

instrument because the questions employ the same modalities

as the first instrument, and are therefore familiar and easier due

3 The data is available on Zenodo (El-Hamamsy et al., 2022b).

to practice, rather than being due to a difference between the

instruments (Knapp, 2016).

3. Results

3.1. Score distribution

The distribution of scores obtained in the two tests (both

out of a maximum of 25 points) is shown in Figure 3. The

Shapiro-Wilk test of normality indicates that the distribution of

the cCTt is normal (p > 0.05, fails to reject H0) and that the

distribution of BCTt is not (p < 0.0001, rejects H0). This is

due to a ceiling effect, which is apparent for the BCTt (skew =

−1.23, kurtosis = 1.98), but is not present in the case of the

cCTt (skew = −0.07, kurtosis = −0.13).4 Neither instrument

shows significant differences in scores between genders [one-

way ANOVA FBCTt(1) = 0.19, pBCTt = 0.67; one-way ANOVA

FcCTt(1) = 0.03, pcCTt = 0.86].

Where the BCTt is concerned, students in grade 4 (µ4 =

20.62± 3.66) perform significantly better than students in grade

3 (µ3 = 19.18 ± 4.16). Indeed, the one-way ANOVA indicates

that the difference between grades is significant [F(1) = 10.18,

p = 0.0016, 1µ = 1.44 out of 25] with a medium-small effect

size (Cohen’s d = 0.375 Lakens, 2013). This would appear to

confirm the progression between grades on the BCTt observed

in the original BCTt validation.

Where the cCTt is concerned, no significant differences exist

between grades [one-way ANOVA F(1) = 1.63, p = 0.2]. The

lack of distinction between grades in this sample is related to

the fact that the grade 3 students are performing well on the

4 Skew (i.e., the asymmetry of a distribution) and kurtosis (i.e., the

location of the peak of a distribution) of a normal distribution are close to

0 (Kim, 2013).

5 Cohen’s d e�ect size is a quantitative measure of the magnitude of

the observed di�erence. It is a standardized measure of the di�erence

between the two means which is calculated by dividing the di�erence of

the means by the standard deviation. Cohen suggested that 0.2 is a small

e�ect size, 0.5 a medium e�ect size, and 0.8 a large e�ect size (Lakens,

2013).
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FIGURE 3

Score distribution for the BCTt and cCTt. The histogram and boxplots show the ceiling e�ect of the BCTt while the cCTt exhibits a normal

distribution centered around 15/25 (i.e., 60%).

test (µ = 14.64 ± 3.75 out of 25), and specifically as well

as the grade 4 students (µ = 15.45 ± 4.68). Indeed, in the

first study validating the cCTt, the grade 3 students scored an

average of µ = 12.62± 5.18 (n = 711) and the grade 4 students

µ = 15.49± 4.96 (n = 749) out of 25.

3.2. Classical Test Theory

Cronbach’s α (Bland and Altman, 1997) measurement of

internal consistency of scales was used as an indicator of the

instruments’ reliability. According to the thresholds of Hinton

et al. (2014) and Taherdoost (2016), both instruments exhibit

high reliability (αBCTt = 0.82 > 0.7, αcCTt = 0.78 >

0.7). Nonetheless, the individual item difficulties (i.e., the

proportion of correct answers) and point biserial correlations

(i.e., the difference between the high scorers and the low scorers

of the sample population) provide useful insights into the

developmental appropriateness of the instruments, by indicating

which items could be revised to improve the validity of the

instruments for the target populations.

Figure 4 shows that both instruments present questions of

decreasing difficulty (i.e., that are harder). The BCTt counts

13 questions which are above the maximum difficulty index

threshold (i.e., are too easy) for the target age group, as opposed

to 5 for the cCTt (including the 3 that were too easy in the

original cCTt validation). The cCTt also exhibits two questions

which are too hard (the same ones as in the original cCTt

validation), which is not the case of the BCTt. Indeed, as Figure 4

shows, the BCTt covers a smaller range of item difficulties (BCTt

difficulty indices min = 0.97, max = 0.49, range = 0.48; cCTt

difficulty indices min = 0.96, max = 0.18, range = 0.79), lacking

items in the lower half of the difficulty index range.

In terms of point-biserial correlation (see Figure 4),

questions that could be revised for students in grades 3–4 are

those below the 0.2 threshold. The metric indicates that only

one item could be revised for the BCTt (question 24), while

four items of the cCTt could be revised (questions 2, 17, 22, and

24). Interestingly, most of these questions were among the most

difficult ones for the students.

Table 4 reports the Classical Test Theory analysis results for

all questions in the two tests. Accounting for both difficulty

indices and point biserial correlation, the number of questions

that could be revised for students in grades 3 and 4 are higher

for the BCTt (n = 14) than the cCTt (n = 8), as can be seen in

Table 4.

3.3. Item Response Theory (IRT)

3.3.1. Verifying the unidimensionality to
compare instruments through Confirmatory
Factor Analysis

One criteria required to compare instruments through IRT

is that the data measure the same latent trait. We thus employed

Confirmatory Factor Analysis (CFA) as done by Kong and Lai
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FIGURE 4

Classical Test Theory—Item Di�culty indices (i.e., the proportion of correct responses) on the left, and Point-Biserial Correlation on the right.

Items with di�culty indices above the 0.85 threshold are considered too easy while items with di�culty indices below the 0.25 threshold are

considered too di�cult. Items with a point-biserial correlation above the 0.2 threshold are considered acceptable while those above 0.25 are

considered good.

TABLE 4 Full BCTt (Cronbach’s αBCTt = 0.82) and cCTt (Cronbach’s αcCTt = 0.78) Classical Test Theory Analysis.

BCTt cCTt

Q Difficulty

index

std PBC Drop

alpha

Revision Q Difficulty

index

std PBC Drop

alpha

Revision

1 0.95 0.22 0.27 0.82 x 1 0.96 0.19 0.25 0.78 x

2 0.97 0.16 0.39 0.82 x 2 0.96 0.19 0.11 0.78 x

3 0.96 0.2 0.3 0.82 x 3 0.73 0.44 0.32 0.77

4 0.91 0.29 0.41 0.82 x 4 0.86 0.35 0.23 0.78 x

5 0.9 0.3 0.46 0.81 x 5 0.69 0.46 0.32 0.77

6 0.92 0.27 0.39 0.82 x 6 0.88 0.32 0.38 0.77 x

7 0.85 0.35 0.37 0.82 x 7 0.77 0.42 0.3 0.77

8 0.91 0.29 0.49 0.81 x 8 0.83 0.38 0.37 0.77

9 0.92 0.27 0.41 0.82 x 9 0.86 0.35 0.29 0.78 x

10 0.92 0.27 0.32 0.82 x 10 0.58 0.49 0.43 0.77

11 0.84 0.37 0.39 0.82 11 0.61 0.49 0.46 0.76

12 0.93 0.25 0.42 0.82 x 12 0.73 0.45 0.46 0.77

13 0.9 0.3 0.43 0.81 x 13 0.67 0.47 0.53 0.76

14 0.59 0.49 0.43 0.81 14 0.6 0.49 0.32 0.77

15 0.57 0.5 0.43 0.81 15 0.59 0.49 0.49 0.76

16 0.79 0.41 0.37 0.82 16 0.56 0.5 0.39 0.77

17 0.92 0.27 0.32 0.82 x 17 0.2 0.4 0.19 0.78 x

18 0.57 0.5 0.52 0.81 18 0.59 0.49 0.23 0.78

19 0.78 0.42 0.39 0.82 19 0.53 0.5 0.28 0.78

20 0.61 0.49 0.39 0.82 20 0.27 0.45 0.3 0.77

21 0.59 0.49 0.35 0.82 21 0.44 0.5 0.28 0.78

22 0.54 0.5 0.37 0.82 22 0.38 0.49 0.15 0.78 x

23 0.79 0.41 0.29 0.82 23 0.44 0.5 0.3 0.77

24 0.49 0.5 0.15 0.83 x 24 0.18 0.38 0.1 0.78 x

25 0.78 0.41 0.33 0.82 25 0.31 0.46 0.26 0.78

Q, question; Difficulty index, proportion of correct responses; std, standard deviation; PBC, Point-Biserial Correlation. Items that are too easy (i.e., µ > 0.85), too difficult (i.e., µ < 0.25),

or with a low point-biserial correlation (< 0.2) are marked in bold as elements which could be revised.
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(2022), with a Diagonally Weighted Least Squares estimator to

account for the binary inputs (see Table 5 for the fit indices).

The Kaiser, Meyer, Olkin (KMO) measure of sampling adequacy

indicates that the data is appropriate for factor analysis in both

cases. Bartlett’s test of sphericity also suggests that there is

sufficient significant correlation in the data for factor analysis.

For the full instruments (with 25 items) the model fit indices

are also adequate in terms of the χ2 criteria statistic, the CFI

and TLI indices for both instruments. The RMSEA is below 0.6

in both cases. Finally, the SRMR is considered acceptable for

the cCTt and just shy of the limit for the BCTt (SRMRBCTt =

0.084). The modification indices for the BCTt-CFA indicate high

correlations between 3 items from the BCTt (Q14, Q15, and

Q18) which address the notions of complex loops. Removing

item 15 from the factor analysis improves the model fit and

meets the threshold requirements for the different fit indices

(see Table 5). Furthermore, we exclude items with low CFA

factor loadings (< 0.2) from the IRT analysis. Please note

that all remaining items have significant factor loadings and

that the excluded items correspond to questions which have

low point biserial correlations (namely Q24 in the BCTt, and

Q2, Q17, Q22, and Q24 in the cCTt). The corresponding fit

indices for the final 1 factor CFA are provided in Table 5. With

these adjustments, a 1 factor structure appears suitable for both

instruments (when excluding Q15 and Q24 from the BCTt, and

Q2, Q17, Q22, and Q24 from the cCTt).

3.3.2. Comparing the instruments

As indicated previously, we only consider the 1-PL and 2-PL

models in our study due to the low sample sizes which prevent

us from finding stable solutions in the case of the 3-PL model

and prevent us from converging in the case of the 4-PL model

(see global model fit indices for the 1-PL and 2-PL models in

Table 6). For both the BCTt and the cCTt, the 2-PL model was

selected as an ANOVA indicated that the 2-PL model improved

the fit significantly compared to the 1-PL model in both cases

[χ2
BCTt(22) = 62.92, pBCTt < 0.0001, χ2

cCTt(20) = 79.84,

pcCTt < 0.0001]. Individual item discrimination, difficulties,

and fit indices are provided for the 2-PL models in Table 7. The

results indicate that the χ2/df < 3 criterion is achieved for

all items, and that all but three items have RMSEA just shy of

the 0.6 threshold (considering that the rounded values would be

equal to 0.6 these can be considered acceptable, Ockey and Choi,

2015). We then verify the local independence using Yen (1984)’s

Q3 statistic and find that it is below the 0.3 threshold for all pairs

of items in the BCTt and in the cCTt.

The results of the IRT analyses are shown in Figures 5A–

D. While the Item Characteristic curves (Figure 5A) appear to

indicate that the BCTt questions have higher “discrimination

power” than the cCTt questions, this difference is not significant

[one-way ANOVA F(1) = 3.11, p = 0.085, see Figure 6]. This

means that both tests are as good at discriminating between T
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TABLE 6 IRT model parameter fit indices for 1-PL and 2-PL models with the BCTt and cCTt.

M2 df p RMSEA ci RMSEA 5% ci RMSEA 95% SRMR TLI CFI

BCTt (23 items) 1-PL 514 253 0.000 0.053 0.046 0.059 0.098 0.929 0.929

2-PL 415 230 0.000 0.046 0.039 0.053 0.068 0.945 0.950

cCTt (21 items) 1-PL 392 210 0.000 0.067 0.056 0.077 0.102 0.849 0.849

2-PL 294 189 0.000 0.053 0.041 0.065 0.075 0.903 0.913

students, however where they discriminate best differs6. The

Item Information Curves (Figure 5B) shows that the BCTt

questions provide most information in the low ability range,

while the Item Information is more distributed along the low-

medium range for the cCTt. The resulting TIFs (Figure 5C)

therefore confirm that the BCTt is better at discriminating

between students with low ability, while the cCTt is better at

discriminating between low-medium abilities. As such, the IRT

findings support that the cCTt overall fits grade 3–4 individuals

and it decently works all along the ability range.

3.4. Limitations

As in all studies, the study presents certain limitations.

Aside the inherent limitations pertaining to the specific use of

Classical Test Theory and Item Response Theory which are well

documented in the literature, the following elements are specific

to the current study.

The instruments were tested on two populations from

different schools, one year apart, and may thus differ in their

CT abilities. While the students in the same grades should be

expected to have the same level of CT-skills, this may not be

the case. However, certain elements help mitigate this risk and

counter the limitation: the schools are in the same country and

district and thus follow the same mandatory curriculum (which

does not include CS or CT), the measurements took place at the

same time of the academic year, and we employed IRT as it tends

to be sample agnostic.

The relatively small sample sizes prevented us from testing

more complex models, such as 3-PL and 4-PL models. Indeed,

larger sample sizes, in particular for the cCTt (n = 200), would

have likely improved the model fit and reliability of the item

difficulty and discrimination indices. These indices should only

be considered as indicative of where the test provides more

6 The “discrimination power” of the instrument which relates to how

high the discrimination is over all the questions of the assessment and is

provided by slope of the ICCs, maximum values of the IICs. This is related

to where the assessment, and thus the individual questions, discriminate

best (which is provided by the y = 0.5 crossing of the ICCs, or the peak of

the IICs).

information, also since the IRT analysis was conducted on

a subset of the items to meet the unidimensionality criteria.

However, please note that the IRT analysis was also conducted

with the full subset of items (although not presented in the

article) and lead to the same conclusions. Such an analysis is

possible as the violation of the unidimentionality criteria leads

to “an overestimation of the discrimination parameter, (ii) with

little impact on the difficulty estimation” (Kahraman, 2013;

Rajlic, 2019), with “the impact on the estimated parameters

[being] smaller the closer we are to the unidimensionality

criteria” (Kahraman, 2013; Rajlic, 2019). Given the small samples

and the fact that the IRT parameters were estimated on a subset

of the items, it would be best to avoid using the IRT parameter

estimates of the present study, in particular for the cCTt, to

estimate the students’ abilities on the latent ability scale.

4. Recommendations for the use of
the BCTt and the cCTt

Considering (i) the present BCTt-cCTt comparison, (ii) the

results of the BCTt validation conducted by Zapata-Cáceres

et al. (2020) over grades 1–6, and (iii) the cCTt validation

conducted by El-Hamamsy et al. (2022a) over grades 3–4, we

propose the following recommendations with respect to these

two instruments for grades 3–4:

• The cCTt should be preferred for grades 3–4 as it

differentiates better between students in this age group and

ability level, in addition to discriminating moderately well

along the entire ability range. The cCTt is thus better suited

to evaluate the efficacy of the intervention itself, in a pre-

post-test design.

• The BCTt could be employed for low-ability students in

grades 3–4, depending on the assessors’ prior knowledge

of the context and the students being assessed given the

good discriminability the BCTt offers in grades 3–4 for low

ability students.

• The BCTt could be employed as a screening mechanism

to identify low-ability students which could prove useful

for practitioners prior to an intervention, e.g., to ensure
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TABLE 7 BCTt and cCTt item parameters and fit indices.

BCTt cCTt

Item Dscr Dffc S-χ2 df S-χ2 RMSEA p S-χ2 S-χ2/df Item Dscr Dffc S-χ2 df S-χ2 RMSEA p S-χ2 S-χ2/df

S-χ2 S-χ2

Q1 1.29 -2.8 11.5 8 0.034 0.175 1.44 Q1 2 -2.38 3.3 2 0.058 0.191 1.66

Q2 2.79 -2.28 2.3 2 0.019 0.323 1.13 Q3 0.95 -1.27 13.7 11 0.035 0.251 1.24

Q3 1.73 -2.47 3.2 6 0.0 0.786 0.53 Q4 0.76 -2.6 15.2 10 0.052 0.124 1.52

Q4 1.82 -1.85 13.8 11 0.026 0.245 1.25 Q5 0.95 -1 11.6 11 0.017 0.392 1.06

Q5 2.41 -1.6 20.3 9 0.058 0.016 2.26 Q6 2.01 -1.56 9 7 0.038 0.254 1.28

Q6 1.66 -2.03 13.1 11 0.022 0.29 1.19 Q7 1.02 -1.4 11 11 0.0 0.447 1

Q7 1.38 -1.67 15.8 12 0.029 0.2 1.32 Q8 1.46 -1.45 9.5 9 0.016 0.396 1.05

Q8 2.56 -1.6 11.8 9 0.029 0.224 1.31 Q9 1.47 -1.67 16.2 9 0.064 0.062 1.8

Q9 2.16 -1.82 8.6 10 0.0 0.574 0.86 Q10 1.52 -0.33 14.1 10 0.046 0.167 1.41

Q10 1.41 -2.26 18.2 11 0.042 0.077 1.66 Q11 1.76 -0.4 5.3 10 0.0 0.871 0.53

Q11 1.42 -1.55 14.6 13 0.018 0.334 1.12 Q12 1.98 -0.82 14.3 8 0.063 0.075 1.79

Q12 2.02 -1.95 9.9 10 0.0 0.451 0.99 Q13 2.75 -0.53 7.9 7 0.026 0.338 1.13

Q13 1.93 -1.73 13.3 11 0.024 0.275 1.21 Q14 0.98 -0.49 17.1 10 0.061 0.071 1.71

Q14 1.31 -0.36 14.7 10 0.035 0.145 1.47 Q15 2.35 -0.3 13 8 0.057 0.112 1.62

Q16 1.25 -1.37 19.3 13 0.036 0.113 1.49 Q16 1.09 -0.27 5.7 10 0.0 0.837 0.57

Q17 1.43 -2.22 11.8 11 0.014 0.383 1.07 Q18 0.53 -0.75 16.3 12 0.043 0.178 1.36

Q18 1.77 -0.26 8.6 8 0.014 0.379 1.07 Q19 0.62 -0.22 9.2 12 0.0 0.687 0.77

Q19 1.21 -1.3 11.4 11 0.01 0.408 1.04 Q20 0.65 1.66 12 10 0.032 0.284 1.2

Q20 1.13 -0.5 9.2 11 0.0 0.607 0.83 Q21 0.49 0.53 13.4 12 0.024 0.343 1.11

Q21 0.85 -0.52 7.8 11 0.0 0.733 0.71 Q23 0.63 0.38 9.5 11 0.0 0.577 0.86

Q22 1.08 -0.18 17 10 0.043 0.073 1.7 Q25 0.5 1.66 11.3 11 0.011 0.421 1.02

Q23 0.86 -1.74 18 13 0.032 0.157 1.39

Q25 0.92 -1.63 14.2 13 0.016 0.357 1.1

Dscr, Discrimination; Dffc, Difficulty.

F
ro
n
tie

rs
in

P
sy
c
h
o
lo
g
y

1
4

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fpsyg.2022.1082659
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


El-Hamamsy et al. 10.3389/fpsyg.2022.1082659

that the intervention is well-tailored to the abilities of the

students and ensure that nobody is “left behind.”

5. Discussion and conclusion

The BCTt and the cCTt are two instruments that expand

the portfolio of validated CT assessments, in particular, at

the level of primary education. These instruments overlap in

their target age ranges, notably in grades 3–4, and had not

yet been compared psychometrically for those age groups.

This study thus looked to establish the limits of validity

of the two instruments by providing a detailed comparison

of their psychometric properties on data acquired from 575

students (374 doing the BCTt and 201 doing the cCTt). Indeed,

as:

1. The BCTt and the cCTt were validated in different countries,

and thus potentially different contexts

2. There were only n = 52 grade 4 students in the BCTt

validation, and n = 0 grade 3 students, with limited

psychometric analyses conducted for the BCTt in those

grades specifically.

The present study looked to conduct a detailed psychometric

analysis of the BCTt in grades 3–4 (which was not yet conducted)

FIGURE 5

(Continued)
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FIGURE 5 (Continued)

Item Response Theory curves for the BCTt and the cCTt. (A) Item Characteristic Curves (ICC). The figure shows that the items have varying

di�culties and discrimination (slopes), with BCTt items showing higher discriminability in the low ability range and cCTt items showing higher

discriminability in the low and medium ability ranges. (B) Item Response Theory Item Information Curves (IIC). Items in both instruments provide

varying amount of information at di�erent ability levels. Similarly to the ICC curves in Panel (A), the information of the BCTt is mainly in the low

ability range, while the information of the cCTt is in the low and medium ability ranges. Item Response Theory curves for the BCTt and the cCTt.

(C) Test information function (TIF). The TIF being the sum of each instruments’ Item Information Curves [see Panel (B)], the results confirm prior

observations: the BCTt provides most of its information in the low ability range while the cCTt provides most information in the low and

medium ability ranges. (D) Reliability at di�erent ability levels. The figures show that both instruments have low reliability in the high ability range.

The BCTt reliability peak is shifted toward the lower ability range while the cCTt reliability peak is toward the medium ability range. Please note

that the marginal reliability rxx for the BCTt is rxx(BCTt) = 0.75, and for the cCTt rxx(cCTt) = 0.80.

and compare the validity of the two instruments on a large

and comparable pool of grade 3–4 students from a third, and

single, country.

The findings from the psychometric analyses of the two

instruments help re-establish their validity in grades 3 and

4 with both a new population and with students from a

new country (here n = 575in Portugal, while the cCTt was

validated with n = 1,519 grade 3–4 students in Switzerland,

El-Hamamsy et al., 2022a, and the BCTt with n = 299 grade

1–6 students in Spain, Zapata-Cáceres et al., 2020). Where the

cCTt is concerned, while there were no differences between

students in grades 3–4 in the present sample, the general
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FIGURE 6

Item Response Theory BCTt–cCTt item discrimination

comparison [one-way ANOVA F(1) = 3.11, p = 0.085].

conclusions drawn from the Classical Test Theory analysis

and overall IRT are coherent with those obtained by El-

Hamamsy et al. (2022a). Where the BCTt is concerned, the

results confirm the ceiling effect observed in grade 4 in the

original study (Zapata-Cáceres et al., 2020) and extend it to

students in grade 3 who were not part of the initial pool of

students who were administered the BCTt. The psychometric

comparison indicates that the cCTt should be preferred for

students in grades 3 and 4, as students already have a good

assimilation of basic CT concepts pertaining to sequences and

loops. Therefore, students in grades 3–4 perform too well on

the easier BCTt (which employs smaller 3× 3 grids), giving rise

to a ceiling effect. The BCTt should instead be preferred if the

objective is to discriminate between students with low abilities in

grades 3 and 4.

The findings are consistent with other studies that found

that simple loops are already mastered in early primary school

(Montuori et al., 2022), with very young students (starting 3

years old) already being able to solve algorithmic problems

and their results improving with age (Piatti et al., 2022).

As CT skills relate to students’ numerical, verbal, and non-

verbal reasoning abilities (Tsarava et al., 2022), it is likely

that the findings align with students’ maturation, increase

in working memory (which is required to achieve tasks,

Cowan, 2016), and executive functions over time. Therefore,

as students get older, they should be able to deal with

more complex computational concepts (e.g., conditionals and

while loops), including those with more complex perceptual

configurations (e.g., the 4 × 4 grids), corroborating the

differences observed between both instruments. Future work

should therefore consider continuing to refine the limits of

validity of the instruments. Indeed, refinement studies are

common in educational psychology, with similar work having

already been undertaken for (i) the original CTt (aimed at

10–16 year old students) to improve it’s validity for 16 year

old students and above (Guggemos et al., 2022), and (ii)

The TechCheck and it’s variants to improve the validity for

kindergarden students (Relkin et al., 2020; Relkin and Bers,

2021).

Two key takeaways emerge from the present study:

1. The importance of building and validating CT assessments

for each specific age: children in the early stages of education

undergo rapid cognitive development, so an instrument

designed for a specific age range is likely to be too difficult

for those immediately younger and too easy for those

immediately older.

2. The importance of psychometrically comparing existing,

overlapping CT instruments to establish their limits of

validity. By providing detailed comparisons, researchers and

practitioners may be able to choose the assessment in an

informed way, and in accordance with their requirements

and objectives.

As numerous researchers have put forward, instruments

such as the BCTt and the cCTt should be combined with

other forms of assessments in a systems of assessments (Grover

et al., 2015; Román-González et al., 2019; Weintrop et al.,

2021a) to accurately measure the full range of competencies

at play when considering CT (Brennan and Resnick, 2012;

Piatti et al., 2022). The systems of assessments could therefore

include other instruments which assess CT practices such as

the test by Li et al. (2021), employ direct observations of

students’ thought processes and strategies (Lye and Koh, 2014;

Chevalier et al., 2020), or learning analytics and educational

data mining techniques (Cock et al., 2021; Nasir et al., 2021;

Zapata-Cáceres and Martín-Barroso, 2021). Complementary

assessments would not only help gain a more accurate and in-

depth picture of student learning but also feed into the learning

activity design and intervention process (Chevalier et al., 2022).

For completeness, the system of assessments should also include

instruments that measure CT perspectives (e.g., such as those

developed for high school, Yagci, 2019 and undergraduates,

Korkmaz et al., 2017).

Provided that validation is a multi-step process that requires

“collect[ing] multiple sources of evidence to support the

proposed interpretation and use of assessment result[s] [and]

multiple methodologies, sources of data, and types of analysis”

(Gane et al., 2021), it is important to note that the BCTt and

cCTt may still undergo further validation by including evidence

of criterion validity. This can be achieved through several means.

The first is comparing with other existing validated assessments.

For instance, Relkin et al. (2020) compared the TechCheck

with the TACTIC-KIBO, while (Li et al., 2021) went one step

further and correlated the CTA-CES with reasoning, spatial

abilities, and verbal abilities. The second is establishing the

test’s predictive validity, for example by establishing whether

the instrument can predict academic performance and coding

achievement as done by Román-González et al. (2018). The third

is determining the instruments’ concurrent validity, that is to say

seeing whether the instrument is able to distinguish between two

groups that differ, for instance novices and experts, or according
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to students expressed digital proficiency as done by Li et al.

(2021).
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