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The semantic fluency task is a widely used clinical tool in the diagnostic process of

Alzheimer’s disease. The task requires efficient mapping of the semantic space to

produce as many items as possible within a semantic category. We examined whether

healthy volunteers (n = 42) and patients with early Alzheimer’s disease (24 diagnosed

with amnestic Mild Cognitive Impairment and 18 with early Alzheimer’s dementia) take

advantage of and travel in the semantic space differently. With focus on the animal fluency

task, we sought to emulate the detailed structure of the multidimensional semantic space

by utilizing word2vec-method from the natural language processing domain. To render

the resulting multidimensional semantic space visually comprehensible, we applied a

dimensionality reduction algorithm (t-SNE), which enabled a straightforward division

of the semantic space into sub-categories. Moving in semantic space was quantified

with the number of items created, sub-categories visited, and switches and returns

to these sub-categories. Multinomial logistic regression models were used to predict

the diagnostic group with these independent variables. We found that returning to a

sub-category provided additional information, besides the number of words produced

in the task, to differentiate patients with Alzheimer’s dementia from both amnestic

Mild Cognitive Impairment patients and healthy controls. The results suggest that the

frequency of returning to a sub-category may serve as an additional aid for clinicians in

diagnosing early Alzheimer’s disease. Moreover, our results imply that the combination

of word2vec and subsequent t-SNE-visualization may offer a valuable tool for examining

the semantic space and its sub-categories.

Keywords: semantic fluency, Alzheimer’s disease, Mild Cognitive Impairment, t-SNE, verbal fluency,

semantic memory

1. INTRODUCTION

The semantic fluency task is widely used in clinical settings to identify difficulties in speech
production, executive functioning, and semantic memory performance (Lezak et al., 2004). In this
task, participants are asked to produce as many words as possible in a given semantic category
(e.g., animals) and time frame. An interpretation of the task is that while naming items, individuals
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move in a mental semantic word space, where they jump
from one item to another. Further, there is evidence that
brain regions responsible for spatial navigation also represent
moving on a conceptual word-level speaking for the existence of
cognitive maps (Viganò and Piazza, 2020). The task is used for
predicting early Alzheimer’s disease (Henry et al., 2004), since
it measures semantic memory processes, which are shown to
be one of the first areas of cognition to exhibit decline in test
performance prior to dementia (Amieva et al., 2008; Mistridis
et al., 2015). To score task performance, number of correct words
are calculated. This process of word production is widely studied
in Alzheimer’s disease, as patients diagnosed with it name fewer
words compared to healthy controls (Troyer et al., 1998; Fagundo
et al., 2008; Raoux et al., 2008; Price et al., 2012).

In the neurocognitive framework, research on the semantic
fluency task has mostly focused on comparing general higher
level categories, such as living vs. non-living (Kivisaari et al.,
2012; Tyler et al., 2013; Krumm et al., 2021) and animals, fruits,
tools, and vehicles (Clarke and Tyler, 2014; Kivisaari et al.,
2019). Also finer-grained semantic performance within single
semantic categories has been examined, with the categories
divided further into sub-categories based on the researcher’s own
evaluation. For instance, Troyer et al. (1997) created their own
method of manual evaluation of sub-categories to investigate
two strategies of semantic fluency performance: (1) producing
items inside a sub-category (e.g., pets) and (2) sub-category
switching, that is, moving between sub-categories (e.g., from pets
to farm animals). Both of these strategies are needed to efficiently
produce correct items in the semantic fluency task. Regarding
patients with Alzheimer’s disease, studies have found that they
not only name fewer words compared to healthy controls (Troyer
et al., 1998; Fagundo et al., 2008; Raoux et al., 2008; Price et al.,
2012), but they also create smaller (Troyer et al., 1998; Fagundo
et al., 2008) and fewer sub-categories (Pekkala, 2004) and
switch less between sub-categories (Fagundo et al., 2008; Raoux
et al., 2008). Other studies have not found differences between
sub-category sizes (Epker et al., 1999; Pekkala, 2004; Raoux
et al., 2008) and switching behavior (Price et al., 2012) between
prodromal or early Alzheimer’s disease patients and cognitively
normal controls. These inconsistencies have been explained
by differences in the state of disease progression, demographic
variables, sampling, and study design (March and Pattison,
2006; Raoux et al., 2008). Notably, even though the Troyer
et al. (1997) method entails clear instructions for scoring the
sub-categories and switching, some studies have questioned the
method’s validity (Epker et al., 1999). Further, the method does
not provide an unambiguous cluster structure, since according
to the scoring rules, words can belong to multiple clusters. This
may be reasonable semantically (as many words can belong to
two or more semantic categories), but could make it difficult to
inspect the switching phenomenon in detail. Other manually
created measures have also been presented, but they too suffer
from issues such as low inter-rater reliability or insufficient
test-retest reliability (Abwender et al., 2001). Furthermore, to our
knowledge no studies have yet investigated whether switching
and producing sub-categories have independent effects over
and beyond the number of words, while simultaneously

taking into account the highly correlated nature of
these measures.

Semantic processing can also be investigated in the context
of semantic features and their relatedness. These features can be
modal such as visual or auditory item characteristics (e.g., “has
a nose”), functional properties (e.g., “swims”) or encyclopedic
information (e.g., “is a predator”; Ellis and Young, 2013).
Same features often apply for different items, but an item can
sometimes be recognized by one specific property, i.e., humans
can conjure an image of a dog in their mind just by hearing
its bark. In the human brain, the basis of semantic processing
is thought to lie in the co-activation of specific distributed
sensorimotor regions primarily responsible for processing and
perceiving the relevant features in order to produce concepts such
as a dog (Tyler et al., 2000; Tyler and Moss, 2001; Vigliocco et al.,
2004; Patterson et al., 2007). But how do individuals differentiate
between very similar concepts such as different breeds of dogs?
One explanation for this dilemma is presented by Taylor et al.
(2011) in the form of the Conceptual Structure Account, which
assumes that semantic processing is structured according to
the statistical properties of the item’s features, and processing
of semantic concepts corresponds to the co-activation of the
concept’s features. The statistical properties, feature correlation,
and feature distinctiveness, differentiate between shared features
(high in feature correlation, such as “has eyes”) and unique
features (high in feature distinctiveness, such as “has a trunk”)
with which humans are able to distinguish between items.
The task of conceptual, i.e., semantic processing can therefore
be described as the interaction of feature distinctiveness and
correlation, which defines the information required to perform
the task in question. A similar framework of semantic processing
has been used in the natural language processing research
domain, which aims to emulate human processing of language
by applying statistical modeling of word co-occurrence with
the help of machine learning and large text corpora (Nadkarni
et al., 2011). One of these methods is the word2vec algorithm
developed by Mikolov et al. (2013), which builds (typically)
300-dimensional vector representations of words based on the
contexts in which they appear.

In the present study, we combine these two frameworks of
semantic processing to shed more light on how the prodromal
and early Alzheimer’s disease patients move in the semantic
space during the fluency task compared to control participants.
To emulate the process of item processing as a co-activation
of features, we use an internet-derived text corpus and the
word2vec algorithm to extract feature-based vectors with rich
semantic information (Mikolov et al., 2013). Thus, we achieve
a representation of the semantic space, which consists of all
words that the participants produced in the semantic animal
fluency task. To visualize the semantic space and the possibly
emerging sub-categories in a readily tangible and comprehensible
manner, we use a data-driven dimensionality reduction method,
the t-Distributed Stochastic Neighbor Embedding (t-SNE) (van
der Maaten and Hinton, 2008), which does not require a priori
knowledge on the structure of the semantic space. With t-
SNE, we condense the 300-dimensional semantic space into a
two-dimensional map, which allows for a straightforward visual
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TABLE 1 | Demographic information.

Healthy (n = 42) aMCI (n = 24) AD (n = 18) χ
2 p

Sex 21 males 10 males 10 males 0.84 0.657

Variable Mean (SD) F

Education (yrs.) 12.86 (3.14) 13.08 (3.16) 12.22 (3.14) 0.41 0.667

Age (yrs.) 74.38 (7.32) 71.34 (6.59) 78.32 (4.76) 5.68 0.005

MMSE 29.31 (1.00) 28.67 (1.46) 26.61 (1.79) 25.83 <0.001

aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s dementia; MMSE, mini-mental state examination.

inspection and labeling of semantic sub-categories. Alternatively,
additional clustering algorithms, such as k-means, could be
considered atop the t-SNE visualization (Taskesen and Reinders,
2016; Devassy et al., 2020; DeLise, 2021). However, some
concerns have been presented on utilizing another clustering
algorithm with t-SNE (van der Maaten and Hinton, 2008).
An additional analysis using the k-means clustering can be
found in the Supplementary Material. Finally, when condensing
multidimensional feature-based information into a singular
point which reflects the closeness of the item to all other items,
we achieve a simple, unambiguous solution, where an item can
be assigned to a single sub-category.

With the acquired, unambiguous sub-categories, we can
quantify the efficiency of semantic processing and how the
participants move in the semantic space. In addition to the
number of words produced in the task, we acquire measures
of semantic processing efficiency, such as the number of
sub-categories named, switching, and returning to the sub-
categories. We then evaluate whether patients diagnosed with
very early Alzheimer’s dementia (AD) or amnestic Mild
Cognitive Impairment (aMCI) exhibit different strategies in
how they move in the semantic space compared to control
participants. Finally, we examine whether using the sub-category
and switching dimensions in addition to the number of the
words the participants produce brings valuable information
into the diagnostic process of prodromal and very early
Alzheimer’s disease.

2. MATERIALS AND METHODS

2.1. Participants
In total, 181 native Swiss-German or German speaking adults
were recruited in the original Ambizione study at the Memory
Clinic FELIX PLATTER, University Department of Geriatric
Medicine, Basel, Switzerland. From these, 84 participants,
which could be clearly assigned to one group and for which
all items produced in the animal fluency task had been
thoroughly listed, were included in the study. Forty-two
participants (21 male; mean age = 74.4 years; SD = 7.3
years) belonged to the control group and were confirmed
cognitively healthy throughmedical screening and administering
thorough neuropsychological testing. In the patient group, there
were 42 participants (20 male; mean age = 74.3 years; SD
= 6.8 years), of which 24 had been diagnosed with aMCI

due to Alzheimer’s disease (Albert et al., 2011) according to
DSM-IV (American Psychiatric Association, 1994) and Winblad
et al. (2004) criteria. Eighteen participants were diagnosed with
very early AD according to DSM-IV (American Psychiatric
Association, 1994) and NINCDS-ADRDA (McKhann et al.,
2011) criteria. The consensus diagnoses were obtained by an
interdisciplinary team of experienced clinicians. Demographic
information of the different groups can be found inTable 1. Since
the three groups differed in age and there is evidence that age
affects the performance in the semantic fluency task (Troyer et al.,
1997), we used age as a covariate in later analyses. As expected,
the participants differed in the Mini Mental State Examination
(MMSE) scores but aMCI patients as well as patients with AD
scored very high points in the test (see Table 1), which indicates a
very early stage of Alzheimer’s disease. Written informed consent
was obtained from all individuals prior to participating in the
study. The study was approved by the local ethical committee
and conducted in compliance with all applicable laws and
institutional guidelines.

2.2. Semantic Fluency Task
In the semantic fluency task, participants were asked to produce
as many items within a certain semantic category as they could
within 1 min. The item categories were animals, fruits, tools,
and vehicles. In this study, we focus on the animal category
due to difficulties that patients with Alzheimer’s disease exhibit
when distinguishing living things in particular (Taylor et al., 2007;
Krumm et al., 2021). As proposed by Troyer et al. (1997), we
utilized all words produced in the task in the further analyses and
did not differentiate between correct and non-correct words (i.e.,
repetitions or perseverations). In the task, participants produced
224 unique animals altogether, of which the semantic space
was formed.

2.3. Semantic Distances From Corpus Data
We formulated the semantic space from the 224 unique animals
produced in the semantic fluency task using a text corpus, i.e.,
the 3B-token Google News dataset (Mikolov et al., 2013). The
words were first translated from Swiss-German to English. We
used a pre-trained word2vec skip-gram model (not yet available
in Swiss-German) to find vector representations that predict
surrounding words of the given item in a sentence. With this
method, 300-dimensional vector representations of words were
comprised from unstructured text data, that is, corpus (Mikolov
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et al., 2013). The code can be found online at https://code.google.
com/archive/p/word2vec.

The semantic distances between words were estimated as
cosine distances between the word vector representations. Each
row in the resulting 224-dimensional semantic dissimilarity
matrix described how semantically similar an item is to the
other 223 items (within the animal category that we focused
on), estimated from zero to one, where values close to zero
indicate very similar representations and values close to one very
distant representations.

2.4. Dimensionality Reduction
To reduce the 224-dimensional matrix description of semantic
distances to a tangible visualization, we chose an unsupervised,
non-linear dimensionality reduction technique known as t-SNE
(van der Maaten and Hinton, 2008). It is designed to visualize the
structure of high-dimensional (HD) data with low-dimensional
(LD)maps such as two-dimensional scatter plots (van derMaaten
and Hinton, 2008). Importantly, for the aim of our present
work, t-SNE retains local structures of the data by preserving
the distances between points and their nearest neighbors from
the original HD data to the LD map. This is done by plotting
Gaussian distributions for each point in the HD data and
measuring the density of the other points under the Gaussian.
The acquired probability functions are compared to similarly
acquired t-distributed similarity functions in the LD data and are
measured by the Kullback-Leibler divergence, which t-SNE tries
to minimize. Student’s t-distribution is used because it allows for
better modeling of far apart distances, since it does not give as
much emphasis on values at the extreme ends of the distribution
(van der Maaten and Hinton, 2008).

As suggested by van der Maaten and Hinton (2008), prior to
t-SNE we applied another dimensionality reduction technique
(MDS; Buja et al., 2008) to reduce the number of dimensions.
MDS reduced the number of the dimensions from 224 to 50 (as
suggested by van der Maaten and Hinton, 2008) which was the
number of dimensions that explained 96% of the variance in the
data. Finally, t-SNE was implemented on these 50 dimensions,
which resulted in a two-dimensional plot. After visual inspection
of the sub-category borders in the plot, we divided the 224
unique items into sub-categories, so that each item belonged
to one sub-category. The item labels were visible during the
labeling process.

The dimensionality reduction model was executed with
Python 3.7 (Van Rossum and Drake, 2009) using the package
sklearn.manifold (Pedregosa et al., 2011). Multiple model
solutions with different perplexity parameter values were
executed. The perplexity parameter defines the number of points
falling under the probability distribution, thus perplexity can
be considered to set the number of effective nearest neighbors
estimated for each point, and is suggested to be between 5 and
50 in a t-SNE model (van der Maaten and Hinton, 2008). As
we were interested in the local clusters, we used a perplexity
value of 20 in the final model. However, different perplexity
values did not greatly affect the overall output of the model,
as the manually created sub-category structure remained stable
(see Supplementary Material). A number of 1,500 iterations was

found to establish a stable model. t-SNE was run multiple times,
as suggested by van der Maaten and Hinton (2008), to achieve
the lowest Kullback-Leibler divergence, which was 0.88 in the
final model.

2.5. Statistical Analyses
Statistical analyses were executed with IBM SPSS Statistics
(Version 25). To examine the participants’ performance in the
semantic fluency task, we calculated the sum of items in each
sub-category per participant (i.e., how many pets or birds the
participant produced) and summed all these items to get the total
number of words produced in the task (“Number of words”). We
also examined the number of words in each sub-category and
divided it by the number of words produced in the task to get
proportional information of each sub-category. In addition, we
recorded the number of sub-categories visited in the task (“Sub-
categories”). We defined switching (“Switching”) as moving from
one sub-category to another, calculated the sum of switching
for each participant and divided that by the number of words
each participant produced (“Adjusted switching”). As we sought
to examine movement in the semantic space as thoroughly as
possible, we also chose to inspect a novel variable that would
capture not only unidirectional movement from cluster to cluster
but also describe revisiting previously utilized areas in the
semantic space. For this purpose, we examined the number of
times a participant returned to a sub-category which they had
previously visited (“Returns”) and adjusted that number with the
total number of words produced (“Adjusted returns”). To further
study how returning to a sub-category affected the number
of words within a sub-category, we also inspected the average
pattern of visitations to a sub-category for each group and how
many of them were returns.

Normality of the data was evaluated with Q-Q plots. The
effect of belonging to a diagnostic group on the number of
words produced in the task was examined with one-way analysis
of variance (ANOVA). To examine the effects of belonging to
a diagnostic group (healthy, aMCI, or AD) on moving in the
semantic space, sub-categories, switching, adjusted switching,
and adjusted returns were used as dependent variables in one-
way multivariate analysis of variance (MANOVA), which was
conducted to minimize the likelihood of type 1 error. Separate
linear multinomial logistic regression models were used to
predict diagnostic group with the number of categories, adjusted
switching, and adjusted returns as independent variables. Since
there is evidence that age affects the performance in the semantic
fluency task (Troyer et al., 1997), we included age as a control
variable in each model, in addition to the number of words. We
did not combine the independent variables into one model, due
to multicollinearity issues between some variables.

3. RESULTS

3.1. Corpus Data
The results from the t-SNE analysis of the corpus data based on
the 50 components produced by MDS can be seen in Figure 1.
After visual inspection, we formed eight sub-categories based on
the t-SNE result. The clusters could be labeled as pets, birds, fish,
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FIGURE 1 | Two-dimensional visualization of the animals produced in the semantic fluency task by the t-SNE model on the 50 dimensions of multidimensional scaling.

In the figure, different sub-category labels are presented based on visual inspection as different colors. t-SNE produced some very tight categories (such as sealife in

the left bottom corner) and some sub-categories that are more loose (such as birds in the bottom center).

forest animals, jungle animals, reptiles and insects, farm animals,
and sea life. The sub-categories were used in the subsequent
analyses. Further, the visually inspected sub-category structure
was strongly supported by also the k-means clustering solution
(see Supplementary Figure 5).

3.2. Behavioral Data
Overall, the semantic fluency variables were strongly correlated
with each other (Table 2). After adjusting, switching was no

longer correlated with the number of words but adjusted returns
had a small positive correlation with the number of words. There
was a significant difference between groups in the number of
words produced [F(2,81) = 23.49, p < 0.001, partial η2 = 0.37].
As expected, healthy participants namedmore animals compared
to both aMCI and AD patients, and aMCI patients named more
compared to AD patients (Figure 2). Overall, farm animals,
jungle animals, pets, and birds were the most often named
sub-categories. There were many participants in all groups that
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named multiple birds in the task. Fish and sea life were sub-
categories that were used less often, as many participants named
zero to one items from these sub-categories.

There were differences between groups in how they moved in
the semantic space [F(8,156) = 6.31, p < 0.001, Wilk’s 3 = 0.57,
partial η2 = 0.25]. The groups visited different numbers of sub-
categories during the task [F(2,81) = 5.45, p = 0.006, partial η2 =
0.12]. AD patients named fewer sub-categories compared to both

TABLE 2 | Spearman correlations between semantic fluency variables.

Variables 1 2 3 4 5

1. Number of words

2. Sub-categories named 0.46***

3. Switches 0.65*** 0.68***

4. Adjusted switches −0.01 0.44*** 0.61***

5. Returns 0.59*** 0.39** 0.93*** 0.59**

6. Adjusted returns 0.24* 0.25* 0.78*** 0.80*** 0.90***

*p < 0.05, **p < 0.01, ***p < 0.001.

aMCI patients and healthy controls (Figure 3A). In our data, no
AD patient visited all of the eight sub-categories. Consistent with
previous literature, the groups also differed from each other in
switching from a sub-category to another [F(2,81) = 16.80, p =

< 0.001, partial η2 = 0.29], where the AD group switched sub-
categories less often than aMCI patients and healthy controls
(Figure 3B). When the number of switching was adjusted with
the overall number of words produced, there was no statistically
significant difference between groups [F(2,81) = 2.24, p = 0.113,
partial η2 = 0.05; Figure 3C]. However, the adjusted returns
variable revealed a highly significant difference between the
groups [F(2,81) = 8.69, p < 0.001, partial η2 = 0.18]. In the
pairwise analyses, we found that both healthy participants and
aMCI patients returned to the sub-categories they had previously
visited more often compared to AD patients (Figure 3D), even
when the number of words produced was controlled (Figure 3E).
On average, AD patients returned to a previously used category
2.17 times (SD = 1.47), aMCI patients 5.04 times (SD = 2.71),
and healthy controls 5.98 times (SD= 2.67).

To inspect returning to a sub-category more closely, the
average number of words named in each visitation to a sub-
category is presented in Figure 4. From one-way ANOVA, we

FIGURE 2 | The number of words produced in the task by groups. Healthy participants name more words compared to both patient groups and aMCI patients name

more compared to AD patients. In the boxplot, minimum, first quartile, median, third quartile, and maximum are shown. Individual data points are shown as black

dots. aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s dementia. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 3 | (A) Number of sub-categories named, (B) switches, (C) adjusted switches, (D) returns, and (E) adjusted returns as means and standard errors by

groups. In the boxplots, minimum, first quartile, median, third quartile, and maximum are shown. Individual data points are shown as black dots. aMCI, amnestic Mild

Cognitive Impairment; AD, Alzheimer’s dementia. **p < 0.01, ***p < 0.001.

found that, on average, groups differ in how many words were
named in each sub-category [F(2,669) = 9.57, p < 0.001]. In the
Bonferroni corrected, bootstrapped pairwise analyses, we found
that AD patients produced fewer words compared to aMCI
patients (p < 0.05) and healthy controls (p < 0.001). The average
number of words named on the first visit to the sub-group was
not statistically different between groups [F(2,669) = 1.28, p =

0.28]. Statistical comparisons between subjects on 4 and 5 returns
were not made, since there were only a few participants who
made that many returns (made by four healthy and two aMCI
participants, and two healthy participants, respectively). Further,
as no AD patients revisited sub-categories more than 2 times,
we only analyzed returns 1 and 2. For 1 and 2 returns, there
were statistical differences between groups [F(2,669) = 6.43, p <

0.01; F(2,669) = 9.56, p < 0.001]. In the pairwise analyses, we
found that during the first return AD patients named fewer words
compared to healthy controls (p < 0.01). Further, aMCI patients
produced fewer words compared to healthy controls (p < 0.05).
During the second return, AD patients produced fewer words

compared to both healthy participants (p < 0.001) and aMCI
patients (p < 0.01).

The results from the multinomial logistic models are
presented in Table 3. Model 1, which consisted of only the
number of words and age, was statistically significant and
explained half of the variation in the data. To Models 2 and
3 we added the adjusted switching and the number of sub-
categories, respectively. Even though both models themselves
were statistically significant, neither the adjusted switching
nor the number of sub-categories were statistically significant.
Therefore, these variables did not improve the models’ fit to
the data. Neither adjusted switching nor the number of sub-
categories had a significant, independent effect in the models
when the number of words and age were controlled. In Model
4, adjusted returns was a statistically significant predictor even
when the number of words and age were controlled. Adding
adjusted returns into Model 1 improved the explanatory power
by six percent. However, the Bayesian information criterion
(BIC) and Akaike’s information criterion (AIC) indicators for
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FIGURE 4 | Visitations and returns presented for each group across all sub-categories. Bars represent standard error. aMCI, amnestic Mild Cognitive Impairment; AD,

Alzheimer’s dementia; Sum, average sum of words produced within a sub-category.

TABLE 3 | Multinomial logistic regression models.

Model χ̃
2 Pseudo R2+ BIC AIC p

Model 1 46.74 0.49 153.65 139.07 <0.001

Number of words 35.94 <0.001

Age 9.24 0.010

Model 2 51.74 0.53 157.52 138.07 <0.001

Number of words 38.77 <0.001

Age 8.37 0.015

Adjusted switches 5.00 0.082

Model 3 47.23 0.49 162.03 142.58 <0.001

Number of words 29.34 <0.001

Age 8.33 0.016

Sub-categories 0.49 0.783

Model 4 54.78 0.55 154.48 135.04 <0.001

Number of words 30.49 <0.001

Age 10.27 0.006

Adjusted returns 8.03 0.018

+Nagelkerke’s Pseudo R2 is used. BIC, Bayesian information criterion; AIC, Akaike

information criterion.

model fit are not convergent, as the marginally higher BIC-index
(compared to Model 1) implicates worse fit.

Pairwise comparisons between groups from Model 4 are
depicted in Table 4. The number of words differentiated AD
patients from both aMCI patients and healthy controls. When
the number of words increased by one, the odds ratio for healthy

controls and aMCI grew by 1.54 and 1.27, respectively, compared
to the AD group. Age differentiated aMCI patients from AD, so
that when age increased by one year, the odds ratio for being
in the AD group grew by 1.27. Finally, the adjusted returns
differentiated healthy and aMCI participants from AD patients.
When adjusted returns increased by one percent, the odds ratio
for healthy controls and aMCI patients grew by 1.13 and 1.10,
respectively, compared to the AD group.

Finally, we inspected the classification rates of the Models 1
and 4 (Table 5). Adding the adjusted returns to Model 1 did
not improve the overall classification power of the model (one
percent), but it did improve the classification of AD patients
by 16%. However, Model 4 was not as accurate as Model 1 in
classifying healthy controls (i.e., Model 4 classified more healthy
controls to the aMCI patient category). Yet, Model 1 mistook
more AD patients as healthy controls compared to Model 4. The
AD patients were overall better classified inModel 4 compared to
Model 1. Neither of the models was able to classify aMCI patients
above the 0.5 random cut-off point.

4. DISCUSSION

As a novel finding, the results from the present study suggest that
AD patients return less often to already visited sub-categories
compared to both aMCI patients and healthy participants.
Furthermore, we found evidence that there are no differences
between groups in how many words are produced for the first
time visiting a sub-category, but rather the differences emerge
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TABLE 4 | Model 4: Multinomial logistic regression analysis on belonging to a group with adjusted returns, the number of words, and age as independent variables.

Healthy vs. AD aMCI vs. AD

B S.E Wald Exp(B) 95% C.I B S.E Wald Exp(B) 95% C.I

L U L U

Intercept −4.38 5.01 0.76 6.98 4.70 2.21

Adjusted returns 0.12 0.05 6.72** 1.13 1.03 1.23 0.09 0.05 4.24* 1.10 1.00 1.20

Number of words 0.43 0.11 16.78*** 1.54 1.25 1.90 0.24 0.19 5.86* 1.27 1.54 1.91

Age −0.07 0.06 1.47 0.93 0.82 1.05 −0.17 0.06 7.25** 1.10 1.00 1.20

Reference category is the AD group. Adjusted returns variable is multiplied by hundred for easier interpretation. aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s dementia;

B, unstandardized beta co-efficient; S.E, standard error; Exp(B), odds ratio; C.I, confidence interval; L, lower bound; U, upper bound. *p < 0.05, **p < 0.01, ***p < 0.001.

TABLE 5 | Classification amounts and rates (%) for Models 1 and 4 presented as a confusion matrix.

Model 1 Model 4

Predicted Predicted

Observed Healthy aMCI AD Correct (%) Observed Healthy aMCI AD Correct (%)

Healthy 33 7 2 78.6 Healthy 31 10 1 73.8

aMCI 9 10 5 41.7 aMCI 11 10 3 41.7

AD 7 0 11 61.1 AD 4 0 14 77.8

Overall (%) 58.3 20.2 21.4 64.3 Overall (%) 54.8 23.8 21.4 65.5

aMCI, amnestic Mild Cognitive Impairment; AD, Alzheimer’s dementia.

from how many times the participants return to the sub-
categories and how many items they produce within each visit.
These results may suggest that especially AD patients lack the
ability to utilize the semantic space by flexibly changing strategy
even though they are able to produce a similar amount of words
compared to normal controls when visiting a sub-category for
the first time. Further, this decline is also already visible in aMCI
patients, which is considered the prodromal stage of AD.

In discriminating between groups, we found that only the
adjusted returns provided further information in addition to the
number of words produced and age (Table 3). Adding adjusted
returns to the model marginally enhanced the classification
of the whole model (Model 4) and seemed to do better in
discriminating AD patients from healthy participants. However,
we did not utilize a cross-validation procedure in creating the
regression model, which is a limitation considering our relatively
small sample size per each group. Further, the classification
rates of Model 4 for healthy participants were slightly worse
compared to Model 1. Since the behavior of aMCI patients
in the semantic fluency task seemed more similar to healthy
controls (see Figure 3E), we also combined these groups and
compared them to the AD group in additional analyses (see
Supplementary Material). Even after combining the healthy
controls with the aMCI group, returning to a sub-category
was helpful in discriminating the AD patients. These results
support the idea that evaluating returns to a sub-category may
be of aid in discriminating between AD patients and healthy
controls. Overall, the use of adjusted returns may aid clinicians

in diagnosing early AD, but more research is needed to replicate
our findings.

In line with previous studies, healthy participants produced
more words in the semantic fluency task than aMCI and AD
patients (Troyer et al., 1998; Fagundo et al., 2008; Raoux et al.,
2008; Price et al., 2012). Furthermore, healthy participants
produced more sub-categories and performed more switching
compared to AD patients. aMCI patients also performed better
than AD patients in producing more words, sub-categories, and
switching. However, when we inspected the adjusted switching
variable, there were no statistically significant differences between
groups in switching. Adjusted switching and sub-categories
did not bring additional information in classifying participant
groups. These findings suggest that in addition to the number of
words produced in the semantic fluency task, the number of sub-
categories and the adjusted number of switching do not seem to
provide additional information in discriminating AD and aMCI
patients from healthy controls.

Based on the feature-vector representations from the corpus
data, we were able to visualize the semantic space in a two-
dimensional space with the t-SNE dimensionality reduction
algorithm and form sub-categories of the animal category.
The results of the t-SNE model were stable and did not
change drastically with different perplexity parameters (see
Supplementary Material). Moreover, a reliable sub-category
structure could also be created with an alternative method, the
k-means clustering (see Supplementary Figure 5). These results
speak for the usefulness of corpus based methods, combined
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with dimensionality reduction methods in describing structures
within the semantic space.

Since the sub-categories created were based on the statistical
properties of condensed feature vectors of words, they were not
purely biological sub-categories. For instance, words “fox” and
“squirrel” were labeled as birds since they were closely located
to that sub-category in the final model. This labeling is supported
also by the other models in the Supplementary Material, as these
words seem to flock to the bird cluster generally. These results
can be explained by their closeness to words “owl” and “crow” as
these animals also often occur together in fairy tales, for example.
There were some other outliers that did not clearly belong to one
specific sub-category but were always situated near them. For
instance, “swallow,” “pecker,” “weasel,” and “badger” seemed to
cluster together and close to pets in all of the models, so they were
put into the pet sub-category in the final model. It seems that
the word2vec algorithm is able to capture the multidimensional
nature of the semantic space from the corpus data. Further, t-SNE
worked very effectively on the cosine distance data in classifying
high-dimensional items, as previously suggested by other authors
(van der Maaten and Hinton, 2008). Combining these methods
seems to help us capture multidimensional information very
well. Finally, t-SNE can be considered an essential visual aid for
performing the manual evaluation of sub-categories based on the
corpus derived data.

Feature-based vector modeling combined with t-SNE
visualization helps us to achieve a simple, condense visualization
of the semantic space, based on which an unambiguous
sub-category structure can be formed with visual inspection.
Further, using the vector model and t-SNE mapping, we are
able to visualize the semantic space, which helps us to form an
unambiguous sub-category solution for the data of the specific
task for all participants. These methods therefore allow us to
perform between-individual comparisons on switching and
the number of items in the sub-categories. Without a clear
sub-category structure, comparing returning to a sub-category
between individuals would be meaningless. Vector modeling
combined with dimensionality reduction thus enables us to
create a two-dimensional semantic space with which to quantify
returning to a sub-category. According to the neurocognitive
framework, the patterns of networks responsible for feature
activation in the brain can be considered relatively stable (McRae
et al., 1997; Vigliocco et al., 2004). Thus, we may assume that
semantic space and the sub-categories within are also relatively
stable across individuals. This supports the idea of a universal
semantic mapping.

In this article, we created a single semantic structure
based on an English corpus after we translated the words
from Swiss-German. For future research, it may be fruitful
to further investigate and visualize the differences between
corpus data from other languages (when possible) to examine
whether there are differences in the semantic space structure of
different languages. Further, it would be important to replicate
our findings in other categories of the semantic task (fruits,
vegetables, tools, and vehicles). Moreover, it would be important
to study, using the method presented in this article, whether
the overall sub-category structures of semantic spaces differ

between healthy controls and patients with prodromal and early
Alzheimer’s disease.

In the present study, we aimed to zoom inside the sub-
categories of the semantic fluency task, which enabled us to find
a new variable for describing moving in the semantic space.
The results of this study demonstrate that in addition to classic
higher-level categories, such as living vs. non-living or animals,
fruits, vehicles, and tools, it is also possible to examine the
sub-categories within the category. In the present study, this
was executed using an internet-based corpus, word2vec skip-
gram model, and a dimensionality reduction algorithm. These
results give new insights by zooming inside the higher-level
categories and, thus, we suggest that these methods may be
useful in gaining more knowledge on how individuals utilize the
semantic space such as in the semantic fluency task. Further,
these methods are easily scalable for even larger vocabularies
and can be easily reused for new data sets. For future research,
we suggest that examining semantic distances in differentiating
between individuals may prove useful.

4.1. Limitations
Our methodology has some limitations. Overall, using a
dimensionality reduction method on high-dimensional data
leads to loss of information. Further, t-SNE has some limitations
as a dimensionality reduction and a classification method.
Since t-SNE is data-driven, its results may not identically
replicate in other data sets. In this study, we aimed to improve
replicability by limiting the number of sub-categories. This
approach has the drawback of possibly losing information on
individual categorization strategies. For instance, in our data,
“mouse” and “rat” belong to different sub-categories (pets and
reptiles/insects, respectively), which could also be categorized to
the same sub-category using another logic. However, we propose
that the general tendency with reduced sub-category returns
can be demonstrated regardless of differences in clustering
approaches and parameters. Another limitation is that the sub-
categories were formed on visual inspection based on the t-SNE
visualization, as it is not advisable to use an actual clustering
algorithm on the t-SNE results because t-SNE does not preserve
distances between sub-categories or alternatively regards them
meaningless (van der Maaten and Hinton, 2008). Further, as
the item labels were not hidden when performing the manual
clustering, semantic knowledge of the authors may have affected
the evaluation of sub-category borders. However, we suggest that
since the t-SNE results were relatively stable across models, and
the k-means clustering results mostly corresponded with the
manually labeled sub-categories, visual inspection of the data
was sufficient to divide the semantic space into meaningful sub-
categories. Finally, as we have performed the behavioral analyses
using only the sub-categories achieved with non-blind visual
inspection of the t-SNE solution, it remains to be empirically
tested whether other clustering methods used on semantic
fluency task data replicate the behavioral findings. The present
results also do not address the question on how the clusters
derived using word2vec and t-SNE compare to alternative
methods, and, e.g., fully manual labeling. This methodological
comparison remains to be addressed in future studies.
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4.2. Conclusions
In the present study, we aimed to utilize a new method for
emulating the process of moving within the semantic space.
Based on our results, a corpus derived feature-vector model
visualized with t-SNE provides a valuable tool for understanding
the semantic space and its sub-categories, which individuals seem
to utilize efficiently in the semantic fluency task. Using this
tool, we found that in the fluency task, inspecting returns to a
sub-category may yield additional information for differentiating
patients with AD from cognitively healthy controls and, thus,
may be useful for clinicians when diagnosing early Alzheimer’s
disease. However, number of sub-categories and switching did
not substantially improve differentiation between patients and
healthy controls. We hope that these results offer helpful insight
for clinicians to understand the behavior of prodromal and
very early Alzheimer’s disease patients in the semantic fluency
task and promote discovery of these diseases at the most initial
stage possible.
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