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This position paper makes the case for an innovative, multi-disciplinary methodological

approach to advance knowledge on the nature and work of music performance, driven

by a novel experiential perspective, that also benefits analysis of electrocardiographic

sequences. Music performance is considered by many to be one of the most

breathtaking feats of human intelligence. It is well accepted that music performance is a

creative act, but the nature of its work remains elusive. Taking the view of performance as

an act of creative problem solving, ideas in citizen science and data science, optimization,

and computational thinking provide means through which to deconstruct the process of

music performance in scalable ways. The method tackles music expression’s lack of

notation-based data by leveraging listeners’ perception and experience of the structures

elicited by the performer, with implications for data collection and processing. The

tools offer ways to parse a musical sequence into coherent structures, to design

a performance, and to explore the space of possible interpretations of the musical

sequence. These ideas and tools can be applied to other music-like sequences such

as electrocardiographic recordings of arrhythmias (abnormal heart rhythms). Leveraging

musical thinking and computational approaches to performance analysis, variations in

expressions of cardiac arrhythmias can be more finely characterized, with implications

for tailoring therapies and stratifying heart rhythm disorders.

Keywords: music performance, computational modeling, technology, citizen science, musical structure, cardiac

arrhythmia

1. INTRODUCTION

At first blush, music performance, musical structures, and cardiac arrhythmia may seem like words
that should not be uttered in the same sentence, much less discussed in the same paper. However,
the shared musical structures between music and cardiac signals, and the underlying constraints
of human physiology mean that analytical approaches for characterizing music performance can
also be applied to cardiac recordings. Here, I shall present an overview of these topics as they relate
one to another, including the motivation for focusing on musical structures, particularly structures
created by performers in music communication; citizen science and computational approaches to
finding and exploring such structures; why and how these techniques apply to cardiac information;
and, the practical implications of these theoretical connections. The discussions introduce and are
circumscribed by the scope of COSMOS, a 5 year European Research Council (ERC) project on
Computational Shaping and Modeling of Musical Structures.

Performance and the expressivity that it entails underlies almost all the music that we hear,
but the study of performance through technological means is a relatively recent phenomenon
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(Juslin et al., 2001; Widmer et al., 2003; Widmer and Goebl, 2010;
Devaney et al., 2011; Kirke and Miranda, 2013; Cancino-Chacón
et al., 2018). This is due in part to the fact that the problems
of performance are not well understood nor well defined. To
bridge this gap, I present here a view of music performance as
a creative problem-solving task centered on the search for and
communication of musical coherence or structure. From this
vantage point, choices in performance are driven by the human
desire for coherence, which necessitates the making and shaping
of structure in music. Thus, performance is tightly linked to
musical structure, broadly defined, and successful performances
are marked by clear communication of structure and intent.

Music structure most frequently refers to sectional, repeating
forms such as sonata form or ABA structure (Stein, 1979;
Paulus et al., 2010; Wu and Bello, 2010; Davie, 2014). Here,
the term structure is used more generally to refer to all
forms of organization of musical matter, from surface features
to deeper ones, including musical entities and boundaries,
and movements and arrivals. For example, long-term intensity
modulation constitutes a form of structure, as do articulations to
mark local note groupings, note weightings indicating an upbeat
or downbeat, or subtle changes of timbre amidst a sustained
note. These structural features serve the function of generating
coherence in music. With this definition of musical structure in
mind, the work of performance then becomes one of finding,
even creating, musical coherence.

The ways in which performance ties in to this broad
notion of musical structure provides avenues for computational
scientists and music technologists to more closely engage with
research on performed music and music performance. This
suggests novel approaches to thinking and asking questions
about musical structure, generating new ways to problematize
the concept of musical structure, and to find this structure.
Because the task of performance can be framed as the finding
of musical coherence, solving for musical structures (broadly
defined) thus accomplishes the essential work of performance
and interpretation.

A key idea here is one of re-thinking and re-framing problems
of music performance so that they can be formulated in smart
and authentic ways that interface smoothly with technologies.
Finding the right problem is frequently overlooked as being at
least as important as solving the problem itself (Pounds, 1966).
After observing managers spending substantial amounts of time
solving problems defined by themselves or by others, Pounds
proposed a scientific alternative to this frenetic approach: “until
one has a fairly reliable model of the environment, it is not only
foolish but perhaps even dangerous to take action when its effect
cannot be predicted” (p.33). Furthermore, “problem definition
cannot precede model construction” (p.35). Thus, one needs
to first understand the nature of performance before tackling
technological innovations that interface withmusic performance.
This advice is especially relevant today as computers are now
capable of solving problems of ever increasing complexity.

The research directions proposed in this position paper draw
from a range of disciplines: music engagement and musical
structure in music information research, creative thinking
and problem solving in cognitive psychology, the citizen

science movement for scientific research, computer games for
shaping performance, duality and inverse problems in applied
mathematics, and computational thinking in computer science.
Inspired by the growing citizen science movement (Vohland
et al., 2021), an approach is proposed here to involve citizens—
experienced musicians, retired performers, everyday music
listeners—in the scientific endeavor of de-constructing the
problems of music performance. To evaluate the amount of
information provided by citizen scientists and to model and
solve problems at scale, computational thinking (Wing, 2006) is
invoked to ensure accuracy, efficiency, and scalability. To focus
on modeling the decisions and perceptions of individuals, an
inverse problem approach (Vogel, 1987) is proposed through
a duality paradigm. To enhance learning by doing (Anzai and
Simon, 1979) and drawing upon a wealth of music games
for shaping performance, everyday citizens will be encouraged
to engage in the task of exploring the space of possible
interpretations by designing and re-shaping performances and by
thinking about their decisions.

The methods stand to increase the understanding of how
performers interpret musical sequences and the reasons for their
choices, and to open up new avenues for exploring potential
or as-yet-unknown interpretations of musical sequences.
This can lead to knowledge of the strategies employed in
expressive performance, thereby allowing for the devising
of unconventional new performances that are nevertheless
musically convincing.

Another goal of this position paper is to highlight the
translational potential of techniques developed for analysing
and characterizing music performance in music-like sequences
such as electrocardiographic traces of cardiac arrhythmias.
Arrhythmia is the clinical presentation of abnormalities in
cardiac electric pulse generation or impulse conduction through
heart muscle (Dowd, 2007; Karpawich, 2015). These anomalies
can result in rhythms that are slow or fast, regular or
irregular, and that originate from different anatomical sites in
the heart. The paper will discuss the commonalities between
music and arrhythmic heart signals which make cardiac
information amenable to music structure analysis. Current
medical categorizations of cardiac arrhythmias are limited and
based primarily on rate, source, and regularity, often providing
little information as to the symptoms and outcomes. Over
the centuries, musicians have developed a rich vocabulary
to describe rhythm-based variations. This knowledge can be
transferred to characterize cardiac rhythm variations, to provide
better descriptors to personalize diagnostics and therapeutic
decisions. These theoretical connections extend the impact of
methodologies developed for understanding music performance
to computational cardiology. They also broaden the scope
of computational performance analysis to studies on the
interactions between music and the heart.

This position paper describes the aims and scope of
COSMOS—Computational Shaping and Modeling of Musical
Structures—a 5-year research project funded by the European
Research Council (ERC). The project aims to study musical
structures as they are created in performance and in cardiac
arrhythmias using data science, citizen science, and optimization.
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Like in Widmer (2017)’s manifesto, the problems identified here
and their scope are far greater than can be tackled by one project
alone. Thus, this is also a call to the community to join in the
efforts to tackle these research issues.

The remainder of the paper is organized as follows: Section 2
lays the groundwork for the research directions of COSMOS;
Section 3 provides evidence for the transfer of music structure
analysis techniques to ECG sequences; Section 4 outlines the
COSMOS objectives and research themes, with conclusions
in Section 5.

2. ISSUES OF PERFORMANCE AND
STRUCTURE

This section presents the tenets of the proposed research
directions, and reviews supporting evidence for them. An
essential guiding principle of performance is the creating of
engaging experiences; Section 2.1 reviews the growing body of
research on music engagement and the importance of musical
structure in this context. In Section 2.2, performance is described
as a form of creative thinking, and as such can be regarded as
an act of problem solving. A description of the use of citizen
science, a.k.a. volunteer thinking, in other domains and in music
follows in Section 2.3. Section 2.4 reviews the use of metaphors
in games for experimenting with performance decisions. The
concept of duality is introduced in Section 2.5, a re-framing
of problems in computational music structure analysis. Finally,
Section 2.6 argues for computational thinking that prioritizes
accuracy, efficiency, and scalability in models.

2.1. Music Engagement: Interrogating the
Musical Experience
Global digital media revenues in excess of one trillion USD
have bolstered the demand for music information technologies.
According to the International Federation of the Phonographic
Industry (IFPI, 2020)’s most recent Global Music Report,
worldwide digital revenues for recorded music were up by
8.2% in 2019. The people polled spent 18 h per week listening
to music, which equates to 52 3-min songs daily. Streaming
revenues rose by 22.9%, with Spotify alone having 345 million
users and 115 million paying subscribers by the end of 2020
(Music:)Ally, 2021). Even relative newcomer Apple Music has
72 million paying subscribers in June 2020 (Statistica, 2021),
and had acquired the music recognition app, Shazam, which
had surpassed one billion downloads (Smith, 2020). With such
widespread access to large digital music collections, there is
substantial interest in issues of music engagement and the
musical experience. The important question thus arises:

How do people engage with the music that they hear? What music

features do they attend to and what music structures do they

perceive?

Large-scale digital music datasets have spurred interests in how

people engage with music collections, leading to research in hit
song identification (Pachet, 2002; Pachet and Roy, 2008), where

top Billboard positions have been correlated with audio features
(Herremans et al., 2014), instrumentation (Nunes and Ordanini,
2014), and lyric repetition (Nunes et al., 2015). In a first ever
large-scale ecological study relating when users choose to send
a Shazam query on a popular song in relation to its popularity
and song structure, Kaneshiro et al. (2017) reports an increase
in queries at the onset of the vocals and the first occurrence of
the chorus, this changes as a function of the song’s popularity or
listener exposure to the song. In the general realm of studies on
what kinds of features attract listeners and stand out from other
music content, research on musical “hooks” in popular songs
have found that they tend to occur at structural segmentation
boundaries (Burns, 1987; Mercer-Taylor, 1999; Burgoyne et al.,
2013), which are linked to moments of change in harmony,
melody, timbre, and rhythm (Smith et al., 2014). Empirical
studies of musical hooks (Burgoyne et al., 2013) and the related
earworms (Williamson and Müllensiefen, 2012) form first steps
toward the automated identification of these experiential features
(van Balen et al., 2015).

Large-scale corpus studies of music structure as it relates to
music experience have focused primarily on popular music, due
in part to the available datasets, the computational challenges
in automating the cognition of music structures such as beat
in classical art music, and the time and labor required to
create meaningful manual annotations. While the same can be
said of many world musics, room remains for work aiming to

address the gap in population-scale performed music research

in classical music.

The temporal nuances in classical (Western art concert)
music, including its contemporary developments, make it
particularly challenging for machine analysis. Automatic
techniques that speed annotation like computer-based tempo
tracking work poorly on classical datasets (Grosche et al.,
2010), where movements in tempo are much more volatile
than in popular music, which are frequently temporally
constrained by the use of click tracks. The alternative, manual
tapping to create beat annotations, does not scale, which
is why initially beat annotations were available only for a
small subset of the Mazurka dataset of the CHARM Project
(www.mazurka.org.uk), which had amassed 2500 recordings
of 49 Chopin Mazurkas (Sapp, 2007, 2008). A workaround
to this problem is to painstakingly manually annotate one
recording of a piece, and transfer the annotations to others
of the same piece after aligning all other recordings to the
reference recording (Wang et al., 2016), then manually checking
the transferred annotations. Using this technique, my lab has
produced beat and loudness information for 2,000 recordings in
the Mazurka dataset to form the MazurkaBL dataset (Kosta et al.,
2018) (github.com/katkost/MazurkaBL), which has been used in
research on performed loudness (Kosta et al., 2015, 2016).

Not only is extracting the beats themselves difficult, assigning
meaning to expressive nuances is also challenging. Sometimes,
phrase arching can be clearly demarcated through increasing and
decreasing beat rates, and sometimes the beat rate will be entirely
meaningless with respect to phrase, with changes in loudness
being the main indicator (Cheng and Chew, 2008). This can
be the result of performance conventions, or the performer’s
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idiosyncratic decisions. Sometimes, a note elongation signifies
a harmonically important note, and sometimes it marks the
start of a motif; the start of a motivic grouping can also be
demarcated using articulation rather than time. And, sometimes,
extreme elasticity of pulse denotes a major tipping point (turning
point) (Chew, 2016) in the piece, and sometimes it is simply the
slow down at the end of a phrase or piece. The reasoning can
be inferred from data with the help of human annotations of
music structure.

The limited number of music datasets with structural
annotations focus on compositional structure, rather than the
felt or experienced structures, although the two are necessarily
related. Leveraging basic skills of noting boundaries between
sections and assigning labels that indicate which sections
contain similar material, the SALAMI (Structural Analysis of
Large Amounts of Musical Information) Project (DDMAL,
2019) (ddmal.music.mcgill.ca/research/salami) employed music
students at the McGill Schulich School of Music to create
2,400 structural annotations of almost 1,400 musical recordings
of popular, jazz, classical, and world music (Smith et al.,
2011); variability in listener annotations was addressed by
having two students annotate each recording. Other datasets
with structure annotations include Tampere University of
Technology’s TUTstructure07 dataset (www.cs.tut.fi/sgn/arg/
paulus/TUTstructure07_files.html), which contains 557 sectional
annotations of mainly popular music, and AIST’s 285 beat-
melody-chorus annotations of the RWC Music Database (Goto,
2006), a quarter of which is jazz and classical music.

The focus here is on structures felt and experienced, musical analogs

of elemental categories such as thresholds and change points,

stability and instability, to inform music engagement research.

Music listening is almost universal amongst humanity. Sloboda
(2008) has argued that it is the experience of music that must
be studied in order for us to discover its true impact. With
some induction, experts and non-professionals alike can draw
from their own experiences to provide meaningful input on
such experiential structures. Classical music serves as the starting
point for our investigations, but other kinds of music also
grapple with similar perceptual and structural issues, and the
methodologies worked out as a result of this research will also
benefit, for example, studies of music made with sounds rather
than notes, music without a clear pulse, and music without a
notated score.

2.2. The Science of Performance:
Performance as Problem Solving
Many consider music performance, with its on-the-fly
calculations and decision making, to be one of the most
breathtaking feats of human intelligence. That music
performance is a creative act is no longer a disputed fact.
In recent years, musicological views have shifted from music as
writing to music as performance (Cook, 2013).

The written score represents only selected aspects of
music knowledge and experience, and often in reduced and

approximate form, which means that the information is not
only inexact, but is an abstraction of the actual experience
(Frigyesi, 1993). Notes are played longer or shorter than indicated
(Cook, 2008); pitches are often ornamented in practice (Leech-
Wilkinson, 2006; Yang et al., 2013, 2015); and, notated dynamics
are frequently not what they seem (Kosta et al., 2015). The
same score can yield strikingly different performances—a famous
example being Glenn Gould’s 1955 and 1981 recordings of Bach’s
Goldberg Variations (see Figure 1)—further evidence of not only
the gap between abstract representation and actual performances,
but also the creative paths open to the performer. Comparative
analyses of multiple performances of the same pieces abound
(Cook, 2007; Sapp, 2007, 2008; Rink et al., 2011; Chew, 2012;
Kosta et al., 2016), but the nature of the creative work of
performance remains elusive. The questions remain:

What is the nature of the creativity in performance? What is

the reasoning behind particular interpretations of a piece of

music? What work do performers do to create novel and moving

experiences for listeners?

Any form of creative thinking can be viewed as a form of

problem solving (Gilhooly, 1996). While little has been written
on music performance as problem solving—the nature of the
problems to be solved, beyond skill acquisition and sequence
planning, see Drake and Palmer (2000), still begs clarification—
music composition has long been associated with problem
solving (McAdams, 2004) and the creativity it entails. Creative
thinking in music composition has been the subject of numerous
studies, which Collins (2005) categorizes as product-based, where
features of the composition serve as evidence of the cognitive
process, or process-based, which focuses on behaviors and
thought processes in the act of composing (Webster, 1992).
Composition has been likened to mathematical proof or the
discovery ofmathematical facts (Coxeter, 1968), a particular form
of creative problem solving, where the quality of a solution is
judged by Hardy (1940)’s principles of unexpectedness (novelty),
inevitability, and economy. The same principles apply to the
evaluation of composition solutions as well as performance
solutions found through creative problem solving. If one views
Gould’s 1955 and 1981 recordings as two possible solutions to a
musical puzzle, what are other ways to devise viable performance
solutions that are also unexpected, inevitable, and elegant?

Adopting the view of music structure as constructed in

performance (Rink, 2016), the making and shaping of music
structures thus becomes an important part of the creative work
of performance. Here, a structural approach to playing is not
antithetical to a rhetorical approach (Cook, 2011) for a rhetorical
approach, as in speech, also conveys structure as is broadly
defined. That composers and improvisers create music structure
may be given. But at first blush the idea that performers and
listeners are also important makers of music structure may
seem controversial. That structure is an emergent property of

musical thinking and reasoning is an idea that is at the forefront
of musical thought in music education (Bamberger, 2013) and
musicology (Rink, 2016), but the idea has not been explored
in depth in music research or MIR, nor exploited in computer
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FIGURE 1 | Grouping structures in Glenn Gould’s recordings of Goldberg Variation 8 (left) in 1955—see vimeo.com/159472151—and (right) in 1981—see

vimeo.com/159488217. Reproduced from Chew (2017).

models of music structures. Recent work (Chew, 2016, 2017) has
only begun to theorize how this can be done.

Like in Degas’ famous quote, “Art is not what you see,
but what you make others see,” (Gammell, 1961) performance
offers a window into the performer’s understanding of music
structure; because it provides a means of hearing structure,
it is about the structures that a performer must make others
hear. Decisions on how to convey the music structures follows
an assessment of the structures in a piece of music (Clarke,
2002; Rink, 2002), for example, deciding whether to delineate
the tonal structures of a piece or to highlight the inevitable
descent of a bass line or to demarcate the repetition structures
will lead to different performance solutions (Chew, 2017).
The logic of the choices can be de-constructed post-hoc from
recorded performances by comparing the structures heard and
experienced with structures inherent in the composition, or
the process of making performance decisions can be analyzed
through the documenting of thought processes as performed
structures are being constructed.

Because performance studies is young, in comparison to

studies of composition, and the encoding of information on
music performance is still in its infancy, the creative thinking

in music performance has not been subject to the same degree

of scrutiny or analysis. The Beethovens Werkstatt project
(beethovens-werkstatt.de) is implementing long-term plans to

explore Beethoven’s work methods by studying Beethoven’s
manuscripts complete with re-worked, corrected, and discarded
passages. In a reversal of convention, turning performance
into writing, in “Practicing Haydn” (Chew, Child, Grønli 2013,
vimeo.com/109998951), my sight-reading is transcribed into a
performable score, complete with starts and stops, repetitions,
and corrections, revealing the cognitive process of constructing
a performance. Taking this idea further, free rhythms in
performance are transcribed for close examination and cross-
comparison in Chew (2018).

2.3. Citizen Science: Harnessing Volunteer
Thinking for Music Research
In the citizen science movement, large numbers of non-
professionals with Internet access have been mobilized to assist
in authentic, large-scale scientific research. Citizen science
has supported projects in fields ranging from astronomy to
zoology. Ordinary citizens perform tasks such as classifying
galaxies (Raddick et al., 2010), folding proteins (Cooper et al.,
2010), tracking migratory behavior (Dickinson et al., 2012),
and identifying animal calls (Shamir et al., 2014). These efforts
have led to significant scientific discoveries and peer-reviewed
publications (see zooniverse.org/about/publications).

Citizen science projects serve not only as platforms for
public engagement, they also provide opportunities for
learning and creativity (Jennett et al., 2016). In Galaxy Zoo,
volunteers (zooites) have discovered new galactic objects like
the voorwerpen and Green Peas, impacting astronomers’
understanding of the evolution of galaxies (Clery, 2011). Close
to the ideas of understanding and designing structures, Foldit
(fold.it) participants learn through tutorials the principles
of protein folding then compete, as individuals or in teams,
to find the best protein folding structures for unsolved
sequences. Protein folding belongs to the most difficult class
of computational problems that are described as NP-complete,
meaning a solution to a large-enough problem can take more
than several lifetimes to compute. Collaboratively, Foldit
players discovered the protein folding structure of the HIV
enzyme within only 3 weeks when the problem had stumped
professional researchers for decades, galvanizing new algorithm
improvements learned from human strategies (Khatib et al.,
2011). More recently, as Google Deepmind’s AlphaFold
program improves its predictions of protein structure, the
Fold.it community has shifted its focus from structure
prediction to protein design and to fitting electron density
(fold.it/portal/node/2010912).
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Problems in music research, especially those having to do
with ill-defined areas of music engagement andmusical creativity
in performance and in composition, are computationally
difficult to solve; algorithmic solutions to these problems
often yield partial and unsatisfactory results. Participation
in citizen cyberscience, projects utilizing technology, come
in the form of volunteer computing (sharing computing
resources), volunteer thinking (assisting in cognitive tasks
according to prescribed protocol), and participatory sensing
(distributed data collection) (Haklay, 2013). A key component
of these successful projects is their ability to effectively

harness citizen science, in particular, volunteer thinking for

scientific research.

Most citizen science projects have been based primarily
on visual recognition or on manipulation of graphics; audio
centric projects are still rare. For example, on Zooniverse
(zooniverse.org), the only two audio projects have been based
on identification of animal sounds in WhaleFM (Shamir et al.,
2014) (github.com/zooniverse/WhaleFM) and Bat Detective
(Aodha et al., 2018). Music science experiments frequently
require empirical data from listeners and large empirical studies
exist. The SALAMI (Structural Analysis of Large Amounts
of Music Information) project (DDMAL, 2019) employed
8 music graduate students to provide the 2,400 structural
annotations of approximately 1,400 recordings (Smith et al.,
2011). Leech-Wilkinson and Prior (2014)’s study of shape
in classical music performance recorded feedback from 189
musicians; Farbood (2012)’s web-based empirical study on
perceived tension shapes enlisted 2661 participants from 108
countries to annotate short music snippets; and, Kaneshiro
et al. (2017)’s study analyzed 188,271,243 Shazam queries
across top 20 billboard popular songs. The opportunity exists
to study music performance across structural and perceptual
perspectives on a large (web) scale using similar principles of
citizen science.

Factors such as recognition, game play elements, and team
play have been found to help sustain engagement in citizen
science projects (Jennett et al., 2016). In the context of music
performance, this could mean focusing on highly engaging

aspects of music experience and on elemental tasks such
as noting change, recognizing and making tipping points
(musical thresholds), and identifying or deciding on figural

groupings. In his seminal book on emotion and meaning

in music, Meyer (1956) argued that emotion response to
music arises from the composer’s choreography of expectation.

Musical expectations–the anticipations they engender and
the pleasure that arises from attaining the abstract musical

reward–have been linked to dopamine release (Salimpoor

et al., 2011). Further research has shown that music listening
uses the same reward pathways as food, drugs and sex

to induce pleasure (Mallik et al., 2017). It thus stands to
reason to use this biological advantage of music, something
that performers and composers have exploited for eons,
in the design of engaging musical tasks for music citizen
science projects.

2.4. Exploratory Tools: Gamifying the
Thinking Behind Performance
Participant engagement in citizen science projects has been
linked to opportunities for learning and creativity (Jennett et al.,
2016), and gamification is increasingingly used to motivate
and sustain engagement (Eveleigh et al., 2013). Can we create
online sandbox environments for experimenting with making
authentic performedmusic structures based on an understanding
of music structures? A goal would be to provide engaging
game play environments with authentic problems (based on
what practitioners do) for exploring performed structures, giving
participants different ways of representing the problem. A suite
of online music performance exploration tools could allow
participants to make performed structures such as tipping points
and figural groupings, deciding where to place them and the
articulations or other expressive deviations to use. When people
participate in creating performed structures, they are then
constructing and articulating their understanding of how that
structure works.

Influential learning theories include Papert and Harel
(1991)’s constructionism, where learners make mental models to
understand their environment, and Piaget (1964) constructivism,
where people actively construct their knowledge based on their
own experiences. Examples of of constructivist-constructionist
design in music games include, Bamberger (1974)’s Music
Logo, a tool for building elementary algorithms to construct
structures such as musical sequences, and its successor,
Impromptu (Bamberger, 2000), an exploratory composition tool
based on assembling and manipulating tune blocks (melodic
fragments) to foster a project-based approach to making and
understanding music (Bamberger, 2015). Another example,
Earsketch (earsketch.gatech.edu), is a software tool for learning
coding by remixing music audio snippets (Freeman et al., 2014).
Earsketch has been used by 60,000 students in over 100 countries.

Widespread access to unprecedented computing powermeans
that music (video) games with real-time control are now part
of the digital landscape. While many music performance games
exist in the form of Guitar Hero (Egozy, 2016) and Magic Piano
(www.smule.com), etc., these designs largely judge a user’s game
play by how well they fit a template performance. As such, they
function effectively as target practice modules: the next note plays
when a button is pressed or screen tapped at the right time. The
latest in Harmonix’s suite of games, Fantasia Evolved, adds an
“expressive” element only in that it allows users to improvise
melodies and rhythms from a limited control palette.

Music games that allow expressive control over music
parameters like tempo and loudness are broadly categorized
as conductor programmes, whether or not they involve
conducting gestures (Malinowski, 2007). Many use actual
conducting gestures, or archetypal forms of the gestures, to
control audio playback; a number of such systems exist as
museum installations. In the Personal Orchestra (Borchers
et al., 2004) at Vienna’s Haus der Musik, conducting motions
control the video and audio playback of a performance by
the Vienna Philharmonic. The Mendelssohn Effektorium at

Frontiers in Psychology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 527539

https://zooniverse.org
https://github.com/zooniverse/WhaleFM
https://earsketch.gatech.edu
https://www.smule.com
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Chew COSMOS

Leipzig’s Mendelssohn-Bartholdy Museum lets the user conduct,
using a baton, an orchestra of free standing speakers each
representing an orchestra section; the setup affords the conductor
loudness control over individual orchestra sections. Numerous
handheld (including mobile) music conducting games exist like
the Nintendo Wii games, which includes a music module that
allows users to conduct an orchestra of Mii avatars by waving the
Wii remote controller like a conductor’s baton (Bott et al., 2009).

Max Mathews (1991) created an early conducting interface,
the Radio Baton, that lets the user control the timing of
beats and loudness parameters. In Rasamimanana et al. (2011),
players advance the music one beat every time a chess piece is
moved or a ball tossed and caught. In the Air Worm (Dixon
et al., 2005), a recording is stripped of its tempo and loudness
variations, and users can re-insert expressive variations by
moving a hand over a theremin configured to represent Langner’s
two-dimensional tempo-loudness space (Langner and Goebl,
2002). The Director Musices (DM) system gives users direct
control over 30 rules covering different aspects of music
performance, such as note duration and amplitude (Sundberg
et al., 1983; Friberg et al., 2000); rules can be combined to
create different desired affects. The successor pDM, allows real-
time control of the DM rules (Friberg, 2006). In Music Plus
One and the Informatics Philharmonic (Raphael, 2010, 2014),
a machine tracks the soloist’s position in the score and warps a
recording of the orchestra part to match her/his paces; here, the
soloist acts as the conductor. In an AI approach to expression
synthesis,Widmer (1995, 2002) proposes to synthesize expressive
performances according to the rules learned from data; this is
further developed in Flossmann et al. (2009) and Flossmann and
Widmer (2011).

Performing music operates on metaphors because sound itself

has a small descriptive vocabulary. Leech-Wilkinson and Prior
(2014) gives the example: we do not say, “increasing power

in the upper quartile of the frequency spectrum is matched to
decreasing inter-onset intervals and increasing sound pressure
as the fundamentals of the singer’s note sequence increase
in [cycles per second],” rather we say, “the color brightens
as the line surges upwards.” We speak of trajectories and

landscapes when we describe music performance. Listeners
of tonal music have been found to understand, experience,

and create music (in part) through a metaphorical process

that maps physical to musical motion (Todd, 1992), and
that motion is shaped by analogies to gravity, magnetism,
and inertia (Larson and Vanhandel, 2005). Chew et al. (2005)
proposed that performing a piece of music is very much like
driving a car, especially if one is a pianist, in the seat of a
powerful machine, depressing the pedals, and modulating the
speed of travel and the dynamics of the motion. Admittedly,
there are limits to this analogy. Taking this metaphor literally
and combining elements of game play and music structure
scaffolding, ESP (Expression Synthesis Project) provides a
driving (gas/brake pedals and wheel) interface for non-experts
to navigate through a road representing a path through a
musical piece (Chew et al., 2005; Liu et al., 2006), see
(vimeo.com/231258088).

2.5. Computational Music Cognition:
Duality Theory
The explosion and global impact of digital music information
has led to a critical need for new computational tools and
methods for music information retrieval (MIR) tasks such as
music processing, analysis, organizing, search and access, and
interacting with music data. The International Society for Music
Information Retrieval (www.ismir.net) was founded in 2,000.
There is unprecedented demand for nuanced but efficient and
scalable computational tools for exploring, understanding, and
discovering music structure.

Having an effective and accurate representation of music

structure allows vast amounts of digital music to be indexed
(Pienimaki, 2002; Chai and Vercoe, 2003), summarized (Logan
and Chu, 2000; Cooper and Foote, 2003; Grosche et al.,
2012), and retrieved (Martin et al., 2009) more efficiently.
Formal representation also enables automated reasoning about
music structures, in tasks such as chord transcription (Mauch
et al., 2009), similarity assessment (Mardirossian and Chew,
2006), and music categorization (Tzanetakis and Cook, 2002).
Representations that closely align with human perception
of music structures lead to better retrieval results. More
developments in computational music structure analysis are
covered in Müller et al. (2016). Music structure in MIR most
often refers to sectional form, with the task of structure
analysis simplified to identifying boundaries and assigning labels
indicating similar sections. Methodologies for annotating music
corpora (Peeters and Deruty, 2009; Smith et al., 2011; Bimbot
et al., 2012) and for evaluating structural analyses (Lukashevich,
2008; Nieto et al., 2014; McFee et al., 2015) have become
important subtopics in MIR. Music corpora annotated with
structure information still privilege abstract compositional form
and not actual experienced or performed music structures.

Computational music structure analysis, the design of
computer-based techniques to automatically determine music
structure, forms one of the most crucial problems inMIR (Müller
et al., 2016), with predicting the structures listeners perceive

being one of the most popular tasks (Foote, 2000; Peeters, 2004,
2007; Paulus and Klapuri, 2006; Shiu et al., 2006; Kaiser and
Sikora, 2010; Paulus et al., 2010; Hargreaves et al., 2012). The
predominant approach takes music data or features and imputes
a singular structure to that input. But, human perception and
experience of even rudimentary sectional structure can vary
widely for the same music material, depending on factors such
as prior knowledge, attention, expectation, level of information,
and ontological commitment (Smith et al., 2014). Thus, solving
directly for structure given music data is not only difficult, the
solution itself can be a moving target.

Mathematical optimization problems can be viewed from one
of two related perspectives, the primal or the dual (Hillier and
Lieberman, 2001); often, one is significantly easier to solve than
the other. Drawing upon this idea, in Smith and Chew (2013,
2017), we turned the music structure analysis problem on its
head to focus on explaining why a listener perceives a particular
structure. In this work, we made perceived structure the given
data, and solved for dynamically varying attention to different
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features to explain the perceived structure, for example, what
features could the listener have been paying attention to so as
to have perceived a boundary (a change) at a moment in time.
This inverse problem is much easier to solve, see Smith and Chew
(2013, 2017), and provides perceptually meaningful insight into
any given interpretation of music structure. Another advantage
and novelty of invoking the duality principle is that it changes
the variables, and allows multiple analyses to be modeled each as
a function of the corresponding listener, rather than having one
prototypical analysis be the function of the music data.

Invoking duality or solving the inverse problem represents a
paradigm shift. The duality principle generalizes to any music
structure, and any concurrent information such as cardiac
response, and opens up new possibilities for computationalmusic
structure analysis and computational music cognition.

2.6. Music Perception and Cognition:
Computational Thinking
As a complement to MIR’s focus on sectional structure,
music psychology, cognitive science, and music theory have
concentrated on the cognition of basic musical structures
such as pitch entities—pitches, chords and keys (Krumhansl,
1990; Lerdahl, 2001) or melodies (Narmour, 1990, 1992)—and
time structures—rhythm and meter (Lerdahl and Jackendoff,
1983; Hasty, 1997; Temperley, 2001; Mazzola, 2002) cover
all three. Many of these theories are amenable to computer
implementation, but much more is needed to optimize the

methods and representations to ensure accuracy, robustness,

efficiency, and scalability.

These aspects of modeling music perception and cognition
have to do with computational thinking, a term coined by
Seymour Papert (1980) and popularized by Jeannette Wing
(2006) to describe the adoption of ways of formulating problems
and expressing their solutions so that a computer (human
or machine) can effectively carry it out. The following three
examples illustrate the impact of computational thinking on
models of music perception and cognition.

1) Using contig mapping to boost voice separation performance:
Bregman (1990)’s theories on auditory scene analysis (Gestalt
principles for sound) inspired Huron (2001) to derive voice-
leading rules from perceptual principles. (Chew and Wu,
2004) operationalized Huron’s voice-leading rules in the Voice
Separation Analyser (VoSA) using a contig mapping approach.

VoSA’s algorithm separates the voices from a polyphonic
texture by taking advantage of voice-leading perceptual
principles and by applying a contig mapping approach. In
computational biology, contig mapping is a technique used to
re-construct a DNA sequence from its fragments. The basic
ideas behind the VoSA algorithm are as follows: because voices
tend not to cross, when all voices are present, the order of the
voices is known; these regions where all voices are present form
maximal voice contigs and serve as islands of certainty where
the voice assignments are known. Since voices tend to move
by step, the voice assignments then grow out of the maximal
voice contigs like tentacles by connecting to nearby notes. The
algorithm is efficient, growing the islands progressively with each

left-to-right then right-to-left scan, until all notes are labeled and
islands joined. This algorithm was evaluated on Bach’s Two- and
Three-part Inventions and on fugues from the Well-tempered
Clavier and Shostakovich’s fugues from the 24 Preludes and
Fugues. Other researchers (Ishikagi et al., 2011; Guiomard-Kagan
et al., 2016) have built on this idea of contig mapping.

The VoSA contig-mapping algorithm has remained one of
the best performing voice separation algorithms to this day,
serving as the benchmark for other voice separation algorithms,
as shown in an independent comparative study (Guiomard-
Kagan et al., 2015), which evaluated several algorithms on Bach’s
fugues from the Well-tempered Clavier and a corpus of popular
music containing polyphonic information.

2) An interior point approach to modeling tonality: Mental
representations of pitch structures forms one of the oldest topics
in music perception (Lerdahl, 2001). Following early studies
by Shepard (1982) on mental representations of musical pitch,
Krumhansl (1990) proposed several empirically derived models
of pitch structures using multi-dimensional scaling (Shepard,
1962a,b). Parallel developments in cognitive science saw the
advent of the harmonic network, which Longuet-Higgins
(1962a,b) based on frequency ratios of musical intervals; the
resulting spatial representation is isomorphic to the neo-
Riemannian tonnetz (Cohn, 1997). The tonnetz has been
used to track harmonic motion in romantic (Cohn, 1996),
classical (Bragg et al., 2011), jazz (Briginshaw, 2012), and
popular/rock (Capuzzo, 2004; Chuan and Chew, 2011) music.
The harmonic network was used in an early key finding
algorithms (Longuet-Higgins, 1971). A widely used result in
(Krumhansl, 1990) is the key profile correlation approach to
identifying key, and was improved in Temperley (1999, 2001,
2006) and applied to music audio (Gomez, 2006).

Interior point methods are a class of algorithms that search for
optimal solutions to linear and nonlinear convex optimisation
problems from within the feasible region. Inspired by research
with Dantzig (1992) on von Neumann’s early interior point
method which traversed the interior space rather than pivoting
through a sequence of corner point solutions, I proposed an
interior point approach to modeling tonality and key finding
(Chew, 2000, 2014). The spiral arraymodel drew upon the insight
that the harmonic network is essentially a three-dimensional
helical model, and used the space inside the helical pitch
class model to summarize the Center of Effect (CE) of pitch
collections and to successively build the nested helices that
make up the spiral array model. The model differs from its
predecessors in that it represents pitches, chords, and keys in
the same space; this allows for the comparison of tonal entities
within the same and across different hierarchical levels. The
spiral array’s Center of Effect Generator (CEG) key-finding
algorithm has been shown to outperform prior techniques
and, in practice, tends to yield solutions within only a few
iterations (Chew, 2001). The algorithm can also be adapted to
the tonal analysis of music audio (Chuan and Chew, 2005). This
model is regarded as one of the most successful models for
tonal perception.

3) Modeling tension modulation over time and applications
to music generation: Sensations of music expectation, tension,
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surprise (delightful or otherwise) are key sensory aspects of
musical experiences. Huron (2004) showed, in a systematic
analysis of the humor devices in the music of PDQ Bach, that
strong emotion responses like laughter result from violations of
expectations. Inspired by this research, Chew (2001) visualized
the violations of tonal expectations using MuSA.RT (Music on
the Spiral Array, Real-Time), an implementation of the spiral
array model with real-time visualization of its tonal analysis
algorithms–see bit.ly/ec-MuSART and bit.ly/ec-LAPhil. Tonally
consistent music passages map to closely clustered CE trails;
tonally unexpected events lead to distant detours.

Tension has been found to result from states of conflict,
instability, uncertainty, and dissonance (Lehne and Koelsch,
2015). Quantitative models of musical tension include (Lerdahl
and Krumhansl, 2007; Farbood, 2012; Herremans and Chew,
2016). (Lerdahl and Krumhansl, 2007) is based on Lerdahl
(2001)’s theory of tonal tension. Farbood developed a model
based on findings from a large-scale empirical study of listener
annotations of perceived tension for small musical snippets.
Our model uses three quantitative measures based on the
spiral array model—the cloud diameter (dissonance), cloud
momentum (an indicator of uncertainty), and tensile strain (a
mark of instability); these tension quantifiers were tested on
piano sonatas by Beethoven and Schubert (Herremans and Chew,
2016).

Tension models are important tools for guiding computer
music generation. With the growing popularity of deep
learning and the rise of the Google Magenta project
(magenta.tensorflow.org), interest in generating music and
art using machine-learning techniques has reached new heights.
A review of music generation systems can be found inHerremans
et al. (2017). However, machine-generated music is notoriously
devoid of long-term structure or narrative interest. Some
attempts have been made to address this problem through
design of structural control into improvisation systems (Dubnov
and Assayag, 2005; Francois et al., 2013; Schankler et al., 2014;
Assayag, 2016; Nika et al., 2016). In Hyperscore (Farbood,
2001) a user-defined tension line controls the dissonance of
the generated music. In MorpheuS (Herremans and Chew,
2019), the time modulating tension profile learned from
a template piece constrains the optimisation-based music
generation algorithm to impose some narrative structure.
The output is also constrained to copy the rhythms of
the template piece; because repetition is a key feature of
music (Margulis, 2013), the output must also adhere to the
template piece’s structure of repeated patterns. The resulting
piece thus inherits multiple types of structure from the
parent piece to produce usable and interesting polyphonic
output from one single template piece–see dorienherremans.
com/morpheus/.

A theme running through these examples is the use of

computational thinking to transform solution approaches to music

structure modeling and analysis in ways that improve accuracy,

efficiency, and scalability.

3. MUSICAL STRUCTURES IN
ELECTROCARDIOGRAPHIC SIGNALS

Computational arrhythmia research has flourished due to
the explosion in cardiovascular information and widespread
adoption of equipment for collecting and analyzing ECG
data. Globally, ECG equipment and management systems were
valued at 5.6 billion USD in 2019, with a compound annual
growth rate of 6.1% from 2020 to 2027 (Grand View Research,
2020). Consumer level ECG recording and analysis devices
are becoming increasingly popular and accessible. Wearable,
mobile devices like the Apple Smartwatch, now come equipped
with electrical heart rate sensors that can record wearers’
electrocardiograms (ECG) and can detect if the heartbeats are
normal or in atrial fibrillation—fast and irregular rhythms
originating in the upper chambers of the heart. Here, we advocate
for transferring the computational models and experiential
approach developed for the analysis of performed music to heart
signals. We make the case for analyzing arrhythmia recordings as
one would musical performances–attending closely to the details
and nuances of time structures and time varying structures, to
their evolution over time, to the nature of transitions into and
out of states of arrhythmia–in a human-centered approach.

3.1. Similarities Between Music and Heart
Signals
Computational music analysis techniques translate well to the
analyzing of heart signals because music and heart signals share
many common behaviors and structures. These commonalities in
time and frequency structures between music and the heart mean
that the language and methods for describing musical structures
can be applied to many aspects of cardiac signals.

The links between the musical pulse and normal cardiac
rhythms have been observed historically (Siraisi, 1975). Like in
music, the heart never beats in uniformly equal time intervals;
heart rate variability is a sign of a healthy heart. An interesting
observation is that a heart on a pacemaker produces beats like
music on a click track. Beat-to-beat rhythmic variations have
been found to exhibit 1/f (fractal) behavior in not only composed
music (Levitin et al., 2012) but also performed music (Rankin
et al., 2009; Räsänen et al., 2015). Similar long-range (1/f type)
correlations have also been found in cardiac signals (Goldberger,
1992), which show the heart’s performed heartbeats when beating
normally. Similarities between music and arrhythmias also occur
at larger time scales. Arrhythmias are often episodic, with music-
like sectional form. Most episodes begin with a trigger like an
early ventricular beat that acts as an upbeat into the arrhythmic
section that is performed differently every time.

It is the pathophysiology of cardiac arrhythmia that gives
rise to the most interesting and striking parallels between
music and heart rhythms. Suppose a heart in sinus (normal)
rhythm is a performer playing a rhythm close to a score
of equi duration, say crotchet, notes. Then the heart in a
state of arrhythmia is playing a wayward performance of this
score. A computational approach that places emphasis on the
performed musical structures can thus be applied to the analysis
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of its eletrocardiographic (ECG) signals. In the time domain,
consecutive inter-beat intervals in ECG traces of arrhythmias
exhibit a propensity to form simple ratio categories (Chew et al.,
2021), leading to observed parallels between the rhythms of
arrhythmia and notated music (Goldberger et al., 2014; Chew,
2021). These duration ratios do not fall on precise proportions
like 1:1, 1:2, etc. Like in performed music, they may come close,
but avoid the exact ratios themselves.

In the frequency domain, the dominant frequency which
varies over time is an important characteristic of atrial fibrillation
sequences, like the time varying fundamental frequency in
performed music. Fibrillatory waves between heartbeats in atrial
fibrillation are like musical vibratos. The amplitude and stability
of these vibrato-like fibrillatory waves are markers of disease
progression (Meo et al., 2015; Mishra et al., 2019). Thus,
analyzing these fibrillatory waves like one would musical vibratos
like in Yang et al. (2017), can reveal detailed behaviors to inform
disease stratification and treatment.

3.2. Notating Heart Rhythms
Notational technology evolved over the centuries to allow
performers to replicate music note sequences faithfully (Kelly,
2014). Traditional music notation was used to accurately
transcribe the extreme rhythms of music performance in Chew
(2018). The difference between what the composer wrote (the
abstract idea) and what the performer did (the actual experience
for the listener) was made all the more stark by the use of the
same notational technology. Taking advantage of this flexibility
of music notation to (unconventionally) represent performed
variations, music notation has also been used to represent
cardiovascular pathology.

The first use of music symbols to represent a heart murmur
dates back to René Laennec (1826), inventor of the stethoscope,
who used it to track a venous hum heard in auscultation (Segall,
1962). More recently, Field (2010) used music notation to
transcribe signature heart sounds and murmur patterns in the
teaching of cardiac auscultation.

Music symbols can be used to represent not only the sounds
heard through a stethoscope, but also electrical anomalies
recorded in ECGs whose abnormal rhythms may be felt in the
pulse. Noting similarities between music and aberrant heart
rhythms, Goldberger et al. (2014) hypothesized that the dotted
rhythm at the beginning of Beethoven’s "Adieux" Sonata (Op.81a)
might be ascribed to the composer’s possible arrhythmia. Chew
et al. (2021) added to this a possible arrhythmia-based inspiration
for the opening motif of Beethoven’s Fifth Symphony. Chew
(2018) used music notation to represent the rhythms of atrial
fibrillation, employing mixed meters and metric modulations to
accurately capture the high rhythmic variations. This method has
been used to compose pieces in the Arrhythmia Suite (Chew,
2021)—see excerpt and corresponding ECG in Figure 2. A
performance can be heard at youtu.be/z8aspgwes1o. Such direct

mappings between heart andmusic rhythms suggest an avenue

exists for the transfer of computational music structure

analysis techniques to cardiac signals.
Similar to this use of symbolic notation to capture the

variations of an ECG sequence, Syed et al. (2010) and Qiu et al.

(2016) studied the semantic structure of symbols representing
ECG waveform parts. Bettermann et al. (1999) used a binary
symbol sequence to represent elementary rhythm patterns in
heart period tachograms.

Further capitalizing on the link between music and heart
rhythms, musicians and scientists have used heartbeat-to-music
mappings to generate new music and for medical diagnosis.
Goldberger et al. (1995) mapped beat intervals averaged over
300 beats to a diatonic scale to create melodies for musical
improvizations. Other researchers have mapped beat intervals
to MIDI notes with premature beats producing more significant
pitch changes (Goldberger et al., 2002), or to MIDI note onsets,
pitch, or loudness (Orzessek and Falkner, 2006). Ballora et al.
(2006) mapped heart rate variability indices to pitch, timbre,
and pulses over hours for diagnosis. The Heart Chamber
Orchestra (Votava and Berger, 2011) used interpretations of its
12 musicians’ heartbeats to generate a real-time score which the
musicians then read from a computer screen and perform.

3.3. Computational Arrhythmia Research:
Musical Thinking
The examples shown in the previous sections support the case
for a musical approach to ECG analysis, particularly one that
emphasizes individual and specific experiences of an arrhythmia.
Rather than focusing on coarse categories, this experiential
approach treats each ECG recording like a unique performance.
This is possible because the vicissitudes of cardiac arrhythmia,
and even that of normal heartbeats, are similar to that introduced
in performance. Thus, techniques designed for characterizing
performance variations and the musical structures therein
translate well to cardiac signals, with potential for revealing
patterns not detected by current methods.

Popular standard measures like the heart rate variability
(HRV) (Billman, 2011; Ernst, 2014) are summary statistics or
spectral indices that do not capture moment-to-moment details
of temporal structures and the nature of the transitions between
them. For example, the transition from normal to tachycardia
states can be as varied and interesting as pianists’ different
ways of bridging the Grave and Doppio Movimento sections
in Chopin’s Sonate Op. 35 in B minor. Furthermore, many
arrhythmias can often be episodic in nature, but the emergence of
such long-term structures as the arrhythmia unfolds has not been
a focus of analytical research in cardiology. On the other hand,
the characterization of the shaping of these (and other) musical
structures in recorded music performances is an essential aspect
of the performance research– see for example (Stowell and Chew,
2013; Chew, 2016).

The implications of applying musical thinking to
computational arrhythmia research go beyond the translation
of computational music structure analysis techniques in
cardiovascular science; it also presents a streamlined and unified
analytical approach to studies on cardiac and music interactions
in neurocardiology. For example, in Chew et al. (2020), the same
analytical techniques were applied to both cardiac and music
features to assess their coincidence in a study with pacemaker
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FIGURE 2 | Arrhythmia suite I: VT before during after (2017), after Mars, the bringer of war (1914), from the Planets, Op.32. Composition by Holst/Chew, Krishna,

Soberanes, Ybarra, Orini, and Lambiase. (Left) ECG signal overlaid with audio of performance of (right) beginning of piece.

patients listening to live music performance. The complete range
of music-heart applications is beyond the scope of this article.

4. COSMOS RESEARCH OBJECTIVES

To achieve the trans-disciplinary goals outlined above, the
COSMOS project sets out three mutually-informing research
directions. The first is to research problem solving skills in the
perception and cognition of musical structures, taking advantage
of crowdsourcing to amass data requiring human cognitive
abilities. The second aims to investigate decision making in
the act of shaping performed structures through software-based
sandbox environments. The third objective is to develop a novel
methodological framework for computational music structure
analysis in the context of music performance, with extensions to
cardiac signals.

The research themes are given below, each described in greater
detail in the subsections to follow:

i) to find new ways to represent, explore, and talk about the
musical structures in performance and performed music,
and other music-like sequences such as cardiac signals;

ii) to harness human problem solving skills through citizen
science to understand musical structures created in
performance and experienced in performed music;

iii) to create sandbox environments to experiment with making
performed structures;

iv) to create theoretical frameworks to discover the reasoning
behind or explain the structures perceived, sensed, andmade;

v) to foster community engagement by training experts to
provide feedback on structure solutions.

Analysis of the perceived and designed structures will be based
on the inverse problem paradigm of duality to reverse engineer
and explain why a listener or analyst perceives, or a performer

chooses, a particular structure. Embedded in the approach is the
use of computational thinking to optimize representations and
theories to ensure accuracy, robustness, efficiency, and scalability.

The project, which aims to reconfigure the way researchers
and the general public view music performance, will draw from a
broad range of recorded piano performances from different times
having accurate timing, dynamics, and articulation information.
The methods will also be applied to cardiac recordings,
particularly those of arrhythmia, to provide descriptors to aid in
cardiac diagnostics and therapeutics.

4.1. Musical Structures From Performance
and Cardiac Signals
Performances and music-like sequences such as cardiac signals
form an untapped source for music structure analysis (Chew,
2017, 2018) in music information research and research in music
perception and cognition. This theme focuses on extracting
and representing the experienced music structures in recorded
performances and arrhythmic cardiac signals. The goal is to
create new ways to represent and talk about the variations and
structures introduced during performance, to encouragemultiple
representations and abilities to move among them. For music,
this will offer new ways to encode, explore, and reason about
performance decisions.

For music, the research questions include: What are the
felt and experienced structures in performed music? How are
these structures generated? How do they differ from the formal
structures embedded in the score? What music features do they
serve to highlight? Are there parts of a piece more open to
multiple structural interpretations and parts that have limited
possibilities and why? For cardiac signals, the corresponding
research questions include: What are the felt and experienced
musical structures in cardiac arrhythmias? What is the range
of individual experiences of different arrhythmias? Does the
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musical representation reveal patterns and trends that were not
previously apparent? Can the variations be linked to symptoms
or outcomes?

4.2. Harnessing Volunteer Thinking
Reporting on sensory aspects of music experience, such as
feelings of tension, has been found to be amenable to
web-based empirical research (Farbood, 2012). This theme
adopts best practices in citizen science (Vohland et al., 2021)
to engage non-professionals (as well as seasoned experts)
to participate in large-scale music performance research.
Recognition and game play elements will assume important
roles in the design of the cognition and problem solving
activities. The focus will be on authentic problems, the kinds
of problems that music practitioners face. Tutorials with
worked examples by professionals will help enhance flexible
thinking and reasoning about solutions. Scalable computational
tools will provide multiple representation schemes–for example,
tempo and loudness information overlaid on audio signal
and spectral information—for cognitive scaffolding (Jonassen,
1999). Development will leverage existing online citizen science
platforms and build on successful citizen science project designs.
Questions include: to what extent can volunteer thinking benefit
music performance research? What are the felt music structures
best suited to this mode of investigation? What kinds of training
and cognitive scaffolding should be provided so that non-
professionals can participate productively? How can we ensure
reliability of the data collected? How can we ensure broad
participation and sustain engagement?

4.3. Sandbox Environments: Making Music
Structures
Another series of activities will engage volunteers in the making
of music structures in game play environments. The space of
expressive possibilities of each piece of music is combinatorially
large, and the unexpectedness, inevitability, and economy of
elegantly reasoned solutions found in this space still confound
machines. AI’s may have beaten humans at games of chess and
go, but there are still many problems that are easy for humans
but computationally extremely difficult for machines; the design
of CAPTCHAs (von Ahn et al., 2003) are based on this very
principle. Participants of citizen science projects have made
important discoveries–spotting new galaxies (Banfield et al.,
2016)) in astronomy and protein folding (Cooper et al., 2010)
in biology. We will design sandbox game play environments
that call on volunteer thinking to explore new performance
paths, or strategies for devising new performance paths, through
music pieces. The sandbox environments will use a combination
of symbolic and audio representations and audio features, and
musical metaphors.

4.4. Perception Analytics and Design
Analytics
This theme seeks to develop theoretical frameworks to analyse
the data from structure perception, structure sensing (e.g.,
cardiac response to musical structures), and structure making

tasks. The problem is to explain a set of annotations, responses,
or design choices based on the underlying musical information.

The objective is to design new data-supported ways to
explore, understand, and reason about musical structures,
listener responses, and performance choices. A goal will be
to increase understanding of the creative problem solving
enacted in performance. For example, given a time modulating
perception of tension or measure of physiological stress, we
can reverse engineer what parts (fractions) of that perception
can be attributed to dissonance, uncertainty, or instability using
models such as Herremans and Chew (2016); given a (perception
of) tonal structure projected in performance, we can reverse
engineer the time-varying amount of prior information needed
to reach that assessment using models like (Chew, 2002); given
(a perception of) a series of boundaries, we can reverse engineer
the changing attention to different audio features that gives rise
to that perception (Smith and Chew, 2017).

Research questions this theme will address include: How
can we model time-varying perceptual or sensory attributes like
attention? What can these solutions tell us about the musical
structures that produce the perceptual or sensory information
stream? What does this tell us about the performer’s or the
designer’s choices, or the perceiver’s reactions?

The computational modeling will place emphasis on
explanatory models, models for which parameters are
transparent, and where it is possible to reason and step
through the solutions. Another aim will be to choose models
that are computationally scalable and efficient so as to be able to
deploy them at scale. Adopting the principle of Occam’s razor,
simplicity should not be a deterrent, and will determine choices
between competing hypotheses or theoretical models.

4.5. Community Engagement
This theme is modeled after the Worldwide Telescope
Project (Goodman et al., 2012), which provides a platform
for school students to access current astronomy research data
(images of space) to design tours through the galaxies. The
project trains astrophysically-literate volunteers (including
retired astronomers) to provide feedback on the student-
designed tours and answer questions about galaxies. The
outcomes of the current project will feed into a worldwide web
platform for exploring the perceiving and creating of music
structures in performance. Retired musicians, music teachers,
conservatoire students, and other musically literate volunteers
will be trained to provide feedback on structures perceived and
made by participants, so as to increase public understanding of
the creative work in music performance.

5. CONCLUSION

In conclusion, this position paper has presented the view ofmusic
performance as being centered on the search and rendering of
musical coherence, and provided supporting evidence for the
role musical structure plays in performed music and the musical
experience. The goal here is to instigate new ways of thinking
about music performance, and of framing music information
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research (MIR) problems pertaining to the inter-related areas of
music performance, performed music, and musical structures.

The following principles were put forth to link music
performance and music experience to musical structure: the role
of musical structure in music engagement keeping in mind the
role of music performance of creating engaging experiences; a
view of creative performance as problem solving; the harnessing
of volunteer thinking in citizen science to find structures;
the gamifying of performance decisions to enable learning by
doing; reverse engineering the reasons for interpretive decisions,
structure perceptions, or other concurrent information such as
cardiac responses; and, the case was made for the incorporation
of computational thinking into music structure modeling and
analysis, and for applying musical thinking to computational
arrhythmia research.

Much of this approach applies also to other music-
like sequences. Leveraging the structural similarities between
heart and music signals and the inter-transferrability of
analysis techniques, cardiac electrophysiology was suggested
as an area for MIR exploration, with potential to provide
insights into cardiac arrhythmia and analytical approaches for
music-heart studies.

Based on these principles, a set of five research objectives
are proposed: to find new ways to represent and talk about
performance; to use citizen science to engage experts and
everyday listeners in the problem solving task of apprehending
musical structures in performance and performed music; to
create sandbox environments to enable people to explore

the space of possible interpretations; to design theoretical
frameworks to uncover the reasoning behind musical structures
perceived, sensed, designed, and made in performance; and, to
increase public awareness of the creative work of performance
by fostering community engagement to provide feedback on
structures found and made.

The ERC project COSMOS aims to address the research issues
raised here, focussing on performed music as well as cardiac
recordings as applications of computational music structure
modeling and analysis. A purpose of sharing the assertions and
goals of the research is to galvanize and encourage others to
join in these efforts. These problems transcend the project with
potential to benefit artistic, scientific, and medical knowledge
about music performance, processes of perception and design,
variations in individual choices and experiences in music
and arrhythmias.
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