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Behavioral scientists have become increasingly reliant on online survey platforms such as

Amazon’s Mechanical Turk (Mturk). These platforms have many advantages, for example

it provides ease of access to difficult to sample populations, a large pool of participants,

and an easy to use implementation. A major drawback is the existence of bots that are

used to complete online surveys for financial gain. These bots contaminate data and need

to be identified in order to draw valid conclusions from data obtainedwith these platforms.

In this article, we will provide a Bayesian latent class joint modeling approach that can

be routinely applied to identify bots and simultaneously estimate a model of interest. This

method can be used to separate the bots’ response patterns from real human responses

that were provided in line with the item content. The model has the advantage that it

is very flexible and is based on plausible assumptions that are met in most empirical

settings. We will provide a simulation study that investigates the performance of the

model under several relevant scenarios including sample size, proportion of bots, and

model complexity. We will show that ignoring bots will lead to severe parameter bias

whereas the Bayesian latent class model results in unbiased estimates and thus controls

this source of bias. We will illustrate the model and its capabilities with data from an

empirical political ideation survey with known bots. We will discuss the implications of

the findings with regard to future data collection via online platforms.

Keywords: latent class analysis, mixture models, structural equation models, MTurk, bots

1. INTRODUCTION

In the behavioral sciences, online survey platforms (e.g., Amazon’s Mturk) are a common method
of data collection. They provide an affordable means of collecting large amounts of data from
potentially difficult to obtain populations in a short period of time. Recently, a major drawback of
the approach has come to light, exploitation of the framework for monetary gain. This is achieved
in part by “click farms” where people indiscriminately complete surveys, or by malicious software
which does the same. We generally refer to both of these forms of data contamination as “bots.”
Chmielewski and Kucker (2020) conducted a longitudinal survey study (four waves of data from
2015 to 2019) using Mturk which established that a substantial decrease in data quality occurred
over the duration of the study. This evidence suggests that around this time bot frequency was on
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the rise. In response, online survey platforms have implemented
more stringent screening criteria. However, incentives
produce innovations. As platforms and researchers introduced
approaches to screen for bots, those who aim to profit continue
to adapt. For example, Sharpe Wessling et al. (2017) points out
that forums exist in which people share approaches and software
to bypass screening criteria.

1.1. Identifying Inattentive Behavior in the
Literature
The bot problem is relatively new, however literature on
inattentive human responders is well-established (e.g., Wise
and DeMars, 2006; Huang et al., 2012, 2015; Huang and Liu,
2014; DeSimone et al., 2015; Dupuis et al., 2019). In both
scenarios, researchers aim to identify response sets which are not
representative of deliberate responses. While these situations are
different, we find it useful to borrow insight from inattention
literature to inform approaches on identification of bots (Meade
and Craig, 2012).

Bots reduce the quality of data collection. Bots do not respond
to surveys in line with instructions. Therefore, we can think of
their contribution as random noise (Meade and Craig, 2012;
Buchanan and Scofield, 2018). The presence of random noise
increases error variance and pulls item correlations toward zero.
Consequently, type II error rates are inflated and scale creation
and validation is detrimentally affected (Marjanovic et al., 2014).

Methods developed to identify inattentive response behavior
can be classified into three categories. Methods from the first
category utilizes external details like bogus items, validity scales,
or response times (e.g., Wise and DeMars, 2006; Huang et al.,
2012, 2015; Huang and Liu, 2014; DeSimone et al., 2015).
Second, a set of approaches is used to calculate indices based
on the response pattern. For example, Greene (1978) identified
mismatched responses for positively and negatively worded
items, Baumgartner and Steenkamp (2001) and Baumgartner and
Steenkamp (2006) calculated frequencies of participant responses
of the same category (e.g., frequency of endorsing “strongly
agree”). Furthermore, person-fit-indices (Drasgow et al., 1985;
Karabatsos, 2003), and outlier-based approaches (Curran, 2015;
DeSimone et al., 2015) exist. These approaches all share a
common procedure: First an index is calculated and the
inattentive responders are identified for falling above or below a
predetermined threshold; the identified responders are removed
from the sample; statistical analysis are then conducted on the
remaining data.

The third category includes statistical methods that
incorporate the detection of inattentive persons in the actual
analysis (e.g., a confirmatory factor analysis; CFA). The majority
of these approaches utilize the latent class framework (i.e.,
mixture modeling) and directly model inattentive patterns
(Meade and Craig, 2012; Terzi, 2017; Jin et al., 2018). In
these analysis, persons are grouped into two or more classes,
where one class includes respondents who answer according to
the instructions, and the remaining classes model alternative
response patterns that are independent of the item content such
as responding randomly. Identification of the latent classes is

based on a specific model that reflects these expected patterns
such as uniform probabilities for all answers (Jin et al., 2018).
Alternatively, they use external information, for example, fit
indices calculated a priori (e.g., outlier measures; Terzi, 2017).

1.2. Bayesian Latent Class Models for
Identification of Inattentive Behavior
Bayesian Markov Chain Monte-Carlo (MCMC) estimation has
many benefits over frequentist approaches, which in conjunction
with technological advances (e.g., increased computer memory,
processing, and ease of parallel processing) have lead to an
increase in their popularity among behavioral sciences (Van de
Schoot et al., 2017). Bayesian MCMC estimation allows for
flexible and complex specifications (e.g., Lee et al., 2007; Muthén
and Asparouhov, 2012; Roman and Brandt, 2021), in addition
to fewer estimation issues (e.g., Depaoli and Clifton, 2015)
and lower sample size requirements (e.g., Hox et al., 2012).
Further, joint modeling approaches allow Bayesian models to
simultaneously sample missing values or latent scores while
estimating parameters of a model of interest (Dunson et al.,
2003). This makes Bayesian estimation an ideal choice for
estimating latent class models in a joint approach with a model
of interest.

Jin et al. (2018) conducted a series of Monte-Carlo studies
which explored the performance of Bayesian latent class models
to identify inattentive respondents in an item response setting.
The authors varied the percent of inattentive responders (0, 10,
20, and 30%), test length (10 and 20 items), and inattentive
response pattern (only middle category and random), among
other conditions. The latent class model performed well in
the high inattention condition of 30% random responses, and
importantly, in the 0% random response condition. Further,
an intuitive yet important finding is the impact of test length
on identification. When test length was 10 items correct
classification was 83.47%, at 20 items this improved to 95.38%,
this suggests there is a minimum number of items necessary to
identify a random response pattern accurately. Jin et al. (2018)
provides a successful example of the ability for latent class models
to identify aberrant response patterns related to inattention.
For latent variable models using the CFA framework, such an
approach has not yet been tested. It is also unknown so far how
well such procedures work for the identification of bots. Here, we
will use a LC-CFA to identify such bots.

1.3. Scope and Outline
The remainder of the manuscript focuses on the automated
detection of bots using latent class confirmatory factor analysis
(LC-CFA). We will introduce a generalized approach for factor
analytic methods that cover continuous, binary, or count data.
We will provide information on how to identify a latent class
consisting of bots. We will illustrate in a simulation study
that the model has optimal performance under a variety of
different empirically relevant scenarios. We will also show how
detrimental bots are for the performance of standard CFA
methods. Using empirical data with known bots, we will evaluate
model performance in the context of an Amazon Mturk study
which collected political survey data.
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The next section includes the model formulation and its
Bayesian implementation. Then we provide the simulation study
design and results. Followed by the empirical example, before
we discuss the feasibility of the approach, its limitations, and
future directions.

2. BAYESIAN LATENT CLASS MODEL

In this section, we provide a general model formulation for the
LC-CFA that can be used to detect bots in online questionnaires.
Themodel is comprised of two latent classes: The first classC = 1
includes persons who provide responses according to a factor
model assumed to underlie the items. The second class includes
bots who do not provide information but instead choose random
responses. Class membership is modeled using a confirmatory
method based on both a specific model for random responses,
and logistic model that uses indices based on person-fit measures
to detect non-respondence.

For each item Y1, . . . ,Yj, a general measurement model is
formulated for i = 1 . . .N in class C = 1 (valid responses) and
C = 2 (bots) by:

g(µy,ij|Ci=1) = τj1 + λjηi (1)

g(µy,ij|Ci=2) = τj2 (2)

Yij|Ci=c ∼ F(µy,ij|Ci=c, (σ
2
y,jc)) (3)

where g is a link function and F[µ, (σ 2)] is a distribution function
with mean µ and dispersion related parameter σ 2, which is
necessary for some distributions. For example, for binary items,
the link function is a logit function and the distribution function
is the Bernoulli distribution. For continuous items, an identity
function is used as link and a normal distribution function is
used. And for count items, a log link function can be used with a
Poisson distribution function (details on generalized models can
be found in, e.g., Song et al., 2013; Wood, 2017).

Ci is a latent categorical variable indicating if a participant
is flagged as a bot (C = 2) or a person providing meaningful
information (C = 1), i.e., responses in line with the factor model.
τjc is a class-specific intercept for item j, λj is an m dimensional
vector of factor loadings on the m factors η = (η1, . . . , ηm)′

in class C = 1. For normal distributions, error variances are
assumed to be state-specific (i.e., σ 2

y,jc).
For the latent factors in class C = 1, we assume

ηi|Ci=1 ∼ MVN(κ ,8) (4)

where MVN is a multivariate normal distribution with m
dimensional mean vector κ and m × m covariance matrix 8.
Other distributions such as theT-distribution can be used instead
if the construct under investigation is assumed to be non-normal
(e.g., Muthén and Asparouhov, 2014). We assume that standard
identification constraints for SEM hold with regard to the scaling
of the latent factors (e.g., by using a scaling indicator).

2.1. Interpretation of Classes
In order to identify the model and ensure that the classes refer
to persons vs. bots, specific model restrictions are imposed on

the class-specific parameters and a prediction model for the
class membership should be used. This idea is in line with
recent suggestions about confirmatory uses of latent class models
(Jeon, 2019). If these restrictions are not imposed, classes may
relate to any kind of differences with regard to distribution or
relationships between variables (for similar problems in latent
class modeling, see Hipp and Bauer, 2006).

The model formulation for the bots in class C = 2 above
results in a statistical model that is in line with a random response
provided by the bots. For example, for continuous items, an item
mean and a variance is used [i.e., (Yij|Ci = 2) ∼ N(τj2, σ 2

y,j2)]
to model random responses. For binary and ordinal items, the
model formulation results in a logistic or ordinal model with
equal probabilities to select either of the categories (for a similar
approach for inattentive responses, see Jin et al., 2018).

The prediction of the latent class membership Ci = c is
specified using a multinomial logistic model based on two indices
that can capture the randomness of the responses (e.g., for similar
models to predict latent class membership, see Muthén and
Asparouhov, 2009; Kelava et al., 2014; Asparouhov et al., 2017):

P(Ci = 1|ϒ1i,ϒ2i) = expit(β0 + β1ϒ1i + β2ϒ2i) (5)

with expit(x): = 1/(1+ exp(−x)).
This additional model is used to improve identification of bots

via an explicit evaluation of the overall response pattern. In order
to achieve this, we use person-fit indices that can be calculated
based on the response pattern. In contrast to previous uses of
person-fit indices, we do not use cut-offs or delete persons by
hand. Instead, a model based approach is used here that provides
a probability statement for each person to be a bot or not.

Several previous authors used similar latent class models in
a Bayesian setting without a direct model for the probability
π = [P(Ci = 1), . . . , P(Ci = Cmax)]. That implied that all
persons have the same probability to be in classes C = c because
a single unconditional distribution is used. For a Bayesian
implementation, this is done via the Dirichlet prior, that is π ∼

Dir(a) (e.g., Depaoli, 2013, 2014), where π and a are vectors with
as many entries as classes (Cmax) are modeled. In comparison
to our model, this approach would be very similar to removing
all predictors from the model in Equation (5) and using only β0

in the multinomial model (for similar implementations see, e.g.,
Asparouhov and Muthén, 2010; Asparouhov and Muthén, 2016;
Kelava and Brandt, 2019).

2.2. Person-Fit Index
ϒ1 is a likelihood based person-fit index that has been shown to
provide information to detect inattentive persons. This person-
fit index can be extracted from the following procedure (Lange
et al., 1976; Reise andWidaman, 1999; Terzi, 2017): First conduct
a CFA for all persons and extract the model-implied mean
vector and covariance matrix (µ,6) to calculate the individual
likelihood contributions under the assumption of multivariate
normality

lli(µ,6) = −
1

2

(

p · ln(2π)+ ln |6| + D2
i (µ,6)

)

(6)
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with a Mahalanobis distances D2
i based on these model-implied

mean vector and covariance matrix

D2
i (µ,6) = (yi − µ)′6−1(yi − µ) (7)

Calculate

ϒ1i = −2 ·
(

lli(µ,6)− lli(ȳ, S)
)

(8)

where lli(ȳ, S) is the corresponding statistic based on the
empirical mean vector and covariance matrix ȳ, S. As can be seen
from this definition, the person-fit index will provide information
about each person’s likelihood contribution. More details about
its properties can be found in Reise and Widaman (1999)1.

While this approach can be used for any type of data with
the respective link and distribution function, it has mainly been
used for continuous items. Similar and specialized model-based
fit indices were independently defined for binary and ordinal data
(e.g., Levine and Rubin, 1979; Drasgow et al., 1985; Meijer and
Sijtsma, 2001; Snijders, 2001; Terzi, 2017).

2.3. Variability Index
In addition, we propose an alternative approach with fewer
assumptions to use as ϒ2. We do not make any distributional
assumptions as they are necessary for the individual likelihood
contribution above.

The variability index ϒ2 is defined as the averaged factor-
specific item variance:

ϒ2i =
1

m

m
∑

k=1

Var(yik) (9)

where yik includes all scores for person i of the items that
are loading on the k-th factor. The logic of this index is as
follows: Assuming that the configuration of the factor model
holds, responses to items that belong to the same factor should
have a rather small variability because persons are more likely
to respond in a similar fashion depending on their expression of
the construct (e.g., low or high)2. Bots with a random response
modus will provide a larger variability in comparison.

Figure 1 illustrates the distribution of two indices ϒ1 and
ϒ2 for a simulated data set with N = 400 persons and a
six-factor model (see details in the simulation section) with
increasing amounts of bot contamination (10, 25, and 50%). As
the figure show, the variability coefficient can clearly distinguish
the two subgroups.

In comparison to the approach by Jin et al. (2018) who
developed a similar model for inattentive behavior, we would like
to highlight the following aspects. Jin et al.’s (2018) approach
focused on IRT models only (including the Rasch model and
generalized partial credit model for ordinal scaled data. Here,
we provided a more general approach based on generalized
models that include this approach as a special case but also

1In general greater values of the person-fit index suggest greater departures from
the factor model, suggesting bot like responses.
2Assuming that all items with inverted formulation are recoded accordingly.

covers continuous and count data. This results in a higher
flexibility particularly if models are used for questionnaire data
that have sufficient response categories to assume continuous
data (Rhemtulla et al., 2012).

Second, the approach by Jin et al. (2018) defines its non-
responsive (inattentive) classes via a probability pattern of the
items (with a categorical distribution). For example, for ordinal
data, they suggest equal probabilities for each response category
to model random behavior. This makes it necessary to define
different non-responsive patterns in separate latent classes (e.g.,
extreme responses vs. random responses). However, this strategy
comes with two disadvantages: First, if many classes are necessary
to capture non-responsiveness classes will become small (e.g.,
with 10 bots/persons) which will result in numerical instabilities.
Second, un-modeled non-responsiveness will inflict bias in the
responsive (attentive) group as Jin et al. (2018) show in their
simulation study.

In contrast, we only model a single class that captures all non-
responsive patterns that could be expected of bots. The definition
of the second class is conducted using the multinomial logistic
model that extracts the specific deviations from responsive
behavior via pattern-related predictors as shown in Figure 1.

In comparison to other models that focus on cognitive skill
tests (e.g., with regard to non-responses, Pohl et al., 2019; Ulitzsch
et al., 2020), we do not need additional information such as
reaction times to predict the behavior. This is an advantage in
many settings where retrieving such information is impossible or
at least cumbersome (also on Amazon’s Mturk).

2.4. Bayesian Model Estimation
In this subsection, we provide details about model estimation
using a Bayesian implementation. Bayesian estimation provides
a flexible framework that allows to extend the basic model
to any kind of more complex structure (Song et al., 2013;
Kelava and Brandt, 2014). Here, we specify the LC-CFA with a
straightforward implementation based on priors.

The observed variables’ distributions can be specified as for
continuous data as

(yij|Ci = c) ∼ N(µijc, σ
2
ijc), i = 1 . . .N, k = 1 . . . j, (10)

where N(µ, σ 2) is the normal distribution with mean µ and
variance σ 2. For binary data, the distribution is specified as

(yij|Ci = c) ∼ Bern
(

expit(µijc)
)

, i = 1 . . .N, j = 1 . . . p,
(11)

with a Bernoulli distribution Bern(π) and probability for y = 1
of π . Finally, for count data a model is specified via

(yij|Ci = c) ∼ Poisson
(

exp(µijc)
)

, i = 1 . . .N, j = 1 . . . p.
(12)

with a Poisson distribution Poisson(λ) with event rate λ.
For a CFA model, the multivariate distribution of the latent

factors is given by

ηi ∼ MVN(κ ,8), i = 1 . . .N (13)
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FIGURE 1 | Illustration of the performance of the person-fit index ϒ1 and the variability coefficient ϒ2 to distinguish bots from Non-bots under different levels of

contamination. The (top) panels show the bivariate distribution, the (middle and bottom) panels show the densities for person-fit index ϒ1 and variability coefficient

ϒ2, respectively. While the distinction between bots and non-bots becomes more difficult with the person-fit index with increasing contamination, the variability

coefficient remains unaffected.

The latent class variable follows a Bernoulli distribution

Ci ∼ Bern(πi), i = 1 . . .N (14)

with πi = expit(β0 + β1ϒ1i + β2ϒ2i). Note that in this
model differs from latent class models without predictors

that use conjugate priors for the probability πi = π∀i,
that is a Dirichlet prior of the form π ∼ Dirich(a)
(e.g., Depaoli, 2013, 2014), where a is a hyperprior. In
contrast, we use priors for the regression coefficients
βr , r = 0 . . . 2, in the multinomial logistic model defined
in Equation (5).
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The priors for the model parameters are given by

τjc ∼ N(µτ0c, σ
2
τ0c), j = 1 . . . p, c = 1, 2 (15)

λjk ∼ N(µλ0j, σ
2
λ0j), j = 1 . . . p, k = 1 . . .m (16)

κk ∼ N(µκ0k, σ
2
κ0k), k = 1 . . .m (17)

9−1 ∼ Wish(90, df9 ) (18)

βr ∼ N(µβ0r , σ
2
β0r), r = 0 . . . 2 (19)

where Wish() is the Wishart distribution. In the case of
continuous items, the prior for the residual variance is given by

σ−2
jc ∼ Ga(aσ jc, bσ jc), j = 1 . . . p, c = 1, 2. (20)

where Ga() is the Gamma distribution.
Here, µτ0c, σ 2

τ0c etc. are hyperparameters that need to
be chosen.

3. SIMULATION STUDY

In this section, we will present a simulation study that investigates
the performance of the LC-CFA to identify bots and to improve
estimation of the relevant parameters of the factor model. In
addition, we will compare this performance to a standard CFA.

3.1. Data Generation
Data were generated for a three- or six-factor model3 (fixed
design factor A). Each factor was operationalized with p = 6
items Y, which is a typical length for a scale in psychological
research. In the first step, data were generated using the following
measurement model for non-bots:

Y∗
i = τ 1 + 3ηi + ǫi (21)

where τ 1 was an intercept vector, 3 a factor loading matrix,
a multivariate normally distributed latent factor score matrix
ηi[η ∼ MVN(0,8)] and ǫi were the residuals [ǫ ∼

MVN(0, σ 2I)]. For data generation, intercepts were set to zero.
Factor loadings followed a simple structure pattern (i.e., each set
of six items only loaded on a single factor). The variances of the
latent factors were set to one and the correlations to ρ, which was
a design factor (see below). The residual variances in the vector
σ 2 was chosen such that the resulting variance of Y∗

i was one;
the actual values depended on the chosen communalities (design
factor D).

(Non-zero) standardized factor loadings were randomly
chosen from a uniform distribution around an average
item communality for each replication in a range of
√

Communality± 0.15. Average communalities were included as
a random design factor D that was sampled for each replication
from a uniform distribution ranging from 0.25 to 0.64. These
values covered typical item communalities encountered in

3The simulation conditions were chosen in part to reflect the factor structure (three
factor model) of the empirical example discussed in the next section.

psychological research (Chaplin, 1991; Kelava and Nagengast,
2012).

The latent factors were normally distributed with an
intercorrelations randomly sampled from a uniform distribution
lying between 0.0 and 0.7 (random design factor E). This again
covered a typical range of multicollinearity from completely
uncorrelated to highly correlated factors. All latent item scores
Y∗
i were standard normally distributed (i.e., zero mean and

variance one).
In a second step, item scores for the non-bots (Ci = 1)

were generated on a six-point Likert-style scale ranging from 1
through 6 using a standard threshold function with equidistant
steps:

{Yi = k|Ci = 1} = δk−1 ≤ {Y∗
i |Si = 1} < δk (22)

with δ = (−∞,−2,−1, . . . , 2,∞). For the bots (Si = 2), a
completely random pattern was assumed

Yi|Ci=2∼ Cat(π) (23)

with a categorical distribution Cat() and π = (1/6, . . . 1/6).
Data were generated for sample sizes of N = 200, 400, and

800 (fixed design factor B). The percentage of bots were set
to 10, 25, and 50% (fixed design factor C). This resulted in
2 × 3 × 3 = 18 fixed design conditions. R = 500 replications
were generated under each condition of the fixed design factors.
Table 1 summarizes the simulation conditions.

3.2. Data Analysis
For the analysis, two models were specified: A standard Bayesian
CFA model and a LC-CFA model. Details on the LC-CFA and its
implementation can be found in the methods section. The CFA
model was identical to the model specified for C = 1 of the
LC-CFA (and did not include mixtures) including the priors.

Priors for parameters were chosen as weakly informative
priors using the following hyperparameters:

τjc ∼ N(0, 1), j = 1 . . . p, c = 1, 2 (24)

λjk ∼ N(0, 1)+, j = 1 . . . p, k = 1 . . .m (25)

9−1 ∼ Wish(Im,m) (26)

βr ∼ N(0, 10), r = 0 . . . 2 (27)

σ−2
jc ∼ Ga(9, 4), j = 1 . . . p, c = 1, 2. (28)

The latent factor means κk were set to zero for identification, in
addition the first factor loadings for each factor was constrained

TABLE 1 | Simulation design with three fixed (A, B, C) and two random (D, E)

factors.

Factor Label Levels

A Model complexity 3 factors 6 factors

B Sample size 200 400 800

C Percentage bots 10% 25% 50%

D Communality λ2 0.25 to 0.64

E Factor correlations ρ 0.00 to 0.70
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to one. Im was an m × m identity matrix. We follow the advice
of Song et al. (2013) in our choice of hyperparameters Ga(9,4) for
the variances σ−2

jc
4.

We utilized truncated normal priors for the factor loadings λjk

for convenience in computational time for the simulation study5.
Performance of the LC-CFA was assessed with convergence,

bias, and accuracy statistics sensitivity and specificity. First,
convergence was assessed with R̂ as computed by Gelman et al.
(2013). The following indices were based only on estimates from
models which reached acceptable convergence criteria. Percent
bias is computed as the estimates percent deviation from the
population value. Sensitivity is conceptualized as the true positive
rate (bot detection rate), and specificity as the true negative rate
(non-bot detection rate). Sensitivity is computed as TP

TP+FN and

specificity as TN
FP+TN where TP is the number of true positive

identifications, TN is the number of true negative identifications,
FN is the number of false negative identifications, and FP is the
number of false positive identifications.

All models were implemented in Jags 4.2 (Plummer,
2003) with three chains and 12,000 iterations each. The first
6,000 iterations were discarded as burn-in. Convergence was
monitored for all parameters using the R̂ statistic and a cut-off
value of R̂ <1.01 in line with the advice of Vehtari et al. (2021).

4. RESULTS

4.1. Convergence
Convergence rates for the CFA were above 99.8% across all
conditions (which was expected due to the simplicity of the
model). For the LC-CFA, convergence rates depended on sample
and model size as well as the proportion of bots as depicted in
Table 2. For small sample sizes (N = 200) and small model
size (q = 3 factors), convergence rates were above 88.0%. For
small sample sizes (N = 200) and large model size (q = 3
factors), convergence rates were lower and lay between 30.3 and
61.8%. For larger sample sizes, convergence rates were above
85.0% (N = 400) and above 98.4% (N = 800). This indicates
that the more complex model with six factors needed at least a
sample size of N = 400 to perform reliably (i.e., converge) under
the conditions (e.g., chain length) in this simulation study.

4.2. Class Recovery
Table 2 also includes the average sensitivity and specificity to
identify the bots. Both indices were close to one across all
conditions with a minimum average sensitivity of 0.96 (N =

200, q = 3, 10% bots) and a minimum average specificity of 0.97

4As this prior is relatively informative we conducted a sensitivity analysis with the
model described in the empirical example. We re-fit the model under a wide range
of Ga prior specifications, from diffuse, to highly informative and misspecified.
Posterior means and quantiles varied between runs at a magnitude <0.001% and
saw no change in parameter convergence statistics (R̂ and ESS). These results
suggest little to no influence of the prior on posterior estimates or convergence.
5The truncated normal distribution is not necessary. It does not affect the
performance of the model in general when compared with un-truncated priors
for the factor loadings. In this case, however, it is necessary to check for each factor
loading that chain mixing occurred and the sign-switch across chains did not result
in a biased interpretation (for similar truncated priors, see e.g., Ghosh andDunson,
2009).

TABLE 2 | Convergence rates as well as sensitivity and specificity for the recovery

of class memberships for the LC-CFA across conditions of sample size (N),

number of factors (q), and proportion of bots.

q Proportion bots Convergence Sensitivity Specificity

N = 200

3 0.10 88.0 0.96 0.98

3 0.25 94.6 0.99 0.98

3 0.50 97.6 0.99 0.97

6 0.10 61.8 0.99 1.00

6 0.25 54.7 1.00 1.00

6 0.50 30.3 1.00 1.00

N = 400

3 0.10 91.4 0.99 0.98

3 0.25 98.8 0.99 0.98

3 0.50 99.8 0.99 0.98

6 0.10 85.0 1.00 1.00

6 0.25 96.4 1.00 1.00

6 0.50 99.8 1.00 1.00

N = 800

3 0.10 99.6 0.99 0.99

3 0.25 100.0 0.99 0.98

3 0.50 100.0 0.99 0.98

6 0.10 98.4 1.00 1.00

6 0.25 100.0 1.00 1.00

6 0.50 100.0 1.00 1.00

(N = 200, q = 3, 50% bots). These values were independent
of the fixed effect design factors. This indicated a very reliable
identification of the bots.

4.3. Parameter Bias
Table 3 shows the average parameter bias both for the LC-
CFA and the CFA. In the table, we present results for
the factor variances (φjj) averaged across factors, the factor
correlations (φkj) averaged across all mutual correlations,
and the standardized factor loadings (λ) averaged across all
factor loadings.

For the LC-CFA, estimates were fairly unbiased for sample
sizes above 200 with values ranging between −4.2 and −0.4%
for the variances, −2.8 and 11.1% for the correlations, and −2.8
and 0.6% for the factor loadings. Slightly higher values for the
correlations were observed under the condition of 50% bots and
sample size ofN = 400, that is, when the number of valid persons
providing information for the parameters was only 200 (under
S = 1).

The performance under the small sample size of N = 200
heavily depended on the proportion of bots (or, again, how
many persons actually provided information for the parameter
estimates) and model complexity. For small models with q = 3
factors, the bias for factor variances and factor loadings was below
7.0% (50% bots); the bias for the correlations increased from 7.0
to 38.8% with increasing proportions of bots. For more complex
models with q = 6 factors, the a similar pattern could be observed
with bias increasing particularly for the factor correlations (9 vs.
21.3% for 10 vs. 25% bots, respectively).
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TABLE 3 | Average parameter bias for the LC-CFA and the CFA across conditions

of sample size (N), number of factors (q), and proportion of bots.

q N LC-CFA CFA

φjj φkj λ φjj φkj λ

10% Bots

3 200 −0.2 7.0 0.8 −12.3 −4.6 −11.5

3 400 −1.6 0.9 −1.1 −12.7 −3.5 −13.5

3 800 −1.5 −0.5 −2.1 −12.8 −3.4 −14.5

6 200 −2.1 9.0 0.9 −14.1 1.0 −10.6

6 400 −4.8 2.1 −1.8 −15.6 −0.8 −13.3

6 800 −3.5 −0.8 −2.8 −13.7 −1.9 −14.6

25% Bots

3 200 0.4 11.7 1.9 −24.6 −13.6 −24.7

3 400 −1.7 1.0 −0.8 −25.9 −7.2 −27.4

3 800 −1.5 −0.5 −1.9 −27.2 −11.1 −28.8

6 200 2.2 21.3 2.8 −27.9 −7.6 −24.3

6 400 −4.6 2.1 −1.2 −30.4 −5.3 −27.5

6 800 −3.7 −0.2 −2.6 −28.8 −4.5 −28.9

50% Bots

3 200 7.0 38.8 5.2 −39.1 −30.8 −42.5

3 400 −0.4 11.1 0.6 −44.0 −31.3 −46.2

3 800 −1.8 5.1 −1.2 −47.7 −18.8 −47.9

6 200 438.1 133.2 21.7 −44.2 −32.3 −42.8

6 400 −2.8 9.0 0.5 −48.4 −17.7 −46.4

6 800 −4.2 −2.8 −1.9 −49.9 −13.7 −48.2

Under the condition of 50% bots, q = 6 factors, and N =

200, the model broke down with a bias of 438.1, 133.2, and
21.5% for factor variances, factor correlations, and factor loadings
respectively. Further inspection (see Figure 1 in theAppendix A)
showed that the parameter distribution for factor variances and
factor loadings was bimodal with a peak around 0% bias and
a second peak around 1,000% bias (variances) or 40% bias
(factor loadings). A bivariate distribution (scatter plot) showed
an obvious non-overlapping distribution of estimates with and
without bias (indicated with red lines). When deleting these
“outliers” using a cut-off for the bias of the variance above 200%,
the remaining parameters showed unbiased results for factor
variances (−2.8%) and factor loadings (4.8%), but still a bias for
the factor correlations (114.0%).

For the CFA, Bias was mainly driven by the percentage of
bots. Factor variances showed a bias between−15.6 and−12.3%,
between −30.4 and −24.6%, and between −49.9 and −39.1%
for 10, 25, and 50% bots, respectively. A similar pattern could
be observed for factor loadings (and correlations) with a bias
between−14.6 and−10.6% (−4.6 and 1.0%), between−28.9 and
−24.3% (−13.6 and −4.5%), and between −48.2 and −42.5%
(−32.3 and−13.7%), respectively.

4.4. Relationship of the Parameter Bias
With Random Design Factors
The relationship between the communalities and factor
correlations vs. the bias of factor variances, factor correlations,
and factor loadings both from the LC-CFA and CFA are

depicted in Figures 2, 3 using loess approximations for each
of the conditions of percentage of bots. Results were averaged
across the conditions of sample size and model complexity for
simplicity and because differences were negligible.

For the LC-CFA, the bias of all three parameter groups
did not depend on the communalities. For the CFA, we again
observed differences across the percentage of bots as expected.
There was an indication that the bias of correlations decreased
when the communalities increased; however variances were still
underestimated, which increased with higher communalities at
least under the condition of 50% bots.

For the factor correlations, we observed a linear relationship
for the LC-CFA with the variance bias, which increased with
higher amounts of multicollinearity (but was always smaller than
±10%). The factor correlations were overestimated when the
actual multicollinearity was low and 50% of the sample consisted
of bots. There was a zero-relationship with the factor loading bias.
For the CFA, we observed a similar slightly positive relationship
with the variance bias, but neither correlations nor factor
loadings had a non-zero relationship with the multicollinearity
in the data.

4.5. Relevance of Predictors in the Latent
Class Model
Finally, we investigated how the two predictors for the latent class
model performed. Table 4 shows the percentage of significant
results (using 95% credible intervals) for the likelihood based
person-fit index ϒ1 and the nonparametric variability coefficient
ϒ2. The variability coefficient show 100% significant parameter
coefficients across all conditions, that is, it was predictive to
distinguish bots and persons. The performance of the person-fit
index was suboptimal. For a proportion of 10% bots with a three
factor model, the index showed significant estimates between
23.6 and 30.3%. For 10% bots with a six factor model, the index
showed only for N = 200 a power of 38.4%. For all remaining
conditions this power dropped to between 0 and 11.2%. This
implied that at least in combination with the variability index
the fit index was not sensitive to the detection of bots and had
a low power (i.e., few significant prediction in the multinomial
logit model).

5. EMPIRICAL EXAMPLE

To show the efficacy of the LC-CFA for bot identification in
an empirical setting we analyzed data obtained from Amazon’s
Mechanical Turk (MTurk) prior to the implementation of more
stringent screening techniques. This data set in particular is
useful because bot meta-data was not obscured by IP and geo-
location masking approaches that exploiters are now utilizing
to remain undetected. Therefore, we established known bots by
identifying duplicated geolocations and/or IP addresses. We can
thus say with reasonable certainty that the cases flagged are bots,
however, the inverse is not true, we will discuss the implications
of this in more detail in the discussion.
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FIGURE 2 | Relationships (loess approximations) between communalities (λ2) and the bias of factor variances, factor correlations, and factor loadings from the

LC-CFA (top) and CFA (bottom). The bias was averaged across conditions of sample size and model complexity.

5.1. Data
Data were collected as part of an unrelated experiment in political
psychology. Participants (n = 395) were recruited on MTurk via
cloud research (Litman et al., 2017). The dependent measures
of this experiment are three commonly used and well validated
political ideology measures: an eight item measure of Social
Dominance Orientation (SDO; e.g., “Some groups of people
are simply inferior to other groups”; Ho et al., 2015), a 10
item measure of Right Wing Authoritarianism (RWA; e.g., “Our
country desperately needs a mighty leader who will do what
has to be done to destroy the radical new ways and sinfulness
that are ruining us”; Rattazzi et al., 2007), and an eight item
measure of Nationalism (e.g., “Other countries should try and
make their government asmuch like ours as possible”; Kosterman
and Feshbach, 1989). All items were measured on a 7 Likert-type
scale (0= strongly disagree to 6= strongly agree).

There was a period of a few months where an increase in
automated MTurk responses occurred, which could be identified
with identical geolocations. Later it was determined the increase
in responses was due to increased activity of a “click farm”
which utilized VPN techniques to bypass the studies location
requirement (participants were required to be English speaking
and live in the United States; Moss and Litman, 2018). These

workers completed the surveys in very small time periods
in languages foreign to them. The duplicates IP geo-location
combination resulted in 159 identified bots,∼40% of the sample.
See Appendix B for a descriptive table of the observed data.

5.2. Methods
Inverse formulated items (SDO3, SDO4, SD07, and SDO8) were
recoded prior to analysis. First, we analyzed the data with the LC-
CFA and extracted the predicted classes (bot or not bot). Next,
we coded duplicated IP addresses or Geo-locations as known
bots. We then computed diagnostic accuracy statistics sensitivity
and specificity (Stanislaw and Todorov, 1999), by comparing
the estimated latent class (bot or non-bot) to the known bots.
Specificity and sensitivity were computed as outlined in the
simulation study. In addition, in order to replicate a researcher
unaware of bots we then analyze the data with a standard
(Bayesian) CFA ignoring bots. We then compared the results of
the two models.

For both the LC-CFA and CFA, measurement models were
specified in line with the simulation study and existing literature,
in that we test a three factor model of SDO, nationalism, and
RWA with simple structure. For the LC-CFA, we calculated
the variability coefficient as well as the person-fit index and
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FIGURE 3 | Relationships (loess approximations) between factor correlations (ρ) and the bias of factor variances, factor correlations, and factor loadings from the

LC-CFA (top) and CFA (bottom). The bias was averaged across conditions of sample size and model complexity.

used these as predictors of the latent class (bot or not-bot).
Prior distributions and MCMC inputs (e.g., Chain length, burn
in, etc.) were specified exactly as described in the simulation
study for both LC-CFA and CFA6. Rhat was used to monitor
chain convergence and was calculated identically to that of the
simulation study. Models were estimated using JAGS version 4.2
(Plummer, 2003) and deployed in R version 3.6.2 (R Core Team,
2019).

5.3. Results
Table 5 contains the standardized factor loadings, factor
correlations, and factor variances, as well as the diagnostic
measures R̂ and ESS for both the LC-CFA and CFA. The LC-
CFA exhibited good chain mixing with the highest obtained
R̂ < 1.01. We assessed the precision of the posterior estimates
with ESS. Zitzmann and Hecht (2019) suggest a practical
threshold necessary for summarizing posterior draws of ESS

6We felt it was important to replicate common usage, thus we also tested a
frequentist CFA with the lavaan package in R. The results were virtually identical,
thus, we present only the Bayesian CFA as to provide certainty that the only
difference in outcomes is due to the addition of the latent class portion of
the model.

> 400. Both models exhibit ESS estimates for the parameters
of interest above this value. In the LC-CFA one parameter
(λSDO5) was close to the threshold (ESS = 490), however, we
are not concerned about the precision of the summary of
this posterior distribution. We summarize the posterior with
a mean, and as Zitzmann and Hecht (2019) points out, a
below optimal ESS has a greater impact on posterior summaries
of the distributions tails (e.g., minimum and maximum). It
is worth mentioning that the CFA model tended to have
ESS values higher than that of the LC-CFA. We believe
this is a side effect of the additional parameters in the LC-
CFA which leads to slower traversal of the posterior during
sampling, in turn resulting in higher auto-correlation in the
posterior draws.

Factor loadings of the LC-CFA were consistently higher than
the associated parameters of the traditional CFA. Particularly
for the SDO factor, we found comparatively low loadings in the
CFA (λSDO3 = 0.35, λSDO4 = 0.34, λSDO7 = 0.30, and λSDO8 =

0.40) compared to the LC-CFA (λSDO3 = 0.90, λSDO4 = 0.90,
λSDO7 = 0.91, and λSDO8 = 0.92); these loadings referred to
the only reverse coded items in the survey. Figure 4 provides
an illustration of the estimated factor loadings of the LC-CFA
(y-axis) vs. the CFA (x-axis).
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TABLE 4 | Percent significant results for ϒ1 (person-fit index) and ϒ2 (variability

index) in the latent class model of the LC-CFA based on the 95% Credible Interval

across conditions of sample size (N), number of factors (q), and proportion of bots.

q N ϒ1 ϒ2

10% Bots

3 200 30.3 100.0

3 400 23.6 100.0

3 800 25.5 100.0

6 200 38.4 100.0

6 400 5.2 100.0

6 800 0.4 100.0

25% Bots

3 200 8.7 100.0

3 400 8.3 100.0

3 800 11.2 100.0

6 200 0.4 100.0

6 400 0.0 100.0

6 800 0.0 100.0

50% Bots

3 200 2.1 100.0

3 400 4.2 100.0

3 800 7.4 100.0

6 200 0.0 100.0

6 400 0.0 100.0

6 800 0.0 100.0

Factor correlations were also consistently higher in the LC-
CFA model (with values ranging from 0.88 to 0.95) compared to
the CFA (ranging from 0.76 to 0.90).

With regard to the bot detection in the LC-CFA, we obtained
a sensitivity of 71.07% and a specificity was 95.34% (bot
classification was designated as the positive identification for
computing diagnostic accuracy) with regard to the bots identified
with the IP addresses. A contingency table of classification rates
is provided in Table 2 (Appendix B). This indicated that we
found nearly all bots that were identified with the IP addresses;
in addition we classified several persons as bots that showed
unique IP addresses. We will discuss this aspect further in the
discussion section. With regard to the prediction of the bots with
the latent class model, the variability index showed a significant
estimate with a credible interval of [−0.423;−0.127]; the person-
fit index showed weak predictive power with a credible interval
of [−0.017;−0.001].

6. DISCUSSION

We believe identification of bots is an important methodological
step for online survey data. If this problem is ignored
interpretation of any analysis is likely to be biased and in turn
replication rates will suffer or interpretations are based statistical
artifacts. Our goal was to test and exemplify an approach which
could systematically identify bots to improve this issue.

6.1. Simulation
The simulation study provided five different important findings.
First, we could show that ignoring bots will lead to substantial

TABLE 5 | Loading table of LC-CFA and traditional CFA.

Parameter Factor(s) Item 2CFA 2LC-CFA R̂CFA ESSCFA R̂LC−CFA ESSLC-CFA

Loadings

RWA

λRWA1 0.91 0.97 1.00 18,000 1.00 740

λRWA2 0.88 0.95 1.00 2,200 1.00 7,900

λRWA3 0.87 0.95 1.00 5,400 1.00 2,200

λRWA4 0.89 0.96 1.00 12,000 1.00 610

λRWA5 0.82 0.93 1.00 18,000 1.00 1,600

λRWA6 0.88 0.96 1.00 7,500 1.00 610

λRWA7 0.90 0.96 1.00 18,000 1.00 4,800

λRWA8 0.91 0.97 1.00 8,900 1.00 2,000

λRWA9 0.88 0.95 1.00 18,000 1.00 6,200

λRWA10 0.91 0.96 1.00 4,800 1.00 2,300

SDO

λSDO1 0.89 0.94 1.00 4,400 1.00 2,400

λSDO2 0.89 0.93 1.00 6,100 1.00 1,200

λSDO3 0.35 0.90 1.00 3,300 1.00 1,800

λSDO4 0.34 0.90 1.00 10,000 1.00 3,400

λSDO5 0.78 0.88 1.00 18,000 1.01 490

λSDO6 0.86 0.93 1.00 18,000 1.00 1,300

λSDO7 0.30 0.91 1.00 1,900 1.00 4,100

λSDO8 0.40 0.92 1.00 18,000 1.00 8,600

NAT

λNAT1 0.90 0.97 1.00 2,400 1.00 870

λNAT2 0.82 0.93 1.00 1,500 1.00 980

λNAT3 0.84 0.94 1.00 2,500 1.00 1,800

λNAT4 0.85 0.94 1.00 18,000 1.00 18,000

λNAT5 0.82 0.93 1.00 18,000 1.00 18,000

λNAT6 0.89 0.97 1.00 13,000 1.00 18,000

λNAT7 0.75 0.84 1.00 18,000 1.00 18,000

Correlations

RWA & SDO 0.77 0.89 1.00 1,500 1.00 1,200

RWA & NAT 0.76 0.88 1.00 18,000 1.00 1,400

SDO & NAT 0.90 0.95 1.00 2,500 1.00 18,000

Variances

RWA 14.44 12.01 1.00 15,000 1.00 4,100

SDO 12.96 11.10 1.00 4,900 1.00 890

NAT 11.61 14.40 1.00 4,100 1.00 3,300

Where 2 are the posterior mean estimates for the associated parameters, R̂ provides a

descriptive of chain mixing, and the Effective Sample Size is ESS.

bias in all models parameter. Factor loadings, factor variances
and factor correlations will be severely underestimated, and of
course, bias increases with the percentage of bots in the sample.
Second, the LC-CFA has a high sensitivity and specificity to
identify bots that allowed us to almost perfectly recover all bots
under each scenario. Third, using the LC-CFA we could reduce
the bias to a degree that can bemostly neglected when sample size
was sufficiently large, that is, 400 or more. Smaller sample sizes
(N = 200) did only provide unbiased estimates if the percentage
of bots was not too large and models were not too complex.
Fourth, the performance of the LC-CFA did not depend much
on the reliability of the items nor the multicollinearity present in
the data.
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FIGURE 4 | Scatter plot of loading estimates from the LC-CFA and traditional

CFA. Values above the diagonal (dashed) line indicates higher standardized

loadings for the LC-CFA. The reverse coded items are in the top left part of the

plot.

Finally, the variability index outperformed the likelihood
based person-fit index in the detection of bots via the latent
class model. The distinction between the two indices increased
particularly with the proportion of bots. One possible explanation
is that the increasing amount of bots influences the information
contained in the likelihood (see Equation 6). When an increasing
amount of persons in the sample does not contribute to
the specified model and instead produces more noise, the
identification of bots that supposedly show a pattern similar to
outliers becomes more complicated (e.g., if 50% of the sample
are bots).

6.2. Empirical Example
The goal of the empirical example was to exhibit the LC-CFA
in a practical setting with known bots. The identification rate
of bots in the LC-CFA (specificity = 95.34%) was similar to
that found in the simulation study in a comparable condition
(N = 400 and 50% bots, specificity = 98%). At first it seems
the identification of non bots may have suffered (sensitivity =

71.07%) compared to the simulation (N = 400 and 50% bots,
sensitivity = 99%). However, a potential explanation for this is
that some bots may be in the data which were not flagged by the
duplicate geolocation approach. Further, it is plausible to assume
some responders were inattentive and thus these cases will be
classified as bots by the model (e.g., if a person is responding
carelessly with random answers). Both of these situations will
lead to a reduction in the sensitivity as calculated in this empirical
example. Therefore, we feel confident that the obtained sensitivity

represent the minimum accuracy of non bot identification and
that the true accuracy is higher.

A second important finding is that if scales only consist of
items that are formulated in the same direction (no inverse
formulated items), then ignoring bots may not be as problematic.
However, typical recommendations in test construction include
the formulation of negatively worded items. In this case, the
actual problem (like in the SOD scale here) shows up, for
example, with severely biased factor loadings.

6.3. Limitations
One of the main limitations in the simulation study was that we
did not account for model mis-specification. Two aspects should
be addressed here: First, factor models may be mis-specified even
for the persons who respond attentively to the questionnaire
or the experiment. We did not include this kind of mis-
specification and assumed that the general model configuration
(which item loads on which factor) were correct. It remains to
be investigated how sensitive the bot detection is to such model
mis-specifications.

Second, it is likely that as long as inattentive persons use
random responses, they will be classified as bots. Even though
this changes the interpretation of the class, we think that this is
not problematic because inattentive behavior has been shown to
contaminate data and bias estimates in a similar fashion as bots
(Jin et al., 2018). At this point, there seems to be no reasonable
model available that can distinguish bots and careless responders
except with very strong and potentially invalid assumptions
(regarding response patterns).

6.4. Future Directions
While bot identification techniques improve, so do methods to
evade detection. First, we expect that programmers might start
to provide non-random patterns that mimic actual responses
(e.g., other probabilistic functions). Second, click farmers will
likely continue to adapt to screening protocols and may begin to
employ more deceptive response patterns. In future research, it is
necessary to providemethods that are sufficiently general in order
to detect bots with different types of fake response patterns.

7. CONCLUSIONS

We have discussed that bots could be identified with reasonable
certainty by flagging duplicate geolocation from survey meta-
data. This approach is no longer reliable. In response to
the alarms raised in the scientific community, Mturk has
implemented filtering methods for known IP geolocation sets.
However, this information can be easily obscured by using
techniques such as Virtual Private Networks (VPNs) for IP and
geolocation spoofing (Pham et al., 2016). Not only are these
identity obscuring techniques free, they are readily available,
open source, and widely advertised. The LC-CFA approach as
we have shown can accurately identify bots in survey data even
if survey platforms do not identify them. We are confident
that the LC-CFA will be capable of accurate bot identification
up until bots can convincingly provide human like response
patterns. Therefore, as we have empirically supported its use we
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recommend using the LC-CFA to improve the quality of data
collected from online survey platforms by identifying bots.
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