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An overarching mission of the educational assessment community today

is strengthening the connection between assessment and learning. To

support this effort, researchers draw variously on developments across

technology, analytic methods, assessment design frameworks, research in

learning domains, and cognitive, social, and situated psychology. The study

lays out the connection among three such developments, namely learning

progressions, evidence-centered assessment design (ECD), and dynamic

Bayesian modeling for measuring students’ advancement along learning

progression in a substantive domain. Their conjunction can be applied in both

formative and summative assessment uses. In addition, this study conducted

an application study in domain of beginning computer network engineering

for illustrating the ideas with data drawn from the Cisco Networking

Academy’s online assessment system.
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Introduction

An overarching mission of the educational assessment community today is
strengthening the connection between assessment and learning (Oliveri and Mislevy,
2019; Gordon, 2020). To support this effort, researchers draw variously on developments
across technology, analytic methods, assessment design frameworks, research in learning
domains, and cognitive, social, and situated psychology. Coordinating insights from
such disparate areas, each pushing the boundaries of familiar assessment practices,
presents its own challenges.

Likewise, while substantive, psychological, instructional, and task developmental
aspects of learning progression have been considered, few assessment design frameworks
have been proposed to link the theory embodied in a learning progression, tasks
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that provide evidence about a student’s level on that progression,
and psychometric models that can link them. More specifically,
few statistical analytic models have been studied to characterize
the relationship between student performance and levels on
learning progressions.

This paper describes and illustrates the connections of three
core components which are an evidence-centered design (ECD)
framework for designing assessments (Mislevy et al., 2003b),
learning progressions (LPs; Alonzo and Gotwals, 2012) that
describe research-based paths of content and skills in a learning
area, and a measurement model called dynamic Bayesian
networks (DBNs, Murphy, 2002). The coherence of three
core components above supports the development and use of
assessments integrated with instruction, to provide information
to guide students’ learning in formative and summative uses.
This study also presents an application study using data
from the domain of beginning computer network engineering,
drawn from a renovation of curriculum, instruction, and
assessment in the Cisco Networking Academy (CNA). In the
application study, dynamic Bayesian networks was conducted
with data from the CNA online assessment system, specifically
the four-semester Cisco Certified Network Associate (CCNA)
course sequence for assessing a learner’s status and change in
connection with instruction based on an LPs.

Learning progression, assessment,
and Bayesian network

Connecting learning and assessment

Black and Wiliam (1998) argue that to best support
learning, an assessment must produce evidence of a student’s
level of knowledge, skills, and abilities (KSAs) and elicit
performance associated with demonstrating the state of KSAs
expected at that level. They suggest a combination of cognitive
theory of learning, assessment design, measurement models,
and curriculum provides the most beneficial information to
promote student learning. Expressing a similar viewpoint
for assessment more generally, the National Research
Council (2001, 2014) proposed an Assessment Triangle
that emphasizes the theoretical and empirical connections
among cognitive/substantive theory, task design, and analytic
methods in order to create valid assessment and support
reliable inferences for the purpose at hand, whether formative,
summative, certification, etc. Therefore, a central challenge in
assessment design is developing suitable frameworks that link
theory, tasks that provide observable evidence about a student’s
capability relative to those substantive theories, and analytic
models that interpret student performance accordingly.

Formative assessment in particular is of increasing interest,
where the objective is assessing students’ learning progress
during instruction in order to guide further learning, rather

than focusing on achievements at their end of a program
of study (Black and Wiliam, 1998; Elwood, 2006; Bennett,
2011; Briggs et al., 2012). Huff and Goodman (2007) found
that a large percentage of teachers wished they had more
individualized diagnostic information from these assessments.
The National Research Council (2001, 2014) reported that
formative and timely feedback is important to students in their
learning development (also see Gordon, 2020). One of the major
purposes of formative assessment is to check student’s progress
on learning tasks as well as to monitor the effectiveness of
the teachers’ instruction, which can result in identifying a gap
between a student’s actual level and desired level of performance,
thus providing information to bolster a student’s understanding
of a topic (Havnes et al., 2012; Kusairi et al., 2019).

Further, the COVID-19 pandemic has challenged education
institutions around the world in teaching by traditional means.
This crisis prompts administrators to adopt alternative strategies
to address learning assessment (Khan and Jawaid, 2020).
Online formative assessments are increasingly of interest as an
alternative solution, which can be implemented by mailing/e-
mailing, messaging platforms, discussion boards, and online
educational platform tools (Nagandla et al., 2018; Choi and
McClenen, 2020; Khan and Jawaid, 2020). For examples, CAN
provides online educational platform in high schools, colleges,
and community organizations around the world, drawing on
curricula, instruction, and interactive assessment.

An evidence-centered design framework (ECD; Mislevy
et al., 2003b) is a principled assessment design framework
that can provides guidance for generating tasks that evoke
evidence about students’ KSAs, and for coherently connecting
theory embodied in an application with task design, and for
choosing analytic models that best characterize the relationship
between them. Furthermore, Arieli-Attali et al. (2019) proposed
an expanded ECD including a learning layer as assessment
design framework. The expanded ECD supports a creation of
a system for blended assessment and learning at the design
stage. The learning layer consists of (1) e-Proficiency model for
identifying learning processes, (2) e-Task model for specifying
features of learning support in the task design, and (3)
e-Evidence model for addressing statistical methods of inferring
latent learning processes. In a similar vein, Deonovic et al.
(2020) proposed a master model that incorporates learning and
assessment. The master model provides latent-variable statistical
model that supports detailed diagnostic feedback related to
the learning model.

Learning progressions

Learning progressions provide a grounded theory for
creating tasks and making inferences about a student’s progress.
Interest in LPs has been increasing in many educational areas
because they provide substantive evidence in the development of
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formative assessment (Arieli-Attali et al., 2019). LPs are defined
by measurable pathways that a student may follow in the process
of developing their knowledge and gaining expertise over time
(National Research Council, 2001). Wilson’s (2012) research on
measurement for structured assessments focused on learning
progressions defined by means of construct maps.

Generally, an LP consists of several ordered levels or
units, each of which represents a given state of KSAs
required for a student to achieve mastery at that level.
Major objectives in the study of an LP are to provide (1)
information regarding the state of a student with respect
to the level of understanding of a given concept and (2)
diagnostic information regarding the strength and weakness of
a student’s understanding along a curriculum (Gotwals et al.,
2009; Schwarz et al., 2009; Briggs and Alonzo, 2012; West
et al., 2012). To provide such information about the learning
states of a student (i.e., the current, past, and prospective
future levels of a student on LPs), the first step is to develop
tasks for gathering student responses that provide evidence
about students’ KSAs in relation to their levels on LPs. More
specifically, if key task features that can evoke evidence about
student states have been identified by drawing on research,
then the information can be used for constructing tasks
that can elicit student responses containing evidence about
student KSAs. Through the assessment design framework,
tasks are generated to reflect the targeted aspects of KSAs by
incorporating the identified task features that evoke evidence
about the KSAs or the targeted strategies. As an exemplar
of theory-based task design, Embretson’s (1998) “cognitive
design system” integrates the principles of cognitive psychology
into task design.

In a study of LPs, Gotwals et al. (2009) presented a set
of designed tasks linked to the LP of inquiry reasoning to
gather evidence of how students use their content knowledge
to formulate scientific explanations associated with a range
of ecology, classification, and biodiversity domains. As an
example, Table 1 shows a scenario for assessing the concept of
biodiversity. Given the scenario, two tasks are generated relative
to different levels of the LP of biodiversity. Both tasks ask the
student to provide an answer and a rationale for their answer.
Question A, relating to a lower level of the LP, asks students
to identify which zone has the highest animal richness. The
answer and its evidence are straightforward in the task because
Zone B clearly has the highest animal richness. In contrast,
Question B, related to a higher level, asks students to identify
which zone has the highest biodiversity, given the same scenario.
While the answer is the same as the previous task, providing
appropriate and sufficient evidence supporting the answer is
not as straightforward because students need to understand
the difference between the concepts of the richness and the
abundance of animals. Therefore, by using the key task features
associated with the LP, a teacher obtains evidence about the level

a student may have attained and what a student knows with
respect to the LP domain.

Once tasks have been developed, another major issue
is modeling the relation that links student performance on
assessment tasks to their levels on the LP. Historically,
measurement of proficiency change in accordance with
development theory, cognitive psychology, and learning science
has been a significant issue in educational and psychological
research, such as Piaget’s (1950) stages of cognitive development,
Siegler and Campbell’s (1989) multiple strategies in proportional
reasoning ability of children, and Rock and Pollack-Ohls’s
(1987) math learning as a dynamic latent variable consisting of
a series of discrete stages. Various approaches in psychometric
models have been proposed for addressing the measurement of
proficiency change.

Psychometric models for learning
progressions

Historically, measurement of proficiency change in
accordance with development theory, cognitive psychology,
and learning science has been a significant issue in educational
and psychological research, such as Piaget’s (1950) stages of
cognitive development, Siegler and Campbell’s (1989) multiple
strategies in proportional reasoning ability of children, and
Rock and Pollack-Ohls’s (1987) math learning as a dynamic
latent variable consisting of a series of discrete stages. Various
approaches in psychometric models have been proposed for
addressing the measurement of proficiency change. A suitable
psychometric model requires certain properties for addressing
learning progressions: (1) Observations involve student
performances in task situations; most often, observables are
categorical variables such as from selected response items or

TABLE 1 An example of a task taken from Gotwals et al. (2009).

School Yard Animal Data

Animal Name Zone A Zone B Zone C

Pillbugs 1 3 4

Ants 4 6 10

Robins 0 2 0

Squirrels 0 2 2

Pigeons 1 1 0

Question A Question B

Which zone has the highest richness,
given this scenario?

Which zone has the highest
biodiversity, given this scenario?

Scenario 1: this table shows school yard animal data collected using CyberTracker. Use
the table to help you answer the question.
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human or automated evaluation of more open performances;
(2) a learning progression is operationalized as a latent variable
with several ordered latent classes representing qualitatively
different levels in the learning progression; and (3) there is a
structural, generally probabilistic, latent-variable relation in
an LP over time when the variable of interest is unobservable.
(4) Task design and theory provide a theoretical framework
for creating and modeling observable evidence as well as
information about the nature and structure of expected change.

Some psychometric models matched to LP research have
been proposed in Latent Class Analysis (McCutcheon, 1987),
Rule Space model (Tatsuoka, 1990), Cognitive Diagnosis models
(CDM, Leighton and Gierl, 2007), Mixture IRT (Sen and Cohen,
2019), Bayesian networks (Madigan et al., 1995), and hidden
Markov models (Wiggins, 1955; Collins and Wugalter, 1992).
Most research in CDMs and rule space modeling has focused
on the classification at a given time point; the movements from
one attribute at one point in time to others at the next point in
time, as might be expressed in terms of transition proportions of
skills, levels, and strategies between consecutive measurement
time points, are not addressed.

Markov chain models can describe transition proportions
of latent classes between consecutive time points. These models
have been applied in situations such as attitude change, learning,
cognitive development, and epidemiology (Langeheine and
Van de Pol, 2002). Variations of Markov chain models (i.e.,
hidden Markov models, mixed hidden Markov models, and
mixed hidden Markov models with multiple groups) have been
proposed (Langeheine and Van de Pol, 2002). The models
concern modeling change over time in observed categorical
variables by using transition probabilities for unobserved
variables. The hidden Markov model thus combines features
of a latent class model and those of a simple Markov chain
model. The model is also referred to as a latent Markov model,
as proposed by Wiggins (1955) or a Latent Transition Analysis
(Collins and Wugalter, 1992). This model has been applied to
identify unobservable latent state changes such as strategies,
levels, and skills based on observable student responses at
each point in time.

The conditional probabilities and transition probabilities
of a hidden Markov model correspond to the expression of a
dynamic Bayesian network, or DBN (see Dean and Kanazawa,
1989, for an introduction to DBNs and Reichenberg, 2018, for a
recent review of their use in educational assessment).

Dynamic Bayesian networks are an extended model of
Bayesian Networks, which are a probability-based flexible
statistical modeling framework rather than a specific statistical
model. This framework supports reasoning and decision-
making with uncertain and inconsistent evidence. BNs use
graphical representation and linked probability theory (Kjaerulff
and Madsen, 2007). The graph consists of nodes representing
unobservable and observable variables and directed edges
representing stochastic or logical relations among variables. The

joint probability distribution of a set of (typically finite-valued)
variables is represented recursively as the product of conditional
distributions,

P(Ai = ai|pa (Ai))

where the “parents” of a node A are the nodes with edges from
them to A. If Ai has no parents, the conditional probability is
regarded as a marginal probability. An ordering of the variables
for the recursive expression is selected to take advantage of
conditional independence relation. In particular, latent variables
are typically modeled as parents of observable variables. The
formal expression of the joint distribution is

P (Ai = ai, . . . , An = an) =
∏

P(Ai = ai|pa (Ai))

A conditional probability table (CPT) for Ai has columns
for each of its possible values, and rows for each possible
combination of values of its parents pa(Ai) that are conditional
probability distributions for Ai conditional on the given values
for pa(Ai).

In assessment applications, evidence is received from
external sources in the form of observable variables such as
task responses or raters’ scores. A likelihood distribution over
the states of its parent variables, typically but not necessarily
latent variables representing KSAs, is induced by a value of an
observable variable. Once all of interrelationships are expressed
in terms of the recursive representation of the joint distribution
of variables, it is possible to calculate the updated states of
any variables effected by new information about another set
of variables via Bayes’ rule. As the size of the collection of
variables and the complexity of their interrelations increases,
computational algorithms more efficient than definitional
application of Bayes rule can be applied (e.g., Lauritzen and
Spiegelhalter, 1988).

Illustration

Dynamic Bayesian networks

The preceding sections describe how LPs and ECD can
provide a coherent, theory-based assessment design framework
in formative assessment, and how Bayesian networks can be
used to manage issues of evidence and inference. This section
describes how DBNs can be used to model learning progressions
over multiple time points in such a system. Specifically, it
addresses the questions of how the current, past, and future
levels of a student’s LPs are related and can be inferred from
student responses. We note that DBNs are an extension of
the hidden Markov model to represent multivariate latent
and discrete spaces. Taken together, the discussions explain
how the DBNs can model LPs over time by connecting
defined LPs, assessment design, and the interpretation of
student performances.
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In this study, DBNs can be used to model learning
progressions over multiple time points under a formative
assessment system. DBNs have been applied to intelligent
tutoring systems for modeling changes in students’ knowledge.
As examples, Reye (1996, 1998) used dynamic belief networks in
the intelligent tutoring system. Chang et al. (2006) developed a
Bayes net toolkit for student modeling in an intelligent tutoring
system. Almond (2007, 2010) extended ECD to incorporate
DBNs, in terms of a partially observable Markov decision
process (POMDP). As an example, Almond used the POMDP
to model student growth in a study of simulated music
tutoring program. DBNs thus offer a psychometric model
to link the theory embodied in a learning progression and
tasks that provide evidence about a student’s level on that
progression through ECD assessment design framework. That
is, DBNs can support inference about students’ levels and
expected change in an LP over time when the variable of
interest is unobservable, when task design and theory provide
a theoretical framework for creating and modeling observable
evidence as well as information about nature and structure of
expected change.

Dynamic Bayesian networks are an extension of hidden
Markov models (HMM) that is used to represent multivariate
latent and discrete spaces. The elements and structural
relationships in DBNs correspond to a standard algebraic
expression of HMMs through the concept of Markov property
and conditional independence. An HMM is comprised of a
Markov chain and observables (Cappé et al., 2005). A Markov
chain is a sequence of discrete random variables with the
Markov property. The term “hidden” refers to the fact that
variables of the Markov chain are latent; that is, their values
are never directly observed, although evidence about them
arrives in the form of observable variables that depend on
them stochastically. Three kinds of distribution parameters
are then to be estimated: (1) the initial multinomial state
distribution, P(Xt=1) in a DBN; (2) the transition model, set
of conditional multinomial distributions that represent the
transition probabilities P(Xt | Xt−1); and (3) the observation
model, which corresponds to the conditional probability
distributions of observables Yt , or P(Yt | Xt) in the DBN.1 The
formal probabilistic notation of the hidden Markov chain in the
HMM is denoted as follows:

P(Xt+1, . . . , X1) = P(Xt+1|Xt)× . . .× P(X2|X1)P (X1)

=

∏
P(Xt|Xt−1)

with P (X1|X0) interpreted as P (X1). Under the assumptions of
conditional independence and the first-order Markov property,

1 A DBN can be extended to an influence diagram to support
instruction by additionally incorporating covariates as parents of the
transitions, such as instructional treatment options, and decision nodes
for selecting treatments (Almond, 2007; Arieli-Attali et al., 2019).

the observations {Yt} are independent given the states of a
hidden Markov chain {Xn} at all time points but Xt :

P(Y1, . . . , Yn|X1, . . . , Xn) =
∑

t
P(Yt|Xt)

Dynamic Bayesian Networks thus extend static Bayesian
Networks (BNs) to model probability distributions over
multiple time points (Murphy, 2002). A common approach
to representing DBNs is to combine multiple static BNs for a
desired number of time slices (Kjaerulff and Madsen, 2007).
Therefore, the DBNs can be used for inference about previous
states, current states, and possible future states of a system
over time (Murphy, 2002). A DBN contains a prior for the
initial hidden state, P(X1), a transition function of the hidden
states over multiple time points, P(Xt | X1:t−1), and observable
variable(s) given each hidden state, P(Yt | Xt).

This discussion assumes three properties. First, the links
of time slices are defined by the conditional probability of the
variables at a current Time t given the variables at previous Time
t-1, the first order Markov property. Second, observations are
structured under assumptions of conditional independence, in
that P(Yt) is conditionally independent of P(Yt‘), given Xt for t
6= t‘. Third, the sense of “dynamic” refers to state change over
time, not network or structure change over time. Under the
three assumptions, the formal notation of DBN at Time t can be
expressed with respect to a graphical model (Murphy, 2002) as

P(At|At−1) =
∏

P(Ai
t|pa(Ai

t))

where At = (Xt , Yt), incorporating the latent variable (X) and
the observation (Y) at time t and Ai

t is the ith element of
this concatenation. The joint probability distribution is then as
follows:

P(A1:t) =

T∏
t=1

N∏
i=1

P(Ai
t|pa(Ai

t))

Again it is possible to calculate the updated states of any
variables as affected by new information about another set
of variables through Bayes theorem, directly or by more
efficient algorithms.

In Bayesian networks with discrete variables, Bernoulli and
categorical distributions are used for the conditional probability
distributions. Their parameters are incorporated into the full
model and can also be learned from the observations, using
Beta and Dirichlet distributions as conjugate priors for them
(see Almond et al., 2015, Chap. 8, for more parsimonious
prior distributions that can be employed when substantive
theory is available). Bayesian inference is based on posterior
distributions of variables of interest, obtained by combining
the prior distribution on the variable(s) of interest with the
likelihood induced by observations through the appropriate
conditional distributions. A common point estimate is the
maximum a posteriori (MAP) estimate; that is, the value that
yields the maximum posterior probability for an unobserved
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variable given the realized data. In LP research, the values
representing the levels of LPs are not directly observed. The
MAPs for an LP variable are the levels that are most probable
for each student given their responses.

Expectation and Maximization (EM) algorithms, gradient
ascent, and Markov chain Monte Carlo Estimation (MCMC) are
commonly used in BN software programs to estimate the values
of the parameters of the distributions of the latent variables.
This study uses the EM algorithm (Dempster et al., 1977)
as implemented in Netica (Norsys Software Corp, 2010) to
estimate parameters of DBNs.

Dynamic Bayesian networks with
learning progressions

As an illustration of DBNs, we suppose that the same
students are repeatedly measured at more than one point during
a period of instruction (e.g., a course in a semester or an
intervention). The tasks used are designed by incorporating task
features with which students can be differentiated in terms of
levels of understanding or achievement that are theoretically

grounded in a substantively based learning progression theory.
In such situations, the investigation of the patterns of change
in student levels across measurement occasions can offer
diagnostic information customized to reflect individual learning
and provide an informative evaluation of the effectiveness of
instruction. For a simple example of modeling LPs through the
DBNs, suppose that four measurements are designed. At each
time point, there is a latent variable representing an LP and the
observables that depend on them in probability. It is assumed
that three levels are identified in the LP. Each measurement
consists of six tasks across time points. Figure 1 shows an
example of modeling LPs with a DBN.

In this example, the probabilities of the initial marginal
probability table of the first measurement, CPTs, and transition
probability tables are hypothetically set in order to illustrate the
structure of DBNs. They could be estimated from observations
or determined through theory or domain expert opinions.
In this example, the hypothesized transition probabilities
are restricted in such a way that all the probabilities of
reverse changes are zero. This constraint reflects an LP
considering only forward movements over time. Other types
of transition probability patterns can be considered depending

FIGURE 1

An initial representation of DBN for modeling LPs.
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FIGURE 2

Initial probability matrix and transition probability matrices.

FIGURE 3

A DBN representation of the four latent variables without tasks.

on different substantive theory such as a forward movement, an
adjacent movement, and all possible movements. The different
patterns can be modeled by (1) constraining sets of transition
probabilities to be equal to zero, (2) restricting them to be a
particular value, or (3) fixing them to be equal to each other
such as a forward movement, an adjacent movement, and all
possible movements.

TABLE 2 Conditional probability table for Task 1 given Learning
progression at the first measurement occasion (% Probability).

Correct Incorrect

LP_
Time 1

Level 1 10 90

Level 2 70 30

Level 3 80 20

Level 4 90 10

To understand how the transition function works for
the purpose of investigating state change over time, one
could consider a situation where student status at the
first measurement occasion is known. This information is
propagated through the network by Bayes theorem. The
posterior distribution of the next three variables given the
student’s states at the first measurement occasion can be updated
by using the transition function (see Figure 2, which shows
an initial probability table at the first measurement occasion
and transition probability tables). Figure 3 shows the posterior
distributions of three variables (i.e., LP_Time2, LP_Time3,
and LP_Time 4) given a student latent Level 1 at the first
measurement occasion. The grayed-out coloring of the first
node indicates that the value of that variable is known with
certainty at the point in time at issue. It can be inferred that
the student is most likely at Level 2 at the second measurement
occasion with 0.40, at Level 3 with 0.39 at the third measurement
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FIGURE 4

A representation of the DBN when the student has the particular response pattern given 6 tasks at the first measurement occasion.

occasion, and at Level 4 with 0.63 at the fourth measurement
occasion, respectively.

The next step considers the DBNs with tasks. The
conditional probability distribution for Task 1 given the first
measurement occasion is shown in Table 2 as an example; note
that this is a task that is most useful for differentiating students
at Level 1 from Levels 2–4. Once a student’s responses have been
observed at any given time point, this information is propagated
through the network. The posterior distributions of the latent
variable at that time point as well as the latent variables at
previous and future time points are obtained. Figure 4 shows a
situation in which observations are [1,1,0,0,0,0], indicating that
Tasks 1 and 2 are correct while Tasks 3, 4, 5, and 6 are incorrect
at the first measurement occasion.

Based on these observations, the posterior distributions of
the four latent variables are updated. Note that the first six Task
variables are shaded, indicating that their values are known,
while the node for LP_Time1 is not shaded because knowledge
about its value is improved by the information in the responses
but is still not known with certainty. This shows that the student
is more likely to be at Level 2 at the first occasion with 0.74,
at Level 3 at the second with 0.46, at Level 4 at the third with

0.54, and at Level 4 at the fourth with 0.83 when the student
has the particular pattern of responses to the six tasks at the first
measurement occasion.

Application

Data

An application study was conducted with data from a
blended online-classroom course provided by the CNA. Each
course contains several chapter exams and a final exam. The
same students were measured several times over the course of
the curriculum. The target populations of the courses are high
school students, 2- and 3-year community college and technical
school students, and 4-year college and university students.
The study addressed a learning progression concerning IP
(Internet protocol) addressing. The 26 tasks are modeled as
conditionally independent observable variables on a single
discrete latent variable with values that indicate four levels of the
LP. The student sample size was 1,450. A DBN was constructed
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and observations collected on two occasions approximately
one month apart.

Learning progression for internet
protocol addressing skill

The learning progression for IP Addressing skills was
identified as a subset of larger pool of assessment items, based
on a combination of confirmatory discrete factor analyses
and subject matter experts’ opinion (as further described in
West et al., 2010, 2012). The analyses were conducted using
Mplus (Muthén and Muthén, 2006) and the fit of competing
models was carried out with the BIC and the bootstrapped
likelihood ratio test (McLachlan and Peel, 2000; Nylund et al.,
2007). Table 3 shows the four levels in the resulting LP. Each
level contains the descriptions of KSAs, where Level 1 can be
defined as describing novice students that possibly have pre-
course KSAs.

Evidence-centered design framework
for modeling internet protocol
addressing skill

The Conceptual Assessment Framework in the ECD
framework provides technical specifications for the evidentiary
arguments that the operational assessment embodies. Modeling
the LPs for IP Addressing is organized around five guiding
questions (see Mislevy et al., 2003a,b, for further details in the
general case, and Zalles et al., 2010, for the case of learning
progressions):

(1) Construct Model: What complex of knowledge, skills, or
other attributes should be assessed?

The construct model variables can be specified by the aspects
of KSAs associated with levels, progress, levels of learning
progressions, and diagnostic information. A construct model
variable can represent either an LP of a particular domain when
the levels are ordered, or as a level of a particular LP when
the ordering may be partial. The construct model shows that
the levels are defined for assessing the LP in the domain and
information regarding the KSAs that are required for students
at that level. In addition to this information, the structure
of the construct model variables is also specified. For this
LP, based on expert opinion and the preliminary analyses, a
hierarchical relationship among the construct model variables
is posited to be an adequate structure. We used two instances
of the same four-level IP Addressing LP variable for the two
occasions. The LP variable at the first measurement time point
influences the second LP variable at the second time point. This
construction becomes the representation of latent variables in a
DBN (Figure 5). The construct model is connected with the task

model through the evidence model, which explains how each
observable depends on the construct model variables.

(2) Evidence Model: What behaviors or performances
should reveal those constructs? How are they connected?

For the study of LPs, the evidence model provides (1)
information about how student performances are modeled
and interpreted relative to the level of an LP, (2) information
about the criterion for comparing observed and expected LPs,
and (3) information about feedback within and across task
level. Consequently, the evidence model provides inferential
reasoning from observables of tasks and expectations in the
student model. This study illustrates these relationships with a
DBN, one of the suitable psychometric models for modeling LPs.
The DBN of this LP model after estimating the CPTs from the
data set of 26 items and 1450 students is shown in Figure 5 in
the results section. Task model: What tasks or situations should
elicit these behaviors?

For assessing LPs, the task model provides information for
developing tasks to elicit student performances relative to the
levels of a learning progression. Specifically, it contains the
following information: (a) the key features of tasks that are
important to elicit student’s understanding with respect to the
targeted KSAs at a particular level of an LP, (b) the key features
of tasks, which are more likely to classify student performances
into different levels of an LP, (c) the key features that make a
task more or less difficult, (d) other characteristics/contexts of
a task that affect its difficulty, and (e) the aspects and features
that inform the quality of tasks for assessing LPs. By designing
assessment tasks that target different levels associated with
different aspects of targeted KSAs, it becomes possible (a) to
infer the level of the LP a student may have attained, (b) to
draw conclusions about the value, sequence, and structure of
a student’s learning, and (c) to gather empirical evidence to
guide the development and refinement of the hypothesized LPs
associated with assessment and curriculum. West et al. (2010,
2012) identified the features of tasks relative to different levels
of the LP in IP Addressing Skills. As an example, two tasks in
Figure 6 require different levels of IP Addressing skills to obtain
the correct answer. The two tasks look similar on the surface,
but the stem of Task A is/24, while that of Task B is/28. This
change requires students to use a more advanced IP addressing
skill (specifically, reasoning across octal boundaries; West et al.,
2010, 2012).

Appropriate and sufficient evidence with respect to levels in
LPs can be obtained by incorporating task features associated
with the key aspects of knowledge and skill required of students
to complete the tasks. This study used tasks identified by their
features relative to levels of the IP Addressing Skills progression.
LP1_Task1 to LP1_Task7 and LP2_Task1 to LP2_Task3 are
the tasks identified by the features relative to Level 2 of the
IP Addressing Skills progression. LP1_Task 8 to LP1 Task
14 and LP2 Task 3 to LP2_Task 5 are the tasks identified
by the features relative to Level 3 of the progression. Lastly,
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TABLE 3 A set of levels of IP Addressing Skill.

Level 1
–
Novice
-

1
2
3
4
5
6

Student can navigate the operating system to get to the appropriate screen to configure the address.
Student knows that four things need to be configured: IP address, subnet mask, default gateway and DNS server.
Student can enter and save IP addressing information that has been provided.
Student can use a web browser to verify network and or Internet.
Student can verify that the provided information was correctly entered.
Student knows that DNS translates names to IP addresses.

A learner knows pre-course knowledge and skills in IP addressing skills

Level 2
–
Basic
–

1 Student understands that an IP address corresponds to a source or destination host on the network.

2 Student understands that an IP address has two parts, one indicating the individual unique host and one indicating the network that
the host resides on.

3 Student understands how the subnet mask indicates the network and host portions of the address.

4 Student understands the concept of local –vs.- remote networks.

5 Student understands the purpose of a default gateway and why it must be specified.

6 Student knows that IP address information can be assigned dynamically.

7 Student is able to create a simple IP addressing scheme based on host or network requirements.

8 Student can describe the need and features of IPv6 addresses.

A leaner knows fundamental concept of IP addressing

Level 3
– intermediate –

1 Student understands the difference between physical and logical connectivity.

2 Student understands the difference between Layer 2 and Layer 3 networks.

3 Student understands that a local IP network corresponds to a local IP broadcast domain. (both the terms and the functionality)

4 Student knows how a device uses the subnet mask to determine which addresses are on the local Layer 3 broadcast domain and which
addresses are not.

5 Student can use the subnet mask to create an addressing scheme that accommodates design requirements for number of hosts per
subnet and number of networks.

6 Student understands why the default gateway IP address must be on the same local broadcast domain as the host.

7 Student understands the ARP process and the role of Layer 2 addresses within a Layer 3 broadcast domain.

8 Student knows how to interpret a network diagram in order to determine the local and remote networks.

9 Student understands how DHCP dynamically assigns IP addresses.

10 Student knows the purpose of private, public, and special reserved addresses such as multicast and loopback, IP address spaces and
when to use either one.

11 Student recognizes reserved IPv6 addresses.

A leaner knows more advanced concepts of IP addressing

Level 4
-
Advanced

1 Student can create an IP addressing scheme for a network using VLSM

2 Student can use a network diagram to find the local network where the configured host is located.

3 Student can use a network diagram to find the other networks attached to the local gateway device.

4 Student can use the PING utility to test connectivity to the gateway and to remote devices.

5 Student can recognize the symptoms that occur when the IP address or subnet mask is incorrect.

6 Student can recognize the symptoms that occur if an incorrect default gateway is configured.

7 Student can recognize the symptoms that occur if an incorrect DNS server (or no DNS server) is specified.

8 Student knows why DNS affects the operation of other applications and protocols, like email or file sharing.

9 Student can use NSlookup output to determine if DNS is functioning

10 Student can create a DHCP addressing scheme recognizing the importance of excluding addresses.

11 Student is able to convert an IPv4 address to an IPv6 address.

A leaner can apply knowledge and skills in context of IP addressing
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FIGURE 5

A DBN for an LP for IP addressing skills, before observations.

Task  Task  

It is necessary to block all traffic 
from an entire subnet with a 
standard access control list. What 
IP address and wildcard mask 
should be used in the access 
control list to block only hosts 
from the subnet on which the host 
192.168.16.43/24 resides? 

It is necessary to block all traffic 
from an entire subnet with a 
standard access control list. What 
IP address and wildcard mask 
should be used in the access control 
list to block only hosts from the 
subnet on which the host 
192.168.16.43/28 resides? 

A.192.168.16.0 0.0.0.15 A.192.168.16.0 0.0.0.15 

B.192.168.16.0 0.0.0.31 B.192.168.16.0 0.0.0.31 

C.192.168.16.16 0.0.0.31 C.192.168.16.16 0.0.0.31 

D.192.168.16.32 0.0.0.15 **D.192.168.16.32 0.0.0.15 

E.192.168.16.32 0.0.0.16 E.192.168.16.32 0.0.0.16 

**F.192.168.16.0 0.0.0.255 F.192.168.16.0 0.0.0.255 

A B

FIGURE 6

An example of a task taken from West et al. (2012).

LP1_Task15 to LP1_Task17 and LP2_Task6 to LP2_Task9 are
the tasks identified by the features for assessing Level 4.

(3) Assembly model: How much do we need to measure?
For assessing LPs, the assembly model describes how the

three models above are combined for inferring a student’s level
on a learning progression in a given assessment situation. For
instance, the number of tasks (i.e., test length) with respect to
the different levels on an LP and the balances of task type and
focal KSAs are determined to construct an optimal assessment.

(4) Presentation model: How does the assessment look?
The presentation model describes how a task is presented

to students. There are many different means for delivering an
assessment, such as paper and pencil format, computer and
web-based format, and simulation- and game-based format. The
requirements for presenting assessments differ depending on
the format. Formative assessment can also be delivered using
mailing/e-mailing, messaging platforms such as Messenger
and WhatsApp, and online educational platform tools, such
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TABLE 4 Conditional probabilities for Task 7 at the first measurement
(% Probability).

Correct Incorrect

LP_
Measurement1

Level 1 17.49 82.51

Level 2 76.17 23.83

Level 3 79.98 20.02

Level 4 83.80 16.20

as Questbase and Woot Math. The presentation model also
contains specifications for the interactions between the student
and the assessment, and the work products that will be captured
for subsequent evidence identification.

Results

Dynamic Bayesian networks
Figure 5, introduced previously, shows the estimated DBNs

with 17 tasks at the first measurement time point and 9 tasks
at the second time point from a sample size of 1,450. The
following subsections illustrate inferences of various kinds that
are supported by such a network.

Task inferences
A task was initially classified as being “at the level” if it

supported an interpretation that students reaching that level
would be able to solve or complete the task, whereas students
at lower levels would be unlikely to be successful. To refine
the classifications, the CPT of each task was examined. The
results indicated that most of the tasks discriminated between

the targeted level and the remaining levels. For example, Table 4
is the CPT for Task 7 at the first measurement as provided by
Netica. The CPT shows clearly that students at level 2, level
3, and level 4 are likely to successfully solve Task 7, whereas
students at level 1 are unlikely to successfully solve this task.
The evidentiary value of this task is primarily in differentiating
students between level 1 and the higher levels.

Figures 7, 8 show all conditional probabilities of each task.
Tasks 4, 6, and 16 at the first occasion while Tasks 3 and 6 at the
second occasion were more ambiguous patterns in terms of their
levels. For example, the conditional probabilities demonstrated
a pattern where students at the lower level have little higher
probability of completing the task correctly than students at
the higher level.

Across all tasks, except Task 4, Task 6, and Task 16 at the
first occasion and Task 3 and Task 6 at the second occasion
exhibited clear and distinct patterns and were consistent with
the experts’ expectations, meaning that they classified between
levels as predicted by experts. Task 4, Task 6, and Task 16 at
the first occasion and Task 3 and Task 6 at the second occasion
were reported as ambiguous tasks for discriminating different
levels in LP. In addition, Task 5, Task 8, and Task 9 at the second
occasion (final exam) seemed to be mismatched with the experts’
expectations. That is, they were not located at the expected
levels. Initial reviews of these results were passed on to content
experts to provide feedback that would help them revise the
tasks to more sharply target the concepts at their intended levels.

Inferences about individual students
Once the response pattern was observed, the CPTs in the

DBN also provided information about student levels at the two
measurement occasions. The information contained in a student

FIGURE 7

Conditional probabilities for all items at the first occasion. P-value indicates a proportion of correcting a task; SME is a subject matter expert
group; Q indicates an ambiguous item.
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FIGURE 8

Conditional probabilities of each item at the second occasion. P-value indicates a proportion of correct responses to a task; SME is a subject
matter expert group; Q indicates an ambiguous item.

FIGURE 9

A DBN for a student who has completed 17 tasks at the first measurement.

response patterns is propagated through the network via Bayes’
theorem to yield posterior distributions of student levels on the
LP. The posterior distribution provides the probabilities that a
student has reached a specified level. On this basis, it can be
inferred that the student is likely to have reached any given level.
For instance, Figure 9 shows the DBN for a student who has
completed 17 tasks at the first measurement.

The student has the response pattern of
[1,1,1,1,1,1,1,0,1,1,0,0,1,1,0,0,0] at the first measurement.
On the basis of this evidence, the posterior distributions for
the student’s LP1 and LP2 indicate that the student has a
probability of being at levels 1 to 4 of 0.002, 0.179, 0.807, and
0.146, respectively at the first measurement and a probability

of being at levels 1 to 4 of 0.000, 0.048, 0.442, and 0.510,
respectively, at the second measurement. On this basis, it may
be inferred that the student is more likely to be level 3 at the
first measurement and is more likely to be at level 3 or 4 at the
second measurement.

The information in this network, used periodically during
a student’s course in study, holds diagnostic utility for
checking students’ progress along the curriculum. In particular
predictions of low levels of future performance suggests a need
for additional practice and review at the current LP level before
proceeding to the successive levels. Finer-grained diagnostic
information within a given level, for example in a unit of study
focusing on selected concepts and skills at level.
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TABLE 5 Transition probability table (% Probability).

LP_Measurement2

Level 1 Level 2 Level 3 Level 4

LP_
Measurement1

Level 1 19.3 19.7 23.8 36.2

Level 2 0 24.0 29.6 43.4

Level 3 0 0 48.2 51.8

Level 4 0 0 0 100

Transition probabilities
In addition to the inference about a student’s level change

over time, the DBN offers the probabilities of the transition
between two measurements through the transition probability
table. Table 5 is the transition probability table, which shows
the probabilities of students having reached each level at the
second measurement given their levels at the first measurement.
For instance, a student has a 0.197 probability of being at
level 2 at the second measurement point from being at level
1 at the first measurement point. For the backward transition
movements, zero probabilities were estimated. That was because
not only a constraint of no-backward movements was set using
the prior information, but also the data were consistent with
this expectation. With this information, one can infer the
proportions of students that stay at the same level and move to
the different levels between two consecutive measurements.

Communicating with content experts
The results based on empirical data analysis can serve

to aid the interpretation of the development of KSAs that
constitute the LP and accompanying tasks to support inferences
about students. In most cases, the results for tasks were
consistent with the expert-based expectation (Table 6). For

other tasks, the results were more ambiguous or suggest an
alternative interpretation to that of the experts. The results of
the data analysis may be taken back to the content experts for
consultation and possible refinements in terms of the definition
of the LP, the tasks that assess aspects of the LP, and the utility of
revised tasks or additional tasks for modeling students’ progress.

In the second measurement occasion, among the three
tasks that were not consistent with the expert expectations, the
content expert agreed that the level of Task 5 needed to be
refined. Task 5 was originally identified as being level 4 by the
content expert, but the data analysis suggested that the task
would be useful for classifying students between levels 1 and 2
as opposed to levels 3 and 4. The content expert commented
that Task 8 and Task 9 fit perfectly into the levels that have
been originally identified although the data analysis suggested
different levels. However, he pointed out that Task 8 requires a
simple cognitive recall process to complete the task, which might
make them easier than other tasks at the same levels. In other
words, although the tasks measure a higher level of KSAs in
terms of content, they required a lower level of cognitive ability
to solve the tasks. This may be a possible reason that the data
analysis suggested the lower level (level 3) than their expectation
(level 4). The content expert felt strongly that task 9 should
keep the same level originally identified. The task has a relatively
higher proportion value of correcting the task (P-value = 0.7)
than other tasks in the same level (level 4). Therefore, there
may be other factors that influence the level of task difficulty
such as difficult distractors and task format. Table 6 shows
the summary of the agreement between expectation and data
analysis. If only the P-value is considered to determine if a task is
correctly located, it could not provide sufficient information. For
instance, Task 1 at the first measurement seems to be incorrectly
located based on the P-value (i.e., it has relatively low P-value:
0.56). However, the task performed very well for classifying the
students between at level 1 and level 2, 3, and 4.

TABLE 6 Communicating with content experts.

Task Expectation Data analysis P-value Experts
comments

Level final decision

LP1_Task4 Level 2 Ambiguous 0.92 Knowledge Concept is in Level 2, but the distractors seem to be
confusing.

Keep

LP1_Task6 Level 2 Ambiguous 0.87 Knowledge Concept is in Level 2, but the distractors seem to be
confusing.

Keep

LP1_Task 16 Level 4 Ambiguous 0.76 Knowledge Concept is in Level 4, but cognitively simple
question

Keep

LP2_Task3 Level 3 Ambiguous 0.82 Knowledge Concept is in Level 4, but cognitively simple
question

Keep

LP2_Task5 Level 4 Level 3 0.73 Refined as level 3 Refined

LP2_Task6 Level 2 Ambiguous 0.87 Knowledge Concept is in Level 2, but the distractors seem to be
confusing.

Keep

LP2_Task8 Level 4 Level 3 0.75 Knowledge Concept is in Level 4, but cognitively simple
question

Keep

LP2_Task9 Level 4 Level 3 0.70 Knowledge Concept is in Level 4, but cognitively simple
question

Keep
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Conclusion

Contributions

Formative assessments are increasingly of interest in the
field of education. A formative assessment system provides
information for teachers and students about whether specific
learning goals are being reached, and what is needed to
master a given concept (Bennett, 2011; McCallum and Milner,
2020). For this purpose, an assessment must produce evidence
for revealing student levels and their change over time
(Black and Wiliam, 1998; Bennett, 2011). While substantive,
psychological, instructional, and task developmental aspects of
formative assessment have been considered, few assessment
design frameworks have been proposed to link the theory
embodied in a learning progression, tasks that provide
evidence about a student’s level on that progression, and
psychometric models that can link them. More specifically, few
statistical analytic models have been studied to characterize
the relationship between student performance and levels on
learning progressions under a formative assessment system. In
this study, we review a coherent assessment design framework
for modeling learning progression under a formative assessment
system using an ECD framework. Then we describe how DBNs
can be used to addresses the question of how a learner’s
current, past, and future levels in learning progressions are
inferred under a formative assessment. Finally, we conduct an
application study of DBNs using real data from the domain of
beginning computer network engineering drawn from an online
formative assessment in the CNA. Consequently, this study
describes a design framework and learning analytics method for
measuring students’ advancement along learning progression in
a formative assessment system.

Dynamic Bayesian Networks are a useful statistical
modeling method that can support inferences about level
change over time when task design and theory provide not only
a theoretical framework for creating and modeling observable
evidence, but also information about the nature and structure of
expected change. DBNs provide real-time updating of estimates
for student levels during instruction, so that they offer beneficial
information to students, instructors, and curriculum developers
for enhancing student learning (Almond, 2007; Arieli-Attali
et al., 2019; Attali and Arieli-Attali, 2019).

In addition, DBNs can serve as a psychometric model
in research related to learning progressions. LPs inform the
state of a student with respect to their level of understanding
of a given concept and diagnostic information regarding the
strengths and weaknesses of a student’s understanding along
a curricular strand. However, challenges have emerged in LP
research, including (1) designing a coherent assessment system,
(2) inferring student learning progression levels based on
the responses to assessment tasks, and (3) interpreting the
difference between expected and observed students’ progress

mapped to the conceptually defined learning progression. An
ECD Framework can be a useful tool for modeling learning
progressions by linking among the theory embodied in a
progression, tasks that provide evidence about a student’s
level on that progression, and psychometric models that can
characterize the relationship between student performance and
levels on learning progressions. Bayesian Networks can work as
a psychometric model that can provide real-time updating of
estimates for a student learning progression.

Furthermore, BNs can help lead to a valid task design.
BNs confirm the levels and progressions by comparing the
results from data analysis, allowing task designers to specify
the levels of KSAs at which they are aiming assessment tasks.
This helps make task design more principled, better connected
with targeted inferences, and ultimately more valid. Lastly,
BNs also help connect curriculum to assessment. For example,
curriculum designers can take information from a BN structure
and make decisions about which content areas are more
important to emphasize so that students will have a greater
probability of mastering future KSAs (West et al., 2010, 2012).

Limitations and future study

Although BNs provide a promising means for modeling
LPs under an assessment system with formative and summative
components, there are some issues that need to be considered
in the future study. First, since BNs are a flexible statistical
framework, there are many decisions that must be made
when designing a BN. The structure of the relation among
variables must be determined. The structure can be determined
by communicating with content experts as well as by using
statistical methods such as structural equation modeling. In
addition, one may need information about the probability
distributions of variables in the BN as prior information. While
the values of the variables of the probability distributions can be
determined from data, the structure can be posited before data
are collected (although it may be revised in light of subsequent
data; see Levy, 2006). Therefore, it is important to keep in mind
the purpose of the assessment in order to determine which
relations are important to model. This process is not always
straightforward and may require some iterative work before the
model can be said to be good enough (Almond et al., 2015).
Second, this study considered a first order Markov property in
the transition probability. The designing of DBNs with more
than two measurements with a higher order Markov property
could reflect a more realistic educational setting.

Third, this study was initially designed with one LP variable
corresponding to a domain. However, more than one LP
reflecting more than one domain may be of interest to be
modeled in future studies. For example, tasks can be reflected
by more than one LP and students might have different
learning patterns in terms of multi-LPs representing different
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domains. A student may require a higher level on one LP while
additionally requiring a lower level on the other LP to complete
a given task in the domain. In the case of multiple LPs, different
learning paths along the multi-LPs can be modeled over time
(Wilson, 2012).

Fourth, this study considered only the forward transition
movement in the simulation studies because the forward
transition movement is the most appropriate structure for
representing student movements along an LP. This is a strong
constraint but a typical hypothesis and appropriate for a
preliminary study of DBNs for modeling LPs. However, there
can be different types of transition structures, such as selected
backward transition movements and all-transition movement.
It is left to future studies to investigate the selection of the best
fit transition movement structure for a particular content area,
student population, and instructional program.

Lastly, the data example used to illustrate the DBM used only
discrete-coded responses of conditionally independent tasks.
The same LPs can be used to describe targeted KSAs, task
demands, and student performance for more complex tasks
such as the simulation-based troubleshooting and design tasks
as are employed in CNA in the Packet Tracer environment
(Williamson et al., 2004).
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