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Objective: To compare techniques for computing clustering and switching 

scores in terms of agreement, correlation, and empirical value as predictors of 

incident cognitive impairment (ICI).

Methods: We transcribed animal and letter F fluency recordings on 640 

cases of ICI and matched controls from a national epidemiological study, 

amending each transcription with word timings. We then calculated clustering 

and switching scores, as well as scores indexing speed of responses, using 

techniques described in the literature. We evaluated agreement among the 

techniques with Cohen’s κ and calculated correlations among the scores. 

After fitting a base model with raw scores, repetitions, and intrusions, we fit 

a series of Bayesian logistic regression models adding either clustering and 

switching scores or speed scores, comparing the models in terms of several 

metrics. We partitioned the ICI cases into acute and progressive cases and 

repeated the regression analysis for each group.

Results: For animal fluency, we  found that models with speed scores 

derived using the slope difference algorithm achieved the best values of 

the Watanabe–Akaike Information Criterion (WAIC), but with good net 

reclassification improvement (NRI) only for the progressive group (8.2%). 

For letter fluency, different models excelled for prediction of acute and 

progressive cases. For acute cases, NRI was best for speed scores derived 

from a network model (3.4%), while for progressive cases, the best model used 

clustering and switching scores derived from the same network model (5.1%). 

Combining variables from the best animal and letter F models led to marginal 

improvements in model fit and NRI only for the all-cases and acute-cases 

analyses.
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Conclusion: Speed scores improve a base model for predicting progressive 

cognitive impairment from animal fluency. Letter fluency scores may provide 

complementary information.
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Introduction

Among neuropsychological tests, verbal fluency tasks are 
widely recognized for their brevity, ease of administration, and 
diagnostic utility. The participant is asked to generate a list of 
words in response to a cue. The most common cues are semantic 
(e.g., “animals”) or an initial letter (e.g., “F”). The number of 
correct words produced within a time limit, usually 1 min, is 
termed the raw score. Raw scores measure the contributory 
cognitive processes as a single, informative value and are effective 
for detecting dementia (Canning et  al., 2004) and for 
differentiating among potential causes of dementia (Tröster et al., 
1989; Randolph et al., 1993; Monsch et al., 1994; Jones et al., 2006). 
Semantic fluency and letter fluency are often administered 
together for their contrast. Canning et al. (2004), for example, 
reported that simply generating more F-words than animals 
supported a non-vascular cause of mild cognitive impairment. In 
verbal fluency work comparing cognitively normal controls to 
patients with Alzheimer’s disease (AD), semantic dementia (SD), 
or another form of primary progressive aphasia (PPA), the 
contrast between letter and semantic fluency was helpful for 
differentiating among the three clinical syndromes. Semantic 
dementia patients patterned with PPA patients on semantic 
fluency (both significantly worse than AD), but with AD patients 
on letter fluency (both significantly better than PPA; Marczinski 
and Kertesz, 2006).

As with any cognitive test, performance on verbal fluency 
tasks likely depends on several dissociable cognitive skills, such as 
cognitive flexibility, psychomotor speed, semantic memory, and 
information retrieval (Pekkala et al., 2013; Eastman et al., 2014; 
Vonk et al., 2019). To measure these processes, investigators have 
developed new scoring methods that take into account qualities 
of the generated word lists. The two most widely recognized of 
these novel scores are predicated on the supposition that 
performance on verbal fluency relies on at least two dissociable 
processes: clustering, a relatively rapid, automatic transition 
between highly associated words (e.g., dog – cat), and switching, a 
slower, deliberate transition from a group of related words to an 
unrelated group (e.g., farm animals to ocean animals; Troyer et al., 
1997; Troyer, 2000). Research on young, unimpaired subjects 
suggests that both of these scores depend on working memory 
capacity. However, clustering also depends on vocabulary, while 
switching depends on processing speed (Unsworth et al., 2011). 

These findings coincide with a previous observation that healthy 
older individuals exhibit lower switching scores than younger 
individuals, but have comparable clustering scores (Troyer et al., 
1997), as one might expect based on other work indicating that 
normal aging impacts processing speed and executive function 
(Keys and White, 2000), rather than vocabulary (Hayden and 
Welsh-Bohmer, 2011; Harada et  al., 2013). These cognitive 
observations fit well with the findings that individuals with frontal 
lobe lesions exhibit reduced switching scores, while those with 
temporal lobe lesions (especially on the left) exhibit reduced 
clustering scores (Troyer et al., 1998a).

The truth of the matter is likely more complex than suggested 
by these observations, and other investigators have proposed an 
alternative dichotomy consisting of semantic search and 
non-semantic factors (e.g., task difficulty, executive function; 
Mayr and Kliegl, 2000; Mayr, 2002). These investigators propose 
a regression model with the interword interval (IWI) as the 
dependent variable and the index of the interval as the 
independent variable. Thus, if an individual generates the list 
“dog – cat – lion,” there would be two IWIs, with indices 1 and 2, 
with the first occurring between the words dog and cat and the 
second occurring between the words cat and lion. Mayr and Kliegl 
(2000) propose that the slope coefficient for this model relates to 
semantic search, which grows increasingly difficult as the task 
continues, resulting in increasingly long IWI. The intercept term, 
however, corresponds to unchanging, non-semantic factors.

A key step in the calculation of clustering and switching scores 
is the identification of linkages between words. By linkage, we refer 
to a strong relationship in terms of meaning, sound, or spelling. 
Researchers have employed several techniques to accomplish this 
goal. The most common method uses human raters to identify 
linkages through direct examination of word lists (Troyer, 2000; 
Murphy et  al., 2006). For example, words may be  considered 
semantically linked because they refer to taxonomically (lion/
tiger) or phenotypically (shark/dolphin) similar entities, entities 
seen in a similar context (horse/cow), predator–prey relationships 
(cat/mouse), etc. Phonological linkages consist of homonyms (for/
four), rhymes (freight/fate), and words differing in only one vowel 
sound (fit/fat). Orthographic linkages consist of words beginning 
with the same two letters (first/fidget). Good inter-rater reliability 
has been reported with human raters (Abwender et al., 2001; Ross 
et al., 2007) but test–retest reliability (i.e., stability of scores in the 
same individual over repeated testing) may suffer due to learning 
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effects (Ross et al., 2007). Some investigators have automated the 
identification of semantic linkages by first creating a structured list 
of subcategories and words belonging to each subcategory, then 
using a computer program to identify clusters and calculate scores 
(Clark et  al., 2014, 2016). Identification of orthographic and 
phonological linkages is readily automated with functions on 
strings of letters or phoneme symbols from the ARPAbet (Jurafsky 
and Martin, 2009). This computerized method does not differ in 
principle from the original method of identifying clusters 
described by Troyer et  al. (1997), but guarantees uniform 
determination of word linkages across participants. Thus, other 
investigators could readily reproduce this computerized method 
with no concern of poor inter-rater reliability.

A second technique involves the definition and application of 
some objective metric of similarity between words, such as 
semantic (Pakhomov et al., 2012) or phonological similarity (Ryan 
et al., 2013). One defines a pair of words to be related if their 
measured similarity exceeds a certain threshold. Semantic 
similarity is typically computed using methods developed for 
distributional semantics, in which one creates a vector 
representation for a word’s meaning based on other words that 
co-occur with the target word in a corpus of written text. The 
vectors may be  derived by point-wise mutual information of 
neighboring words in a corpus (Clark et al., 2014), a holographic 
method (Jones and Mewhort, 2007), Latent Semantic Analysis 
(Pakhomov and Hemmy, 2014), or various methods related to 
artificial neural networks, such as word2vec (Mikolov et al., 2013) 
or global vectors (GloVe; Pennington et  al., 2014). Similarity 
between two semantic vectors may then be  measured by 
calculating the normalized dot product, which is identical to the 
cosine of the angle between the two vectors. Thus, identical 
vectors have an angle of 0°, for which the cosine is 1. Words with 
unrelated meanings are expected to have an angle near 90°, for 
which the cosine will be near 0. A network may then be induced 
on the set of target words by mapping each word to a vertex, 
measuring the similarity between each pair of words, and adding 
an edge between the two vertices if the similarity exceeds a 
threshold defined by the investigator. A series of consecutive 
words in a verbal fluency list may be considered a cluster if the 
corresponding vertices compose a complete subgraph of the 
network. Any transition away from the current complete subgraph 
would be considered a switch. Networks may be derived using 
other (i.e., non-semantic) objective criteria. In this work, 
we  describe a method for deriving letter fluency networks by 
setting thresholds on three word-similarity metrics.

In a similar vein, Goñi et  al. (2011) describe a network-
generating method of three steps. In the first step, preliminary 
edges are established based on a probabilistic analysis of word 
proximities in a corpus of fluency word lists. The initial linkages 
are not limited to semantic associations and could represent any 
association commonly made by the participants, including sound 
or spelling relationships. In the second and third steps, the 
preliminary network is enriched with additional edges (see 
Methods for more details). Like the other network-generating 

methods described above, this technique does not rely on 
potentially idiosyncratic human judgments.

Another data-driven approach to identifying word linkages 
rests on the assumption that consecutive words separated by 
shorter intervals of time are related, while those separated by 
longer intervals are not. This method is implemented via the slope 
difference algorithm (Bousfield and Sedgewick, 1944; Gruenewald 
and Lockhead, 1980; Rosen et al., 2005), which seeks to account 
for each individual’s diminishing rate of word retrieval over the 
course of the task (Meyer et al., 2011; Lenio et al., 2016). This 
method has two potential disadvantages and two potential 
advantages. The first disadvantage is that this method requires the 
potentially labor-intensive, precise measurement of the latency for 
each word generated. The second disadvantage is that the word 
linkages vary from one individual to the next, or even from one 
trial to the next. The first advantage is that, like the Goñi method, 
the slope difference algorithm does not rest on potentially 
idiosyncratic human judgments. Second, there is no need to 
analyze a corpus of fluency word lists or other written material, as 
linkages are identified by timings alone.

Timing of verbal fluency responses has received limited 
attention in the analysis of verbal fluency for prognostic purposes. 
One approach to assessing the prognostic value of markers is to 
compare individuals with increased genetic risk for dementia. 
Such a comparison of apolipoprotein E ε4 carriers to non-carriers 
reveals that carriers produce smaller clusters of words than 
non-carriers, and take longer to access those clusters (Rosen et al., 
2005). Recent work suggests that scores calculated from verbal 
fluency word timings are valuable for differentiating MCI patients 
from individuals with normal cognition (König et al., 2015; Chen 
et al., 2020). Similarly, “pause length” (ignoring intervals shorter 
than 250 ms) contributes to machine learning regression models 
predicting scores on the Mini-Mental State Exam (Folstein and 
Folstein, 1975) and Clinical Dementia Rating (Morris, 1993) sum 
of boxes (Linz et al., 2017). In other work on the same data set 
analyzed here, we observed that the speed of word generation 
during verbal fluency improves estimates of time to ICI (Ayers 
et al., 2022). However, the speed scores we investigated previously 
incorporated all word generation times rather than separating 
transitions into those between linked words (which we  term 
“edge” transitions) and those between unlinked words (“switch” 
transitions), as we do in these analyses. The approach of Mayr and 
Kliegl (2000) was developed for theoretical considerations and the 
study of normal aging, but here, we  explore its utility for 
prognostic purposes.

Data for this analysis come from the Reasons for Geographic 
and Racial Differences in Stroke (REGARDS) study (Wadley 
et al., 2011; Howard, 2013), a longitudinal epidemiological study 
following 30,239 volunteers, with approximately equal 
recruitment of white and African-American individuals 
(Howard et al., 2005). We identified a subset of participants with 
ICI and matched them to controls on demographic parameters. 
We then transcribed telephone-based verbal fluency recordings 
from each case and control. Acquisition of linguistic data by 
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telephone raises the possibility of developing approaches to 
remote assessment for early detection of dementia, perhaps even 
before the onset of symptoms. Such approaches could be used to 
inexpensively screen individuals for treatment, clinical trials, or 
observational studies. Fluency tasks administered by telephone 
correlate well with those administered in person (Bunker 
et al., 2017).

In this work, we compare three techniques for identifying 
linkages between words generated during animal and letter F 
fluency tasks: those originated by Troyer, network-based 
techniques, and slope difference. In addition, for each technique, 
we  evaluate scores based on the speeds of edge and switch 
transitions. To these timing-based scores, we add scores calculated 
using the technique described by Mayr and Kliegl (2000). First, 
we evaluate the amount of agreement among the techniques in 
terms of the linkages they define. Second, we calculate clustering, 
switching, and speed scores based on the defined linkages and 
examine the correlations. Third, to assess the empirical value of 
scores calculated with the various techniques, we  compare 
Bayesian logistic regression models fit with each set of scores, with 
the outcome of ICI. Such a model, if highly accurate, could 
contribute meaningfully to approaches for dementia risk 
stratification. We compare the resulting models on an array of 
quality metrics. After identifying the best model for the category 
and letter fluency tasks, we fit a final model with the union of the 
two sets of variables and examine the posterior distribution. 
Finally, to account for the presumed heterogeneity of our sample, 
we partition the cases into those that exhibit acute decline and 
those that exhibit progressive decline, repeating the analysis for 
each subset of cases.

Materials and methods

The REGARDS study and participants

We identified 640 cases of ICI (defined below) among 
participants in the REGARDS study (Howard et  al., 2005). 
We considered only subjects who were clinically stroke-free and 
who had completed both animal and letter fluency assessments. 
Incident cognitive impairment was determined by the pattern of 
longitudinal scores on the Six-Item Screener (SIS). The SIS is a 
brief test in which the participant is given three words to 
remember, then undergoes testing with three temporal 
orientation items, followed by recall for the three words. The 
three temporal orientation items and three recall items are worth 
1 point each (six points max). We defined an abnormal score on 
the SIS to be  less than five points (sensitivity for cognitive 
impairment 74.2% and specificity 80.2%; Callahan et al., 2002). 
We identified suitable cases of ICI according to two criteria: (1) 
normal SIS scores up until at least one assessment dated after the 
first complete verbal fluency evaluation and (2) at least one 
subsequent abnormal SIS score, including an abnormal score at 
the most recent SIS evaluation. Criterion 1 was selected to ensure 

that individuals were cognitively normal at the time of the verbal 
fluency assessment. Criterion 2 was selected because it was used 
in previous work on ICI in REGARDS (Wadley et al., 2011) and 
because it guards against including individuals who do not 
exhibit consistent impairment in cognition.

We matched ICI cases with controls from a pool of 14,281 
stroke-free individuals who never received an abnormal SIS score 
during the years they were evaluated. Matching took place based 
on age, sex, education, race, and geographic region. We matched 
cases to controls with an absolute age difference <3 years. 
Educational level was categorized coarsely as “less than high 
school,” “high school graduate,” “some college,” or “college 
graduate or more.” The REGARDS study divides participants 
according to whether they reside in one of three geographic 
regions that relate to an individual’s stroke risk. The key defining 
region is the “stroke belt,” which includes most of the southeastern 
states, as well as Indiana, in which individuals suffer from 
increased stroke risk. Stroke risk is even higher in the second 
region, composed of the coastal plains of North Carolina, South 
Carolina, and Georgia, known as the “stroke buckle.” Individuals 
residing outside of either of these regions are assigned the regional 
category “nonbelt.”

Using the R library BayesFactor (Morey, 2018) we assessed 
quality of the match by calculating Bayes factors on the 
demographic variables. We  took the logarithm of the Bayes 
factors to make them symmetric and to constrain the magnitude 
of our reported values. With traditional Bayes factors, a value of 
10 indicates that the alternative hypothesis is 10 times more 
likely than the null, a value of 0.1 indicates that the null 
hypothesis is 10 times more likely than the alternative, and 1 
suggests a paucity of evidence in either direction. After taking 
the base 10 logarithm, these values become 1, −1, and 0, 
respectively. We  anticipated evidence of no effect of group 
membership (log BF < −1) on each demographic variable 
(Keysers et al., 2020). We were able to perfectly match 640 of the 
ICI cases to controls, yielding a final sample of 1,280 participants 
(see Figure 1). We incorporated demographic variables into all 
regression models as covariates.

The REGARDS Study was approved by the Institutional 
Review Board of the University of Alabama at Birmingham and 
this analysis was approved by the Institutional Review Board of 
Indiana University.

Data pre-processing

We undertook a sequence of steps to derive an accurate 
transcription of each verbal fluency recording. First, we obtained 
a preliminary transcription with time stamps of all 2,560 
REGARDS audio files using the Amazon Web Services Transcribe 
tool. These transcriptions were about 61% accurate and 
occasionally omitted clearly audible utterances. Second, we applied 
a voice activity detection tool to refine the timings and identify 
omitted material. Third, human raters checked and corrected the 
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preliminary transcriptions using a custom MATLAB-based 
(Natick, MA) graphical transcription tool, labeling utterances 
made by the test administrator to ensure that they could 
be analyzed separately from those of the study participant. Raters 
were blinded to clinical outcome and received recordings in 
batches with random mixtures of cases and controls. Ambiguities 
and poorly understood utterances were resolved informally by a 
consensus of raters and study investigators.

Scoring methods

Raw, repetition, and intrusion scores
Repetitions and intrusions were identified manually during 

the transcription process. Each item was assigned a canonical 
form corresponding to the unabbreviated and uninflected form of 
the word. Utterances with the same canonical form as a previous 
utterance in the list were labeled as repetitions. For animals, words 
that could not be interpreted as a type of animal were regarded as 
intrusions. For F-words, we regarded as intrusions proper nouns 
(e.g., France) and words not starting with the letter F (e.g., phone). 
These errors must be  identified during calculation of the raw 

score, and are likely to provide additional information with 
diagnostic relevance (Suhr and Jones, 1998; Wajman and Cecchini, 
2022). Thus, we  wished to perform our evaluations of model 
quality while accounting for these scores, because they are easy to 
calculate and the work necessary to tabulate them is obligatory 
when deriving an accurate raw score. Raw, repetition, and 
intrusion scores were extracted automatically from the 
transcription file.

Clustering and switching methods

Troyer methods

We employed automatic methods to calculate clustering and 
switching scores (Clark et  al., 2014, 2016). Automation of the 
process did not qualitatively alter any judgments of word 
relatedness, but ensured that these judgments were applied 
uniformly across the entire sample. For animal fluency, this 
method required the a priori definitions of animal subcategories 
starting from subcategories given by Troyer (2000). Animals were 
included as members of multiple subcategories when appropriate 
(e.g., beaver may be  classified in subcategories rodent, water 
creature, and used for fur). A cluster is defined as a sequence of 

FIGURE 1

Flow chart depicting participant selection. Individuals were considered for the case group only if SIS scores were normal prior to recording the 
fluency tasks and at the first SIS follow-up after the fluency recording. This stipulation ensures that SIS performance was normal at the time of the 
fluency recording.
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words belonging to a common subcategory.1 (See 
Supplementary Table S1 for the list of subcategories and animals 
assigned to each subcategory).

For letter fluency, the method required automatic 
identification of pairs of words meeting any of four criteria: those 
that rhyme, share the same first two letters, are homonyms, or 
differ only by a vowel sound (Troyer et al., 1997; Troyer, 2000; 
Murphy et  al., 2006). To this end, we  defined predicates to 
automatically make these determinations by acting on the word 
strings or on the pronunciations from the CMU pronunciation 
dictionary (CMU, 2014). An electronic archive file containing a 
complete list of F-words generated by participants in this study, 
along with their ARPAbet pronunciations is available by request 
from the corresponding author.

Network methods

Troyer’s original method identifies semantic relationships in 
the context of semantic (category) fluency and phonological or 
orthographic relationships in the context of letter fluency. 
However, semantic factors are likely the strongest influence on 
both category and letter fluency (Clark et al., 2014) and other 
forms of lexical similarity may influence either task in a clinically 
meaningful way (Abwender et al., 2001; Clark et al., 2016). Our 
second approach to calculating clustering and switching scores 
entailed the data-driven construction of network models 
describing word relationships, while leaving open the nature of 
these relationships. While the end products for both the semantic 
and letter fluency tasks were networks with unweighted and 
undirected edges, we  employed different methods to 
construct them.

For animal fluency, we followed the method described by 
Goñi et al. (2011), first identifying which pairs of words in our 
corpus of verbal fluency word lists occurred in proximity to one 
another more often than predicted by chance alone. Of note, this 
step may identify any form of word relationship (e.g., semantic, 
phonological, or even those defined by alphabetical ordering, 
i.e., aardvark, bat, cat, dog…). We used a window length of two 
and an alpha level of 0.001 to derive a preliminary network. This 
preliminary network excluded most animal word types in our 
corpus, as they had not occurred enough times to overcome any 
reasonable probability threshold. Following Goñi, we took three 
additional steps to enrich and expand this network. We first 

1 The set of associations described for the Troyer technique, consisting 

of a list of subcategories and specific exemplars within each subcategory, 

cannot be represented as a simple network. When following Troyer’s 

technique, a cluster is defined as a sequence of words all belonging to 

the same subcategory. Thus, to represent the Troyer data as a network 

would require a generalization of graphs known as a multigraph, in which 

a pair of vertices may be  linked by multiple edges. Such edges may 

be separated into types and labeled, for example, with different colors. 

Words constituting a cluster must map to a set of vertices that form a 

complete subgraph with edges of uniform color.

employed a generalized topological overlap measure (GTOM). 
This algorithm established new edges between vertices that were 
distanced no more than m words apart (where m is the order of 
GTOM) in the preliminary network. From these added edges, an 
overlap measure was computed, and the resulting matrix was 
transformed into a dissimilarity matrix. We  then identified 
modules in the dissimilarity matrix by applying hierarchical 
clustering and enriched the newly defined modules by adding 
edges between all pairs of words within each module. Finally, in 
a step not taken in Goñi’s original work, we further expanded the 
network by placing all word types excluded from the original 
network into one of the modules. To do so, we first matched each 
word in the corpus with its corresponding “global vector” 
(GloVe). These vectors are 300-dimensional numerical 
representations of word meaning derived by training a neural 
network on word co-occurrences in a large corpus of English 
(Pennington et  al., 2014). We  then calculated the cosine 
similarity between the GloVe of the new word and all words in 
the network, placed the new word into the module containing 
its closest semantic neighbor, and then fully integrated that word 
into the module by adding edges to all other words in 
the module.

Letter fluency depends less heavily on semantic associations 
than animal fluency and relatively more heavily on phonological 
or orthographic similarities, although the semantic influence 
remains the strongest (Clark et  al., 2014). In addition, 
we anticipated that networks reflecting mental associations for 
these two tasks would differ in terms of overall network size, node 
degree, clustering tendency, and average path length. Empirically, 
we were skeptical that enrichment with techniques such as GTOM 
and HCA would give coherent results for letter fluency. For 
example, if the initial probabilistic step were to produce edges 
establishing the path frigate – freight – fate, GTOM2 would 
introduce a dubious edge between frigate and fate. Preliminary 
attempts to apply the Goñi method to letter fluency data yielded a 
network with questionable validity, as it included only 66 of the 
867-words generated.

As an alternative, we constructed a network of F-words in 
which it was possible for edges to represent any of three possible 
lexical relationships: semantic, phonological, or orthographic. 
We began with three separate letter F networks, each of which had 
a vertex for each word in our dataset. Each edge was weighted with 
the similarity between the two words at the vertices connected by 
the edge. For the semantic network, we defined semantic similarity 
as the cosine similarities of the GloVes corresponding to each pair 
of words. For the orthographic network, we  calculated the 
Levenshtein edit distance (Levenshtein, 1966) and multiplied it by 
−1 to obtain a similarity measurement. To quantify phonological 
similarity, we  employed the Needleman–Wunsch algorithm 
(Needleman and Wunsch, 1970), a dynamic programming 
algorithm similar to the Levenshtein edit distance, but 
incorporating information about the similarity of sequence 
elements when determining the optimal alignment (e.g., G is more 
similar to K than it is to SH). For details of this algorithm, see the 
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Python code in the Supplementary File. Working code and 
necessary data files are available by request.

From our three weighted networks, we wished to derive a 
single, unweighted network defining linkages among all listed 
F-words. To do so, we needed to set a threshold for each form of 
similarity. The final network would then be defined as having an 
edge between any pair of vertices (words) for which some form of 
lexical similarity was above the threshold. We  set the goal of 
identifying a threshold for each similarity metric that would 
maximize the agreement between the final network and human 
raters on a subset of the data. Two authors (JB and DGC) provided 
subjective binary judgments of relatedness for 484 pairs of 
F-words that occurred in 50 randomly selected verbal fluency 
word lists (25 NC, 25 ICI). We placed the three networks on a 
uniform scale by z-transforming the weights and performed a grid 
search over possible semantic, orthographic, and phonological 
thresholds (using a step size of 0.05 standard deviations), seeking 
to maximize the average kappa between the resulting adjacency 
matrix and the human raters.

For both animal and letter fluency, clustering and switching 
scores were calculated from each graph by considering any 
consecutive sequence of words to be  a cluster if the vertices 
corresponding to those words composed a fully connected 
subgraph. Cluster size was defined as one less than the number of 
words in such a sequence. According to this definition, a word that 
has no edge connecting it either to the preceding or subsequent 
words in the list is considered to be  a complete graph of one 
vertex, and thus is a cluster of size 0. We defined the number of 
switches to be one less than the number of clusters.

Slope difference

The slope difference algorithm is a data-driven approach to 
identifying related items that relies on measurement of timings 
between words. Following Bousfield and Sedgewick (1944) and 
Gruenewald and Lockhead (1980), we  first expressed each 
individual’s performance as a function of increasing raw score 
over time. We then used a MATLAB program to fit an exponential 
curve to this function by determining values of c and m that 
minimized the sum of squared differences between the raw score 
curve and the formula y = c(1  –  e–mt), where t represents the 
latencies of the word onsets and e is the base of the 
natural logarithm.

This curve served as the prediction of expected output over 
time (see Figure 2). The program then compared the slopes of 
these two curves at time points halfway between each consecutive 
pair of words. Words that were produced faster than predicted by 
the exponential curve (positive slope difference) were considered 
to be linked to the previous word. Those produced more slowly 
than predicted (negative slope difference) were considered to 
be switches. “Clusters” defined by this method are based only on 
connections between consecutive words, as there is no clear way 
to extend the method to determine whether non-consecutive 
words should be  linked. When specifically discussing clusters 
derived from slope difference, we will use the term “chains.”

Switch-edge speeds

The Troyer, network-derived, and slope difference techniques 
were used for establishing which words were linked, and the sets 
of linkages were used to calculate clustering and switching scores 
for each technique. We wished to extend these methods to derive 
new, timing-based scores. To this end, we computed speed scores 
by measuring the time elapsed during edge transitions (when 
consecutive words are linked) and during switch transitions 
(when consecutive words are not linked).

The distribution of IWI was positively skewed and was 
normalized by taking the fourth root. We  partitioned all 
transitions into those between linked words and those between 
non-linked words. We then calculated speed scores from each of 
these two sets of transformed intervals by first performing 
min-max normalization (which forces all values onto the interval 
[0, 1]), then inverting the normalized intervals by subtracting 
them from 1.0. Thus, the fastest transition received a score of 1.0 
and the slowest transition received a score of 0.0. We then derived 
two summary speed scores by summing the inverted, normalized 
switch and edge speeds for each participant.

Mayr scores

Following Mayr (2002) and Mayr and Kliegl (2000), 
we computed a simple linear regression for each individual word 
list with IWI as the dependent variable and the index of the IWI 
(i.e., first IWI index = 1, second IWI index = 2, etc.) as the 
independent variable. The slope term was recorded as the 
individual’s semantic search score (S) and the intercept was 
recorded as a measure of constant, non-semantic factors affecting 
the individual’s speed on the task (C). We measured IWI only 
between consecutive pairs of valid words.

FIGURE 2

The black, jagged curve depicts the number of animal words 
actually generated over time. To this curve, we fit an exponential 
curve (blue dashes). The chains of animals linked based on 
positive slope difference are: [dog, cat, elephant, kangaroo, and 
chicken], [fox], [hippopotamus], [duck], [hog, horse, cow, mule, 
and donkey], [sheep and goat], [ox and zebra]. This list yields a 
switching score of 6 and a mean chain size of 1.43.
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Agreement and correlation among 
scoring methods

We calculated Cohen’s κ between each pair of techniques, for 
each fluency task. For the Troyer method, words listed together in 
any subcategory received a “1.” For the network methods, every 
pair of words in the edge set of the graph received a “1.” Because 
the slope difference algorithm variably assigns linkages, and 
therefore a given pair of words may be linked in some lists and not 
in others, a ‘1’ was assigned to any pair of words that were 
determined to be linked at least half of the times they occurred 
consecutively. Pairs of words that were not linked were 
assigned a ‘0.’

We generated correlation matrices to compare clustering, 
switching, and speed scores across all scoring methods. As all these 
scores are likely to correlate with raw score, we used regression to 
remove the influence of raw score from each clustering, switching, 
or timing score prior to calculating the correlations.

Empirical ranking of scoring methods

Apart from straightforward comparison of methods for 
calculating clustering and switching scores, we wished to ascertain 
whether any method had superior empirical value. There are many 
potential uses for clustering and switching scores, but we focused 
specifically on the question of identifying individuals at risk for 
cognitive impairment. Toward this end, we fit a Bayesian logistic 
regression on each of the candidate models using a quadratic 
approximation in the rethinking library for R (McElreath, 2020). 
We chose this statistical approach for four reasons. First, logistic 
regression is very familiar to most researchers in neurology and 
psychology and is straightforward to interpret. Second, the 
Bayesian approach, while giving results very comparable to 
traditional logistic regression when sample sizes are sufficiently 
large, yields a probability distribution for each coefficient. These 
probability distributions have a more intuitive interpretation than 
traditional confidence intervals. Third, the posterior probability 
distributions emitted by these models may serve as prior 
distributions for future analyses. Fourth, the Watanabe–Akaike 
Information Criterion (WAIC; Watanabe, 2010) is quick to 
compute and provides a simple metric for model comparison. As 
an estimate of the out-of-sample deviance, the WAIC in practice 
yields results similar to those obtained with leave-one-out cross-
validation (McElreath, 2020). Given a set of models with WAIC 
measures, a weight may be  computed for each model that 
corresponds to the probability that the model will minimize the 
information loss relative to the other models.

The outcome variable for all regression models was ICI, as 
defined in the section above detailing cognitive data obtained from 
the REGARDS study. We began with a base model for each verbal 
fluency task (animals and letter F), consisting only of demographic 
variables, raw score, repetitions, and intrusions. All coefficients 
were assigned an uninformative, normal prior with zero mean and 

standard deviation of 100. We computed three additional models 
by adding clustering and switching scores to each base model, 
based on a Troyer technique, a network technique, or the slope 
difference technique. We  then computed the four models 
incorporating timing-based scores. Thus, we studied a total of eight 
regression models for each fluency task. As noted for the 
correlation analysis, we redefined each novel score as the residual 
after regressing the novel score on raw score. This step ensured that 
the resulting coefficients were not inflated due to correlation with 
raw score and facilitated their interpretation.

We assessed the performance of each regression model with 
WAIC, relative model weight, area under the receiver operating 
characteristic curve (AUC), sensitivity, specificity, positive 
predictive value, negative predictive value, F1 score, and net 
reclassification improvement (NRI; Pencina et  al., 2008). 
We repeated these analyses with only the acutely declining cases 
and again with only the progressively declining cases, maintaining 
the entire sample of controls across analyses for uniformity 
of comparison.

We selected the best performing animal and letter fluency 
models to combine into a single model and obtained precise 
posterior distributions for the regression coefficients with Markov 
chain Monte Carlo, employing freely available R software 
accompanying a textbook of Bayesian statistics (Kruschke, 2015). 
This software provided some important conveniences, including 
diagnostic plots for the Markov chains and automatic calculation 
of important metrics such as effective sample size and 97% 
highest density interval (HDI) for each coefficient. We illustrated 
the posterior and 97% HDI with a histogram for each 
regression coefficient.

Results

Subject group comparisons

Table  1 shows demographic and traditional scores on our 
participant sample. We took the base 10 logarithm of the Bayes 
factor (log BF) for each comparison. Negative values represent 
evidence in favor of the null hypothesis (i.e., that there is no 
difference between groups) and positive values represent evidence 
against the null hypothesis. A log BF of 0 indicates no evidence for 
or against the null hypothesis. Absolute values >0.48, 1, and 2 
moderate, strong, and extreme evidence, respectively. When 
comparing the full sample of cases and controls, the evidence 
favored the null for all demographic variables. This pattern 
persisted when comparing acute decliners to controls. However, 
there was weak evidence of a greater proportion of females in the 
progressive decliner group and moderate evidence that progressive 
decliners were older than the controls.

Controls produced more animal words and more F words 
than cases, and cases repeated animal words more often than 
controls. Evidence that progressive cases produced fewer F-words 
than controls was much weaker (log BF 0.03) than for the acute 
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cases or the full set of cases (both log BFs > 2). The opposite 
pattern held for letter F repetitions, where the evidence was that 
progressive cases produced more repetitions (log BF 1.56) than 
either of the other sets of cases (both log BFs negative). Cases and 
controls underwent comparable numbers of SIS evaluations, and 
therefore had to have been followed about the same length of time. 
However, those observed to have progressive decline had been 
followed longer than the controls (p < 0.05), although the log BF 
weakly favored the null hypothesis.

Network models

The total number of unique animals produced by all subjects 
was 433. The preliminary network was established using window 
length 2, α = 0.001, and GTOM2, and included 156/433 animals. 
We next applied hierarchical clustering, which yielded 11 modules 
(Figure  3). We  added each of the remaining 277 words to 
whichever module contained the word’s closest semantic neighbor. 
Figure 4 shows the representation of the derived animal graph.

The total number of unique letter F words (including 
morphological variations) produced by all subjects was 867. The 
κ score between the raters on 484 pairs of F-words was 0.60. The 
grid search to find z-thresholds for maximizing kappa between the 
network and human raters yielded a maximum average kappa 
score of 0.53 (DGC 0.55, JB 0.51) with a semantic threshold of 
+3.15, a phonological threshold of +1.70, and an orthographic 
threshold set at +2.00. See Figure 5 for a partial representation of 
the letter fluency graph.

The letter F graph was substantially larger than the animal 
graph in terms of both vertices (867 vs. 433) and edges (22,980 vs. 

10,352). Average degree for F-words was somewhat higher than 
for animals (53.01 vs. 47.82). Animal words were more clustered 
than F-words (0.99 vs. 0.26), and the average path length was 
longer (4.02 vs. 2.19).

Agreement and correlations

Agreement on relatedness of listed animals, as measured by 
Cohen’s κ, was fair between slope difference and the other two 
methods (~0.3), and was substantial between the Troyer and 
network-based methods (0.78). Agreement on relatedness of 
F-words was slight between slope difference and the other two 
methods (~0.05), but fair between the Troyer and network 
methods (0.34; see Table 2).

We calculated correlations after removing variance associated 
with raw scores (see Figure 6). Thus, if raw score were included in 
the matrices, it would have a correlation of 0 with all scores listed. 
Correlations between several pairs of corresponding scores derived 
with different techniques (Troyer and network-based) were high for 
animal fluency (r > 0.72). The strongest negative correlations for 
scores derived from animal fluency were between complementary 
scores derived using the same technique. For example, slope 
difference mean chain length (SD-chain) and slope difference 
switching (SD-switch) was −0.87. Similarly, the constant (C) and 
slope (S) Mayr scores showed a strong negative correlation 
(r = −0.80). For letter fluency, we  found the strongest positive 
correlations between similar scores derived following the same 
method for identifying relatedness (see Figure  7); for example, 
between Troyer switching and Troyer switching speed (r = 0.81), 
between network-based clustering and network-based edge 

TABLE 1 REGARDS participant data.

Controls 
(n = 640)

All ICI 
(n = 640) log BF Acute 

(n = 536) log BF Progressive 
(n = 104) log BF

Age (years) 74.96 (8.61) 74.99 (8.70) −1.22 74.52 −1.01 77.52* 0.85

Sex (M:F) 293:347 293:347 −1.15 285:303 −0.95 39:76* 0.31

Region (Non-belt:Belt:Buckle) 258:242:140 258:242:140 −2.15 246:214:128 −2.06 44:45:26 −1.60

Education (<HS:HS:SC:CG+) 74:191:171:204 74:191:171:204 −3.00 69:179:160:180 −2.96 17:27:34:37 −1.72

Race (W:B) 397:243 397:243 −0.99 328:208 −1.13 69:35 −0.75

Animal fluency (words) 15.71 (5.16) 13.94 (4.94)* 7.06 14.13 (5.05)* 4.67 12.96 (4.16)* 4.56

Animal repetitions (words) 0.93 (1.38) 1.19 (1.71)* 0.69 1.15 (1.69)* 0.20 1.34 (1.82)* 0.62

Animal intrusions (words) 0.04 (0.22) 0.07 (0.37) −0.68 0.07 (0.39) −0.64 0.06 (0.27) −0.85

Letter F fluency (words) 10.60 (4.21) 9.59 (4.25)* 2.63 9.59 (4.25)* 2.37 9.63 (4.29)* 0.03

Letter F repetitions (words) 1.03 (1.27) 1.17 (1.50) −0.42 1.10 (1.40) −0.96 1.52 (1.92)* 1.56

Letter F intrusions (words) 0.34 (0.69) 0.39 (0.84) −0.84 0.40 (0.87) −0.76 0.36 (0.67) −0.92

Time to conversion or 

censoring (days)

1080.42 (451.12) 1001.38 (468.40)* 0.82 1023.79 (481.63)* −0.26 885.88 (373.35)* 2.67

Number of SIS assessments 8.86 (2.01) 8.82 (2.03) 0.067 8.70 (2.10) −0.79 9.25 (1.62)* −0.19

Minimum SIS score 5.18 (0.38) 3.27 (1.12)* 229.3 3.54 (0.91)* 44.43 1.84 (1.06)* 38.82

All comparisons are between controls and one of the groupings of ICI (all ICI, acute, or progressive) participants. Metric variables are shown as mean (standard deviation) and compared 
with t-test. Categorical variables were compared using χ2. SIS, Six-Item Screener; ICI, incident cognitive impairment; log BF, base 10 logarithm of the Bayes factor; HS, High school 
education; SC, some college; CG+, college graduate and above. Base 10 logarithm of Bayes factor positive values are evidence against and negative values are for the null hypothesis. 
Absolute values 0–0.48 anecdotal, 0.48–1.0 moderate, 1.0–2.0 strong, >2.0 extreme evidence. *p < 0.05 compared to controls.
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transition speed (r = 0.80). The strongest negative correlations also 
occurred within techniques, for example, between network-based 
edge transition speed and network-based switching (r = −0.90), 
between Troyer-style edge transition speed and Troyer-style 
switching (r = −0.95), and between the Mayr C and S scores 
(r = −0.85). Scores in both correlation matrices were arranged such 
that variables with similar patterns of correlation were placed 
adjacent to one another. In both matrices, repetitions and intrusions 
were placed adjacent to one another (generally low correlation with 
all other scores), most switch/switch-speed scores were grouped 
together, and cluster/chain/edge-speed scores were grouped together.

Regression models

Full complement of participants
In the all-cases analysis, WAIC for the animal base model 

(i.e., with raw scores, repetitions, and intrusions) was 1739.08 

(see top row of Table  3). The base model showed the best 
performance with regard to sensitivity, negative predictive value, 
and F1 score. Models including cluster and switch scores 
calculated with the network and slope difference methods 
improved on the base model only marginally, with NRI 0.6%. 
When scores based on timings were included, those derived by 
partitioning with the slope difference method led to the best 
WAIC (1733.40), weight (0.639), and AUC (0.638), suggesting 
that this model might generalize best to new data points; 
however, the negative NRI indicates no improvement over the 
base model with the current data set. Other performance 
measures (e.g., sensitivity, specificity) were weak, hovering 
around 0.6.

Watanabe–Akaike Information Criterion for the letter F base 
model was 1771.63 (see Table  4). Addition of Mayr scores 
improved the fit, with WAIC 1766.85, claiming 79.5% of the 
weight. A marginally positive NRI was observed for timing scores 
derived using the slope difference method (1.3%). Other 

FIGURE 3

Adjacency matrix and dendrogram yielding 11 animal modules.
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performance measures were weaker than for animal fluency 
models, generally below 0.6.

Acute decliners
For acute decliners, the WAIC for the base model trained with 

animal fluency data was 1595.82. As with the models trained on 
the full complement, the model trained with speed scores derived 
using the slope difference algorithm led to marginal improvement 
in WAIC (1594.20) and received 29.0% of the weight among the 

compared models. This model also had a marginally positive 
NRI (0.6%).

Letter F WAIC for the base model comparing acute decliners 
to controls was 1620.46. Mayr scores again improved the fit of the 
model, which claimed 96.7% of the weight (WAIC 1611.48). The 
best NRI resulted from addition of network-derived speed 
scores (3.4%).

Progressive decliners
For progressive decliners, the WAIC for the base model 

trained with animal fluency data was 571.34. Incorporation of 
timing-based scores derived from slope difference led to a 
substantial improvement in WAIC (563.41) and this model 
received 77.9% of the weight among the compared models. This 
model had the best AUC (0.749) and NRI (8.2%).

Letter F WAIC for the base model comparing progressive 
decliners to controls was 591.87. The model incorporating 
network-derived clustering and switching scores led to slight 
improvement in the WAIC (588.04), such that this model was 
allocated 78.3% of the weight and the base model received 

FIGURE 4

Final animal network. Animal names that were not included in the initial graph were placed in the module with their nearest semantic neighbor.

FIGURE 5

Representative portion of the letter F network, depicting 
semantic, orthographic, and phonological layers. Prior to 
calculating clustering and switching scores, these layers were 
collapsed into a single network by taking the union of edges.

TABLE 2 Edge agreement of three methods.

Graph Troyer Slope difference

Graph – 0.78 0.30

Troyer 0.34 – 0.29

Slope difference 0.06 0.05 –

Kappa values in upper triangle are for animal fluency; those in lower triangle are for 
letter fluency.
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11.5%. The best NRI score was observed with the network 
model (5.1%).

Combined models
Posterior distributions for logistic regression models 

combining switch and edge speed scores with the letter fluency 
base model were calculated using Markov chain Monte Carlo 
analysis. Table 5 shows means and 97% HDI for each variable in 
the model fit to all participants, comparing acute decliners to 
controls, and comparing progressive decliners to controls. 
Posterior histograms for all-cases, acute-cases, and progressive-
cases analyses are shown in Supplementary Figures S1–S3, 
respectively. Coefficients for the animal raw, switch speed, and 
edge speed scores are larger in magnitude (more negative) in the 

progressive-cases model than for the acute-cases or all-cases 
models. The opposite pattern holds for letter F raw scores, where 
the coefficients have a larger magnitude among acute-cases and 
all-cases models. Coefficients for the demographic variables 
were generally different from the effects observed in the 
univariate analysis. See the Discussion for more details about 
these findings.

Union of the variables in the best animal and letter F models 
led to an improvement in WAIC in the all-cases and acute-cases 
analyses (see Table 6). For the all-cases analysis, the combined 
model claimed 94% of the weight and exhibited NRI of 0.9%. For 
the acute-cases analysis, the combined model claimed 98.5% of 
the weight and exhibited NRI of 1.3%. For the progressive 
decliners analysis, the model with animal fluency scores (slope 

FIGURE 6

Correlation matrix of scores derived from animal fluency. Prior to calculating the correlations, the raw scores were regressed out of all scores 
tabulated here. T, Troyer method; G, graph-theoretic (network) method; SD, slope difference algorithm; C, Mayr constant term; S, Mayr slope 
term. SD “chain” scores are comparable to cluster scores, but are based only on linkages between consecutive words.
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difference speed scores) remained superior to the combined 
model (77.7% vs. 20.9% of the weight, and 8.2% vs. 7.2% NRI).

Discussion

We compared three methods for identifying related items in 
animal and letter fluency word lists. The correspondence between 
pairs of techniques (Cohen’s κ) was relatively higher for animal 
fluency than for letter fluency. For both tasks, the correspondence 
was highest between the traditional Troyer method and the 
network-based method. Importantly, the lack of correspondence 
between slope difference and the other methods does not 
necessarily imply a weakness of any technique. It does appear that 
the information imparted by the slope difference technique is 

different from the information imparted by the other two. 
Correlations were generally high between clustering scores 
derived by different methods and between switching scores 
derived by different methods. The largest negative correlations 
tended to be between clustering and switching scores, consistent 
with their known complementary nature. The Mayr constant and 
slope scores showed the weakest correlations with the other 
scores. This finding is not terribly surprising, as they rest on a 
theoretical foundation that is distinctly different from that 
underlying clustering and switching scores.

Participants generated twice as many F-word types as animal 
types (867 vs. 433). Comparison of the two networks suggests that 
the letter F network was not only larger (more vertices and edges), 
but also more sparse. For letter F, 6% of possible edges were 
present, while for animals, 11% of possible edges were present. The 

FIGURE 7

Correlation matrix of scores derived from letter fluency. Prior to calculating the correlations, the raw scores were regressed out of all scores 
tabulated here. Abbreviations are identical to those in Figure 6.
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letter F network clustering coefficient was also much lower. 
We would therefore expect specific pairs of consecutive words 
(bigram tokens) to occur more frequently with random walks on 
the animal graph than on the letter F graph. To the extent that 
these network models reflect true qualities of the mental lexicon 
in English-speaking Americans, their differing topographies may 
be considered an explanation for the apparent insufficiency of the 
Goñi method for building the letter F network. We conjecture that 
despite our generous sample size, the sparse nature of the letter F 
network entails the need for a much larger corpus of verbal 
fluency lists to identify edges in a statistically reliable way.

We further compared models trained with different verbal 
fluency scoring techniques according to their capability to identify 
subjects who would experience future cognitive decline. For each 
fluency task, we  began with a base model that included only 
demographic variables, traditional raw scores, repetitions, and 
intrusions. We then assessed the value of different techniques for 
calculating clustering, switching, and speed scores by entering the 
scores into logistic regression models with the outcome 
variable of ICI.

Speed scores measured during the animal task between related 
words (edge transitions) and unrelated words (switch transitions) 

may have value for identifying individuals at high risk for 
imminent, progressive decline in cognition (see lower third of 
Table 3). We speculate that, at least in the case of animal fluency, 
this finding could reflect degeneration of neurons in the lexical-
semantic network, resulting in reduced rate of spreading 
activation. It is less clear whether declines in switch speed are 
better conceptualized as reduced activation of animal 
subcategories or as dysfunction of executive processes necessary 
for word retrieval. We note that words starting with F cannot 
be easily placed into a few distinct subcategories, while participants 
and researchers have little difficulty placing animal words into 
such subcategories. This simple observation about the two tasks 
meshes well with the differences in network topography described 
previously. Perhaps, future work will establish the relative 
importance of semantic and executive skills for efficiently 
searching such networks. We emphasize that Mayr (2002) suggests 
that the cluster/switch dichotomy is potentially erroneous because 
it fails to differentiate between a general reduction in processing 
speed and a specific deficit of switching. While we find that scores 
derived by applying Mayr’s technique to letter fluency timings 
seem to aid in the empirical detection of individuals at increased 
risk for acute cognitive decline, our current findings do not 

TABLE 3 Performance of models fit with animal fluency data.

WAIC Weight AUC Sens Spec NPV PPV F1 NRI

All participants (640 cases, 640 controls)

Base 1739.08 0.037 0.630 0.630 0.581 0.611 0.601 0.615 –

Network 1739.92 0.025 0.632 0.559 0.655 0.598 0.618 0.587 0.006

Troyer 1741.96 0.013 0.630 0.561 0.641 0.593 0.610 0.584 −0.011

Slope difference 1739.83 0.026 0.632 0.559 0.661 0.600 0.623 0.589 0.006

Network – timings 1736.81 0.116 0.635 0.559 0.650 0.596 0.615 0.586 −0.006

Troyer – timings 1736.93 0.009 0.634 0.569 0.639 0.597 0.612 0.589 −0.005

Slope dif – timings 1733.40 0.639 0.638 0.567 0.633 0.594 0.607 0.586 −0.008

Mayr – timings 1738.96 0.040 0.633 0.617 0.592 0.607 0.602 0.610 −0.005

Acute cases (536 cases, 640 controls)

Base 1595.82 0.129 0.625 0.634 0.586 0.657 0.562 0.596 –

Network 1597.27 0.062 0.626 0.636 0.578 0.655 0.558 0.595 −0.006

Troyer 1598.32 0.037 0.625 0.647 0.569 0.658 0.557 0.599 −0.010

Slope difference 1596.18 0.108 0.626 0.655 0.569 0.663 0.560 0.604 0.001

Network – timings 1596.09 0.113 0.630 0.687 0.531 0.669 0.551 0.611 −0.003

Troyer – timings 1596.02 0.117 0.627 0.638 0.563 0.650 0.550 0.591 −0.018

Slope dif – timings 1594.20 0.290 0.628 0.627 0.602 0.658 0.569 0.596 0.006

Mayr – timings 1595.58 0.145 0.627 0.632 0.577 0.652 0.556 0.592 −0.009

Progressive cases (104 cases, 640 controls)

Base 571.34 0.015 0.725 0.712 0.627 0.930 0.236 0.355 –

Network 573.62 0.005 0.727 0.683 0.659 0.927 0.246 0.361 0.009

Troyer 574.09 0.004 0.728 0.635 0.702 0.922 0.257 0.366 0.020

Slope difference 575.29 0.002 0.727 0.731 0.628 0.935 0.242 0.364 0.006

Network – timings 567.40 0.106 0.739 0.692 0.703 0.934 0.275 0.393 0.072

Troyer – timings 567.81 0.087 0.738 0.683 0.697 0.931 0.268 0.385 0.050

Slope dif – timings 563.41 0.779 0.749 0.788 0.638 0.949 0.261 0.392 0.082

Mayr – timings 574.69 0.003 0.747 0.798 0.625 0.950 0.257 0.389 0.016

Bold values represent the best performance for each metric within each analysis.
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exclude the possibility that classic clustering and switching scores 
could be valuable for other kinds of clinical distinctions (e.g., 
distinguishing between specific forms of neuropathology) or 
could make valuable contributions to more comprehensive 
machine learning models, which may incorporate numerous other 
predictive features as well as the myriad interactions among them. 
Our findings offer a few recommendations for choosing scores for 
such models, however. First, the slope difference method shows 
little overlap with the network and Troyer methods, suggesting 
that scores derived using slope difference may complement these 
other methods. Second, speed scores may be superior to classic 
clustering and switching scores (i.e., more sensitive indicators of 
the earliest cognitive changes). Third, animal fluency scores 
appear to be  superior to letter fluency scores for identifying 
individuals at high risk for cognitive impairment in general. This 
observation holds true, especially for our “progressive” group. 
We  have argued elsewhere that this group is likely to consist 
mainly of individuals with AD, while the acute group is likely to 
contain individuals with other pathologies (e.g., vascular disease 
or Lewy body diseases) as well as individuals with AD, albeit at an 
earlier stage of disease (Ayers et al., 2022).

When studying patients with degenerative brain diseases, such 
as AD, one might expect variation in cognitive measures to reflect 
differences in the topography of cerebral pathology. For example, 
it is known that in AD, tau pathology spreads from medial 
temporal regions to neocortical regions, including the lateral 
temporal lobe (Braak and Braak, 1991). Involvement of this region 
by tau pathology could affect clustering scores in a manner like 
what has been described with focal lesions. This prediction finds 
some support in the literature, as patients with AD exhibit 
reductions in clustering, especially with semantic fluency tasks 
(Tröster et  al., 1998; Gomez and White, 2006; Weakley et  al., 
2013). Similarly, switching scores may be  impacted by 
neuropathologic involvement of frontal-subcortical circuits. 
Reductions in switching scores have been reported in dementia 
due to Parkinson’s disease (PD; Tröster et al., 1998; Troyer et al., 
1998b), Huntington’s disease (Ho et al., 2002), vascular dementia 
(Zhao et al., 2013), and in patients with PD who have undergone 
pallidotomy (York et al., 2003).

These cognitive, anatomic, and pathological distinctions raise 
the question of whether patterns of qualitative performance on 
verbal fluency might contribute meaningfully to prediction or 

TABLE 4 Performance of models fit with letter F fluency data.

WAIC Weight AUC Sens Spec NPV PPV F1 NRI

All participants (640 cases, 640 controls)

Base 1771.63 0.073 0.590 0.613 0.552 0.587 0.577 0.594 –

Network 1774.57 0.017 0.590 0.589 0.561 0.577 0.573 0.581 −0.009

Troyer 1774.78 0.015 0.591 0.608 0.547 0.582 0.573 0.590 −0.009

Slope difference 1774.52 0.017 0.588 0.545 0.623 0.578 0.592 0.567 0.013

Network – timings 1773.41 0.030 0.594 0.619 0.538 0.585 0.572 0.595 −0.008

Troyer – timings 1774.25 0.020 0.595 0.567 0.586 0.575 0.578 0.573 −0.011

Slope dif – timings 1773.14 0.034 0.594 0.583 0.564 0.575 0.572 0.577 −0.020

Mayr – timings 1766.85 0.795 0.595 0.500 0.652 0.566 0.589 0.541 −0.009

Acute cases (536 cases, 640 controls)

Base 1620.46 0.011 0.390 0.573 0.573 0.616 0.529 0.550 –

Network 1623.14 0.003 0.590 0.582 0.569 0.619 0.531 0.555 0.005

Troyer 1623.35 0.003 0.591 0.576 0.561 0.613 0.524 0.549 −0.019

Slope difference 1623.24 0.003 0.588 0.534 0.616 0.612 0.538 0.536 0.002

Network – timings 1622.13 0.005 0.595 0.569 0.609 0.628 0.550 0.559 0.034

Troyer – timings 1622.72 0.004 0.596 0.562 0.616 0.626 0.550 0.556 0.014

Slope dif – timings 1621.57 0.006 0.596 0.597 0.569 0.628 0.537 0.565 0.009

Mayr – timings 1611.48 0.967 0.601 0.562 0.577 0.611 0.526 0.543 −0.002

Progressive cases (104 cases, 640 controls)

Base 591.87 0.115 0.670 0.731 0.542 0.925 0.206 0.321 –

Network 588.04 0.783 0.685 0.683 0.613 0.922 0.223 0.336 0.051

Troyer 596.07 0.014 0.671 0.615 0.634 0.910 0.215 0.318 −0.004

Slope difference 594.42 0.032 0.676 0.663 0.598 0.916 0.212 0.321 −0.004

Network – timings 595.60 0.018 0.671 0.615 0.653 0.913 0.224 0.328 0.005

Troyer – timings 596.25 0.013 0.671 0.625 0.627 0.911 0.214 0.319 −0.018

Slope dif – timings 596.52 0.011 0.669 0.635 0.614 0.912 0.211 0.317 −0.023

Mayr – timings 596.25 0.013 0.672 0.721 0.552 0.924 0.207 0.322 0.018

Bold values represent the best performance for each metric within each analysis.
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TABLE 6 Comparisons of combined models.

WAIC Weight AUC Sens Spec NPV PPV F1 NRI

All cases

Base 1739.08 0.004 0.630 0.630 0.581 0.611 0.601 0.615 –

Animal slope dif – timings 1733.40 0.057 0.638 0.567 0.633 0.594 0.607 0.586 −0.008

+ Letter F Mayr 1728.16 0.940 0.650 0.584 0.641 0.607 0.619 0.601 0.009

Acute cases

Base 1595.99 0.005 0.625 0.634 0.586 0.657 0.562 0.596 –

Animal slope dif – timings 1594.33 0.011 0.628 0.627 0.602 0.658 0.569 0.596 0.006

+ Letter F Mayr 1585.29 0.985 0.646 0.614 0.622 0.658 0.576 0.594 0.013

Progressive cases

Base 571.69 0.014 0.725 0.712 0.627 0.930 0.236 0.355 –

Animal slope dif – timings 563.68 0.777 0.749 0.788 0.638 0.949 0.261 0.392 0.082

+ Letter F Network 566.30 0.209 0.756 0.702 0.698 0.935 0.274 0.395 0.072

Bold values represent the best performance for a specific metric (column) within a given analysis. WAIC, Watanabe–Akaike Information Criterion; AUC, area under the ROC curve; 
Sens, sensitivity; Spec, specificity; NPV, negative predictive value; PPV, positive predictive value; F1, harmonic mean of specificity and PPV; NRI, net reclassification improvement.

early detection of cognitive impairment. For example, a decline in 
clustering scores could herald the earliest spread of tau into 
temporal neocortical regions supporting word knowledge 
(Dronkers et  al., 2004). A few lines of evidence support this 
conjecture. Patients with AD produce smaller clusters than 
controls on animal fluency, with amnestic MCI patients falling 
between the two groups, suggesting that the transition to dementia 
is accompanied by declining clustering score (Murphy et  al., 

2006). Apolipoprotein E ε4 carriers, who are known to be  at 
increased risk for AD, have lower mean clustering scores than 
non-carriers and take longer to access those clusters (Rosen et al., 
2005). Memory-impaired individuals with lower clustering scores 
appear to be more likely to develop AD (Fagundo et al., 2008). 
Similarly, higher average cluster size is associated with reduced 
risk of dementia over the ensuing years among volunteers in the 
Nun’s Study (Pakhomov et al., 2012). Apart from clustering scores, 

TABLE 5 Mean and 97% highest density interval (HDI) of combined model posterior distributions.

Variable
All participants Acute Progressive

Mean HDI Mean HDI Mean HDI

Intercept 2.707 (1.218, 4.105) 2.954 (1.442, 4.465) −0.817 (−3.735, 2.064)

Animal SD Switch speed −0.315 (−0.55, −0.08) −0.248 (−0.49, −0.007) −0.793 (−1.312, −0.292)

Animal SD Edge speed −0.221 (−0.418, −0.019) −0.176 (−0.382, 0.03) −0.531 (−0.958, −0.12)

Animal raw −0.079 (−0.11, −0.049) −0.07 (−0.102, −0.039) −0.165 (−0.234, −0.096)

Animal repeats 0.073 (−0.019, 0.166) 0.072 (−0.023, 0.168) 0.078 (−0.096, 0.252)

Animal intrusions 0.257 (−0.195, 0.727) 0.303 (−0.151, 0.779) −0.107 (−1.157, 0.882)

Letter F switch – – – – −0.167 (−0.555, 0.235)

Letter F cluster – – – – −1.195 (−3.375, 0.874)

Letter F Mayr C 0.036 (−0.013, 0.085) 0.046 (−0.006, 0.099) – –

Letter F Mayr S 0.015 (−0.067, 0.096) 0.011 (−0.084, 0.104) – –

Letter F – raw −0.041 (−0.075, −0.006) −0.045 (−0.081, −0.008) −0.015 (−0.082, 0.053)

Letter F – repeats 0.079 (−0.018, 0.179) 0.053 (−0.053, 0.158) 0.192 (0.024, 0.369)

Letter F – intrusions 0.091 (−0.083, 0.263) 0.086 (−0.09, 0.266) 0.101 (−0.268, 0.455)

Age −0.022 (−0.039, −0.006) −0.03 (−0.047, −0.012) 0.008 (−0.024, 0.042)

Male 0.03 (−0.235, 0.289) 0.117 (−0.151, 0.393) −0.471 (−1.012, 0.058)

HS 0.084 (−0.36, 0.528) 0.188 (−0.297, 0.649) −0.473 (−1.324, 0.39)

Some college 0.229 (−0.225, 0.697) 0.25 (−0.238, 0.744) 0.049 (−0.789, 0.884)

College grad 0.365 (−0.102, 0.823) 0.417 (−0.081, 0.913) 0.167 (−0.699, 1.007)

White 0.35 (0.067, 0.648) 0.287 (−0.013, 0.59) 0.858 (0.263, 1.486)

Belt −0.131 (−0.426, 0.159) −0.164 (−0.466, 0.142) 0.128 (−0.442, 0.702)

Buckle −0.12 (−0.461, 0.222) −0.151 (−0.509, 0.21) −0.084 (−0.77, 0.58)

HDI, 97% highest density interval; HS, high school education; Mayr C, intercept term from regression model; Mayr S, slope term from regression model; SD, slope difference.
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there are other scores based on semantic relatedness in fluency 
word lists that have putative prognostic value (Pakhomov 
et al., 2016).

Alzheimer’s disease is not classically associated with pathology 
in frontal-subcortical circuits, but patients with AD frequently 
exhibit executive dysfunction (Swanberg et al., 2004). Thus, one 
may hypothesize that switching scores may decline during the 
transition to AD dementia. This hypothesis finds support in a few 
studies in which switching scores appear to be more valuable than 
mean cluster size for prediction of MCI conversion to dementia 
or other measures of functional decline (Raoux et al., 2008; Clark 
et  al., 2014, 2016). These findings replicate other work 
underscoring the important relationship between decline in 
executive skills and loss of independent daily function in AD 
(Albert, 1996).

With one exception, models incorporating mean cluster size 
and switch counts did not lead to substantial improvement over 
base models. The exception was the model using the network 
method for letter fluency, but the improvement was seen only in 
the progressive cases analysis (NRI 5.1% – see lower third of 
Table 4). The WAIC for this model was better than that of the base 
model (588.04 vs. 591.87, with weights of 78.3% and 11.5%, 
respectively). Other investigators have reported statistically 
significant contributions of clustering (Pakhomov and Hemmy, 
2014) or switching (Raoux et al., 2008) scores calculated from 
animal fluency for the prediction of dementia. Importantly, 
Pakhomov and Hemmy (2014) included an alternative outcome 
measure of incident memory impairment (a more subtle 
distinction than dementia), but did not identify a significant 
contribution of clustering for this outcome. The SIS score, which 
consists only of three delayed recall items and three temporal 
orientation items, is arguably more similar to the memory 
outcome measure of Pakhomov and Hemmy (2014) than to the 
dementia outcome. Thus, our finding that animal fluency 
clustering scores do not improve on a base model for predicting 
ICI replicates this negative finding.

The slope difference approach to identifying links stands out 
for a few reasons. Among the data-driven techniques, it is the only 
one that relies entirely on data intrinsic to individual word lists, 
rather than an external corpus. For both fluency tasks, the 
agreement between slope difference and the other two methods 
was relatively low, indicating that the slope difference algorithm is 
not merely replicating the other methods. However, for all three 
animal fluency analyses, the model incorporating slope difference 
speed scores achieved the best WAIC.

Comparison of the posterior distributions for the combined 
models of the three analyses yields a few interesting insights. 
First, the 97% HDI excludes 0 for all animal fluency raw and 
speed scores in the three combined models, with one exception: 
animal fluency edge transition speed appears more weakly 
associated with acute decline than with progressive decline. This 
raises the question of whether individuals in the acute decliner 
group maintain some capacity for rapidly following strong 
associative links, either because they differ pathologically from 

the progressive group or because they were observed earlier 
during the trajectory toward progressive dementia. Second, the 
97% HDI for letter F raw score is reliably negative and excludes 
0 in the acute decliner analysis, but is very weak (β = −0.015) in 
the progressive decliner analysis. Given our two hypotheses 
about the distinctions between these two groups, this finding 
seems to give greater support to the idea that at least some of 
the acute decliners are suffering from a different pathological 
process than the progressive decliners, as it seems unlikely 
(though not impossible) that the progressive decliners have 
passed through a temporary phase of increased difficulty with 
letter fluency and then emerged from it. Third, the 97% HDI for 
letter fluency repetitions excludes 0 only for the progressive 
decliners. This finding suggests either greater memory 
impairment or greater difficulty inhibiting unwanted responses 
among the progressive group. Either phenomenon would fit 
with our hypotheses about the progressive decliners, but the 
former interpretation fits better with the observation that the 
HDIs for both animal intrusions and letter F intrusions are 
quite broad in this group. In contrast, nearly all of the 
probability density of the HDI for letter F intrusions is positive 
in the acute-cases analyses, raising the question of relatively 
greater difficulty with inhibition of unwanted responses in this 
group. Thus, we tentatively conclude that the progressive group 
has greater memory impairment while the acute group has 
greater difficulty inhibiting unwanted responses. Fourth, while 
addition of the Mayr scores improves the acute cases model, 
we note that the Mayr C shows a stronger relationship with ICI 
than the S term (β = 0.046 vs. 0.011). We  propose that the 
greater difficulty of the letter fluency task makes it more 
sensitive than animal fluency to these non-semantic factors and 
that the C term provides a measure of subtle executive 
dysfunction that relates to increased risk for acute decline in 
cognition. Fifth, the findings for some demographic variables 
(age, race, and educational level) are not intuitive and differ 
somewhat from the univariate analyses presented in Table 1. In 
the univariate comparisons, it appears that age differs between 
cases and controls only in the progressive decliners comparison 
(log BF 0.85, but < −1.0 for acute and all-cases groups). 
However, the posteriors for the combined models suggest a 
protective effect of increasing age, except in the progressive 
cases model. Our interpretation for this finding is that these 
demographic variables are weaker predictors of ICI than the 
verbal fluency scores included in each model. Taking age as an 
example, imagine two hypothetical individuals of different ages, 
but with identical verbal fluency performance. We  would 
consider the verbal fluency scores of the older individual to 
be relatively better than those of the younger individual, and 
this difference could translate into lower risk for ICI. In the 
progressive decliners model, the relationship between age and 
ICI seems to evaporate with inclusion of the verbal fluency 
scores (β = 0.008), suggesting that the relationship between age 
and ICI could be  mediated by verbal fluency performance. 
Perhaps such findings should be expected because the cases and 
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controls were matched on these demographic variables. 
We  would invoke similar reasoning to explain the 
counterintuitive relationships between ICI and other 
demographic variables. However, we  do not see such an 
inversion in the observed effect of sex between the univariate 
comparisons and the regression models. In both the univariate 
and regression analyses, male sex appears to be  protective 
against progressive cognitive decline. This finding is in keeping 
with other results suggesting that women are at increased risk 
of AD (Payami et al., 1994; Clark et al., 2018). Finally, we note 
that the posterior probability distributions for these models 
could serve as priors for future Bayesian analyses of the 
questions we attempt to address here.

The main limitation of this study is the heterogeneity of the 
ICI cohort. We do not know the actual diagnoses of subjects who 
developed cognitive impairment, only that the absence of clinical 
stroke in a population exhibiting cognitive decline makes AD 
seem to be a likely explanation for a majority of cases. More 
optimistically, the long duration of follow-up (nearly 9 years) 
gives strong support to the view that our controls were 
cognitively normal at the time of the verbal fluency recordings. 
In future work, imaging data and biomarkers would mitigate the 
concern of heterogeneity, and perhaps could yield a more refined 
evaluation of clustering and switching techniques. Although the 
Bayesian logistic regression we  employed imparts certain 
advantages (enumerated in the Methods), it does not examine 
potential nonlinear relationships between the outcome and 
predictors, nor can it account for the myriad potential 
interactions among the predictors. We have strived to explore a 
broad range of techniques designed for measuring the cognitive 
processes underlying verbal fluency, but we acknowledge that 
this work is not comprehensive and other approaches (e.g., 
optimal foraging, diffusion drift) may yield new insights in 
future work (Hills et  al., 2012; Kakkar, 2020; Wadhera and 
Kakkar, 2020).

Conclusion

For animal fluency, we  find that models including scores 
based on participant speed outperform the base model. 
We  observe the most unambiguous improvement in a model 
discerning between controls and individuals with progressive 
decline, and including speed scores derived using the slope 
difference method. For letter fluency, models outperforming the 
base model differ between the acute and progressive decliner 
groups. A score indexing executive contributions to letter fluency 
improves the fit for the acute decliners, while a clustering score 
derived from a network-based determination of word linkages 
improves the fit and NRI of the model for progressive decliners. 
Combining the best animal and letter fluency models leads to 
further improvement in model fit for the all-cases and acute-cases 
models, but not to substantial increases in NRI. Automatic 
transcription and timing of fluency word lists may prove valuable 

as a widely accessible and potentially remotely administered 
approach to stratifying individuals in terms of risk for incident 
cognitive impairment.
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