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Effective human–robot teaming (HRT) increasingly requires humans to work with intelligent, 
autonomous machines. However, novel features of intelligent autonomous systems such 
as social agency and incomprehensibility may influence the human’s trust in the machine. 
The human operator’s mental model for machine functioning is critical for trust. People 
may consider an intelligent machine partner as either an advanced tool or as a human-like 
teammate. This article reports a study that explored the role of individual differences in 
the mental model in a simulated environment. Multiple dispositional factors that may 
influence the dominant mental model were assessed. These included the Robot Threat 
Assessment (RoTA), which measures the person’s propensity to apply tool and teammate 
models in security contexts. Participants (N = 118) were paired with an intelligent robot 
tasked with making threat assessments in an urban setting. A transparency manipulation 
was used to influence the dominant mental model. For half of the participants, threat 
assessment was described as physics-based (e.g., weapons sensed by sensors); the 
remainder received transparency information that described psychological cues (e.g., 
facial expression). We expected that the physics-based transparency messages would 
guide the participant toward treating the robot as an advanced machine (advanced tool 
mental model activation), while psychological messaging would encourage perceptions 
of the robot as acting like a human partner (teammate mental model). We also manipulated 
situational danger cues present in the simulated environment. Participants rated their trust 
in the robot’s decision as well as threat and anxiety, for each of 24 urban scenes. They 
also completed the RoTA and additional individual-difference measures. Findings showed 
that trust assessments reflected the degree of congruence between the robot’s decision 
and situational danger cues, consistent with participants acting as Bayesian decision 
makers. Several scales, including the RoTA, were more predictive of trust when the robot 
was making psychology-based decisions, implying that trust reflected individual differences 
in the mental model of the robot as a teammate. These findings suggest scope for 
designing training that uncovers and mitigates the individual’s biases toward 
intelligent machines.

Keywords: human–robot interaction, autonomous systems, trust, confidence, mental models, threat, emotion, 
individual differences
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INTRODUCTION

Technological advancements are rapidly increasing the scope 
for collaboration between humans and artificial agents, including 
robots. Human–robot teaming (HRT) is especially important 
for extending operational capabilities in the military context, 
given that robots can endure harsh environments and prolonged 
periods of operation (Wynne and Lyons, 2018). Artificial 
intelligence (AI) also supports rapid processing of information 
under time pressure, in some cases far beyond human 
capabilities. However, teaming with artificial systems raises 
human factors challenges, including optimization of trust 
(Chen and Barnes, 2014). Antecedents of trust in conventional 
automation are quite well understood (Lee and See, 2004; 
Hoff and Bashir, 2015). However, novel features of intelligent 
autonomous systems such as incomprehensibility (Muggleton 
et  al., 2018) and social agency (de Graaf and Allouch, 2013) 
may influence trust in ways that current models do not fully 
accommodate (Matthews et  al., 2016, 2020). Furthermore, 
people vary in their perceptions of autonomous systems, 
leading to individual differences in trust antecedents (Schaefer 
et  al., 2016). The present study investigated predictors of 
trust using a simulation of HRT in a security context and 
their variation with contextual factors.

The remainder of this introduction is structured as follows: 
First, we  review evidence that various individual difference 
factors predict trust in robots including stable attitudes toward 
technology and automation (see Section “Predictors of Trust 
in Intelligent Security Robots”). However, individual differences 
in attitudes toward autonomous systems are not well understood. 
We  review evidence that trust in an autonomous robot may 
reflect the person’s mental models for understanding its advanced 
functions, including capabilities for independent analysis and 
action and for teamwork (see Section “Unique Challenges of 
Trusting Autonomous Machines”). Individuals who see the 
robot as a humanlike teammate rather than a highly advanced 
tool may be  more disposed to trust it when it exercises 
autonomous judgment and social agency. Several existing trust 
scales may capture elements of the mental model, but there 
is a lack of systematic research on the individual’s dominant 
model. Instruments that assess attitudes toward robots within 
teaming scenarios may provide a means for mental model 
assessment. The context for HRT is also important; the mental 
model activated in any specific teaming situation depends on 
the interaction between the person’s dispositions and contextual 
cues (see Section “Contextual Factors”). Individuals disposed 
to fear robots may not trust the machine, especially in threatening 
contexts such as security operations. Based on this analysis, 
we develop hypotheses for contextual and dispositional predictors 
of trust that could be  tested in a simulation study (see Section 
“Present Study”).

Predictors of Trust in Intelligent Security 
Robots
Technology utilizing AI for enhancing threat detection is 
advancing rapidly. Existing military and law enforcement 

applications include surveillance of vehicles and people, detecting 
explosives, analysis of data from the internet such as social 
media profiles and financial transactions, and cyber defense 
(Svenmarck et  al., 2018; Raaijmakers, 2019). AI can 
be  implemented through deep learning (DL) that is trained 
to recognize suspicious objects and people within a specific 
context (Svenmarck et  al., 2018). Security robots with AI 
capabilities can guard homes and installations, rescue survivors 
in disaster areas, and support military Warfighters (Theodoridis 
and Hu, 2012). In this context, “intelligence” is defined by a 
perception-action cycle. The robot can both identify threats 
in dynamic environments utilizing multiple sources of data 
including sensors and make decisions following identification 
such as reporting to a human operator or searching for additional 
data (Theodoridis and Hu, 2012). AI also supports capacities 
for autonomy (Franklin and Graesser, 1996), defined as the 
ability of a system to achieve goals, while operating independently 
of external control (Fong et al., 2018). For example, an intelligent 
security robot might patrol an area without continuous human 
direction, choosing its path by analyzing sensor data to determine 
the locations to investigate (e.g., Avola et  al., 2016).

Advanced security robots function not only as threat detection 
devices, but also as decision aids that analyze the threat and 
suggest options for further action (Theodoridis and Hu, 2012). 
A central issue for human–robot teaming is thus the human’s 
willingness to trust the robot’s threat analysis and 
recommendations. There is a large human factors literature 
on trust in machines (Muir, 1987; Parasuraman and Riley, 
1997; Lee and See, 2004) that is relevant to human–robot 
interaction. Definitions of trust vary, but definition of Lee and 
See (2004, p.  54) is typical: “the attitude that an agent will 
help achieve an individual’s goals in a situation characterized 
by uncertainty and vulnerability.” The reviews cited identify 
multiple factors that shape trust, including the competence 
and dependability of the machine, the operator’s experiences 
of working with it, and social and cultural factors that may 
influence operator expectations. Given that few machines are 
perfect, the operator must calibrate trust to match the machine’s 
capabilities (Muir, 1987). Trust is optimized when it is based 
on accurate understanding of machine strengths and weaknesses, 
so that the operator can benefit from the machine’s capabilities 
without being led astray by its errors (Parasuraman and Riley, 
1997; Lee and See, 2004).

Research on operator trust in robots has identified multiple 
antecedents of trust related to the human operator, to the 
robot, and to the environment (Hancock et al., 2011). Multiple 
factors may interact with one another to affect qualities of 
the operator’s engagement with robotic partners, including trust, 
team performance, and allocation of taskload (Chen and Barnes, 
2014). Individual difference factors that might support trust 
calibration and hence benefit HRT include attentional control, 
gaming experience, and spatial ability (Chen and Barnes, 2014). 
Beyond such abilities and skill, differences in stable dispositional 
factors that shape the operator’s motivational and cognitive 
biases toward a synthetic partner have been neglected. Meta-
analysis of Hancock et al. (2011) found that human characteristics 
including individual differences were only weakly related to 
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trust, whereas robot and environment factors had stronger 
impacts. However, Hancock et  al. (2011) cautioned that only 
a limited number of studies of human characteristics were 
available. So, there remains uncertainty over the role of human 
characteristics in trust. As Hancock et  al. (2011, p.  523) state, 
there is “a strong need for future experimental efforts on 
human-related, as well as environment related factors.” More 
specifically, research on aspects of the teaming environment 
such as team collaboration (i.e., shared mental models, 
communication, culture, and in-group membership) and tasking 
factors (i.e., task type, task complexity, multi-tasking requirement, 
and physical environment) may have neglected the role of 
individual differences in trust. The current study aimed to 
answer call of Hancock et  al. (2011) by examining relevant 
dispositional factors that may predict individual differences in 
trust in HRT.

Personality factors predict trust and automation-dependence 
in a variety of other contexts for automation (Matthews et  al., 
2020), including autonomous vehicles (Choi and Ji, 2015), 
software (Ryan et  al., 2018), and unmanned aerial systems 
(Lin et  al., 2020). A further meta-analysis (Schaefer et  al., 
2016) confirmed that human characteristics were moderately 
related to trust in automated systems, excluding robots. Some 
studies of robots published following the Hancock et al. (2011) 
meta-analysis have demonstrated personality–trust associations. 
For example, Haring et  al. (2013) found that the extraversion 
trait was positively correlated with trust in robots. Salem et  al. 
(2015) failed to replicate this association, but they found that 
neuroticism was associated with lower likability of robots. 
Dispositional attitudes toward technology (e.g., Hegner et  al., 
2019) may be  more predictive of trust in robots than are 
broad personality dimensions. Lyons and Guznov (2018) found 
that trust was reliably correlated with having high expectations 
of automation, measured using the Perfect Automation Schema 
(PAS) scale (Merritt et  al., 2015). Here, we  focused on such 
factors rather than general personality traits.

Unique Challenges of Trusting 
Autonomous Machines
Human engagement with intelligent machines depends critically 
on perceptions that the machine is trustworthy (Glikson and 
Woolley, 2020; Lockey et  al., 2021). Influences on trust may 
differ somewhat in autonomous systems compared to 
conventional automation (Schaefer et  al., 2016). Systems with 
sufficient intelligence to operate autonomously are difficult for 
the human operator to understand and anticipate, implying 
that tolerating ambiguity and complexity may be  important 
for trust (Matthews et  al., 2016). In addition, some systems 
exert social agency, i.e., they can evaluate the status of the 
human operator and respond with teaming behaviors such as 
taking on additional tasks, signaling their goals and intended 
actions, and communicating their willingness to support the 
human (Wang and Lewis, 2007; Chen and Barnes, 2014; Volante 
et  al., 2019). Wynne and Lyons (2018) highlight the need for 
further research on humans’ perceptions of intelligent robots. 
In this section, we  argue that (1) mental models for robot 

function influence trust; (2) attributes of the robot influence 
the mental model; and (3) individuals have stable preferences 
for the mental model they apply to the robot.

Mental Models for Advanced Robots Influence 
Trust
Advanced robots and other types of intelligent agent may 
be  viewed as either highly sophisticated tools or as teammates 
with some human-like qualities (Chen and Barnes, 2014; 
Matthews et  al., 2019). Such perceptions reflect the differing 
mental models that operators apply to understanding their 
interactions with the robot (Ososky et al., 2013). Mental models 
may encode both explicit and implicit preferences (Merritt 
et  al., 2013). Operator mental models of technology are not 
always fully accurate or complete, but they serve to direct 
attention and guide the user’s actions (Phillips et  al., 2011). 
Understanding the user’s mental model may be  important for 
designing transparency information to be  compatible with the 
dominant model (Lyons and Havig, 2014).

Trust in autonomous systems may vary according to whether 
the dominant mental model defines the system as an advanced 
tool or teammate (Ososky et  al., 2012; Perelman et  al., 2017; 
Matthews et  al., 2019). Congruence between the operator’s 
mental model and robot functioning enhances human 
understanding of the robot’s intent and hence effective teaming 
(Ososky et  al., 2014). The appropriateness of the operator’s 
mental model may be  especially important when the decision 
space is less constrained so that many ways exist for even 
human partners to arrive at a solution (Perelman et  al., 2020).

Generally, people are more likely to trust intelligent robots 
to make functional analyses such as optimizing workflow in 
an industrial setting than to make social judgments (Glikson 
and Woolley, 2020). Such findings may reflect the tendency 
to apply a default tool model to machines. When the robot 
has autonomous capabilities for teamwork, perceiving it as 
human-like may functionally adaptive. Such perceptions support 
shared mental models of team roles between the human and 
robot, leading to improved situation assessment, situation 
awareness, and performance (Schuster et  al., 2011). Shared 
mental models allow the operator to predict and react to the 
robot’s behavior and motivate the operator to team effectively 
with the system (Schuster et  al., 2011). However, much of the 
research on factors that drive trust in advanced robots does 
not directly address trust calibration (Lee and See, 2004). For 
example, trust in a human-like robot may be  misplaced if the 
robot does not in fact execute cognitive tasks accurately.

Attributes of the Robot and the Mental Model
The challenge for trust research is that the mental model active 
in any given interaction may vary across time, situations or 
tasks, and individuals (Phillips et  al., 2011), so that the drivers 
of trust also vary. Mental model activation may depend on 
both robot factors such as its appearance and its task activities 
(Glikson and Woolley, 2020) and individual differences in 
personality that affect attitudes toward robots (Wynne and 
Lyons, 2018).
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The ways in which the robot interacts with the human 
may bias which mental model is activated (Ososky et al., 2014). 
For example, consider systems that suggest music based on 
user preference. Kulesza et  al. (2012) described a web-based 
interface that recommended tracks based on the user’s expressed 
preferences for artists and styles of music. User mental models 
reflected their beliefs about the application’s rules for choosing 
music, i.e., the models were mechanistic in nature. By contrast, 
virtual personal assistants (VPAs) such as Alexa and Siri express 
human-like personality traits that influence the user’s mental 
models accordingly and their engagement with the VPA’s 
recommendations (Poushneh, 2021; Tenhundfeld et  al., 2021).

Factors such as a human-like appearance, expression of 
emotion, social agency and intelligence, benevolence of intent, 
communication abilities, and enjoyment of interaction promote 
acceptance of social robots (de Graaf and Allouch, 2013; Kuhnert 
et al., 2017; Wynne and Lyons, 2018). Review of social human–
robot interactions of Lewis et al. (2018) cites additional human-
like qualities that elevate trust such as physical presence, matched 
speech, and empathetic language and physical expression. 
Anthropomorphic design features such as simulated personality 
and a naturalistic communication style also tend to increase 
trust in systems that utilize AI such as robot assistants (Kiesler 
and Goetz, 2002) and virtual assistants (Lockey et  al., 2021). 
However, the advent of more human-like robots does not imply 
that humans will always trust social robots; attributes such as 
unreliability (Lewis et al., 2018) or undesired personality features 
(Paetzel-Prüsmann et  al., 2021) will tend to diminish trust. 
There may also be specific contexts such as healthcare in which 
more anthropomorphic robots are trusted less (Chui et  al., 
2019). The mental model might encode the robot as human-
like but incompetent.

Individual Differences in the Mental Model
Individual differences in trust in robots are quite prevalent 
and appear to reflect both attitudes toward the reliability of 
automation (Pop et  al., 2015) and toward humanoid robots 
(Nomura et  al., 2008). People also differ in their tendencies 
to anthropomorphize inanimate objects (Waytz et  al., 2010). 
However, research is lacking on measures of individual differences 
in mental model dominance relevant to the security context. 
To address this research gap, Matthews et al. (2019) conducted 
a study of trust that aimed to identify situational and dispositional 
factors relevant to threat detection in military and police 
settings. A new instrument, the Robot Threat Assessment 
(RoTA) scale, was developed using Situation Judgment Test 
(SJT) methodology (Lievens et  al., 2008). The aim was to 
evaluate trust in robots performing threat evaluations in a 
series of scenarios, described in short text passages. Scenarios 
differed in terms of whether the robot performed a purely 
physics-based analysis such as detecting the presence of chemicals 
or radiation, or whether it analyzed sensor data psychologically, 
e.g., for fear or aggressive intent in a human target. Physics-
based analyses implied the robot was reading a value from a 
meter or performing a simple pattern-recognition task such 
as matching a fingerprint to a database. Psychological analyses 
additionally required the robot to make an inference about 

distinctly human qualities including emotion, motivation, 
deception, and attitudes. Factor analysis of participant ratings 
distinguished two correlated dimensions corresponding to 
physics-based and psychological judgments, respectively (RoTA-
Phys and RoTA-Psych), consistent with trust reflecting distinct 
mental models.

Matthews et  al. (2019) assessed dispositional factors 
corresponding to operator beliefs and attitudes toward robots 
encoded in the “advanced tool” and “teammate” mental models. 
In the former case, trust may reflect individual differences in 
beliefs about whether the system is an effective and reliable 
tool. The PAS (Merritt et al., 2015) measures high expectations 
for automation as well as all-or-none beliefs. The PAS correlated 
positively with trust in both physics-based and psychological 
contexts, suggesting that the tool mental model tended to 
predominate. When the teammate mental model is active, trust 
may also depend on whether the system is believed to be  a 
supportive teammate, i.e., whether it effectively performs 
teamwork as well as taskwork behaviors (cf., Driskell et  al., 
2018). Study of Matthews et al. (2019) also included the Negative 
Attitudes to Robots scale (NARS: Nomura et  al., 2006), which 
assesses a range of negative reactions. Validation studies showed 
that scores correlated negatively with acceptance of social robots 
(Nomura et  al., 2008), avoidant social behaviors during 
interactions with a robot (Ivaldi et  al., 2017), and trust in 
robots (Schaefer, 2013). In study of Matthews et  al. (2019), 
the NARS predicted lower trust in robots making psychological 
judgments, over and above the PAS. Thus, the NARS may 
reflect the teammate mental model, with high scores suggesting 
negative views of robots as teammates, and low scores indexing 
positive attitudes.

Contextual Factors
Detection of threat by a human–robot team can take place 
in a variety of environments, varying in the objective probability 
of threat. For example, police officers are required to patrol 
city areas varying in crime rates. Contextual attributes of 
the environment provide cues to threat probability; high 
crime-rate areas are likely to have graffiti, broken windows, 
and damaged vehicles present. From a Bayesian perspective, 
these contextual cues help the officer estimate the base rates 
for threats, improving decision making. Depending on the 
base rate, the validity of a robot partner’s threat estimation 
might be  higher or lower than the accuracy of the robot’s 
determinations. While people, even domain experts, are 
notoriously fallible as Bayesian decision makers (Heuer, 1999), 
it is likely that law enforcement officers factor in base rates 
to some degree. For example, neighborhood characteristics 
influence officers’ enforcement decisions (Worrall et al., 2018). 
Similarly, soldiers with combat experience scan for danger 
cues such as people with hostile facial expressions, argumentative 
or aggressive postures, or unusual movement patterns 
(Zimmerman et  al., 2014). Thus, effective HRT requires the 
human to evaluate robot decisions within the context of base-
rate likelihood of danger. Mental models that promote high 
trust may lead to under-weighting of contextual information 
and over-weighting of the robot’s recommendation. Conversely, 
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mental models encoding negative attitudes to the robot may 
promote over-sensitivity to context.

Dangerous environments introduce an additional element 
into decision making, emotions such as fear and anxiety. The 
research literature demonstrates a range of biases associated 
with anxious emotion (Blanchette and Richards, 2010), such 
as increasing salience of threats (Matthews et  al., 2011). 
Neuroticism, a trait linked to anxiety, is associated with both 
lower interpersonal trust and trust in automation (Szalma and 
Taylor, 2011), although its role in reactions to automation is 
under-researched (Hoff and Bashir, 2015). Traits linked to 
mental models for robots may also influence the relative weighing 
of contextual and robot-generated information, congruent with 
whether the attitude is positive or negative. Traits also capture 
typical affective reactions, and emotions may influence trust 
over and above cognition and attitudes (Lee and See, 2004). 
For example, a high scorer on the NARS might experience a 
visceral dislike of a robot partner. Such reactions may be more 
prevalent when the environmental context activates negative  
emotions.

Present Study
The present study aimed to investigate whether dispositional 
predictors of trust in an autonomous robot were moderated 
by context as suggested by the mental model perspective 
previously introduced. It aimed to extend the Matthews et  al. 
(2019) findings by placing the participant in an immersive 
virtual environment, rather than using text-based scenarios. 
Participants were teamed with a robot in a simulation of threat 
detection and analysis in an urban environment, rendered with 
moving 3D graphics. The task resembles that of a pilot vehicle 
that precedes a convoy to provide a threat assessment as part 
of a Close Protection Operation (Schneider, 2009). Close 
Protection Operators anticipate and plan for potential threats 
in part by examining locations along a convoy route where 
an attack or ambush might take place. In the current study, 
the participant worked with a robot partner to visually assess 
the level of threat present along the path of a following 
motorcade. The robot used various sensors to determine whether 
threat was present at various stops along the route. It analyzed 
for threats including physical threats, such as fire or radiation, 
and human threats, such as impending violence between citizens. 
The simulation included a series of scenes that differed in the 
level of visible danger cues, such as broken windows, to provide 
a manipulation of environmental context.

At each scene, the robot provided a text report on whether 
it judged a threat to be  present or not. Similar to Matthews 
et  al. (2019), we  varied whether the robot’s evaluations were 
physics- or psychology-based. The manipulation involved 
presenting text-based transparency information (Lyons, 2013) 
that described either the physics- or psychology-based analyses 
supporting the robot’s threat evaluation. In the physics-based 
condition, transparency messages referred to direct inferences 
of threat from information such as the presence of chemicals, 
a metal object, or a weapon-shaped X-ray image. In the 
psychological condition, messages referred to inferring human 
emotions and intentions from cues such as elevated breathing, 

content of language, and body posture. Consistent with previous 
studies of transparency, mental models, and trust (Ososky et al., 
2014), we  assumed that physics-based messages would tend 
to activate a “tool” mental model, whereas psychological messages 
would prime a “human-like” model. The study manipulated 
type of analysis between subjects so that the robot consistently 
performed one type of analysis only.

We distinguished stable dispositional factors likely to bias 
mental model activation from situational constructs that capture 
the operator’s immediate attitudes toward the robot. Dispositional 
factors were assessed with the PAS and NARS. The study also 
included Human Interaction and Trust (HIT) scale of Lyons 
and Guznov (2018) that assesses intentions to rely on a robot. 
Dispositional factors were conceptualized as attributes of the 
individual’s stable, underlying mental model for advanced robots 
that guided but did not fully determine the mental model 
activated during the task. The situational trust response was 
assessed with ratings provided after each evaluation made by 
the robot. An overall post-task trust scale for HRI (Schaefer, 
2016) was also administered as a check on the validity of the 
situational ratings, i.e., that ratings converged with a validated 
situational trust measure. Ratings of whether the robot was 
making psychological judgments in each scenario were also 
obtained. These ratings reflect the dominant mental model 
activated in the scenario, presumed to reflect both dispositional 
factors and the impact of the transparency messages.

Research Issues and Hypotheses
The study manipulated robot analysis type and level of contextual 
danger cues within subjects, and robot analysis type between-
subjects (to activate a consistent mental model across scenarios). 
The principal dependent variable in the study was self-reported 
trust in the robot’s decision. Other outcomes included situational 
ratings of threat, anxiety, and perceptions that the robot was 
making psychological judgments. We investigated the following 
research issues.

Robot Analysis Type and Trust
Matthews et  al. (2019) found that trust in robots was higher 
for physics-based than for psychologically based judgments, 
on the basis of responses to text scenarios. We  expected that 
any inherent bias against human-like robots would persist in 
an immersive scenario with richer contextual information 
available to the participant than text provides. We hypothesized 
that there would be  a main effect of robot analysis type on 
trust (H1).

Contextual Danger and Trust
In many security contexts, the operator’s task requires integrating 
their own perceptions of danger with the additional information 
provided by a robot. Conflict between the human’s perceptions 
and the robot evaluation may call the robot’s ability into 
question (Perelman et  al., 2020), damaging trust according to 
Mayer et  al. (1995) ability, benevolence, and integrity model 
of trust. Trust was thus expected to be  higher when the robot 
confirmed the operator’s perceptions, and lower when there 
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is a mismatch. We  manipulated danger perceptions by varying 
presence of cues such as broken windows and suspicious objects. 
We hypothesized that trust would reflect the degree of congruence 
between the robot decision and the visible environmental 
context. Trust should be  highest when the robot responds 
“safe” in a low-danger context and “threat” in a high-danger 
context (H2). That is, we  anticipated an interactive effect of 
level of danger cues and the robot’s decision. We tested whether 
the interaction between robot decision and context was moderated 
by the decision type on an exploratory basis.

Individual Differences in Trust: Moderator Effects 
of Mode of Robot Analysis
Potential correlates of situational trust were divided into two 
classes. The PAS, HIT, and RoTA-Phys scales evaluate trust 
in machine functions without reference to any human-like 
judgments or behaviors. Assuming that the default mental 
model for automation (PAS) and robots (HIT, RoTA-Phys) 
refers to analyses of the physical world, we  hypothesized that 
these scales would primarily predict trust in the robot when 
making physics-based decisions (H3a). Conversely, the NARS 
and RoTA-Psych scales explicitly refer to human-like functions. 
Low NARS and high RoTA-Psych scores were expected to 
predict trust in the robot when making psychology-based 
decisions (H3b). The RoTA-Psych asks respondents to rate 
both the extent to which the robot is making a psychological 
judgment, and their confidence in the robot’s analysis. It was 
anticipated that these perceptions of robot functioning would 
be  more predictive of trust in the psychological compared to 
the physics-based analysis condition.

For each scenario, participants rated their perceptions of 
the robot as making psychological judgments, as well as threat 
and anxiety. Similar to H3b, we  hypothesized that perceptions 
of the robot as operating psychologically would correlate more 
strongly with trust in the psychological compared to the physics-
based condition (H3c). We ran regression analyses that included 
mode of robot analysis as a moderator factor to test hypotheses 
H3a through H3c. We  also investigated scenario ratings of 
threat and anxiety as correlates of trust, on an exploratory basis.

The Role of Emotion in Trust
We expected that scales for attitudes to human-like robots 
would be  associated with perceived threat and anxiety, leading 
to congruent changes in trust, especially in the most threatening 
context. Hypotheses were tested in the psychological condition 
only. High NARS and low RoTA-Psych scores should correlate 
with threat and anxiety (H4a), and correlations between these 
scales and trust should approach zero with threat and anxiety 
controlled (H4b).

MATERIALS AND METHODS

Participants
Sixty-two men and 56 women were recruited from the psychology 
student pool (age range 18–40) at a large state university in 

the southeastern United  States. They received course credit 
for participation.

Previous studies (e.g., Merritt et al., 2015; Lyons and Guznov, 
2018; Lyons et  al., 2020) have shown large variation in the 
magnitudes of correlations between dispositional and situational 
trust measures, which made an a priori power analysis 
problematic. We  aimed to run approximately 120 participants 
based on typical sample sizes in comparable simulation-based 
studies (e.g., Schaefer, 2016; Lyons and Guznov, 2018). With 
an N of 118, and for correlations of 0.3, 0.4, and 0.5, power 
attained was 0.88, 0.99, and 0.99, respectively (p < 0.05, two-tailed). 
Within each group of 59 participants, the equivalent power 
values were 0.65, 0.89, and 0.99.

Experimental Design
The study utilized a 2 × 2 × 3 design. Robot analysis mode (physics-
based, psychological) was manipulated between-subjects. Thirty-one 
men and 28 women were allocated at random to each of the 
two conditions. Participants in the two groups were similar in 
demographic characteristics including education level, self-reported 
health, and hours of sleep. Robot decision (safe, threat) and danger 
cue level (low, medium, and high) were manipulated within subjects.

Simulation Environment
The simulation was designed using UnReal Game Engine4. It 
supported threat evaluations performed as part of a mobile 
protection plan, i.e., providing threat intelligence required for 
the close protection of dignitaries traveling in a convoy. The 
participant played the role of a soldier traveling the convoy 
route along with a robot partner with the aim of identifying 
possible terrorist threats. The participant had a “first-person 
shooter” 3-D view of traveling through an urban environment, 
stopping at a series of locations along the route to determine 
whether threatening activity was present. Participants were told 
that the robotic partner was equipped with multiple sensors, 
which it used to make its own determination of each location’s 
potential for threat. The participant could not see the robot 
directly but could view text information provided by the robot 
pertaining to its threat evaluations.

Specifically, the initial orientation included the following 
instructions: “You will play the role of an operator using a 
robot to investigate a potentially threatening region in an urban 
town. The robot uses sensors and programmed artificial 
intelligence to analyze the situation. It will deliver to you  a 
threat assessment and a recommendation for action. You should 
evaluate the situation onscreen, then rate your confidence in 
the robot’s threat assessment and recommendation for action. 
You  should make these ratings independently. For example, 
you  might be  confident in the robot’s evaluation of threat, 
but not its action suggestion, or vice versa. The scenarios 
cover a range of robot technologies that already exist or are 
currently being developed. You  may not have heard of all of 
them, and we  do not expect you  to be  familiar with the 
technologies. We  would like you  to respond by considering 
the general plausibility of the technology working as intended, 
drawing on whatever relevant knowledge you  have.”
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Danger cues present in the scene were manipulated to 
be  low, medium, or high based on the number of suspicious 
objects, characteristics of individuals, and the condition of 
the buildings in the area. Objects were planted in scenes 
to elicit the perception of common security threats, such 
as an unattended bag potentially containing an improvised 
explosive device or a suspicious unmarked van. Individuals 
were either static or cycled through a series of actions, 
such as gesturing. There was no other movement in the 
scene. There were about eight individuals per scene, across 
the foreground and background. Individuals were manipulated 
to appear threatening by using large, animated gestures mixed 
with angry facial expressions. Buildings in the scene varied 
from newly built and maintained (low threat) to vacant and 
in disrepair (high threat). Combinations of object, building, 
and individual qualities were planned by the laboratory’s 
research associates; threat levels were confirmed by other 
team members uninvolved in the project. The scenarios were 
therefore designed as follows. In low danger scenes, buildings 
were new, one suspicious object was planted in the scene, 
and one out of three individuals seemed angry. In medium 
danger scenes, buildings were slightly rundown and painted 
in the modeling software to appear dirty but without disrepair 
(no boarded or broken windows). There were also two 
suspicious objects such as a discarded duffle bag or package 
and one or two individuals appeared upset and making 
angry or violent gestures. In the high danger scenes, the 
buildings appeared in disrepair with broken or boarded 
windows and entrances. Suspicious objects were higher in 
number. These included fire or smoke in the scene, and 
old packages or containers. Individuals in these scenes 
appeared ready to fight or riot, e.g., through exhibiting angry 
gesturing motions. Agents were carefully modeled to remove 
any social biases, which might influence danger perceptions. 
There was an even representation across scenes of gender, 
of light, medium, and dark complexion agents, and of younger 
and older individuals (appearing below or above 40 years 
of age).

At each scene, after approximately 20 s, the robot provided 
its evaluation as a text message overlaid on a portion of 
the screen. The message include justification for the evaluation 
(transparency) and a statement that the area was either safe 
or threatening. Table  1 shows the number of robot decisions 
of each type at each level of danger cues. The robot described 
the majority of low-danger scenes as safe and the majority 
of high-danger scenes as threatening, in order to maintain 
ecological validity. This scheme introduces a correlation 
between robot decision and level of danger cues. We  felt 
that the alternative approach of having equal numbers of 
each robot decision type at each danger level would rapidly 
undermine trust in the robot and threaten the generalizability 
of results.

The mode of analysis described in the message was 
manipulated as follows. In the physics-based condition, the 
robot described making its judgment of the scene using physical 
or chemical cues in the environment, such as a potential fire 
threat determined from thermal readings. In the psychological 

condition, the robot partner’s threat determination was based 
on psychological analysis of sensor readings, such as using 
thermal cameras to measure facial temperature and infer 
suspicious stress response in individuals in the scene area. 
Participants were able to view the scene again up to three 
times, without the robot message overlaid, before proceeding 
to response. Figure  1 illustrates scenes differing in level of 
danger cues and in analysis mode.

After viewing the scene and the robot evaluation, a series 
of questions were overlaid on the screen, together with five-
point Likert scales for response. Participants rated the level 
of threat, their emotional state, and the robot’s assessment of 
the scenario. Following response, the participant viewed the 
journey to the next scene. No feedback on the robot’s accuracy 
of threat analysis was provided.

TABLE 1 | Number of scenarios at each level of danger cues and robot decision.

Low danger Medium danger High danger

Robot decision: 
safe

7 4 1

Robot decision: 
threat

1 4 7

FIGURE 1 | Screenshots from two scenarios. Upper screenshot has low 
danger-cue level, and the robot makes a physics-based evaluation of safety. 
Lower screenshot has high danger-cue level, and the robot makes a 
psychological evaluation of threat.
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Measures
Demographics Questionnaire
A 14-item demographics questionnaire covered a range of 
biographical information, including gender, health state, education 
level, and military service experience.

Dispositional Attitudes Toward Robots
The NARS, PAS, HIT, and RoTA scales were used to measure 
people’s attitudes toward robots. The NARS (Nomura et  al., 
2006) consists of 14 items in three subscales to profile general 
attitudes toward robots: NARS_1. Negative attitude toward 
interaction with robots; NARS_2. Negative attitude toward social 
influence of robots; NARS_3. Negative attitude toward emotional 
interactions with robots. The NARS_3 items refer to comfort 
with interactions, but they were reverse-scored so that high 
scores refer to discomfort. Nomura et al. (2006) reported alpha 
coefficients for internal consistency of 0.77, 0.78, and 0.65, 
for the three subscales, respectively.

The PAS (Merritt et al., 2015) consists of eight items relating 
to people’s trust in automated systems, with two subscales: 
PAS_1. High expectations; PAS_2. All-or-none belief. Each item 
is scored on a five-point Likert scale from “strongly disagree” 
to “strongly agree.” Matthews et  al. (2019) found that both 
subscales had good internal consistency (alpha = 0.82, for both).

The HIT (Lyons and Guznov, 2018) comprises 10 items 
asking about intentions to trust a robot partner, based on the 
based on the trust model of Mayer et  al. (1995). Items are 
answered on a seven-point scale, anchored by “not at all true” 
and “very true.” Lyons and Guznov (2018) reported an alpha 
coefficient of 0.83.

The RoTA scale (Matthews et al., 2019) includes text descriptions 
of 20 military and security scenarios in which a human operator 
teams with a robot to investigate a potentially threatening event 
or person in a remote location. To determine threat, the robot 
uses physics-based (10 scenarios) or psychological analysis of 
sensor data (10 scenarios). Two examples of physics-based scenarios 
included the robot detecting traces of explosive chemicals and 
using a thermal camera to locate humans inside a building from 
heat patterns. Psychologically based scenarios included detecting 
aggression in facial expressions and identifying acoustic qualities 
of speech indicating anxiety. After each scenario, participants 
were asked to make three ratings on an eight-point scale: Q1. 
To what extent is the robot making a psychological judgment; 
Q2. How confident are you that the robot’s analysis of the situation 
is correct; Q3. How likely are you  to base your actions on the 
robot’s recommendations? Alpha coefficients for 10-item scales 
corresponding to each question, calculated separately for physics-
based and psychological scenarios, ranged from 0.81 to 0.97.

Scenario Ratings
Following each scenario, participants rated the likelihood of threat 
(0%: Secure—100%: Threatening), and their levels of five emotions, 
including anxiety. A further screen requested ratings of the extent 
to which the robot’s assessment was psychological in nature (1: 
Not at all—5: Very much), their confidence that their partner’s 
assessment was correct (1: Not at all confident—5: Very confident), 

and the likelihood of their acting on the robot’s recommendations 
(1: Not at all likely—5: Very likely). These ratings were averaged 
across scenarios to give overall measures of scenario perceptions, 
including trust, the principal dependent measure.

Situational Trust (Post-task)
Following task performance, participants completed a 14-item 
subscale measuring trust in functional capabilities of the robot, 
from Trust Perception Scale-HRI (TPS-HRI) of Schaefer (2016). 
The scale was scored as a post-task measure per instruction 
of Schaefer (2016). Participants rated the percentage of time 
that the robot displayed various attributes of trustworthiness, 
such as being part of the team and responsible, on an 11-point 
scale ranging from 0 to 100%. The TPS-HRI was included 
primarily to check the validity of the situational trust ratings; 
the 14-item subscale was used rather than the 40-item full 
scale due to time constraints.

Procedure
Figure 2 summarizes the procedure, comprising the following steps.

Initial Orientation
Participants were given a general description of the study and 
the simulation and provided informed consent. The participants 
were allocated at random to one of the two robot analysis 
mode conditions, either physical or psychological.

Demographics and Dispositional Measures
Participants completed a questionnaire packet including 
demographic questions and the NARS, PAS, HIT, and RoTA scales.

Training and Practice
Participants viewed a training PowerPoint slide deck that described 
the aims of the security mission and the role of the robot, 
illustrated the simulation environment, and provided instructions 
for rating their evaluations of the robot’s decisions. Instructions 
described either the robot’s use of physical and chemical sensor 
data, or its capacity to analyze psychological characteristics 
according to the experimental condition to which the participant 
was allocated. They were instructed that “Although you  have 
the robot to assist you, you  still need to examine each situation 
carefully to look for signs of terrorist activities, such as weapons, 
suspicious objects, aggressive behavior, etc.” Participants then 
completed a hands-on training session, guided by the researcher, 
which walked them through a threat evaluation scenario, provided 
practice in rating threat, emotion, and the robot’s decisions, and 
verified that they fully understood the task and the rating procedure.

Simulation Task
Participants responded to a sequence of 24 scenarios, as specified 
in Table  1. Scenarios were the same in the two robot analysis 
mode conditions, but the transparency messages from the robot 
differed. Danger cue level and robot decision were varied in 
a pseudo-random order. For each scenario, participants viewed 
the scene for 20 s, received the robot transparency message, 
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and completed a set of ratings overlaid on the screen. Ratings 
included the extent to which the robot was making a psychological 
judgment and two trust evaluations: confidence in the robot’s 
judgment and willingness to accept an action recommendation 
from the robot. They also included perceived threat and levels 
of five emotions including anxiety.

Post-task Situational Trust
Finally, participants completed a further questionnaire packet 
including the TPS-HRI, prior to debriefing.

RESULTS

Overview
Following manipulation checks, an ANOVA was run to investigate 
effects of the experimental manipulations on trust ratings, 
testing H1 and H2. This ANOVA suggested that effects were 
similar for the two ratings utilized, focusing on confidence in 
the robot and willingness to act on its recommendations, 
respectively. For correlational analyses, these ratings were 
averaged to provide an overall situational trust measure. Following 
a check on predictor intercorrelations, we  report correlations 
of the averaged trust measure with (1) dispositional measures 
and (2) scenario ratings. Correlations were compared across 

the two robot analysis modes, testing H3a, H3b, and H3c. 
Multiple regressions were run to provide a formal test of the 
moderator effects of robot analysis condition on predictors 
of trust.

The final set of analyses addressed associations between 
dispositional measures and emotional response, and the extent 
to which dispositional measures remained correlated with trust 
when emotional response was controlled. The preceding analyses 
showed that the dispositional trust measures were only weakly 
correlated with trust in the physics-based analysis condition. 
Thus, the role of emotion was of little relevance in this condition. 
By contrast, multiple dispositional measures were associated 
with trust in the psychological condition, so that emotional 
factors might potentially be  more relevant to understanding 
individual differences in trust. Analyses of the psychological 
condition were run to investigate whether predictors of situational 
trust were dependent on the environmental context (danger 
cues), perceived threat, and anxiety. We  tested whether the 
dispositional trust measures predicted ratings of anxiety and 
threat, at each level of danger cue (testing H4a), followed by 
a test of whether the dispositional measures remained predictive 
of trust with anxiety and threat statistically controlled 
(testing H4b).

Manipulation Checks
Analyses were run to check that the analysis mode and danger 
cue manipulations affected participants’ perceptions of the 
scenarios as intended. Participants rated the extent to which 
each scenario required a psychological judgment on a 1–5 
scale. As expected, mean rating across all 24 scenarios was 
higher in the psychological condition (M = 3.24, SD = 0.86) than 
in the physics-based condition (M = 2.81, SD = 0.91), t(116) = 2.68, 
p < 0.01.

Table  2 shows mean anxiety and threat ratings at each level 
of Danger Cues. Each rating mean was averaged across  the 
eight scenarios for each level (see Table  1). One-way, repeated-
measures ANOVAs showed significant main effects of Danger 
Cues for threat rating, F(1.97,226.53) = 1287.21, p < 0.001, η2

p = 0.918, 
and for anxiety rating, F(1.42,163.09) = 1287.21, p < 0.001, η2

p = 0.551 
(In these and subsequent ANOVAs, Box’s correction was applied 
to df ’s when the sphericity assumption was violated). As the 
environment appeared more dangerous, ratings of threat and 
anxiety increased, as expected.

We also ran a series of Bonferroni-corrected t-tests to test 
whether participants allocated to the analysis mode conditions 
differed on any of the RoTA, PAS, NARS, and HIT scales. 
No significant differences were found. There were also no 
significant differences in variability in scale scores across 
conditions, tested with a series of F tests. Thus, the two 
participant groups appeared to be similarly composed in regard 
to the dispositional individual difference variables.

Effects of Manipulations on Trust
The dependent variables for the analysis were means for the 
two rating scales of (1) confidence in the robot’s analysis and 
(2) likelihood of acting on the robot’s recommendation. Means 

FIGURE 2 | Summary of the procedure.
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were calculated for each cell of the design (see Table  1). Data 
were then analyzed with a 2 × 3 × 2 × 2 (Analysis Mode × Danger 
Cues × Robot Decision × Rating Scale) mixed-model ANOVA 
run using the SPSS Version 27 GLM procedure. Analysis Mode 
was a between-subjects factor, contrasting the two groups given 
physics-based or psychological transparency information. The 
remaining factors were within-subjects factors, contrasting, 
respectively, three levels of visible danger cues, the robot’s 
determination of threat or safety, and the two rating scales used.

The analysis showed main effects of Rating Scale, 
F(1,114) = 26.21, p < 0.001, η2

p = 0.187, and Danger Cues, 
F(1.76,200.73) = 6.43, p < 0.01, η2

p = 0.053. The Danger Cues main 
effect was modified by two significant interactions: Danger 
Cues × Robot Decision, F(1.78,202.47) = 231.82, p < 0.001, 
η2

p = 0.670, and Analysis Mode × Danger Cues × Robot Decision, 
F(1.78,202.47) = 3.43, p < 0.05, η2

p = 0.029. No other main effects 
or interactions attained significance.

The main effect of Rating Scale was associated with higher 
ratings for confidence in the robot (M = 3.51, SE = 0.04) than 
for acting on its recommendations (M = 3.44, SE = 0.04). These 
values exceed the rating scale midpoint of 3. One-sample 
t-tests confirmed that mean ratings were significantly higher 
than 3.0 for confidence [t(117) = 11.38, p < 0.001, d = 1.05] and 
for acting on recommendations [t(117) = 10.37, p < 0.001, 
d = 0.95]. However, there were no significant interactions 
between the rating scale used and the other independent 
factors, implying that both scales measured a similar trust 
construct. The effects of the remaining independent variables 
are shown in Figure  3. The dependent variable is the 
GLM-estimated marginal mean, in effect the average of the 
two rating scales. The strongest effect was the crossover 
interaction between Danger Cues and Robot Decision. Trust 
ratings were higher when the robot’s decision matched the 
visible context, i.e., when the robot determined safety in a 
low-danger cue scene, or threat in a high-danger context. 
Similarly, mismatch produced lower trust. Ratings were generally 
similar in both physics-based and psychological transparency 
groups. The weak but significant three-way interaction primarily 
reflects higher trust when the robot used physics-based rather 
than psychological analysis to decide a low danger-cue scene 
was in fact threatening.

Correlations Between Dispositional and 
Situational Trust Scales
Intercorrelations of Dispositional Scales
We analyzed the intercorrelations of dispositional scales related 
to trust to test whether they converged on a single, underlying 
general trust factor, or whether they assessed distinct personal 

qualities. Table 3 shows correlations between the dispositional 
scales for trust and attitudes toward robots available from 
the HIT, PAS, NARS, and RoTA scales. Scales showed substantial 
divergence, suggesting that they cannot be  reduced to a single 
underlying trust dimension. The strongest cross-scale correlations 
were found between the HIT and NARS. Intentions to rely 
on robots, measured by the HIT, were lower in participants 
with negative attitudes, measured by the NARS, especially 
those with negative attitudes toward the social influence 
of robots.

Correlates of Situational Trust
Table  4 shows dispositional correlates of two measures of 
situational trust. The first is the mean of the participants’ 
ratings of confidence in robot analysis and likelihood of acting 
on its recommendations, averaged across all 24 scenarios. 
The use of the mean rating is justified because (1) the ANOVA 
showed no interactive effects on trust between Rating Scale 
and other factors and (2) the analysis and action 
recommendation means were highly correlated (r = 0.94). The 
second situational trust measure was the Schaefer (2016) 
TPS-HRI, providing a global evaluation across all scenarios. 
For both trust measures, Table  4 shows correlations for the 
whole sample and for each of the two analysis-mode groups 
separately. The “z” column provides the test for significance 
of the difference of the correlations for the two groups, 
performed using Fisher’s r to z transformation (McNemar, 
1969). The table includes the dispositional measures of attitudes 
toward robots as well as the mean situational ratings of 
the scenarios.

In the whole sample, the HIT, the NARS negative attitude 
toward interactions subscale, and the majority of the RoTA 
subscales were consistent predictors of both situational trust 
measures. However, Table  4 also shows that predictors of 
situational trust varied across the two groups. The most 
consistent group differences were obtained with the RoTA-
Psych scale. For both situational trust measures, the two RoTA-
Psych measures were significantly correlated with trust only 
in the psychological transparency condition. The significant z 
statistics confirm that correlations differed across the two 
groups. The RoTA-Physics scale, surprisingly, showed a similar 
pattern of results, but the zs were significantly only for the 
trust rating measure, not for the TPS-HRI. The HIT was also 
more strongly correlated with situational trust in the 
psychological condition, with the z reaching significance for 
the trust rating measure only. The PAS high expectations scale 
was significantly negatively correlated with trust rating in the 
physics-based condition, but the z for the comparison with 
the psychological conditions was nonsignificant. The NARS 
scales tended to be  negatively associated with trust, but there 
was no clear variation in correlation strengths across the two 
groups. The only situational rating to correlate with trust 
ratings was perceptions of the robot as making psychological 
judgments, which was more strongly correlated with trust in 
the psychological compared to the physics-based condition, 
as anticipated.

TABLE 2 | Mean ratings for threat and anxiety at three levels of danger cues.

Danger cues

Low Medium High

Threat rating 1.55 (0.39) 2.61 (0.45) 3.54 (0.47)
Anxiety rating 1.59 (0.55) 2.12 (0.83) 2.63 (1.11)
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Regression Analyses
We used a regression approach to investigate predictors of 
the averaged situational trust rating. We investigated moderator 
effects of the robot’s analysis mode, by testing whether the 
regression of the trust criterion onto the individual-difference 
predictors differed in the two analysis mode conditions. Three 
regression models were tested. Model 1 tested for linear 
predictors of trust, and Models 2 and 3 added product terms 
to test for interaction between dispositional variables and 
analysis mode, i.e., moderator effects. Linear predictors were 
centered to avoid collinearity with interaction terms. Each 
model included at the first step a dummy variable for 
experimental condition (−1 = physics-based; 1 = psychological). 
The R2 of 0.003 at Step  1 was small and nonsignificant. 
Subsequent steps added linear and interaction terms to test 
contributions of predictor sets on a hierarchical basis. Model 
1 was an initial test of the joint contribution of the full set 
of dispositional variables to predicting trust. To keep the 
model tractable, Model 2 utilized a reduced set of the most 
relevant predictors and tested the contribution of interaction 
terms computed as the product of experimental condition 
and the dispositional variable (H3a, H3b). Model 3 focused 
on the situational ratings of psychological judgment, threat 
and anxiety, and their linear and condition-dependent 
associations with trust (H3c).

Summary statistics for the regression models are given 
in Table  5. For Model 1, the dispositional predictors added 
around 25% to the variance explained, with scales from the 
PAS, HIT, and NARS making significant individual 
contributions, consistent with the correlational analysis. 
However, the change in R2 (ΔR2) likely reflects some chance 
associations due to the number of predictors. Model 2 thus 
included only those dispositional scales significantly associated 
with trust in one or other of the two experimental conditions, 
as specified in Table  4, i.e., PAS: all-or-none thinking, HIT, 
and NARS: interaction with robots. In Model 1, there was 
collinearity between ROTA scales, so Model 2 included only 
the two most theoretically relevant RoTA-Psych scales as 
predictors: Psychological Judgment and Confidence. 
Interaction terms were computed for each of the five selected 
dispositional predictors as the product of the centered linear 
term and the dummy variable for condition. The linear 
terms added 18.2% to the variance explained at Step  2, and 
the interaction terms a further 11.7% at Step  3. In the final 
equation at Step  3, the linear PAS and NARS terms were 
significant, and the interactions of condition and the two 
RoTA-Psych scales also made significant individual 
contributions. That is, the PAS and NARS scales predicted 
trust irrespective of the robot’s mode of analysis, but the 
relationship between RoTA-Psych and trust varied across 

FIGURE 3 | Estimated marginal means for trust rating as a function of level of danger cues, robot decision (“Safe” or “Threat”), and mode of analysis 
(Physics = physics-based, Psych = psychological). Error bars are SEs.
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the two conditions. The analysis of Model 3 showed significant 
contributions from both the linear situational ratings (12.3%) 
and the interaction terms (7.9%). The final equation at 
Step 3 showed significant contributions from both the linear 
and interactive terms for psychological judgment rating, but 
threat and anxiety appeared to be  unrelated to trust.

Figure  4 illustrates the significant interactions identified in 
the analyses of Models 2 and 3. Each graph shows regressions 
of situational trust on the relevant predictor in the two 
experimental conditions, based on the standardized Step  3 
regression equation. The two RoTA-Psych interactions show a 
similar pattern. In the physics-based condition, there was a 
negative relationship between trust and both psychological 
judgment and confidence in the robot’s psychological evaluations. 
In the psychological analysis condition, both RoTA-Psych 
variables show a stronger positive association with trust. Both 
believing that the security robots made psychological judgments 
and having confidence in those judgments appear to predispose 
the person to trust the robot in the scenarios, consistent with 
H3b. The Model 3 interaction shows that believing the robot 
was making a situational psychological judgment was only 
weakly positively correlated with trust in the physics-based 
experimental conditions, but the positive relationship was 
stronger in the psychological analysis condition, consistent 
with H3c.

Intercorrelations of Trust, Situational 
Threat, and Anxiety: Psychological 
Condition
Dispositional Correlates of Threat and Anxiety
For these analyses, mean ratings of threat and anxiety were 
calculated separately for each level of danger cues, averaging 
across the eight scenarios at each level. Table 6 shows correlations 
between dispositional measures and threat and anxiety ratings. 
The RoTA was the strongest predictor of perceived threat, 
especially with high visible danger. Two of the NARS subscales 
were quite consistently associated with higher anxiety, but the 
correlations did not vary much across different danger-cue 
levels. Higher PAS subscale scores tended to be associated with 
lower anxiety, but the HIT was not predictive of either threat 
or anxiety.

Correlates of Situational Trust by Danger 
Cue Level
In the psychological analysis mode condition, mean trust ratings 
were calculated separately for each level of danger cues, averaging 
ratings of confidence in robot analysis, and likelihood of acting 
on its recommendations across the eight scenarios for each 
level of danger cue. Table  7 shows correlations between the 
dispositional trust measures and mean trust rating at each 

TABLE 3 | Intercorrelations of dispositional measures.

1 2 3 4 5 6 7 8 9 10 11

1.  PAS: high 
expectations

2.  PAS: all-or-none 
thinking

0.216*

3. HIT 0.235* −0.021
4.  RoTA-Phys: 

psychological 
judgment

0.110 0.108 0.076

5.  RoTA-Phys: 
confidence

0.149 0.040 0.265** 0.061

6.  RoTA-Phys: 
action recommen 
dations

0.072 −0.001 0.298** 0.056 0.813**

7.  RoTA-Psych: 
psychological 
judgment

−0.016 0.106 0.115 0.296** 0.223* 0.212*

8.  RoTA-Psych: 
confidence

0.261** 0.038 0.322** 0.251** 0.692** 0.605** 0.067

9.  RoTA-Psych: 
action recommen 
dations

0.180 0.032 0.311** 0.350** 0.542** 0.649** 0.058 0.869**

10.  NARS: 
interaction with 
robots

−0.062 0.146 −0.414** 0.189* −0.167 −0.142 −0.096 −0.175 −0.140

11.  NARS: social 
influence of 
robots

−0.232* 0.043 −0.574** −0.029 −0.165 −0.084 −0.011 −0.217* −0.142 0.575**

12.  NARS: 
emotional 
interactions with 
robots

−0.158 0.065 −0.486** −0.038 −0.115 −0.125 −0.014 −0.313** −0.309** 0.620** 0.633**

*p < 0.05; **p < 0.01.
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level of danger cue. Generally, there was little variation in 
correlation magnitude across the levels. The strongest correlates 
of trust—HIT, RoTA, and NARS negative attitude toward 
interactions—were significantly correlated with trust at all three 
levels. Two of the NARS subscales were significantly correlated 
with trust only in the medium danger-cue condition. The table 
also provides partial correlations for the dispositional trust—
situational trust correlations with mean threat rating and mean 
anxiety rating controlled. The partial correlations were generally 
similar in magnitude to the uncorrected correlations, suggesting 
that the validity of the dispositional measures as correlates of 
trust cannot be  directly attributed to individual differences in 
trust and/or anxiety.

DISCUSSION

In this study, we  investigated factors associated with trust in 
an advanced robot operating in a security role. Consistent 
with previous reviews (Hancock et  al., 2011; Hoff and Bashir, 
2015; Schaefer et  al., 2016), we  found that trust reflected 
multiple factors. In terms of model of Hancock et  al. (2011), 
these included human factors (individual differences), robot 

factors (robot decision, mode of analysis), and an environmental 
factor (contextual threat). The current study confirmed that 
multiple individual difference factors may shape trust in the 
robot, in combination with robot and environmental factors.

The remainder of this section discuss the tests of the 
hypotheses in more depth. We  found moderately high levels 
of trust in both physics-based and psychological conditions, 
together with sensitivity to contextual danger (see Section 
“Influences on Trust”). The young adult sample appeared to 
be generally quite rational in the assignment of trust, regardless 
of the robot’s mode of analysis. Scales that correlated with 
trust included NARS, PAS, and HIT, as hypothesized (see 
Section “Individual Differences in Trust”). The robot’s mode 
of analysis—physics-based or psychological—was more significant 
as a moderator of individual difference effects than as a direct 
influence on trust. In the psychological condition, we  found 
that RoTA scales for perceiving security robots as making 
psychological judgments and confidence in those judgments 
predicted situational trust. These associations are consistent 
with activation of a “teammate” mental model enhancing trust 
when the robot is required to make human-like appraisals 
such as identifying negative emotions and aggressive intent. 
We  also found individual differences in threat appraisal and 

TABLE 4 | Correlates of two situational trust measures, overall and by analysis mode.

Trust rating TPI-HRI

All Physics Psychol. Z All Physics Psychol. z

HRI 0.502** 0.492** 0.521** 0.21
PAS: high 
expectations

−0.072 −0.199 0.056 0.77 −0.042 −0.077 −0.015 0.32

PAS: all-or-none 
thinking

−0.271** −0.409** −0.144 1.53 −0.086 −0.112 −0.062 0.27

HIT 0.257** 0.069 0.440** 2.13* 0.308** 0.244 0.376** 0.77
RoTA-Phys: 
psychological 
judgment

−0.128 −0.279* 0.007 1.55 −0.247** −0.377** −0.106 1.54

RoTA-Phys: 
confidence

0.286** 0.112 0.448** 1.96* 0.314** 0.234 0.398** 0.97

RoTA-Phys: action 
recommendations

0.299** 0.074 0.488** 2.43* 0.254** 0.120 0.391** 1.55

RoTA-Psych: 
psychological 
judgment

0.120 −0.052 0.296* 1.89 0.023 −0.035 0.093 0.068

RoTA-Psych: 
confidence

0.200* −0.100 0.422** 2.91** 0.222* 0.024 0.407** 2.16*

RoTA-Psych: action 
recommendations

0.174 −0.159 0.432** 3.29** 0.127 −0.078 0.333** 2.25*

NARS: interaction with 
robots

−0.288** −0.209 −0.376** 0.97 −0.307** −0.348** −0.256 0.59

NARS: social influence 
of robots

−0.087 −0.027 −0.172 0.78 −0.127 −0.107 −0.146 0.21

NARS: emotional 
interactions with 
robots

−0.094 0.074 −0.244 0.93 −0.208* −0.139 −0.274* 0.15

Scenario threat rating 0.141 0.237 0.042 1.06 0.095 0.167 0.006 0.86
Scenario anxiety rating −0.033 −0.132 0.046 0.53 −0.042 −0.045 −0.037 0.04
Psychological 
judgment rating

0.282** 0.089 0.504** 2.46* 0.096 0.037 0.155 0.63

*p < 0.05; **p < 0.01.
Physics = Physics-based analysis mode, Psychol. = Psychological analysis mode, Z tests significance of difference of correlations in the two analysis modes.
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anxiety, but these responses did not seem to directly drive 
variation in trust. Study findings have practical implications 
for optimizing trust in security settings (see Section “Applications 
to Selection and System Design”). Operator selection can include 
assessments on dispositional trust measures to identify individuals 
who allocate trust on a rational basis, taking into account 
both robot and contextual characteristics. Individual difference 
assessment can also guide personalization of training and 
delivery of transparency information. Study limitations including 
use of a novice sample, divergence of trust measures, and 
limited robot autonomy may be  addressed in future research 
(see Section “Limitations”).

Influences on Trust
Mean trust ratings of around 3.5 fell above the midpoint of 
the 1–5 scale, implying substantial but not perfect trust. Meta-
analyses have shown that system reliability and performance is 
a major driver of trust (Hancock et  al., 2011; Schaefer et  al., 
2016). On most trials, the robot’s evaluation was consistent with 
the threat context, which may have built confidence in its 
judgments. As hypothesized (H2), trust was highest, around 
four on the scale, when the visible level of environmental danger 
matched the robot’s judgment. Trust levels fell to about 2.5 
when there was a mismatch between danger cues and robot 
decision. This value is a little below the scale midpoint, but 
greater than the lower anchor value of 1, implying that participants 
did not entirely dismiss the robot’s analysis. Thus, participants’ 
evaluations of the scenarios appeared rational in that they 
integrated both the robot’s decision and the environmental context, 
broadly consistent with the Bayesian perspective (Heuer, 1999).

We hypothesized that trust would reflect greater confidence 
in a robot utilizing physics-based analysis, relative to a 
“psychologizing” robot (H1). Contrary to the hypothesis, there 
was no significant main effect of analysis mode on either 
confidence in the robot’s judgment or likelihood of acting on 
its recommendation. At least in the security context, young 
adults do not seem to have any specific difficulty in trusting 
a robot making psychological evaluations from sensor data. 
Only when the robot judged there to be  a threat in a low 
threat context scene was trust in the physics-based condition 
higher than in the psychology-based condition. Trust scores 
for this condition were based on perceptions of an unthreatening 
scene depicting office buildings with seven people standing 
near to a bus stop. In the physics-based condition, the robot 
reported threat based on analysis of data from an X-ray camera 
indicating a weapon and multiple unknown objects. In the 
psychological condition, threat was inferred from voice analysis 
indicating disorganized and agitated speech (inaudible to 
participant). Trust was relatively low in both conditions, but 
greater trust in the physics-based condition might reflect either 
greater belief in the robot’s ability to detect an imperceptible 
threat, or idiosyncratic features of the two versions of the scenario.

Individual Differences in Trust
Previous work on trust in robots and autonomous systems 
suggests that situational trust may be  shaped by the person’s 
stable mental model of robot functioning (Phillips et  al., 2011; 
Ososky et  al., 2014). Our previous work suggests that there 
are individual differences in the extent to which people are 

TABLE 5 | Regression statistics for three models for prediction of situational trust.

Model Step 2 Step 3

Model 1:  
full set of 
dispositional 
predictors

Linear terms - Individual predictors (at last step)
R df ΔR2 df

0.519** 13, 104 0.267** 12, 104 PAS: all-or-none thinking 
(β = −0.22*)

HIT (β = 0.24*)

NARS: interaction with robots 
(β = −0.25*)

Model 2: 
reduced set  
of predictors 
with 
interactions

Linear terms Interaction terms
R df ΔR2 df R df ΔR2 df
0.430** 6, 111 0.182** 5, 111 0.550** 11, 106 0.117** 5, 106 PAS: all-or-none thinking 

(β = −0.22*)

NARS: interaction with robots 
(β = −0.22*)

Condition × RoTA-Psych: 
psychological (β = 0.19*)

Condition × RoTA-Psych: 
confidence (β = 0.20*)

Model 3: 
scenario 
ratings with 
interaction

Linear terms Interaction terms
R df ΔR2 df R df ΔR2 df
0.355** 4, 113 0.123** 3, 113 0.453** 7, 110 0.079* 3, 110 Psychological rating (β = 0.32**)

Condition × Psychological rating 
(β = 0.24**)

*p < 0.05 and **p < 0.01.
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disposed to view robots as advanced tools vs. human-like 
teammates (Matthews et  al., 2019). We  assessed multiple 
dimensions of dispositional individual differences in trust, 
validated in previous research (Nomura et  al., 2006; Merritt 
et  al., 2015; Lyons and Guznov, 2018; Matthews et  al., 2019). 
There was considerable divergence between the trust scales, 
implying a need to distinguish different aspects of the construct. 
Similar to Lyons and Guznov (2018), we  found only weak 

associations between the PAS and HIT, suggesting that attitudes 
to automation diverge from those to robots. The HIT was 
quite substantially negatively correlated with all three NARS 
subscales, although the HIT was designed to assess trust as 
defined in the Mayer et  al. (1995) model rather than negative 
emotion. At the dispositional level, trust in a robot partner 
may in part be  shaped by emotional reactions. The HIT also 
correlated more strongly than did the PAS with the RoTA 

TABLE 6 | Correlations between dispositional measures and threat and anxiety ratings at three levels of danger cues, in psychological condition.

Threat Anxiety

Danger cues Low Medium High Low Medium High

PAS: high expectations −0.085 −0.205 0.082 −0.262* −0.134 −0.075
PAS: all-or-none thinking −0.076 −0.140 −0.075 −0.123 −0.301* −0.290*
HIT −0.067 −0.118 −0.031 −0.185 −0.150 −0.154
RoTA-Phys: confidence −0.070 0.096 0.288* 0.117 0.040 0.042
RoTA-Phys: action 
recommendations

0.068 0.206 0.341** 0.061 0.042 0.062

RoTA-Psych: confidence 0.060 0.165 0.340** 0.036 0.081 0.169
RoTA-Psych: action 
recommendations

0.143 0.305* 0.385** 0.003 0.096 0.154

NARS: interaction with 
robots

−0.203 −0.048 −0.143 0.178 0.179 0.175

NARS: social influence of 
robots

0.058 0.299* 0.123 0.303* 0.349** 0.325*

NARS: emotional 
interactions with robots

−0.021 0.149 −0.040 0.331* 0.270* 0.228

*p < 0.05; **p < 0.01.

FIGURE 4 | Regression plots for three interactive effects of robot analysis type and individual difference factors: Robot Threat Assessment (RoTA)-Psych 
psychological judgment scale (upper left), RoTA-Psych confidence scale (upper right), and scenario rating of robot psychological judgment (lower center).
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scales, suggesting that attitudes toward robot teaming generalize 
to the security context.

Linear Associations Between Dispositional 
Measures and Situational Trust
Correlates of situational trust were generally as anticipated. 
Associations were similar for the post-task Schaefer (2016) 
TPS-HRI and the rating-based trust measures, providing 
convergent validation. The HIT and RoTA were positively 
associated with trust, implying that high scorers on these scales 
encode positive features of robots in the mental model. 
Conversely, PAS and NARS subscales that represent negative 
attitudes were associated with lower trust. Data were generally 
consistent with previous studies linking higher trust in robots 
to higher HIT scores (Lyons and Guznov, 2018), to lower PAS 
all-or-none thinking scores (Merritt et  al., 2015), and to lower 
NARS scores (Schaefer, 2013).

In the regression models, the PAS all-or-none thinking and 
NARS interaction with robots scales appeared to be  the most 
robust predictors. The role of all-or-none thinking in undermining 
trust is consistent with view of Merritt et  al. (2015) that this 
trait is damaging when the machine commits errors. However, 
contrasting predictions could be  made about the impact of 
all-or-none thinking as systems become increasingly intelligent 
and autonomous. Security and military settings may require 
the robot to make decisions based on complex and incomplete 
information, so that errors are probable. In this case, humans 
expecting perfection in the machine are likely to lose trust 
rapidly. Alternatively, as robots are perceived as increasingly 
humanlike, human operators may become more forgiving of 
their errors, similar to how people are more tolerant of errors 
in humans than in conventional automation (Dzindolet et  al., 
2002; Merritt et al., 2015). In the present data, PAS all-or-none 
thinking was significantly correlated with lower trust in the 

physics-based but not the psychological condition, which suggests 
that participants were more likely to be  perfectionistic when 
a tool rather than a teammate mental model was activated. 
However, the regression analysis failed to confirm a significant 
moderator effect of condition, so further work on this issue 
is required.

The NARS interaction with robots scale captures concerns 
about working with robots and the idea of a robot exercising 
judgment. The scale may have predicted lower trust here because 
the simulation was configured to portray the cognitive abilities 
of the robot in making inferences from sensor data. The 
additional NARS scales that assess discomfort with social and 
emotional robots might become more predictive if the robot 
was more emotionally expressive. For example, high scorers 
on these scales might reject expressions of reassurance from 
the robot that it was supporting the human’s mission goals 
(Panganiban et  al., 2020).

Dispositional correlates of situational trust ratings were more 
numerous in the psychological than in the physics-based condition, 
perhaps reflecting the greater complexity of mental models for 
teammates relative to tools. Factors that related to judgment in 
the psychological condition included those relating to robots 
that act as teammates without being overtly human-like. For 
example, the HIT includes items referring to being comfortable 
with the robot taking responsibility and taking action without 
being monitored by the human. Such attitudes may be  more 
strongly primed when the robot is analyzing sensor data for 
psychological attributes. Similarly, both physics-based and 
psychological RoTA scales, both of which refer to robots making 
complex evaluations, were associated with trust only in the 
psychological condition. The strongest correlate of trust in the 
physics-based condition, PAS all-or-nothing thinking, may 
be  associated with a mental model for “dumb” tools being 
presumed to work perfectly.

TABLE 7 | Correlations between selected predictors and mean trust rating at each level of danger cues, in psychological condition.

Danger cues

Low Medium High

R Partial r Partial r Partial

PAS: high expectations 0.002 −0.045 0.079 0.093 0.099 0.061
PAS: all-or-none thinking −0.073 −0.129 −0.155 −0.152 −0.173 −0.174
HIT 0.315* 0.335* 0.503* 0.517** 0.360** 0.481**
RoTA-Phys: confidence 0.349** 0.367** 0.444** 0.441** 0.396** 0.291*
RoTA-Phys: action 
recommendations

0.346** 0.443** 0.482** 0.484** 0.493** 0.383**

RoTA-Psych: confidence 0.266* 0.346** 0.435** 0.433** 0.441** 0.314*
RoTA-Psych: action 
recommendations

0.289* 0.427** 0.440** 0.447** 0.476** 0.331*

NARS: interaction with 
robots

−0.247 −0.444** −0.422** −0.435** −0.344** −0.335*

NARS: social influence of 
robots

−0.099 −0.091 −0.305** −0.350** −0.054 −0.166

NARS: emotional 
interactions with robots

−0.185 −0.253 −0.243* −0.263* −0.225 −0.258

*p < 0.05 and **p < 0.01.
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Moderator Effects of Mode of Robot Analysis
We hypothesized (H3) that predictors of situational trust in 
the simulated environment would depend on the robot’s analysis 
mode. It was assumed that the mental model activated would 
depend on both the insights into robot functioning conveyed 
by the transparency messages and the person’s predispositions 
to consider the robot as a tool or a teammate. We  considered 
that the PAS, HIT, and RoTA-Phys scales would assess attitudes 
to teaming encoded in the “advanced tool” mental model, and 
so would be  more predictive of trust in the physics-based 
condition, relative to the psychological condition (H3a). The 
PAS all-or-none thinking scale was significantly negatively 
correlated with trust only in the physics-based condition, as 
expected. However, contrary to expectation, the HIT and RoTA-
Phys scales were significantly correlated with greater trust only 
in the psychological condition. The regression analyses did 
not find significant moderator effects of condition for the PAS 
or HIT scales associated with trust in the bivariate analyses. 
Thus, these scales may be  more effective in picking up general 
attitudes toward robots than utilization of the advanced tool 
mental model, although the PAS data showed a trend in the 
expected direction.

We also anticipated that the NARS and RoTA-Psych scales, 
which assess attitudes toward robots behaving in human-like 
ways, would predict trust only when the robot was in 
psychological analysis mode (H3b). Consistent with the 
hypothesis, the regression analysis showed significant 
moderator effects for two RoTA-Psych scales. In the 
psychological experimental condition only, trust was higher 
when the person was disposed to perceive the robot as 
making psychological judgments and to have confidence in 
“psychological” robots. Positive features of the mental model 
for security robots encourage trust in situational contexts 
in which the robot makes human-like threat assessments 
but remain latent when the robot functions as an advanced 
but conventional tool. By contrast, seeing security robots as 
“psychological” robot inspired mistrust in the physics-based 
condition, because the teammate model was incongruent 
with the robot’s mode of analysis. As previously discussed, 
the lack of congruence between the mental model and the 
robot’s functioning tends to lower trust (Ososky et  al., 2014; 
Perelman et  al., 2017).

The NARS scales tended correlate with lower trust, but 
they were not specifically associated with lower trust in the 
psychological condition, and the regression analysis failed to 
show any moderator effect for the NARS interaction with robots 
scale. The scale appears to represent a dislike of human-like 
robots that generalizes across contexts.

The participant’s rating of the extent to which the robot 
was making psychological judgments provides a measure of 
the extent to which a human-like teammate mental model 
was activated in the scenarios. As expected, ratings were higher 
in the psychological compared to the physics-based condition. 
In addition, supporting H3c, the rating was more strongly 
correlated with situational trust in the psychological than in 
the physics-based condition. The moderator effect for the 
situational rating, confirmed in the regression analysis, was 

similar to that for the dispositional rating of robots as 
psychological, assessed by the RoTA. Perceiving the robot as 
functioning in a human-like way enhanced trust in the appropriate 
context. However, in the absence of feedback, the human’s 
trust was never put to the test: the perception–trust link might 
be  weaker if the robot’s judgments of humans were 
demonstrably erroneous.

Individual Differences in Emotional Response to 
Scenarios
The final issue addressed was the role of emotion in trust, 
focusing on the psychological condition. As explored in research 
of Nomura et  al. (2006, 2008), some people react to robots 
with dislike and anxiety, factors that may undermine trust 
even if the robot performs competently. We  hypothesized 
(H4a) that the NARS and RoTA-Psych scales would correlate 
with threat appraisal and anxiety ratings (in opposite directions), 
especially in the high threat-context condition, in which 
anxiety about the robot might combine with anxiety about 
the visible environment. This hypothesis was partially supported. 
The NARS correlated more consistently with anxiety than 
threat, whereas the RoTA showed significant negative 
associations with threat but not anxiety. As expected, the 
NARS primarily picks up emotion, whereas the RoTA is 
related to cognitive appraisal. Correlations between the RoTA 
and threat appraisal tended to increase with visible threat, 
but anxiety correlates of two NARS subscales, for social 
influence and emotional interactions, were fairly consistent 
across threat-context conditions. Both scales were associated 
with subjective reactions to interacting with the robot, but 
in different ways.

We computed partial correlations to test whether the NARS 
and RoTA remained correlated with trust, when anxiety and 
threat were statistically controlled. In fact, contrary to Hb4, 
correlations with trust were not much affected by controlling 
for these variables, implying that these individual differences 
in trust cannot be  directly attributed to emotional response. 
Furthermore, the trust correlates of both NARS and RoTA 
were fairly consistent across different levels of threat context. 
Taken together, the current results elaborate on the constructs 
measured by the two instruments. The NARS interaction and 
RoTA subscales primarily assess beliefs about robot partners 
that are activated when the robot makes human-like judgments 
and influence trust but not emotion. The RoTA may encode 
additional beliefs about threat evaluation due to its contexualized 
nature. The NARS social influence and emotional interaction 
scales represent affective responses that may not be  directly 
linked to underlying beliefs in robot attributes such as reliability, 
integrity, and benevolence (Mayer et  al., 1995) that underpin  
trust.

Applications to Selection and System 
Design
The novel human factor challenges of teaming with intelligent 
and autonomous machines raise concerns about trust 
optimization (Lyons and Havig, 2014; Shively et  al., 2017;  

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Lin et al. Trust in Robot Threat Assessment

Frontiers in Psychology | www.frontiersin.org 18 March 2022 | Volume 13 | Article 601523

de Visser et  al., 2018). Guidelines developed on the basis of 
research on conventional automation and robots may not 
transfer to robots behaving like human teammates. The present 
study provides some reassurance. Overall, trust levels were 
similar irrespective of the robot’s mode of analysis. Participants 
appeared to factor in environmental threat cues and the robot’s 
decision similarly for physics-based and psychological analyses.

However, analysis of individual differences suggested some 
more subtle applied concerns. Trust in the psychological condition 
appeared to be  associated with a wider range of dispositional 
influences than was trust in the physics-based condition, 
suggesting possible biases in trust associated with preexisting 
beliefs about robots. The present study did not investigate how 
malleable these attitudes are; their influence may wane as the 
person becomes more familiar with the robot’s operations in 
a particular environment. If attitudes are persistent, the measures 
used here may have potential for personnel selection. It may 
be  preferable to select operators with moderate scores on the 
HIT, NARS, and RoTA to filter out individuals with strong 
tendencies toward over- or under-trust of the robot. Alternatively, 
training may be personalized according to the person’s preexisting 
preferences, emphasizing robot competencies or error 
vulnerability according to the direction of bias.

In the present study, transparency was manipulated solely 
to prime one or other mental model. In the practical setting, 
more sophisticated forms of transparency than simple text 
messages are likely to be  utilized (e.g., Chen et  al., 2018). 
Nevertheless, the study indicates that transparency information 
can be  tailored to individual difference factors. Transparency 
generally supports trust optimization (Lyons, 2013; Selkowitz 
et  al., 2015), but the present data suggest that providing cues 
to the robot’s human-like attributes may backfire in some cases. 
For example, high scorers on the HIT and RoTA may be disposed 
to view the robot as a person-like teammate; emphasizing its 
human-like functions through transparency may lead to 
overestimation of its capabilities. For these individuals, 
transparency that highlights its fallibility as a computational 
machine may counter tendencies toward over-trust. Operators 
with low opinions of robots as teammates, and perhaps also 
high scorers on the NARS, may benefit from different forms 
of transparency. Information highlighting its computational 
competence may both increase trust directly, and limit activation 
of the negative “teammate” mental model. Another possible 
strategy for those averse to robots is to design transparency 
that highlights the benevolence and integrity of the robot, 
which may over time reshape the mental model adaptively.

Limitations
The study has the limitations typical of investigating novice 
operators in a simulated environment. It is unclear whether 
results would generalize to samples of domain experts such 
as police officers or warfighters teaming with a robot in a 
real setting. However, current findings suggest the value of 
following up the current findings in a field setting. Some of 
the present individual difference measures have been validated 
in expert populations. For example, Lyons and Guznov (2018) 
utilized the PAS and HIT in a study of fighter pilots, and 

Bartneck et  al. (2007) investigated the NARS in robot owners. 
More data are needed, especially from samples of security 
experts (cf., Gallimore et al., 2019). There are similar questions 
about the extent to which the simulated scenarios elicited the 
reactions that people would have to real security robots. If 
participants perceived the simulation as a video game, they 
may have made attributions about robot functioning that would 
not generalize to real life.

The limited convergence between alternate dispositional trust 
measures is a further challenge for research in this area. Trust 
is commonly considered as a unitary construct, and meta-
analyses of influences on trust have treated it as such (Hancock 
et  al., 2011; Schaefer et  al., 2016). However, personal 
characteristics that influence trust appear to be  more 
differentiated. We observed some convergence between the HIT 
and lower NARS scores, but associations between the PAS 
and RoTA and other dispositional measures were of moderate 
magnitude at best. Two factors may lead to differentiation of 
antecedents to trust. First, people may encode beliefs in the 
mental model that go beyond the trustworthiness of machines. 
Even at the tool level, people may differentiate attributes such 
as typical utility of the tool, utility across a range of contexts, 
susceptibility to damage, requirements for tool user skill, etc. 
Mental models for human and human-like teammates are even 
more complex. Thus, no single scale is likely to capture all 
the attributes of the mental model that shape trust. Second, 
the mental model may be  context-dependent. The RoTA, 
although modestly correlated with HIT and NARS scales, may 
tend to dissociate from other measures because its items explicitly 
refer to the security context. Beliefs about security robots may 
differ from those about robots utilized in other contexts such 
as industry and healthcare (Savela et  al., 2018). Thus, there 
is a need for additional psychometric research to identify the 
major generalized and context-specific dimensions, as well as 
qualitative studies for additional perspectives on variation in 
mental models (e.g., Lyons et  al., 2019).

Another limitation is that there was no objective standard 
for trust calibration and optimization. Participants perceived 
occasional discrepancies between the visible environment and 
the robot’s threat evaluation, but they were not given direct 
information or feedback on the robot’s performance, i.e., its 
hit and false-positive rates. Thus, while the study identifies 
dispositional factors associated with potential for bias, we could 
not define the optimal level of trust. Future research might 
adopt an explicitly Bayesian approach, which would require 
that participants are aware of the base rate for threat and the 
robot’s performance levels. On the other hand, the base rate 
for threat may be  objectively unknown in some field settings. 
Furthermore, visible danger cues are imperfectly diagnostic of 
true threat probabilities, and accurate threat analysis requires 
attention to cues to specific threats, such as improvised explosives, 
as well as to the more general environmental context (Zimmerman 
et al., 2014). Thus, the uncertainly common in realistic security 
contexts remains a challenge in optimizing trust in a robot partner.

The robot was also restricted in its autonomy and capacity 
for team-work. While participants were instructed that it used 
AI in making its threat determinations, it did not exhibit 
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team-work behaviors such as choosing task goals on its own 
initiative or determining needs to provide back-up to the 
human. The simulation method employed here allows more 
complex scenarios to be modeled that would support investigation 
of trust in a robot exhibiting more autonomy. We  found that 
participants rated confidence in the robot more highly than 
they did willingness to follow its action recommendations, 
irrespective of threat context and mode of analysis. A more 
complex simulation could secure behavioral measures of 
operator’s willingness to allow the robot to operate autonomously. 
Future work could also use a multiphase design to investigate 
changes in trust on a pre–post-basis, where the participant is 
given an initial preview of robot appearance and/or functionality, 
as recommended by Schaefer (2016). Such a design could also 
address trust repair following a robot error (e.g., de Visser 
et  al., 2018).

CONCLUSION

The present study confirms that trust in an intelligent robot 
performing security operations is appropriately sensitive to the 
robot’s behavior and contextual cues to threat. Transparency 
about the basis for the robot’s threat evaluations had only 
minor effects on trust. However, individual differences in trust 
varied according to the robot’s mode of threat analysis. When 
the robot performed human-like analyses of target persons’ 
motivations and intents, multiple dispositional factors associated 
with attitudes to robot teammates predicted trust. These correlates 
of trust may reflect attributes of a mental model for robots 
as teammates. They may signal biases in attitudes to robot 
partners that may lead to over- or under-trust. Strategies for 
optimal calibration of trust in robot teammates include using 
trust scales in personnel selection, personalizing training to 

counter bias, and personalizing transparency information during  
operations.
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