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A modeling framework, based on the theory of signal processing, for characterizing

the dynamics of systems driven by the unraveling of information is outlined, and is

applied to describe the process of decision making. The model input of this approach

is the specification of the flow of information. This enables the representation of (i)

reliable information, (ii) noise, and (iii) disinformation, in a unified framework. Because

the approach is designed to characterize the dynamics of the behavior of people, it is

possible to quantify the impact of information control, including those resulting from

the dissemination of disinformation. It is shown that if a decision maker assigns an

exceptionally high weight on one of the alternative realities, then under the Bayesian

logic their perception hardly changes in time even if evidences presented indicate that

this alternative corresponds to a false reality. Thus, confirmation bias need not be

incompatible with Bayesian updating. By observing the role played by noise in other

areas of natural sciences, where noise is used to excite the system away from false

attractors, a new approach to tackle the dark forces of fake news is proposed.

Keywords: noise, signal processing, communication theory, disinformation, electoral competition, marketing,

confirmation bias

1. INTRODUCTION

The term “fake news” traditionally is understood to mean false newspaper stories that have been
fabricated to enhance the sales of the paper. While unethical, in most cases they are not likely to
create long-lasting serious damages to society. However, since the 2016 US presidential election and
the 2016 “Brexit” referendum in the UK on the membership of the European Union, this phrase
has been quoted more frequently, with the understanding that it refers to deliberate disseminations
of false information with an intent to manipulate the public for political or other purposes. The
concept of fake news in the latter sense, of course, has been around for perhaps as long as some
3,000 years, and historically it has often been implemented in the context of conflicts between
nations or perhaps even between corporations. Hence there is nothing new in itself about fake
news, except that the rapid development of the Internet over the past two decades has facilitated its
application in major democratic processes in a way that has not been seen before, and this has not
only attracted attention of legislators (Collins et al., 2019; Gallo and Cho, 2021) but also generated
interests in academic studies of the phenomenon, its implications and prevention (Allcott and
Gentzkow, 2017; Shu et al., 2017; Bastos and Mercea, 2018; Bovet and Makse, 2019; Grinberg et al.,
2019; Rajabi et al., 2019; Sample et al., 2019; Scheufele and Krause, 2019; Connor Desai et al., 2020;
Roozenbeek et al., 2020, to name a few). The purpose of the present paper is to contribute toward
this endeavor by applying techniques of communication theory to develop a general framework for
characterizing the dynamical behaviors of systems (for example, a group of people) driven by the
flow of information, irrespective of whether the information is true or false.
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Brody Noise, Fake News, and Tenacious Bayesians

The idea that social science, more generally, can only be
properly understood by means of communication theory, for,
communication is the building block of any community and
hence society, was advocated byWiener long ago (Wiener, 1954),
although its practical implementation has only been developed
over the past 20 years in the context of financial applications
(Brody et al., 2022). When it comes to the study of the impact
of information revelation, whether the information is reliable
or not, in particular, the techniques of communication theory
become especially effective. This follows from the observation
that the change in the behavior of a decisionmaker that we intend
to model results directly from communicating information.
Based on this observation, a systematic investigation of the
effects of fake news in the context of electoral competition and
referendum, from the viewpoint of information transmission,
was initiated in Brody and Meier (2022); first appeared in 2018,
and developed further in Brody (2019). The concepts underlying
these works are elaborated here in greater detail, with the view
toward developing measures to counter the negative impacts of
deliberate or malicious disinformation that misguide the public.

In more specific terms, to study the impact of disinformation,
it is indispensable that information, noise such as rumors
and speculations, disinformation, the rate of information
revelation, and so on, are all represented by quantities that take
numerical values. Otherwise, scientifically meaningful analysis,
such as determining the likelihood of certain events to take
place, cannot be applied. In probability theory, this idea is
represented by the concept of random variables that assign
numerical values to outcomes of chance. To study the impact
of disinformation, or more generally to study the dynamics
of a system governed by information revelation, therefore,
the information-providing random time series (which may or
may not contain disinformation) will be modeled. Given this
“information process” it is then possible to apply powerful
and well established techniques of communication theory to
study virtually all dynamical properties of the system, including
the statistics of future events. In fact, as shown below, the
method is sufficiently versatile to the extent that it allows for
the numerical simulation of an event that occurs with zero
probability—a simulation of what one might call an alternative
fact. The fundamental idea underpinning the present approach
is that if a decision maker were to follow Bayesian logic
(Bayes, 1763) for assessing uncertain events, then the statistics
of their behavior can be predicted from a simple mathematical
deduction, provided that the flow of information is specified.
This motivates us to model the information flow as the starting
point so as to derive the dynamical behaviors of people driven
by information revelation. This is in contrast to more traditional
approaches in mathematical modeling whereby one attempts to
model the behavior itself from the outset. The latter approach
is problematic in the context of information-driven systems
under noisy environments, for, the dependence of the output
(behavioral dynamics) on the input (information revelation) is
often highly nonlinear.

With this in mind the present paper explains how the flow
of information can be modeled, and how the unraveling of
information under noisy environments affects a decision maker’s

perception. Then it is shown how the model can be applied
to determine the dynamics of an electoral competition, and,
in particular, how a deliberate dissemination of disinformation
might affect the outcome of a future election. The two
fundamental ways in which the information can be manipulated
will be discussed. The paper then introduces the concept, to
be referred to as the tenacious Bayesian, that explains how
people behave in a seemingly irrational manner if they excessively
overweight their beliefs on a false reality, even though they are
following the rational Bayesian logic. This shows that an element
of confirmation bias can be explained within the Bayesian
framework, contrary to what is often asserted in the literature.
Finally, the paper proposes a new approach to counter the impact
of disinformation, by focusing on the role played by noise, and by
borrowing ideas from statistical physics of controlling a system
that entails many internal conflicts or frustrated configurations.
Specifically, it is common for a complex system to be trapped in
a locally stable configuration that is globally suboptimal, because
the system has to enter into a highly unstable configuration before
it can reach an even more stable one. However, by increasing the
noise level the system is excited and becomes unstable, thence
by slowly reducing the noise level the system has a chance of
reaching an even more stable configuration.

2. DECISION DYNAMICS FROM
INFORMATION PROCESSING

Decision making arises when one is not 100% certain about
the “right” choice, due to insufficient information. The current
knowledge relevant to decision making then reflects the prior
uncertainty. If additional partial information about the quantity
of interest arrives, then this prior is updated to a posterior
uncertainty. To see how this transformation works it suffices
to consider a simple example of a binary decision—a decision
between two alternatives labeled by 0 and 1—under uncertainty.
Suppose that we let X be the random variable representing a
binary decision so that X takes the value 0 with probability p
and X equals 1 with probability 1 − p, where the probabilities
reflect the degree of uncertainty. In the context of an electoral
competition, one can think of a two-candidate scenario whereby
X = 0 corresponds to candidate A and X = 1 corresponds
to candidate B. Then the probabilities (p, 1 − p) reflect the a
priori view of a given decision maker—a voter for example. In
particular, if p > 0.5, then candidate A is currently preferred over
candidate B.

With this setup, the decision maker receives additional noisy
information about the “correct” value of X. For example, one
might read an article that conveys the information that voting
for candidate A is likely to be the correct decision. The idea then
is to translate this information into a numerical value so as to be
able to understand and characterize how the view of the decision
maker, represented by the probabilities (p, 1 − p), is affected by
acquiring further information. To model this mathematically,
let ǫ denote the random variable representing noise, which is
assumed statistically independent of X. The origin of noise may
be a genuine mistake, or a plain speculation, on the part of the
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author of the article, or perhaps a simple misinterpretation of
the article on the part of the decision maker. The idea thus is
to regard the unknown quantity of interest, the value of X in
this case, as a signal to be inferred, which is obscured by noise.
Hence the receiving of noisy information amounts to observing
the value of

ξ = X + ǫ.

Because there are two unknowns, X and ǫ, and one known,
the value of ξ , it is not possible to determine the value of X,
which reveals the correct choice of action, from this information.
Nevertheless, the knowledge of the value of ξ will allow the
decisionmaker to reduce the uncertainty aboutX. As an example,
suppose that there is a wide range of rumors and speculations
about the value of X. If there are many such contributions
to the noise, then the law of large numbers implies that it is
reasonable to assume ǫ be normally distributed, say, with mean
zero and some standard deviation ν. Of course, the nature of
noise may not be of Gaussian type, and likewise the signal
and noise decomposition in general need not be additive. One
of the advantages of the present approach is that depending
on the context, it is possible to choose the structure of the
information-baring random variable ξ , and proceed to analyse
its consequences (see e.g., Brody et al., 2013). However, for
illustrative purposes here we shall proceed with the additive
Gaussian noise model.

Suppose that the value of ν is relatively small, say, ν = 0.2.
This means that the distribution of ǫ is narrowly peaked at
ǫ = 0. Suppose further that the value of the observation is
ξ = 0.73. In this case there are two possibilities: we have either
(X, ǫ) = (0, 0.73) or (X, ǫ) = (1,−0.27). However, given that
the distribution of ǫ is narrowly peaked at ǫ = 0, the realization
ǫ = 0.73 is significantly less likely as compared to the event
that ǫ = −0.27. Hence after the observation that ξ = 0.73
the prior probabilities (p, 1 − p) will be updated to the posterior
probabilities (p′, 1 − p′) in such a way that p′ < p, whenever
ξ > 0.5. The exact value of p′ will be dependent on the value
of p, and can be calculated using the Bayes formula:

p′ =
p ρ(ξ |X = 0)

p ρ(ξ |X = 0)+ (1− p) ρ(ξ |X = 1)
,

where ρ(ξ |X = 0) is the density function of the random variable
ξ given the event that X = 0, and similarly for ρ(ξ |X = 1).
Because conditional on the value of X the random variable ξ is
normally distributed with mean X and variance ν2, in the present
context the Bayes formula gives

p′ =
p

p+ (1− p) exp
(

1
ν2
(ξ − 1

2 )
) .

Thus, for instance, if the a priori probability is 50–50 so that
p = 0.5 then we find in this example with ν = 0.2 and ξ =
0.73 that p′ ≈ 0.0032. In other words, although the value of X
remains unknown, we can be almost (99.68%) certain that the
decision corresponding to X = 1 is the correct choice, based on

the observation of information relevant to decision making. The
example here is consistent with our intuition, owing to the fact
that our brains appear capable of subconsciously implementing
the Bayes formula at an intuitive level, when it comes to
processing signals under noisy environments—for example, in
attempting to catch a ball in the air, instead of consciously
solving Newton’s equations, our brain subconsciously processes
the visual signal to achieve the task. (Whether a human brain
is capable of subconsciously implementing Bayesian rules in
broader contexts might be questionable—one recent proposal
(Sanborn and Chater, 2016) is that the brain functions instead
as a Bayesian sampler.) Therefore, once the observation is made,
our views will be shifted, resulting in actions, such as making a
decision. In other words, it is the processing of noisy information
that results in the dynamics of decision makers: new information
arrives, positions reassessed, and actions taken.

The approach taken here to model the dynamics of
decision making is based on the standard formalism of
communication theory (Wiener, 1948; Shannon and Weaver,
1949). In communication theory, the random variable X
represents the signal that has been transmitted, which is obscured
by noise, represented here by the random variable ǫ. The task
then is to determine the best estimate of X given the observation
ξ . Because the processing of imperfect information is intrinsic to
any decision making under uncertainty, communication theory
is highly effective in characterizing dynamical behaviors of people
driven by information revelation. Indeed, communication theory
has been applied extensively to model dynamical behaviors
of financial markets, or more precisely the dynamics of asset
prices, over the past two decades (Brody et al., 2022). In the
context of a financial market, asset prices change in accordance
with transaction decisions. When a market participant makes a
decision on an investment, their primary concern is the unknown
future return resulting from that investment. By letting X be the
random variable representing the return of a given investment
over a period, whose value is obscured by market noise, it is then
possible to arrive at a plausible model for the price dynamics
using the techniques of signal processing in communication
theory, because the model merely replicates, albeit with some
simplifying approximations, what actually takes place in real
world—prices change in accordance with the flow of information.

Traditional communication theorists have shied away from
applying techniques of signal detection to model behavioral
dynamics, for, the random variable X appearing in the context
of decision making is typically not “transmitted” by the sender
of a communication channel. Instead, it represents the quantity
of interest that one wishes to infer under uncertainty. In a
financial context, for instance, X may represent the future
return over an investment period, whose value is not known
to anyone, so clearly no one is able to transmit the value of
X. Yet, X certainly exists, whose value will be revealed at the
end of that investment period. In this case, it is the market
as a whole that acts like an abstract communication channel.
Likewise, situations are similar for many other decision makings
under uncertainties, but it requires a leap of imagination to
realize that communication theory provides a unified framework
for characterizing the dynamics of information-driven systems
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even when there is no explicit mechanical device to form a
communication channel.

There is another reason why, in spite of its effectiveness, signal
processing had not been widely applied to modeling behavioral
dynamics, and this has to do with the meaning of random
variables in probability. Take, for instance, the case of coin
tossing. If the coin is fair, then the outcome head is as likely
seen as the outcome tail. But what would be the average? There
is no way of answering this question using common language—
for sure the coin does not have a “Cecrops” face that is half
head and half tail. To make any statistical consideration such as
taking the average, it is necessary to assign numerical values to
outcomes of chance, called a random variable, so for instance we
can associate the number 1 to the outcome head, and 0 to the
outcome tail. We can then meaningfully say that the average of
the outcome of a fair coin is 0.5 without any difficulty. In a similar
vein, to model decision making under uncertainty it is necessary
to introduce a random variable to represent different options, and
likewise another random variable to represent noise. The idea of
assigning numerical values to rumors, speculations, estimations,
news bulletins, etc., may appear rather abstract, and it requires
another leap in imagination to realize that this is in fact no more
abstract than associating the values 0 and 1 to the outcomes of a
coin tossing. Indeed, the variable X in a decision making refers
to the correct choice. The information ξ = X + ǫ thus does not
refer to observing one’s own decision process. Rather, ξ embodies
the observation of external information sources in relation to
arriving at the correct choice in the decision making.

The example above in which the observation is characterized
by the relation ξ = X + ǫ is, of course, meant to represent
the simplest situation, whereas in real-life decision makings, the
noise typically changes in time and is thus represented by a time
series {ǫt}, where t denotes the time variable. In some cases, the
nature of available decision options itself may change in time, in
which case X will also be replaced by a time series. At any rate,
in almost all realistic circumstances, the information-providing
observation is not a fixed random variable, but rather is given
by a time series {ξt}. Fortunately, the theory of signal detection
and communication is highly developed (Davis, 1977; Liptser and
Shiryaev, 2001) so as to allow for a good level of tractability to
model many realistic circumstances in decision making.

3. MODELING ELECTORAL COMPETITION
WITH INFORMATION

An information-based approach to modeling the dynamics of
electoral competitions has been introduced recently in Brody and
Meier (2022) and in Brody (2019). The idea can be sketched
as follows. In the context of an electoral competition, a voter
typically has a handful of issues of concern (such as taxation
policy, climate policy, education policy, policies on abortion right
and gun control, or perhaps the personality of the leader of a
political party, &c.), and likewise possesses partial information
about how different candidates, if elected, will implement policies
to address these issues. Each such issue is then modeled by
a random variable so as to assign numerical values to policy

positions, and these random variables, whose values represent
different policy positions different candidates would implement,
play the role of signals whose values the voters wish to identify.
Hence for example in the case of a binary issue (for or against),
one can assign, say, the values +1 and −1 to the two positions.
Each such random variable is referred to as a “factor” and for
each electoral factor there is a noisy observation characterized by
a time series. Thus voters can only infer the best estimates for the
values of these factors, based on available information.

For a given voter, their preferences on different policy
positions are then modeled by weights {wk}, which are not
necessarily positive numbers. The signs of the weights reflect
their preferences on the various issues, while the magnitude |wk|
represents the significance of the policy position about the k-th
issue for that voter. In Brody and Meier (2022) a linear scoring
rule was assumed to associate for each candidate a score from
a given voter, determined by the weighted average of their best
estimates for different factors. That is, the score Sl assigned to
candidate l by a voter with preference pattern {wk} is given by

Sl =
∑

k

wk E[Xk],

where E[−] denotes expectation operation. A given voter will
then choose to vote for the candidate with the highest score. The
importance of imperfect information about the policy positions
of the candidates in electoral competitions has been noted before
(see e.g., Harrington, 1982; McKelvey and Ordeshook, 1985;
Feddersen and Pesendorfer, 1997; Fowler and Margolis, 2014).
The approach of Brody andMeier (2022) is to take this idea a step
further by modeling the noisy flow of information concerning
the values of the policy positions in the form of a time series
{ξt}, from which the dynamics of the opinion poll statistics can
be deduced. This is because the expectation E[−] is now replaced
by a conditional expectation subject to the noisy information flow
regarding the policy positions of the candidates.

Another advantages of this approach, apart from being able
to simulate the time development of the conditional expectations
of the electoral factors {Xk}, is that given the information about
the distribution of voter preferences within a group of the
population, it is computationally straightforward to sample a
large number of voter profiles (the weights {wk}) without going
through the costly and time-consuming sampling of the actual
voters. Thus, for example, if there were one million voters, and if
we have the knowledge of the distribution of voter preferences
on different issues, then by sampling from this distribution a
million times we can artificially create voter preference patterns,
from which we are able to simulate the dynamics of the opinion
poll statistics and study their implications. As a consequence,
the information-based approach makes large-scale simulation
studies and scenario analysis on behavioral pattern feasible, when
it comes to systems driven by information revelation under
uncertainties.

It should be evident that because the starting points of the
formalism based on communication theory are (a) to identify
relevant issues and associate to them random variables, called
factors, and (b) to build a model for the flow of information
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for each of the factors, it readily suggests a way to explore how
adjustments of information flow (for example, when to release
certain information) will affect the statistics of the future (such
as the probability of a given candidate winning on the election
day). Furthermore, it also suggests a way to model deliberate
disinformation and study their impacts. These ideas will be
explained in more detail below.

4. DISINFORMATION AND THEIR IMPACTS

The intention of deliberate disinformation—the so-called “fake
news”—is, as many people interpret the phrase nowadays, to
create a bias in people’s minds so as to impact their behaviors and
decision makings. But clearly such disinformation will have little
impact if the person who receives the information is aware of this.
That is, if the person has an advanced knowledge of the facts,
then they will not be impacted by false information—although
there are suggestions that there can be such “anchoring” effect
even among well-informed individuals (Wilson et al., 1996). (The
situation is different if a false information is given first, and the
truth is revealed subsequently, because in this case the prior
belief has been shifted before the facts are revealed.) Because
disinformation is not part of the “signal” that in some sense
represents truth, it can be viewed as a kind of noise. In the context
of a traditional communication channel, on the other hand, while
noise is a nuisance, it does not have an intent. In other words,
noise does not have an unknown bias. Putting these together, it
should be apparent that the release of deliberate disinformation
is equivalent to the introduction of a bias into the noise that is
undetected by the receiver of the information. Thus, in the case of
the earlier example, the observation under disinformation takes
the form

η = X + (ǫ + f ),

where f represents the biased disinformation so that the
expectation of f is nonzero. If a person receives the value of η,
but is unaware of the existence of the term f and presumes that
it is the value of ξ = X + ǫ, then the resulting inference will
be misguided. For instance, a positive f will misguide people in
thinking that the value of X is larger than what it actually is, and
conversely for a negative f people will be misled to the conclusion
that the value of X is smaller than what it actually is. Again, once
one recognizes the need for the introduction of a random variable
f for representing disinformation so as to allow for a meaningful
statistical treatment, it becomes apparent how tomodel and study
behavioral dynamics in the presence of fake news.

Continuing on with this simple example, where X is a binary
random variable with a priori probabilities (p, 1− p) = (0.5, 0.5)
and ǫ is a zero-mean normal random variable with standard
deviation ν = 0.2, suppose that disinformation is released so as to
enhance the probability that the choice corresponding to X = 0
is selected by a decision maker. The decision maker is under
the assumption that the observation is of the form ξ = X + ǫ.
This means, in particular, that the smaller the value of ξ is, the
higher the a posteriori probability of X = 0 is. To enhance
the a posteriori probability, suppose, in the previous scenario

whereby ξ = 0.73, that the released disinformation amounts to
the realization that f = −0.093. Then the perceived, or deceived
a posteriori probability is p′ ≈ 0.032, even though in reality the
number ought to be p′ ≈ 0.0032.

In the above example, the disinformation-induced perceived
a posteriori probability, although has been enhanced by a factor
of ten, remains too small to be of significance in affecting
decision making. However, it has to be recognized that in reality
the information flow is typically continuous in time, i.e., for
real-world applications to modeling behavioral dynamics of the
public one has to be working with a time series rather than a
single-shot information model considered here. What this means
is that while each disinformation may only shift the public
perception by a small amount, the impact of a relentless release
of disinformation accumulates in time to become significant.

To visualize the effect, consider a time-series version of the
model in which the time-series {ǫt} for noise is represented by a
Brownian motion (hence for each increment of time the noise
is normally distributed with mean zero and variance equal to
that time increment), but the signal X remains a zero-one binary
random variable, whose value is revealed at a unit rate in time.
Thus, the observed time series takes the form

ξt = Xt + ǫt

in the absence of disinformation, whereas the Brownian noise
{ǫt} acquires a drift term f (t − τ ) at some point τ in time in
the presence of disinformation. Example sample paths with and
without a release of fake news are compared in Figure 1.

One of the advantages of the present approach is that a
simulator can preselect what is ultimately the ‘correct’ decision.
Looking at each realization one cannot tell, without waiting for
a sufficiently long time, which way the correct decision is going
to be. Nevertheless, the simulator is able to select the correct
decision in advance and let the simulation run. In this way, a
meaningful scenario analysis can be pursued. With this in mind,
in Figure 1 sample paths are shown, all of which corresponds to
the realization that the decision corresponding to the valueX = 1
is ultimately the correct decision. On the left panel, starting with
a 50–50 prior opinion, the development of the posterior opinion
based on the observation of the time series {ξt} is shown for four
different realizations of the noise {ǫt}. Depending on how the
noise develops, the realizations will be different, but in all cases,
ultimately, by waiting longer than the timescale shown here, the
correct decision (selected by the simulator) will be selected by the
decision makers. In contrast, if sufficiently strong disinformation
intended to guide decision makers toward the incorrect choice
(we know that it is incorrect because the simulator did not choose
that decision) is released at some point in time, and if nothing is
done about this so that decision makers are unaware of this, then
ultimately all decisions will converge to the incorrect choice, as
shown on the right panel.

It is worth remarking in this connection that in real-world
applications there are two situations that arise: One in which the
correct decision will be revealed at some point, and one in which
this is never revealed. For instance, if the decision is whether to
invest in asset A or asset B over an investment period, then at the
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FIGURE 1 | Impact of fake news. The two alternatives are represented by the values X = 0 and X = 1, but at time zero the uncertainty is at its maximum (the opinion

is equally split between the two alternatives). Then noisy observation begins, and the prior opinion is updated in time (expressed in years). Plotted here are sample

paths for posterior probabilities that X = 1. In all simulations the correct choice is (secretly) preselected to be the one corresponding to X = 1. Depending on how the

Brownian noise develops the best inference develops differently, as shown here on the left panel, but by waiting sufficiently long, ultimately enough truth is learned and

all decisions on the left panel will converge to the correct one, typically by time t ≈ 10. The impact of disinformation, released at a random point in time (at t = 0.6

here), is shown on the right panel. The disinformation is released at a constant rate in time, intended to mislead the decision maker to select the choice corresponding

to X = 0. The rate of release is taken to be sufficiently strong that if decision makers are unaware of the disinformation then they will be led to making the incorrect

decision (X = 0), even though the simulator had preselected the correct decision to be that corresponding to X = 1.

end of the period one would discover which investment resulted
in a higher yield. For other decisions, for example in the context
of an election or referendum, it is often the case that voters will
never find out, beyond an informed guess in some cases, which
candidate would have been better, because the lost candidates
do not have the opportunities to demonstrate the outcomes
of their policy implementations. In fact, even for the winning
candidate, the merits of their policies may not become apparent,
especially when there are long-term consequences. These latter
cases amount to having a signal that drops out at some point in
time (e.g., on the election day), and hence afterwards the public
no longer receives information to improve their assessments.
Communication theory allows for the flexibility to handle all
these different situations that might arise in reality. For example,
if the correct choice is revealed for sure after a finite time horizon,
then one can let the noise {ǫt} be modeled by a Brownian bridge
process that goes to zero at the end of the period (Brody et al.,
2022). Alternatively, if the correct choice is never revealed, then
one can let the information revelation rate σ introduced below to
vanish at some point in time.

5. INFORMATION CONTROL

Besides the impact of disinformation, there is another important
ingredient that has to be brought into the analysis when
considering the controlling of public behavior. This concerns, for
instance, a situation in which there are individuals who are aware
of the value of X that the public at large are trying to infer. In
such a situation, what one might call the information-flow rate,
or the signal-to-noise ratio, may be adjusted. To understand this,
let us return to our single-shot information model, but this time
we have

ξ = σX + ǫ,

where the parameter σ determines the magnitude of the signal.
To understand the effect of σ , let us take an extreme case where

σ = 100 while X is a zero-one binary variable and ǫ is a zero-
mean normal variable with a small standard deviation. Then for
a given value of the noise ǫ there are two possible observations:
ξ = ǫ, or ξ = 100 + ǫ. Because the realized value of ǫ will
almost certainly be close to zero, we know already that ξ ≈ 0
if X = 0 and ξ ≈ 100 if X = 1. Hence the effect of σ is to amplify
the signal, making it easier to infer the value of X. Conversely,
suppose that σ = 0.01 in this example. Then we know that
ξ ≈ 0 irrespective of whether X = 0 or X = 1. Hence the
observation will be of little help in inferring the value of X: the
signal is dimmed by having a small value of σ .

With this example in mind it should be evident that the
general information model can take the form

η = σX + (ǫ + f ).

To control the behavior of the public, one can either introduce
the term f with a nonzero mean in such a way that the public
is unaware of its existence, and hence confuses the contribution
of f as arising from X, or increase (decrease) the value of σ
so that the public can arrive at a more reliable inference faster
(slower). These are the two fundamental ways in which the public
behavior under uncertain environments can be manipulated via
information.

It is worth remarking here, incidentally, that if f has no bias,
then its effect is equivalent to reducing the value of σ , because in
this case one is merely enhancing the magnitude of noise. Hence
the introduction of purely random disinformation has the effect
of slowing down the public from discovering the truth. This may
be intuitively apparent, but here it follows as a direct consequence
of communication theory. In particular, in the context of an
observation involving a more general time series, the timescale of
arriving at a reasonable inference about the value of X is typically
proportional to σ−2. This is the timescale for which the amount
of uncertainty as measured by the variance of X is reduced by
more than 50% of the initial uncertainty. Hence if the magnitude
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of noise is doubled, then it takes four times longer to arrive at the
same level of inference.

With the above characterization of the two fundamental ways
in which information can be manipulated, it is possible to ask
which strategy maximizes the chance of achieving a certain
objective, and techniques of communication theory can be used
to arrive at both qualitative and quantitative answers. As an
example, consider an electoral competition, or a referendum. To
simplify the discussion let us assume that the choice at hand is
binary, and the information providing process is a time series,
where both the noise {ǫt} and the information revelation rate
{σt} are changing in time. If an agent is willing to engage in a
strategy to divert the public to a particular outcome based on
disinformation, then the example illustrated in Figure 1 shows
that it suffices to release “fake news” whose magnitude |ft| is
greater than that of the information revelation rate |σt|. However,
there are two issues for the fake-news advocators: First, the
strategy is effective only if the public is unaware of the existence
of disinformation. Some people are knowledgable, while others
may look it up or consult fact-checking sites. From these, some
can infer the probability distribution of disinformation, even
though theymay not be able to determine the truth of any specific
information, and the knowledge of this distribution can provide a
sufficient deterrence against the impact of disinformation (Brody
and Meier, 2022). Second, a frequent release of information
can be costly. For a state-sponsored disinformation unit this
may not be an issue, but for most others, it is typically rather
costly to disseminate any information to the wider public—for
example, by paying a lot of money to the so-called “influencers”
to discourage people from being vaccinated against a potentially
deadly virus.

From the viewpoint of a fake-news advocator, the cost issue
can be addressed by means of signal-processing techniques
outlined here. For instance, suppose that for cost reasons there
is only one chance of releasing disinformation, whose strength
grows initially but over time is damped down, perhaps owing to
people discovering the authenticity of the information. In such a
scenario one would be interested in finding out the best possible
timing to release disinformation so as to maximize, for instance,
the probability of a given candidate winning a future election.
The answer to such a question of optimisation can be obtained
within the present approach (Brody, 2019).

From the viewpoint of an individual, or perhaps a
government, whowishes to counter the impact of disinformation,
on the other hand, the analysis presented here will allow for
the identification of optimal strategies potentially adopted by
fake-news advocators so as to anticipate future scenarios and to
be prepared. It also provides a way for developing case studies
and impact analysis. This is of importance for two reasons. First,
the conventional approach to counter the impacts of fake news,
namely, the fact checking, although is an indispensable tool, does
not offer any insight into the degree of impact caused by fake
news. Second, while information-based approach tends to yield
results that are consistent with our intuitions, some conclusions
that can be inferred from the approach are evident with hindsight
but otherwise appear at first to be counterintuitive. Take, for
instance, the probability of a given candidate winning a future

election, in a two-candidate race, say, candidates A and B. It
can be shown (Brody, 2019) that if the current poll suggests
that candidate A has S% support, then the actual probability
of candidate A winning the future election is always greater
than S if S > 50, and is always less than S if S < 50. Hence,
contrary to a naive intuition, the current poll statistics are not the
correct indicators for the actual realized probabilities of election
outcomes. Further, the smaller the information flow rate σ is,
the greater is the gap between the current poll and the realized
winning probability. Thus, for instance, if S = 51, say, 6 months
before the election day, and if the value of σ is very small, then
the projected probability of candidate A winning the election is
significantly higher than 51%, and in the limit σ tending to zero,
it approaches 100% (see Figure 2).

This may at first seem counterintuitive, but with reflection
one can understand why this has to be the case. If the value
of σ is close to zero, then what this means is that virtually no
information about the factor X will be revealed between now and
the election day 6 months later (here it is assumed for simplicity
of discussion that there is only one factor). But without reliable
information people do not change their mind spontaneously.
Hence if candidateA has 51% support today, thenwithout further
information 51% of voters will continue to support candidate A
6 months later, meaning that the actual probability of winning
is closer to 100%. It follows that if a candidate is leading the
poll, then it is in their best interest not to reveal any information
about their policies or personality, unless there are good reasons
in doing so to further enhance the current lead. Conversely, if
a candidate is lagging behind the poll then it is in their best
interest to reveal as much information as possible, so as to create
movements that may change the balance of the poll.

This example naturally lends itself to the second way in which
information can be controlled. Namely, to adjust the value of
σ . This is a different approach from the one based on releasing
disinformation to guide people away from discovering facts. For
example, if there is a fact, such as tax return, that a candidate
does not wish the public to find out, or if a candidate is leading
the poll statistics even though the candidate has no clue about
future policies, then the value of σ can be reduced either by
not revealing any information or simply by putting out a lot of
random noise peripheral to the issue. Alternatively, if the value of
X is known to a small number of individuals (e.g., the candidates
themselves) when it is advantageous for the candidate that the
public should discover this, then they are in the position to
release more information to enhance the value of σ . In a more
general situation where {σt} is time dependent, it is possible to
design how the information revelation rate should be adjusted
in time (Brody, 2019) so as to maximize the objective (for
example maximizing the probability of winning an election, or
maximizing the sales in the context of advertisements).

6. INFORMATION CLUSTERS AND
TENACIOUS BAYESIANS

One of the key issues associated with the deliberate dissemination
of disinformation in a coordinated and organized manner (for
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FIGURE 2 | Probability of winning a future election. The winning probability of a candidate in a two-candidate electoral competition, to take place in 1 year time, is

plotted. On the left panel, the probabilities are shown as a function of today’s support rating S for two different values of the information-flow rate: σ = 0.15 (purple)

and σ = 0.95 (magenta). If today’s poll S were an indicator for the winning probability, then it would be given by a straight line (brown), but in reality the probability of

winning a future election of a candidate, whose current support rate is S > 50%, is always greater than S. On the right panel, the winning probability is shown as a

function of the information-flow rate σ of a candidate whose support rate today is S = 52%. If the candidate is leading the poll, then the best strategy is to reveal as

little information relevant to the election as possible.

example, by a state-sponsored unit) concerns the fact that
although there is a very wide range of information sources readily
available, people have the tendency of gathering information
from a limited set of sources, resulting in the creation of
clusters of people digesting similar information, and this can be
exploited by a malicious fake-news advocator. To understand the
formation of such clusters, consider the following scenario in a
different context. Imagine that there is a wide open space, with a
large number of people standing at random, and that these people
are instructed to lie down in such a way that they lie as parallel
as possible with their neighbors. Or alternatively, the instruction
may be that everyone should lie with their heads pointing
either north or south, such that they should lie in the same
orientation as their neighbors. In theory, there are alignments
such that all the people lie in a perfectly parallel configuration (for
instance, they all lie with their heads pointing north), but such a
configuration will not be realized in reality. The reason is because
the instruction that they should lie as parallel as possible with
their neighbors is a local one, and a local optimization does not
yield a global optimization when there is a wide-ranging complex
landscape of possible configurations. As a consequence, what
will happen is the formation of vortices or clusters, in the latter
case separated by domain walls separating alignment mismatch,
where within a cluster people are closely aligned.

Formation of informational clusters are perhaps not dissimilar
to this. The highly developed nature of Internet might give the
impression that everything is “global” in this information society,
but this is not the case because the concept of a neighbor in an
information cluster, where people within a cluster digest similar
information sources, need not have any relation to a geographical
neighbor: a person living across the Atlantic can be a neighbor in
the information cluster, while the next door occupant can be from
another universe for that matter. As a consequence of the cluster
formation, the type of information digested in one cluster tend to
differ from that in another cluster. For instance, a regular reader
of a left-leaning news paper is unlikely to pick up a right-leaning

paper, and vice versa—the heights of the domain walls are made
higher by the fluidity of Internet, and, in particular, by fake news.

Of course, those belonging to a given cluster are often well
aware of the existence of other opinions shared by those in other
clusters. Yet, those counter opinions—the so-called “alternative
facts”—have seemingly little impact in altering people’s opinions,
at least in the short term. The reason behind this can be
explained from a property of Bayesian logic. Indeed, one of the
consequences of the clustering effect is the tendency of placing
heavier prior probabilities on positions that are shared by those
within the cluster. The phenomenon of overweighting the prior
is sometimes referred to as “conservatism” in the literature (El-
Gamal and Grether, 1995), although this terminology can be
confusing in a political discussion. At any rate, when the prior
probability is highly concentrated toward one of the alternatives,
and if this happens to be ultimately the “incorrect” choice, then
even if counter facts are presented time and again, the prior
weight need not change very much for a long time under the
Bayesian inference. This phenomenon will be referred to as the
“tenacious Bayesian inference” here.

The mechanism behind the tenacious Bayesian phenomenon
can be explained by means of communication theory. It has
been remarked that for the uncertainty to reduce on average to
a fraction of the initial uncertainty, a typical timescale required
for gathering information is proportional to the inverse square of
the information flow rate σ . More precisely, the timescale is given
by (σ1)−2, where 12 is the initial uncertainty, measured by the
variance. Hence if the prior probability is highly concentrated at
one of the alternatives, then 1 is very small, so typically it will
take a very long time for the initial uncertainty to reduce by a
significant amount. This is not an issue if the initial inference is
the correct one. However, if the initial inference is incorrect, then
there is a problem, for, the uncertainty will have to significantly
increase before it can decrease again. As a consequence, having a
very high prior weight on any one of the alternatives means it is
difficult to escape from that choice even if ultimately it is not the
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FIGURE 3 | Tenacious Bayesian behavior in a binary decision making. The two alternatives are represented by the values X = 0 and X = 1, and in all simulations, the

“correct” decision is preselected to correspond to the choice X = 1. On the left panel, four sample paths for the a posteriori probability that X = 1 are shown when the

a priori probability for the incorrect decision X = 0 is given by 99%. Although the evidences presented by the observed time series consistently indicate that X = 0 is

not the correct choice, the decision makers in these simulations have hardly changed their views even after 2 years, in spite of following the Bayesian logic. In

contrast, if the prior probability for the incorrect choice X = 0 is reduced to, say, 80%, then with the same amount of information-revelation rate (σ = 1 in both cases)

there will be more variabilities, as shown on the right panel.

correct one, because each alternative acts like an attractor. Sample
paths illustrating this effect are shown in Figure 3.

In the characterization of human behavior it is sometimes
argued that people act in an irrational manner if they do not
follow the Bayesian rule. So for instance if a person is presented
with a fact that diametrically contradicts their initial view, and
if the person does not change their view afterwards, then this
is deemed counter to Bayesian and hence irrational. While it is
not unreasonable to associate irrationality with a lack of Bayesian
thinking, any experimental “verification” of irrational behavior
based on this criterion is questionable, due to the tenacious
Bayesian phenomenon. A good example can be seen in the
aftermath of the 2020 US presidential election. Many believed
(and still do) that the election outcomes were “rigged” even
though the large number of lawsuits put forward challenging the
outcomes were thrown out of courts one after another. Although
the factual evidences presented suggested that the election results
were not rigged, this had little influence on those who believed
the contrary. One might be tempted to argue that this behavior
is irrational, but a better characterization seems to be that these
people are acting rationally in accordance wth their Bayesian
logic, albeit they have strongly skewed priors.

It should be evident that the effect of fake news naturally
is to exacerbate the issue associated with the concentration of
prior weights on incorrect inferences. In particular, if the prior
weight for an incorrect inference is already high, then it does not
require a huge amount of disinformation to maintain this status.
Therefore, the phenomenon of tenacious Bayesian behavior will
have to be taken into account in exploring measures to counter
the impacts of fake news.

One immediate consequence of the tenacious Bayesian
behavior is that it explains, at least in part, the confirmation bias
within the Bayesian logic. Broadly speaking, confirmation (or
confirmatory) bias refers to a well-documented behavior whereby
people with particular views on a given subject tend to interpret
noisy information as confirming their own views (Klayman,
1995; Nickerson, 1998; Martindale, 2005). Thus, two people

with opposing views, when presented with the same ambiguous
information, may simultaneously interpret the information as
supporting their initial views. If, in particular, the polarization of
the two opposing views increases after digesting the same noisy
information (Lord et al., 1979), then this is considered as a clear
evidence that people do not follow Bayesian thinking (Griffin and
Tversky, 1992; Rabin and Schrag, 1999; Dave and Wolfe, 2003;
Nishi and Masuda, 2013; Rollwage and Fleming, 2021).

The tenacious Bayesian behavior observed here, however,
suggests that such a phenomenon is not necessarily incompatible
with the Bayesian logic, and hence that, contrary to common
assertion, to a degree, confirmation bias can be explained as a
consequence of Bayesian thinking. To establish that the tenacious
Bayesian behavior is a generic feature of Bayesian updating under
uncertainties, it is necessary to work directly within the state
space of decision making, which will be explained now.

Suppose that the views held by decision maker A on a set of
n alternatives is represented by the probabilities (p1, p2, . . . , pn),
while that of decision maker B is represented by (q1, q2, . . . , qn).
To determine the level of affinity it will be useful to consider
instead the square-root probabilities ψi = √

pi and φi =√
qi. These square-root probabilities then represent the states of

decision makers. More specifically, the state space of decision
making is a vector space of unit-normalized positive vectors
endowed with the Euclidean inner product, such that squared
components of the vector determine probabilities for different
alternatives. The separation of the two decision makers A and B
can then be measured in terms of the spherical distance

θ = cos−1

(

n
∑

i=1

ψi φi

)

,

known in statistics as the Bhattacharyya distance (Brody and
Hook, 2009). A definite state of a decision maker is represented
by elements of the form ek = (0, . . . , 0, 1, 0, . . . , 0), where only
the k-th element in ek is nonzero. If two decision makers have
identical views, then their separation distance vanishes, while if
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the distance takes its maximum value θ = π/2 then their views
are orthogonal, and hence incompatible.

If the vector {ψi} represents the prior state of decision maker
A, and if noisy information relevant to the choice is revealed, then
the prior will be updated to a posterior state {φi} in accordance
with the Bayes formula, in the sense that the transformation
ψ2
i → φ2i is determined by the Bayes formula. Now in the

continuous-time setup where the noise is modeled by a Brownian
motion, it is known in signal detection that the transformation of
the posterior probability is governed by a differential equation
known as the Kushner equation (Kushner, 1964). Translating
this equation into the state-space by use of the square-root map,
one finds that the deterministic component (the drift) of the
dynamics is given by the negative gradient of the variance of the
signal that is to be inferred from the noisy information (cf. Brody
and Hughston, 2002). The nature of a negative gradient flow is to
push the state into another state of a lower variance. What this
means is that if the state of a decision maker is close to one of the
definite states, say, ek, for which the variance is zero, then the flow
generated by Bayesian updating has the tendency of driving the
state toward ek. Putting the matter differently, the definite states
{ei} are the attractors of the Bayesian flow.

Now the variance is a measure of uncertainty, so this feature
of Bayesian flow is only natural: reduction of uncertainty is what
learning is about, and this is the reason why Bayesian logic
is implemented in many of the machine learning algorithms,
since the Bayesian updating leads to maximum reduction in
uncertainty. However, this attractive feature can also generate an
obstacle in the context of decisionmaking, because the prior view
held by a decision maker is subjective and hence may deviate far
away from objective reality. In particular, if the state of a decision
maker is close to one of the false realities ek, then the Bayesian
flow will make it harder to escape from the false perception,
although by waiting long enough, eventually a decision maker
will succeed in escaping from a false attractor. Or, alternatively,
if by a sheer luck the noise takes unusually large values that take
the state away from the attractor, then by chance a quick escape
becomes possible, but only with a small probability.

With these preliminaries, let us conduct a numerical
experiment to examine how the separation of two decision
makers evolve in time under the Bayesian logic. Specifically, let
there be five possible choices represented by a random variable
X taking the values (1, 2, 3, 4, 5). Decision maker A assigns 96%
weight on the second alternative, whereas for other alternatives
assigns 1% weight each. Similarly, decision maker B assigns 96%
weight on the third alternative, whereas for other alternatives
assigns 1% weight each. The initial separation of the two is thus
given by θ ≈ 1.343. Normalizing the separation by setting δ =
2θ/π so that 0 ≤ δ ≤ 1 we find that the initial separation distance
is given by δ0 ≈ 0.855, where the subscript 0 denotes the initial
condition. Both decision makers are provided with the same
noisy information represented by the time series ξt = σXt +
ǫt , where the noise ǫt is modeled by a Brownian motion. The
simulator can secretly preselect the “correct” decision to be, say,
the fourth alternative so that both decision makers are trapped
at wrong inferences. (The choice of the correct alternative will
have little impact on the dynamics of the separation distance.)

The results of numerical experiments are shown in Figure 4. It
should be stressed first that on average the separation measure
{δt} is a decreasing process, because Bayesian updating forces
decision makers to learn. Yet, simulation study shows that there
is a clear trend toward slowly increasing the separation measure
over shorter time scales. That is, the separation tends to increase
slightly, but when they decrease, the amount of decrease is more
pronounced that on average it decreases.

An important conclusion to draw here is that the separation
of two decision makers can increase under Bayesian inferences.
Thus, while there is no suggestion here that confirmation bias
can be fully explained by means of Bayesian logic, the analysis
presented here, based on the tenacious Bayesian phenomenon,
shows that the gap between empirical behaviors of people
and those predicted by Bayesian logic in the context of
confirmation bias is significantly smaller than what is often
assumed in the literature.

7. PSYCHOLOGY OF FALSE BELIEF

It is of interest to remark that methods of communication theory
goes sufficiently far to allow for the simulation of an “alternative
fact,” that is, the simulation of an event whose probability of
occurrence, or the a priori probability perceived by the decision
maker, is zero. In this connection it is worthwhile revisiting
the meaning of the a priori probabilities. In the context of
natural science, these probabilities are interpreted to represent
the objective probability of an event taking place. Thus, if an
event with a very low a priori probability were to occur, then
the interpretation is the obvious one, namely, that a very rare
event has occurred. In the context of social science, however,
these probabilities need not characterize in any sense an objective
reality. Hence, if a decision maker were to assign, say, a very
low a priori probability on one of the alternatives, then the
interpretation here is that the probability merely reflects the
subjective perception of that decision maker, while in reality
the objective probability of that alternative being selected may
remain high. In other words, a false belief does not represent a
rare event.

In an extreme case, a decision maker may assign zero
probability to an alternative which may nevertheless represent
reality. This can be viewed as an extreme limit of the tenacious
Bayesian behavior, except that, perhaps surprisingly, Bayesian
logic here predicts that the psychology of a decision maker with
a perfect false belief (that is, someone who assigns zero weight
on an alternative that represents physical reality) exhibits an
erratic indecisive behavior different from the tenacious Bayesian
characteristics. Such a behavior is seen, however, only when
there are more than two alternatives, for, if there are only two
alternatives and if the a priori probability is zero for one of them,
then the view of the decision maker will not change in time under
the Bayesian logic.

Sample paths of such simulations are shown in Figure 5, in
the case where there are three alternatives. In general, when there
are more than two alternatives, and if decisionmakers assign zero
prior probability to the true alternative, then their views tend to
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FIGURE 4 | Separation distance under Bayesian updating. The polarity, or distance δ of two decision makers, when they are provided with an identical set of noisy

information, has a tendency to increase under the Bayesian updating, even though on average it decreases in time. Five sample paths are shown here for two different

choices of σ . On the left panel the information flow rate (signal to noise ratio) is taken to be σ = 0.2. Simulation studies (not shown here) indicate that in this case the

upward trend persists for some 40 years in about 50% of the sample paths, and the separation distance is typically reduced to half of the initial value after about 100

years. When the information flow rate is increased eleven-fold to σ = 2.2, polarized Bayesian learners are forced to converge a lot quicker, as shown on the right

panel, where the separation is reduced to half of its initial value typically within 2 years.

converge quickly to one of the false alternatives, remain there for
a while, before it jumps to one of the other false alternatives and
then after a while jumps again to yet another false alternative.
Such a “hopping” phenomenon can only be observed when they
categorically refuse to believe in or accept the truth, and this
erratic behavior is predicted by Bayesian logic.

The intuitive reason behind this hopping behavior is that no

false belief can ever be stable for long under the presence of

information that reveals the reality. Hence the stronger is the
information revelation rate about the reality, the more erratic
the behavior becomes. This feature can be studied alternatively

by examining the Shannon-Wiener entropy (Wiener, 1948),
which represents the measure of uncertainty. Under a learning

process characterized by the observation of the noisy time series
{ξt}, the uncertainty about different alternatives as characterized
by entropy decreases on average. Hence a learning process is

represented by the reduction of entropy, resulting in a low

entropy state. This is why a decision maker who refuses to
accept the real alternative quickly reaches a state of low entropy,
and wishes to stay there. The reality however contradicts the
chosen alternative. Yet, if entropy (hence uncertainty) were to
now increase, even though the learning process continues, then
this amounts to an admission of having to have rejected the
truth. In other words, a state of high entropy is unstable in
such a circumstance. The only way out of this dichotomy is
to rapidly swap the chosen false alternative with another false
alternative, until reality is forced upon the decision maker,
at which point the second false alternative is discarded and
replaced by either the original or yet another false alternative.
This process will continue indefinitely. Only by a reinitialisation
of the original assessment (for instance by a dramatic event
that radically changes one’s perception) in such a way that
assigns a nonzero probability on the rejected alternative—no
matter how small that may be—a decision maker can escape
from this loop.

It might be worth pondering whether the assignment of
strictly vanishing probability (as opposed to vanishingly small
probability) to an alternative by a decision maker represents
a realistic scenario. Indeed, it can be difficult to determine
empirically whether a decision maker assigns strictly zero
probability on an alternative, although in some cases people
seem to express strong convictions in accepting or rejecting
certain alternatives. Yet another possible application of the zero-
probability assignment might be the case in which a decision
maker, irrespective of their prior views, refuses to admit the real
alternative. (For example, they have lied and then decide not
to admit it.) Whether the behavior of such pathological liars
under noisy unraveling of information about the truth can be
modeled using the zero-probability assignment approach here is
an interesting open question.

8. THE ROLE OF NOISE

In Brody and Meier (2022) it is shown that even if a decision
maker is unaware whether any given information is true or false,
so long as they know the probability distribution of the fake
news (represented by the time series {ft}), then this is sufficient
to eliminate the overall majority of the impact of fake news.
In other words, anticipation of fake news is already a powerful
antidote to its effects. While this feature is encouraging, it can
also act against defending the truth, for, politicians nowadays
often quote the phrase “fake news” to characterize inconvenient
truth statements. Hence for those who believe in unfounded
conspiracies, they anticipate truths being revealed which they
perceive as false, and this anticipation also acts as a powerful
antidote against accepting reality. Is there an alternative way
of tackling the issue associated with strongly polarized clusters
then?

In this connection it is worth observing that the formation
of domains and clusters described above is not uncommon
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FIGURE 5 | Simulating alternative fact. Three alternatives are represented by the values X = 1, X = 2, and X = 3. Plotted here are sample paths for the mean values

of X subject to information process ξt = σXt+ ǫt, where σ = 2 and {ǫt} denotes Brownian noise. In all simulations, the simulator has chosen the alternative X = 2 to

be the correct one. On the left panel, all decision makers start with the prior belief that the probability of X = 2 is only 10%, whereas the two other alternatives are

equally likely realized at 45% each. Hence the initial mean of X equals 2. Initially, their views tend to converge either to X = 1 or X = 3; but over time, sufficient facts

are revealed that they all converge to the correct choice made by the simulator. But what if they do not believe in the “truth” at all? On the right panel, the simulator has

again chosen X = 2 to represent the true value, but the decision makers assume that this is impossible and that the two other alternatives are equally likely realized at

50% each. Hence again the initial mean of X equals 2. In this case, the decision makers’ views tend to converge quickly to one of the two “false” alternatives X = 1 or

X = 3. These two beliefs are, however, only quasi-stable; the views will never converge indefinitely. Instead, their views tend to flip back and forth between the

alternatives X = 1 and X = 3, but never converging to either one, and certainly never come close to the correct alternative X = 2.

in condensed matter physics of disordered systems. Here,
atoms and molecules forming the matter interact with other
atoms and molecules in their neighborhoods. An atom, say,
will then attempt to take the configuration that minimizes
the interaction energy with its neighbors (lower energy
configurations are more stable in nature), but because this
minimization is a local operation, inconsistencies will emerge
at large scales, and clusters of locally energy-minimizing
configurations will be formed. The boundary of different clusters,
such as a domain wall, are called “defects” or “frustrations” in
physics.

To attempt to remove a defect, one can heat the system and
then slowly cool it again. What the thermal energy does is to
create a lot of noise, reconfiguring atoms and molecules in a
random way so that after cooling back to the original state,
the defect may be removed with a certain probability. This is
essentially the idea of a Metropolis algorithm in a Monte Carlo
simulation. Hence although noise is generally undesirable, it can
play an important role in assisting a positive change, albeit only
with a certain probability.

There is an analogous situation that arises in biological
processes (Trewavas, 2012, 2016). Most biological processes are
concerned with either processing the information about the
environments, or else copying genetic information. In either
case, noise is highly undesirable under normal circumstances.
However, when a biological system is faced with an existential
threat, then the situation is different. By definition, in such a
circumstance, the conventional choices made by a biological
system that would have been the correct ones under normal
conditions are problematic, and it may be that for survival, the
system must make a choice that a priori seems incorrect. This is
where noise can assist the system, to get over the threshold to
reach unconventional choices. In other words, noise, as well as
being a nuisance, is also what makes the system robust.

Returning the discussion to disinformation, it should be
evident that the main issue is not so much in the circulation of
“fake news” per se, but rather it is the coexistence of (a) polarized
information clusters and (b) disinformation that creates real
problems that are threats to democratic processes, or to public
health. Hence to tackle the impact of disinformation a more
effective way than the traditional “fact checking” strategy (which
in itself of course has an essential role to play) seems to
be in the dismantlement of the “defects” in the information
universe, and this is where noise can potentially play an
important role.

Of course, noise, having no bias, is unpredictable and the
effect could have been the other way around. Nevertheless,
without a substantial noise contribution the decision maker
would have been stuck at a wrong place for a long time,
and having a nonzero probability of an escape is clearly more
desirable than no escape at all. In a similar vein, to dismantle
an information cluster, rather than trying to throw factual
information at it (which may not have an effect owing to
the tenacious Bayesian phenomenon, and can also be costly),
it may be more effective to significantly increase the noise
level first, in such a way that decision makers are unaware
of the increased level of noise, and then slowly removing it.
The idea is to sufficiently confuse the misguided individuals,
rather than forcing them to accept the facts from the outset.
The result may be the resurgence of the original cluster, but
there is a nonzero probability that the domain wall surrounding
the cluster is dismantled. Putting it differently, an effective
countermeasure against the negative impacts of disinformation
might be the implementation of a real-life Metropolis algorithm
or a simulated annealing (a slow cooling to reach a more
stable configuration).

As an example, in Figure 6 the impact of noise enhancement,
when the decisionmakers are unaware of the noise manipulation,
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FIGURE 6 | Tenacious Bayesian binary decision with enhanced noise. What happens to the tenacious Bayesian behavior of the left panel in Figure 3 if the noise level

is enhanced in such a way that decision makers are unaware of it? As in the example of Figure 3, the decision makers here have their priors set at 99% for the choice

X = 0, but the simulator has chosen X = 1 to be the correct choice. Plotted here are sample paths for the a posteriori probability that X = 1. In the left panel the noise

level is doubled as compared to that of the left panel in Figure 3; whereas in the right panel it is quadrupled. In both cases, the information flow rates are the same as

that chosen in Figure 3, so no more reliable information is provided here for the Bayesian decision makers. Nevertheless, the introduction of unknown noise enhances

the chance of arriving at the correct decision considerably sooner, with positive probability. In particular, if the noise level is quadrupled, then there is about 15%

chance that the noise will assist such an escape from a false reality after two years.

is shown, when the noise level is doubled and when it is
quadrupled. If the orientation of noise goes against the truth, then
the noise manipulation merely enforces the tenacious Bayeian
effect more strongly (like one of the sample paths in blue on
the right panel), but there is an equal probability that noise goes
the other way, in which case the views of decision makers are
altered considerably.

9. DISCUSSION: POSSIBLE ROLE OF
UTILITY

The theory of decision making under uncertainty is of course a
well-established area of study in statistics (DeGroot, 1970; Berger,
1985). The theory outlined here departs from the traditional
one by taking into consideration the flow of information that
affects the perceptions of decision makers, thus allowing for
an explicit dynamical characterization of decision makings.
This, in turn, opens up the possibility of engaging in a
comprehensive case studies and scenario analysis. In this context,
it also becomes evident how information manipulation in the
form either of the dissemination of disinformation or noise
adjustment can be built into the modeling framework, because
the starting point of the analysis is the specification of the flow
of information.

Now in the context of statistical decision theory, the standard
treatment presumes that an alternative is chosen if it maximizes
the expected utility, or perhaps if it minimizes the expected loss
(DeGroot, 1970; Berger, 1985). The utility function characterizes
the preference profile of a decision maker. While rational
choice as characterized by maximizing expected utility has been
challenged (Kahneman and Tversky, 1979), the utility theory
nevertheless works well in many applications. In particular, in
the context of financial economics, correct valuations of assets
are carried out by taking into account the impact of the utility.
Putting the matter differently, when financial assets are priced by

means of the expectation of the future return, this expectation is
taken not with respect to the real-world probability, but rather,
with respect to a risk-adjusted system of probabilities.

It may be that analogously, when analyzing, for instance,
a voter’s decision in an election it is more appropriate to
consider a preference-adjusted probability associated with the
utility profile of that voter, rather than the real-world probability.
It is entirely possible, for instance, that some of the empirically
observed phenomena such as confirmation bias can be explained
even more accurately by combining the tenacious Bayesian
behavior with utility optimisation. Should this be the case,
however, the information-based approach outlined here remains
applicable; one merely has to reinterpret the probabilities slightly
differently, but the formalism itself remains intact, and so
are the conclusions.

In summary, an information-based approach to
characterizing the dynamics of systems driven by information
revelation has been elaborated here in some detail using simple
decision-making scenarios, and the impact of information
manipulation, including dissemination of disinformation, and
how such concepts can be modeled in a scientifically meaningful
manner, has been clarified. The effect of having an excessively
high weight placed on a false belief—called a tenacious Bayesian
inference here—is explained, and an extreme case of the
effect, what one might call an alternative fact, is simulated to
uncover their erratic characteristics. In particular, it is shown,
based on the tenacious Bayesian behavior, that confirmation
bias can be explained, to an extent, within the Bayesian
framework. Finally, a specific way of manipulating noise as a
way of combatting the negative impact of disinformation is
proposed.

The information-based approach developed here not only
allows for a systematic study of the behaviors of people under
uncertain flow of information, but also can be implemented in
practical applications. For sure some of the model parameters
such as σ and f need not be controllable globally, especially
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in the context of a competition whereby one has no control
over the strategies of the competitors. Nevertheless, there are
means to estimate model parameters. For instance, in the
context of an electoral competition, by studying the variability
(volatility) of the opinion poll dynamics, the information
flow rate σ can be estimated quickly. Alternatively, model
parameters may be calibrated from the response to changes
in the strategy. For instance, in the context of marketing,
one can ask how a 30% increase in advertisement cost
influenced on the sales figure. From such an analysis one
can infer the level of information flow rate. At any rate,
the mere fact that the information-based approach makes
it possible to conduct a comprehensive impact studies and
scenario analysis in itself is a huge advantage in developing
informational strategies.
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