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Predictive coding provides a compelling, unified theory of neural

information processing, including for language. However, there is insu�cient

understanding of how predictive models adapt to changing contextual and

environmental demands and the extent to which such adaptive processes

di�er between individuals. Here, we used electroencephalography (EEG) to

track prediction error responses during a naturalistic language processing

paradigm. In Experiment 1, 45 native speakers of English listened to

a series of short passages. Via a speaker manipulation, we introduced

changing intra-experimental adjective order probabilities for two-adjective

noun phrases embedded within the passages and investigated whether

prediction error responses adapt to reflect these intra-experimental predictive

contingencies. To this end, we calculated a novel measure of speaker-based,

intra-experimental surprisal (“speaker-based surprisal”) as defined on a

trial-by-trial basis and by clustering together adjectives with a similar meaning.

N400 amplitude at the position of the critical second adjective was used as an

outcome measure of prediction error. Results showed that N400 responses

attuned to speaker-based surprisal over the course of the experiment, thus

indicating that listeners rapidly adapt their predictive models to reflect local

environmental contingencies (here: the probability of one type of adjective

following another when uttered by a particular speaker). Strikingly, this occurs
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in spite of the wealth of prior linguistic experience that participants bring

to the laboratory. Model adaptation e�ects were strongest for participants

with a steep aperiodic (1/f) slope in resting EEG and low individual alpha

frequency (IAF), with idea density (ID) showing a more complex pattern. These

results were replicated in a separate sample of 40 participants in Experiment 2,

which employed a highly similar design to Experiment 1. Overall, our results

suggest that individuals with a steep aperiodic slope adapt their predictive

models most strongly to context-specific probabilistic information. Steep

aperiodic slope is thought to reflect low neural noise, which in turn may

be associated with higher neural gain control and better cognitive control.

Individuals with a steep aperiodic slope may thus be able to more e�ectively

and dynamically reconfigure their prediction-related neural networks to meet

current task demands. We conclude that predictive mechanisms in language

are highly malleable and dynamic, reflecting both the a�ordances of the

present environment as well as intrinsic information processing capabilities of

the individual.

KEYWORDS

language comprehension, predictive coding, precision, EEG, N400, aperiodic slope,

idea density, individual alpha frequency (IAF)

1. Introduction

Predictive coding (e.g., Friston, 2005, 2009) provides

a compelling theory of how the human brain processes

information. Within a unified account of sensation, cognition

and action (e.g., Clark, 2013), it posits that the brain utilizes

generative predictive models to actively infer the causes of its

sensory inputs. In other words, perception involves the brain

using its internal model of the world to generate predictions

about expected upcoming sensory input, which are then

compared to the actual incoming sensory signals. In line with the

“Bayesian brain hypothesis” (e.g., Knill and Pouget, 2004; Frith,

2007; Sanborn and Chater, 2016), this is viewed as a process

of (unconscious) probabilistic inference: the prior belief arising

from a probabilistic generative model is combined with the

sensory evidence to yield a posterior belief (the updated model).

Predictions flow from higher to lower levels of a hierarchically

organized cortical architecture (via feedback connections) and

prediction errors are propagated up the cortical hierarchy

(via feedforward connections) to engender model updates at

higher levels. While predictions at “lower” levels pertain directly

to specific properties of the incoming sensory information,

predictions at higher levels are more abstract and can span

longer timescales (Hohwy, 2013). In this highly efficient coding

scheme, sensory information need only be represented to the

extent that it is not predicted (Rao and Ballard, 1999). In other

words, prediction errors serve as a proxy for sensory information

(Feldman and Friston, 2010; Clark, 2013)1. This effectively

1 For an alternative proposal, see, for example, Spratling (2008).

amounts to signal compression as only the non-predicted parts

of the signal need to be transmitted. Overall, the architecture

strives to minimize prediction errors.

Crucially, the relative weighting of a prediction error (PE)

vis-à-vis the top-down predictive model depends both on the

noisiness of the signal (Clark, 2013) and the (un)certainty of

the prediction (Feldman and Friston, 2010; Vilares and Kording,

2011). This is known as precision weighting: precision, which

is defined as the inverse of variance, reflects the confidence or

certainty associated with a belief or a sensory input (Friston,

2009; Feldman and Friston, 2010; Adams et al., 2013). For

example, when the sensory evidence conflicts with a prior

belief, the degree to which the prior will be shifted toward the

sensory evidence in forming the posterior belief depends on the

certainty vested in the sensory signal (for a useful illustration, see

Figure 1 in Adams et al., 2013). Thus, high-precision (i.e., low

uncertainty) prediction errors are associated with higher gain

(Friston, 2009) and consequently have a more substantial impact

on model updating.

In addition, previous work suggests that the top-

down/bottom-up balance changes across the lifespan (Moran

et al., 2014) and in non-neurotypical populations (e.g.,

schizophrenia; see Fletcher and Frith, 2009; Adams et al.,

2013). Moran et al. (2014) show that older adults tend to

weight model predictions more strongly than younger adults.

This means that, when faced with unpredicted sensory input,

older adults will attribute higher precision to prior beliefs

vis-à-vis the sensory evidence and thereby show a lower

rate of learning or model adaptation than younger adults.

Moran and colleagues suggest that this protects against the

overfitting of internal models to the input, thus resulting in
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less complex models. For positive symptoms of schizophrenia

(hallucinations and delusions), by contrast, Fletcher and Frith

(2009) suggest that these “are caused by an abnormality in

the brain’s inferencing mechanisms, such that new evidence

(including sensations) is not properly integrated, leading to false

prediction errors" (p.56). Using simulations, Adams et al. (2013)

show that this can be understood as resulting from less precise

top-down predictions, thus “rendering everything relatively

surprising” (p.13), including sensations that should not be e.g.,

self-generated actions; see Clark (2015) for detailed discussion.

These observations suggest that different weightings

of top-down (prior) and bottom-up (sensory evidence)

information can be a source of individual differences in sensory

processing/perceptual inference, specifically in regard to how

individuals from different populations adapt their predictive

models to changing environmental contingencies. With the

present study, we aimed to examine whether such inter-

individual differences can also be observed in young, healthy

adults (i.e., within the population most typically examined

in cognitive neuroscience experiments). We used language

as a test domain in which to examine this hypothesis. As a

means of studying model adaptation, we investigated individual

differences in the extent to which language-related brain

responses (the N400 event-related potential) adapt to context-

specific probabilistic information (“surprisal") as determined

by the experimental environment. In the following, we will first

introduce prediction-related phenomena in language and how

these can be couched within the predictive coding framework,

before turning to a discussion of potential predictors for

individual differences in predictive language processing. Finally,

we introduce the present study and our hypotheses.

1.1. Prediction and predictive coding in
language

Language involves a plethora of predictable information

sources across a range of different levels. Here, we focus

mostly on the sentence level, as this is the level of interest to

the current study. When words are combined into sentences,

inter-word dependencies give rise to predictability in various

ways. For examples, see the Supplementary materials. Note

that we use predictability here rather than prediction to make

clear that we are referring to the probabilistic dependencies

within the structure of language rather than any putative

processing mechanisms; for overviews of probabilistic modeling

in psycholinguistics, see, for example, Jurafsky (2003) and

Chater and Manning (2006). Experience-based, probabilistic

information sources—for example that a determiner (e.g., “the”)

will at some point be followed by a noun (e.g., “apple") - can be

used as priors within a predictive coding architecture. This type

of approach has been implemented in computational models of

language processing focusing on surprisal or other information-

theoretic notions (e.g., Hale, 2006; Levy, 2008); for a recent

review, see Hale (2016). The notion of surprisal, which reflects

how unexpected a word is given the context in which it appears,

is closely related to that of prediction errors in predictive coding.

Given a sequence of words w1,w2, . . . ,wt , the surprisal of word

wt is defined as the negative logarithm of the probability of that

word’s occurrence, given the preceding words w1, . . . ,wt−1:

surprisal(wt) = −logP(wt|w1, . . . ,wt−1)

Surprisal has been linked to neurophysiological correlates

of language processing, particularly the N400 event-related

potential (ERP) component (Frank et al., 2015; Kuperberg,

2016). There have also been explicit attempts to link speech

and language processing to predictive coding architectures

(e.g., Pickering and Garrod, 2007, 2013; Skipper et al., 2007;

Poeppel et al., 2008; Rauschecker and Scott, 2009; Bornkessel-

Schlesewsky et al., 2015b). In addition, several studies suggest

that probabilistic information regarding higher-order language-

related information is used to anticipate sensory input (Dikker

et al., 2010; Dikker and Pylkkänen, 2011), a finding which

is closely in line with the assumptions of the predictive

coding framework.

Nevertheless, prediction as a concept has remained

controversial in the cognitive neuroscience of language

processing, particularly with regard to the N400; see Kuperberg

and Jaeger (2016) for arguments in favor, and Van Petten and

Luka (2012) for arguments against. One of the arguments

most often used against active prediction—i.e., prediction that

goes beyond the preactivation of a word through a semantic

network (or similar) and specifically the explicit prediction

of a single specific word—is that there is little evidence that

N400 amplitude reflects the error signal resulting from a failed

prediction. Rather, N400 amplitude appears to be attenuated

with increasing predictability. According to Van Petten and

Luka (2012), “current data suggest only that N400 amplitudes

are reduced in the presence of supportive semantic context

and provide little hint that amplitudes are increased when a

hypothesis/expectation/prediction is disconfirmed. From our

starting premise that predictions should generate both benefits

and costs (on different occasions), the apparent absence of costs

is problematic" (p.180). They view this as evidence that the N400

reflects (passive) preactivation rather than (active) prediction,

with prediction manifesting itself in other ERP components,

most notably late positivities with a frontal scalp distribution.

We contend, however, that this pattern of results for

the N400 is, in fact, fully in line with the assumptions

of a predictive coding model. Recall that, in the typical

implementation of this type of model, only error signals are

transmitted via feedforward connections because predictable

sensory input is “canceled out” by top-down activity encoding

the relevant predictions. Thus, a reduced signal is transmitted
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when the input is, to some extent, predictable. By contrast,

in the absence of any predictability, the complete sensory

information associated with an input item, say a word, needs

to be conveyed: an entirely unpredicted/unpredictable word

is associated with the largest prediction error signal. When

prior context leads to a certain degree of predictability (or

preactivation), prediction error is reduced. In this way, we

see the attenuation of prediction errors for predicted vs.

unpredictable input rather than an increased error signal for

a prediction violation (again, in comparison to a context

without any predictability). The pattern of N400 effects thus

exactly mirrors what one would expect to observe under typical

implementations of a predictive coding architecture (for detailed

discussion, see Bornkessel-Schlesewsky and Schlesewsky, 2019).

Indeed, predictive coding neatly accounts for the well-known

observation that N400 amplitude decreases for unexpected

words that match the expected word in regard to certain features

(e.g., semantic category, Federmeier and Kutas, 1999) or that

show a certain degree of form overlap with the expected word

(e.g., via orthographic neighborhood, Laszlo and Federmeier,

2009, 2011). In these cases, some—but not all—aspects of the

incoming input are explained away by the generative predictive

model, thereby resulting in an error signal that is intermediary

between that for a highly predictable item and an unpredictable

item that does not share any features with the most expected

continuation. This suggests that the N400 is a composite

response that combines error signals at different levels; cf.

Bornkessel-Schlesewsky and Schlesewsky (2013), Bornkessel-

Schlesewsky and Schlesewsky (2019), and Frank and Willems

(2017).

Bornkessel-Schlesewsky and Schlesewsky (2019) proposed

that, more specifically, the N400 reflects a precision-weighted

error signal. This account builds on the extensive literature

linking the mismatch negativity (MMN) to prediction error

processing in the auditory domain (e.g., Friston, 2005; Garrido

et al., 2009; Moran et al., 2014) and, more specifically, to

precision-weighted error responses (Todd et al., 2011, 2013,

2014). By varying the temporal stability of rules underlying the

structure of sound sequences, Todd and colleagues showed that

prediction-error-related MMN effects respond to the perceived

salience of events and that this is influenced both by rule

stability and by rule primacy (i.e., which rule was learned first).

Bornkessel-Schlesewsky and Schlesewsky (2019) argue that the

N400 reflects similar processes but for more complex stimuli—

hence its longer latency in comparison to the MMN.

The claim that N400 amplitude correlates with a precision-

weighted error signal is supported by several observations.

Firstly, N400 effects vary across languages depending on the

informativity of a particular feature (e.g., animacy) for sentence-

level interpretation in that language (Bornkessel-Schlesewsky

and Schlesewsky, 2019, 2020). This provides a natural link to

precision weighting: recall that precision is defined as the inverse

of variance and variance in the form-to-meaning mapping

is clearly reduced for features that are highly informative

(cf. work in the context of the Competition Model, e.g.,

Bates et al., 1982, 2001; MacWhinney et al., 1984). Secondly,

N400 amplitude shows a further property that is expected

in the context of a precision-weighted error signal account,

namely a modulation by attention. As described in detail by

Feldman and Friston (2010), selective attention increases the

precision associated with an upcoming sensory stimulus. This

can lead to an amplification of the prediction error signal. At

a microcircuit level, prediction error amplification is thought

to be implemented via an increased gain of error-encoding

units (most likely pyramidal cells in higher cortical layers; cf.

Bastos et al., 2012). Similarly, though acknowledging the vastly

different level of measurement at play here, N400 amplitude for

incongruent (unpredictable) vs. congruent (more predictable)

words within a sentence is increased when the attentional focus

on a word is increased via information structural (focus) and

prosodic (accent) information (Wang et al., 2011).

1.2. Precision-weighting as a source of
inter-individual di�erences in predictive
coding and possible predictors for
individual di�erences in language

We have already sketched out above how precision

weighting of prediction errors not only serves to dynamically

adapt a predictive coding architecture to the estimated

uncertainties of prior expectations and sensory stimuli, but

also how such an architecture provides a natural locus for

inter-individual differences (e.g., in aging or, in a different

manner, in schizophrenia) and that these are measurable

using the MMN ERP component. On the basis of the claims

by Bornkessel-Schlesewsky and Schlesewsky (2019) about the

functional similarity of the MMN and N400, we would also

hypothesize the presence of such differences in N400 effects

during language processing. Moreover, given that precision

weighting of priors and sensory informationmay plausibly differ

between individuals, we will examine whether such differences

manifest themselves even in a population typically considered

to be relatively homogeneous, namely young healthy adults. In

the following, we will introduce the three main measures that

we used as predictors of individual differences in the current

study: Idea Density, Individual Alpha Frequency and Aperiodic

(1/f) Activity.

1.2.1. Idea density

Idea Density (ID; also known as Propositional Density or

P-Density: Kintsch and Keenan, 1973) measures the number

of ideas expressed relative to the total number of words

used, as derived from written or oral text samples. Ideas are
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operationalised as predicates: for example, verbs, adjectives and

negations are all counted as ideas. ID is thought to reflect

the efficiency of linguistic information encoding (Cheung and

Kemper, 1992; Kemper et al., 2001b; Iacono et al., 2009;

Engelman et al., 2010; Farias et al., 2012) and longitudinal

evidence shows that ID measures collected from young adults

predict cognitive performance in older adulthood (Snowdon

et al., 1996). As discussed by Kemper et al. (2001b), ID is

not correlated with high school English or maths grades nor

with level of educational attainment (see also Ferguson et al.,

2014; Spencer et al., 2015). Kemper and colleagues suggest that

“low P-Density in young adulthood may reflect suboptimal

neurocognitive development, which, in turn, may increase

susceptibility to age-related decline due to Alzheimer’s or other

diseases" (Kemper et al., 2001a, p.602). ID is relatively stable

across the adult lifespan but declines in older adulthood (for

results from a large-scale study involving texts from over 19,000

respondents, see Ferguson et al., 2014).

Given the link between ID and efficiency of linguistic

information encoding, we hypothesized that ID may provide

a proxy for the quality of an individual’s language model—

our rationale being that efficient encoding requires high-quality

linguistic representations. If this is indeed the case, high-

ID individuals will have a higher precision language model

than low-ID individuals and may thus weight model-based

predictions more strongly than unexpected input information

in the case of a prediction error. This could entail that high-ID

individuals adapt their predictive language models more slowly

to local contextual affordances than low-ID individuals, in a

similar manner to the slower model updating by older adults

reported by Moran et al. (2014).

1.2.2. Individual alpha frequency

Evidence is accruing that perception and cognition are

discrete rather than continuous (VanRullen, 2016). We perceive

the world by discretely sampling sensory input. In the brain,

sampling corresponds to oscillations: fluctuations between

states of high and low neuronal receptivity, which are

coordinated between neurons and neural assemblies to optimize

communication between them (Buzsáki and Draguhn, 2004;

Fries, 2005). Importantly, the speed of oscillatory activity

differs between individuals. In particular, the peak frequency

of the dominant alpha rhythm of the human EEG (∼8–13

Hz) varies between approximately 9 and 11.5 Hz in young

adults (Klimesch, 1999). This variation in individual alpha

frequency (IAF) is a trait-like characteristic (Grandy et al.,

2013b), which shows high heritability (Posthuma et al., 2001;

Smit et al., 2006) and test-retest reliability (Gasser et al., 1985;

Kondacs and Szabó, 1999). IAF variability has ramifications

not only for the alpha band, but also for the adjacent theta

(∼4–7 Hz) and beta (∼15–30 Hz) rhythms. Consequently, IAF

determines an individual’s sensory sampling rate and this has

consequences for the resolution with which sensory input is

analyzed and represented. Samaha and Postle (2015) recently

reported a compelling demonstration of this relation for the

visual modality. They presented participants with two visual

flashes in rapid succession and manipulated the inter-stimulus

interval (ISI) between them. At very short ISIs, the two visual

stimuli fuse into a single percept. Crucially, inter-individual

variability in the two-flash-fusion-threshold was correlated with

IAF; for a related demonstration of IAF being causally related

to the length of the temporal window within which multimodal

stimuli are integrated with one another, see Cecere et al. (2015).

In addition to correlating with the resolution of sensory

sampling, IAF is associated with a range of higher cognitive

abilities. High-IAF individuals process information more

quickly (Surwillo, 1961, 1963), and perform better on memory

tasks (Klimesch, 1999) and general intelligence measures (g)

(Grandy et al., 2013a). For a different result see Ociepka et al.

(2022), who found a relationship between IAF and processing

speed but not between IAF and general intelligence. IAF

decreases with age from young adulthood onwards (Köpruner

et al., 1984; Klimesch, 1999), thus accompanying the well-

known decline of many cognitive abilities in older adulthood

(e.g., Hedden and Gabrieli, 2004; Salthouse, 2011). Previous

work also indicates that language processing and language

learning strategies differ between high- and low-IAF individuals

(Bornkessel et al., 2004; Bornkessel-Schlesewsky et al., 2015a;

Kurthen et al., 2020; Nalaye et al., 2022).

On account of its link to the rate of sensory sampling, we

hypothesized that IAF may serve as a proxy for the general

quality (i.e., resolution, signal-to-noise ratio) of the sensory

input, which, in turn, influences more complex aspects of

information processing. If true, this would mean that incoming

sensory information is associated with a higher precision for

high-IAF individuals in comparison to low-IAF individuals.

In the case of a prediction error, high-IAF individuals may

thus weight unexpected input information more strongly vis-à-

vis model predictions than low-IAF individuals. Consequently,

high-IAF individuals may adapt their predictive language

models more quickly to local contextual affordances than low-

IAF individuals.

1.2.3. Aperiodic (1/f) activity

Complementing the examination of individual differences

in oscillatory neural activity (e.g., via IAF), a growing body

of literature has begun to investigate the possible role of

individual differences in non-oscillatory (aperiodic) brain

activity. Aperiodic activity follows a P ∼ 1/f β power law (He,

2014), where P corresponds to power, f to frequency and β is

the so-called “power-law exponent.” This overall relationship

of lower frequencies in the human EEG being associated with

higher amplitudes (power) than higher frequencies has long

been recognized. Only more recently, however, has it become
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clear that the power law exponent parameter—which governs

the steepness of the power decrease with increasing frequency—

changes dynamically depending on a variety of factors including

age and task, as well as an individual’s cognitive state (e.g.,

He, 2014; Voytek et al., 2015; Donoghue et al., 2020). In

addition to potentially being clinically relevant (He, 2014), this

variability may also reveal individual differences in cognitive

processing in healthy individuals. For example, Ouyang et al.

(2020) reported that, when both aperiodic (1/f) slope and alpha

activity were taken into account, aperiodic slope rather than

alpha activity predicted individual differences in processing

speed for an object recognition task. These authors thus suggest

that previous observations of an association between alpha

activity and processing speed may have been due to a confound

between oscillatory and aperiodic activity in earlier analyses

(cf. also Donoghue et al., 2020). In the domain of language

processing, Dave et al. (2018) recently observed a modulation

of prediction-related N400 effects by 1/f slope such that a

steeper slope predicted more pronounced N400 effects. Further,

Cross et al. (2022) found that the learning of certain types of

grammatical rules in an artificial language is likewise predicted

by inter-individual variability in 1/f slope.

Regarding potential mechanisms underlying the effects

of aperiodic slope on cognitive processing, one prominent

approach posits that steepness of the aperiodic slope reflects the

degree of neural noise (Voytek et al., 2015). Specifically, highly

synchronous neural spiking (equated with “lower neural noise")

is thought to correlate with a steeper 1/f slope, while more

asynchronous or aberrant firing (equated with “higher neural

noise”) is associated with a flatter slope (Buzsáki et al., 2012;

Voytek and Knight, 2015). This notion of neural noise may,

in turn, be associated with the balance between excitatory and

inhibitory activity within neural networks (e.g., Gao et al., 2017).

As Voytek et al. (2015) show, aging is associated with a flattening

of the 1/f slope and this physiological change may underlie

effects of cognitive aging such as a slowing of processing speed.

It is important to acknowledge that, in the context of

aperiodic activity estimates obtained from scalp EEG, any

inferences drawn about individual differences in neural noise are

indirect and must be viewed with a certain degree of caution.

Nevertheless, we believe that the existing literature supports

an association between scalp-recorded aperiodic slope estimates

and neural noise, albeit indirectly. Freeman and Zhai (2009)

successfully simulated 1/f slopes obtained from intracranial

EEG via a computational model of mutual excitation among

pyramidal cells. They concluded that “variation in the observed

slope is attributed to variation in the level of the background

activity that is homeostatically regulated by the refractory

periods of the excitatory neurons” (Freeman and Zhai, 2009,

p.97). Voytek et al. (2015) in turn demonstrated that 1/f slope

and age show a similar relationship in intracranial and scalp

EEG measures, thus supporting the association between scalp-

recorded 1/f slope and neural noise.

In the context of the current study, we will examine

the proposal by Dave et al. (2018) that more synchronous

neural networks—as reflected in a steeper aperiodic slope—are

associated with stronger predictive processing. If this proposal

holds, we should observe a stronger reliance on top-down

predictive models for individuals with a steeper 1/f slope

and, consequently, a potentially slower adaptation of internal

predictive models to current contextual affordances than for

individuals with a shallower 1/f slope.

1.3. The present study

The present study examined how ID, IAF and aperiodic

activity are related to prediction error signals in language

processing. In Experiment 1, participants listened to 150

short passages (approximately 5 sentences in length)

while their EEG was recorded. An example passage is

given below:

Example of the passages presented to participants in the

current study:

Florence was enjoying her long-awaited holiday in

Singapore with her close friends. One of the activities

she was most looking forward to was visiting the zoo, where

she had the opportunity to ride a huge gray elephant.

Although standing in the warm humid air was dreadful,

being waved to through the enclosure by the zookeeper

brought a smile to her face.

The critical passages (60%, i.e., 90 of 150) each contained

2 two-adjective noun phrases (marked in bold in the example

above), which could either have an expected (canonical) or

unexpected (non-canonical) order (e.g., canonical: “the huge

gray elephant”; non-canonical: “the gray huge elephant"; for

seminal work on ERP correlates of adjective order variations,

see Kemmerer et al., 2007). With this manipulation, we intended

to elicit prediction error responses due to the unexpectedness

of the non-canonical adjective orders. In addition, we varied

the probability of encountering non-canonical adjective orders

by means of a speaker manipulation. Specifically, passages

were recorded by two male speakers with varying probabilities

of canonical orders. Thus, for the “canonical” speaker,

approximately 70% of the critical 180 two-adjective noun

phrases were presented to participants in canonical order, while

for the “non-canonical” speaker, only approximately 30% of

adjectives were canonically ordered.

Building on the proposal that N400 amplitude reflects

precision-weighted prediction error signals (Bornkessel-

Schlesewsky and Schlesewsky, 2019), our primary outcome

variable was the amplitude of the N400 event-related potential

at the position of the critical second adjective within the

two-adjective noun phrases embedded in our passages.
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Through our experimental design, we aimed to examine

inter-individual differences in the processing of prediction

errors elicited by the non-canonical adjective orders. We used

IAF, ID and aperiodic activity (1/f) as our primary predictors

of individual differences as outlined above but also collected

an additional battery of cognitive and linguistic tests (see the

Methods section for further details). Furthermore, we included

the speaker manipulation as an additional manipulation of

prediction precision. Here, our rationale was that the high

number of non-canonical adjective orders produced by the non-

canonical speaker would call for adaptation of participants’

existing language model, according to which a non-canonical

order of two adjectives should be unexpected (cf. the notion

of “active listening” put forward by Friston et al., 2021).

Participants who adapt more quickly to the contingencies of

the current input— i.e., more readily adapt their established

predictive model in the face of prediction errors—should thus be

expected to show N400 responses aligned with the experimental

environment rather than their global language experience. As

described above, we tentatively hypothesized that this readiness

to adapt might be more pronounced in high-IAF and low-ID

individuals on account of the high precision of the sensory input

or low precision of the predictive language model, respectively.

Individuals with a steep 1/f slope were expected to show a

similar pattern to individuals with a high ID (i.e., slower model

adaptation) on account of the link that has been postulated

between lower neural noise (associated with a steeper 1/f slope)

and stronger predictive processes (Dave et al., 2018). In spite

of these hypotheses, this was an exploratory study given the

complexity of the domain under examination and the fact that

this research question has not yet been examined to date—

neither in the area of language nor with respect to other

cognitive domains.

Given the novelty of the research question, we also report

a follow-up experiment with a similar experimental design

(Experiment 2), in which we examined whether the results of

Experiment 1 could be replicated.

2. Experiment 1

2.1. Methods

2.1.1. Participants

Forty-five young adults (31 female; mean age: 22.9 years,

sd: 3.9, range: 18–33) participated in Experiment 1. Participants

were right-handed as assessed by the Edinburgh handedness

inventory (Oldfield, 1971), native speakers of English who had

not learnt another language prior to starting school. They

reported having no diagnosis of neurological or psychiatric

conditions, normal hearing and normal or corrected-to-

normal vision. The experimental protocol was approved by

the University of South Australia’s Human Research Ethics

Committee (protocol number 36348).

2.1.2. Materials

The critical materials for this experiment were 90 short

passages (approximately 5 sentences in length), each of which

contained two critical two-adjective noun phrases (NPs; e.g.,

“a huge gray elephant”). Critical NPs occurred at different

positions in each passage so that their occurrence would

not be predictable. The order of the prenominal adjectives

was manipulated such that, in some cases, they adhered to

the expected sequence of “value > size > dimension >

various physical properties > color” (Kemmerer et al., 2007,

p.240). We will refer to adjective orders adhering to this

sequencing as canonical (C) in what follows and to those that

do not as non-canonical (N). Passages were recorded by two

male speakers of Australian English with the probability of

adjectives in the critical NPs occurring in a canonical or a

non-canonical order manipulated across speakers. Thus, when

listening to the passages, participants were exposed to one

speaker (henceforth: the canonical speaker) who produced

more canonical than non-canonical orders (C:N ratio of

69%:31%) and another speaker (henceforth: the non-canonical

speaker) who produced more non-canonical orders (C:N ratio

of 31%:69%). To counterbalance the assignment of speakers to

passages, we constructed two versions of the critical materials.

Thus, canonicity of speaker varied both within subjects and

within items, but the (non-canonical vs. canonical) speaker

assignment was fixed throughout the course of each session.

The distribution of canonical and non-canonical orders across

speakers, versions and passages is shown in Table 1.

Each participant listened to the critical passages from one

of the two versions interspersed with 60 filler passages in

a pseudo-randomized order. The filler passages included a

separate experimental manipulation involving passive sentences

and relative clauses and did not contain any two-adjective noun

phrases. Thus, every participant was presented with 150 passages

in total.

To ensure that participants were listening attentively, they

were presented with yes-no comprehension questions after

approximately 1/3 of passages. An example comprehension

question for the passage example above is: “Did the zookeeper

wave at Florence?” (correct answer= yes).

2.1.3. Language models

The principal aim of the present study was to examine how

individuals differ in the adaptation of their predictive models

to the current environment during language processing. To this

end, we focused on the processing of the second adjective (ADJ2)

in the critical 2-adjective NPs embedded in the passages. We

used bigram-based surprisal to quantify predictability of ADJ2
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TABLE 1 Counterbalancing of canonical and non-canonical adjective

orders across versions.

Version Speaker Passages Orders within passage

1 Canonical 1–45

1–7: NC

8–14: CN

15–21: NN

22–45: CC

1 Non-canonical 46–90

46-52: CN

53–59: NC

60-66: CC

67–90: NN

2 Canonical 46–90

46–52: NC

53–59: CN

60–66: NN

67–90: CC

2 Non-canonical 1–45

1–7: CN

8–14: NC

15–21: CC

22–45: NN

Within each version, the canonical speaker produced 62 canonical and 28 non-canonical

adjective orders (CN ratio= 31:69%), while the non-canonical speaker produced 62 non-

canonical and 28 canonical adjective orders (CN ratio= 69:31%). Note that passages were

presented in a pseudo-randomized order and interspersed with filler passages; i.e., the

passage numbers shown here do not reflect the order of presentation. Abbreviations for

orders within passages: C= canonical; N= non-canonical, with the first letter referring to

the first two-adjective NP within the passage and the second letter referring to the second

two-adjective NP.

in the context of the preceding adjective. To allow us to estimate

predictability at the level of adjective classes, we first established

adjective clusters for our materials. This was accomplished using

the following procedure, which was implemented in R (R Core

Team, 2021) using the tidyverse (Wickham et al., 2019)

and tidymodels (Kuhn and Wickham, 2020) collections

of packages as well as the packages tidytext (Silge and

Robinson, 2016) and widyr (Robinson, 2021). For package

version numbers, please see the analysis scripts provided with

the raw data (see Data Availability Statement).

Procedure for determining adjective clusters and calculating

cluster-based surprisal:

1. We used pre-derived word vectors from van Paridon

and Thompson (2021) to determine similarities between

adjectives. Word vectors, also known as word embeddings,

provide a numerical representation of word meaning. They

are created by machine learning models, which learn lexical

relationships from word co-occurrences in large text corpora.

For a recent example of how word vectors may serve as useful

representations of word meaning when investigating human

language processing, see Pereira et al. (2018). Here, we used

Van Paridon and Thompson’s top 1 million vectors from a

combined Wikipedia and Open Subtitles corpus.

2. To reduce dimensionality, we performed a principal

components analysis (PCA), thus reducing the 300 vectors

from van Paridon and Thompson (2021) to 5 principal

components (PCs).

3. Six adjective clusters were identified on the basis of the PCs

using k-means clustering. The value of k=6 was selected via

visual inspection of the total within-cluster sum of squares.

Three of the six clusters are visualized in Figure 1 and

a full list is provided in the Supplementary materials for

Experiment 1.

4. Cluster-based unigram and bigram frequencies were

computed as cluster-based sums of unigram and bigram

counts from the Open Subtitles corpus for English (751

million words) as made available by van Paridon and

Thompson (2021). From these, surprisal values for adjective

2 (ADJ2) in the context of adjective 1 (ADJ1) were calculated

as:

surprisal(ADJ2) = −log(
ClusterBigramFrequency(ADJ1ADJ2)

ClusterUnigramFrequency(ADJ1)

Here, ClusterBigramFrequency(ADJ1ADJ2) refers to the

frequency with which two-adjective bigrams comprising a

first adjective belonging to the cluster of ADJ1 and a second

adjective belonging to the cluster of ADJ2 occur in the Open

Subtitles corpus. ClusterUnigramFrequency(ADJ1) refers to

the frequency with which adjectives belonging to the cluster

of ADJ1 occur in Open Subtitle corpus. In the remainder of

the paper, we will refer to these corpus-based surprisal values

as global surprisal.

In a second step, we computed incremental surprisal

for ADJ2 within the experimental context to be able to

track how listeners’ expectations change as a function of

being exposed to the experimental environment. To track

surprisal incrementally over the course of the experiment,

we calculated the NP-by-NP cumulative intra-experimental

frequencies for the ADJ1-ADJ2 bigram cluster and the ADJ1

unigram cluster and then computed surprisal as described

above. This was done separately for each speaker, thus allowing

us to examine to what extent participants’ expectations adapted

to the distributional properties of each of the two speakers

within the experiment. We henceforth refer to this speaker-

based measure of intra-experimental surprisal as speaker-based

surprisal. Using speaker-based surprisal, we aimed to examine

how participants’ N400 responses—as an assumed proxy for

precision-weighted prediction error signals— were modulated

by the exposure to adjective order variations throughout the

course of the experiment and by each speaker.

Corpus-based word (unigram) frequencies for ADJ2 were

included in all analyzes as a control variable. These were taken

from the same unigram corpus as used for global surprisal
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FIGURE 1

Three adjective clusters produced by the current clustering procedure for Experiment 1. Clusters are visualized with regard to their variability on

principal components PC1 and PC2. Note, for example, how the clustering procedure distinguishes color adjectives from other adjective types.

calculation above and log-transformed prior to inclusion in

the analysis.

2.1.4. Behavioral individual di�erences
measures

2.1.4.1. Idea density (ID)

Participants provided a written text sample in response to

the prompt “Describe your favorite game.” This corresponds

to the Essay Composition task of the Wechsler Individual

Achievement Test—Australian and New Zealand Standardized,

Third Edition (WIAT-III A&NZ; Pearson Clinical). From this

text, we calculated ID using the automated Computerized

Propositional Idea Density Rater (CPIDR; Brown et al., 2008).

2.1.4.2. Cognitive tests

Participants completed an additional battery of cognitive

tests. These included:

• The two-subtest version of the Wechsler Abbreviated

Scale of Intelligence—Second Edition (WASI-II; Pearson

Clinical), comprising Vocabulary and Matrix reasoning

tasks

• Three additional language-related subtests from theWIAT-

III, namely Oral Word Fluency, Sentence Repetition and

Sentence Composition

• A reading-span task (Daneman and Carpenter, 1980)

In accordance with our hypotheses, we focus on ID and the

resting state EEG-based individual differences metrics (1/f slope

and Individual Alpha Frequency; see below) as our primary

measures of individual differences for the purposes of the

present study.

2.1.5. Procedure

Participants completed two in-lab testing sessions: (1) a

behavioral session comprising the cognitive tests/text sample

production, and (2) an EEG session comprising the collection

of resting-state EEG recordings as well as the main language

comprehension task. Sessions were either completed on the

same day, separated by a break (approximately 30 min), or on

2 days (with the second session completed within 7 days of the

first session).

2.1.5.1. Behavioral session

In the behavioral session, after the consent process,

participants completed a questionnaire to provide demographic,

language and well-being details. They subsequently completed

the cognitive tests as described above. The behavioral session

took maximally 1.5 h to complete.

2.1.5.2. EEG session

In the EEG session, participants were fitted with an EEG

cap and underwent a 2-min eyes-open and 2-min eyes-closed

resting state EEG recording prior to commencing the main

task. For the main task, each trial commenced with the 500 ms

presentation of a fixation asterisk in the center of a computer

screen, after which the auditory presentation of a passage

commenced via loudspeakers. After the auditory passage was

complete, the fixation asterisk remained on screen for another

500 ms. Subsequently, participants were presented with a

comprehension question in approximately 1/3 of all trials, to
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which they responded with “yes" or “no" using two buttons on a

game controller. The assignment of “yes” and “no” responses to

the left and right controller buttons was counterbalanced across

participants and the maximal response time was set at 4,000

ms. For trials without a comprehension question, participants

were asked to “Press the YES key to proceed.” Following the

participant’s response or after the allocated response time had

elapsed, the next trial commenced after an inter-trial interval of

1,500 ms. Participants were asked to avoid any movements or

blinks during the presentation of the fixation asterisk if possible.

Note that, as the intermittent comprehension questions

only served to ensure that participants listened attentively,

comprehension data was not analyzed in the present paper. Log

files for the comprehension task are, however, provided with the

raw data for the experiment (see Data Availability statement).

The 150 passages were presented in 5 blocks, between which

participants took short self-paced breaks. Prior to commencing

the main task, participants completed a short practice session.

After the main task, the resting state recordings were repeated.

Overall, the EEG session took approximately 3 h including

electrode preparation and participant clean-up.

2.1.6. EEG recording and preprocessing

The EEG was recorded from 64 electrodes mounted

inside an elastic cap (Quik-CapEEG) using a Neuroscan

Synamps2 amplifier (Compumedics Neuroscan, Abbotsford,

VIC, Australia). The electrooculogram (EOG) was recorded via

electrodes placed at the outer canthi of both eyes as well as above

and below the left eye. The EEG recording was sampled at 1,000

Hz and referenced to the right mastoid.

Data preprocessing was undertaken using MNE Python

version 0.23.0 (Gramfort et al., 2013, 2014). EEG data were re-

referenced to an average reference and downsampled to 500

Hz prior to further processing. EOG-artifacts were corrected

using an ICA-based correction procedure, with independent

components (ICs) found to correlate most strongly with EOG

events (via the create_eog_epochs function in MNE)

excluded. Raw data were filtered using a 0.1—30 Hz bandpass

filter to exclude slow signal drifts and high frequency noise.

Epochs were extracted in a time window from –200 to 1,000

ms relative to critical word (ADJ2) onset and mean single-trial

amplitudes were extracted for the prestimulus (–200 to 0 ms)

and N400 (300–500 ms) time windows using the retrieve

function from the philistine Python package (Alday, 2018).

2.1.6.1. Resting-state EEG-based individual di�erences

measures: Individual alpha frequency (IAF) and

aperiodic (1/f) activity

IAF and aperiodic slope estimates were calculated from

participants’ eyes-closed resting-state recordings.

To calculate IAF, we used a Python-based implementation

(Alday, 2018) of the procedure described in Corcoran et al.

(2018) and drawing on electrodes P1, Pz, P2, PO3, POz, PO4,

O1, Oz and O2. We estimated both peak alpha frequency (PAF)

and center of gravity (COG) measures (cf. Corcoran et al.,

2018, for discussion) and calculated the mean of pre and post

estimates by participant for each measure. For participants who

did not have estimable IAF values for one of the two recording

sessions, their IAF estimate from the other session was used as

their overall IAF metric. This was the case for 3 participants in

Experiment 1.

Aperiodic (1/f) intercept and slope estimates were calculated

in Python using the YASA toolbox (Vallat and Walker,

2021). YASA implements the irregular-resampling auto-spectral

analysis (IRASA) method for separating oscillatory and

aperiodic activity (Wen and Liu, 2016). As for IAF, by-

participant intercept and slope estimates were computed as

means of pre and post resting-state recordings from electrodes

F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2,

FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6, T8, TP7, CP5,

CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3, P1, Pz, P2, P4,

P6, P8, PO7, PO5, PO3, POz, PO4, PO6, PO8, O1, Oz, and O2.

2.1.7. Data analysis

The data analysis was undertaken using R (R Core Team,

2021) and Julia (Bezanson et al., 2017). We used R for data

pre- and post-processing. For data import and manipulation, we

used the tidyverse collection of packages (Wickham et al.,

2019) as well as the vroom package (Hester and Wickham,

2021). Figures were created using ggplot2 (Wickham, 2016;

Wickham et al., 2021) as well as the packages cowplot (Wilke,

2021) and patchwork (Pedersen, 2020). All figures with

color employ the Okabe Ito color palette from colorblindr

(McWhite and Wilke, 2021). Other packages used include

corrr (Kuhn et al., 2020), kableExtra (Zhu, 2021) and

here (Müller, 2020). For package version numbers, please

see the analysis scripts provided with the raw data (see Data

Availability Statement). For R, see the html outputs in the

src/subdirectory; for Julia see the Manifest.toml file.

EEG data were analyzed using linear mixed effects models

(LMMs) with the MixedModels.jl package in Julia (Bates

et al., 2021). We used the JellyMe4 package (Alday, 2021) to

move model objects from Julia to R for visualization purposes.

For the ERP data, we examined single-trial N400 amplitude

as our outcome variable of interest. To this end, we analyzed

mean EEG voltage 300–500 ms post onset of the critical second

adjective (ADJ2) in a centro-parietal region of interest (C3, C1,

Cz, C2, C4, P3, P1, Pz, P2, P4, CP3, CP1, CPz, CP2, CP4).

2.1.7.1. Linear mixed modeling approach

We adopted a parsimonious LMM selection approach

(Bates et al., 2015; Matuschek et al., 2017), which seeks

to identify LMMs that are supported by the data and

not overparameterized. Model selection was undertaken
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without consideration of fixed-effects estimates (i.e., without

consideration of which fixed effects reached significance).

Fixed effects initially included log-transformed unigram

frequency, speaker-based surprisal, adjective order canonicity,

epoch (as a proxy for how long participants had been exposed

to the experimental stimuli), mean prestimulus amplitude and

their interactions. Prestimulus amplitude (–200 to 0 ms) was

included as a predictor in the model as an alternative to

traditional EEG baselining (see Alday, 2019). The categorical

factor canonicity was encoded using sum contrasts (cf. Schad

et al., 2020; Brehm and Alday, 2022); thus, model intercepts

represent the grand mean. All continuous predictors were z-

transformed prior to being included in the models.

Although not of interest within the scope of the current

paper, wemodeled themain effect of prestimulus amplitude with

a second-order and the main effect of speaker-based surprisal

with a third-order polynomial trend. The inclusion of these

higher-order trends was supported by the data, significantly

improved model fit, and guarded against the interpretation of

spurious interactions of their linear trends with other fixed

effects (Matuschek and Kliegl, 2018). Non-significant higher-

order interactions involving fixed effects were removed from the

model when they were not part of the theoretical expectations

and this did not lead to a significant reduction in goodness of

model fit as assessed via likelihood-ratio tests (LRTs).

The random-effect (RE) structure was selected in two

steps, again using LRTs to check improvement in goodness

of fit and random-effects PCA (rePCA) to guard against

overparameterization during model selection. The results of the

first step led to a RE structure with variance components for

grand means, prestimulus amplitude and prestimulus amplitude

(2nd order) by subject, item and channel. In a second step, we

added by-subject and by-item variance components for effects

of canonicity, epoch, unigram frequency and speaker-based

surprisal to the RE structure. Correlation parameters were not

significant for the by-subject and by-item variance components

and constrained to zero.

Using the speaker-based surprisal LMM (as described above)

as a reference, we added, in turn, fixed-effect covariates for

individual differences in (1) 1/f slope, (2) IAF (peak alpha

frequency), and (3) ID to the model to check the extent to

which they moderate/modulate adaptation to speaker-based

surprisal. In each of these three additional LMMs, adding the

respective individual differences covariate as a by-item variance

component significantly improved the goodness of model fit.

The model selection procedure is transparently documented

in Julia scripts in the Open Science Framework repository for

this paper (see Data Availability Statement).

2.1.7.2. Reporting and visualization of results

As our primary research question was how listeners adapt

their predictive models to the experimental context, we focus

on interactions of speaker-based surprisal and epoch in the

interpretation of our results. Thus, for each LMM, we focus

on the highest order interaction(s) including these predictors

and the current individual-differences predictor of interest

where relevant. These are reported, visualized and interpreted

in the main text. Model summaries are included in the

Supplementary materials, with only significant effects reported

in the model summary tables to increase readability. For

full model summaries including all effects, see the repository

for the paper. For the visualization of effects, we used the

broom.mixed package (Bolker and Robinson, 2021) to

extract fitted values and the remef package (Hohenstein and

Kliegl, 2021) to extract partial effects. By visualizing partial

effects, we focus on the effects of interest while adjusting for

additional model parameters that are not of primary interest

here where appropriate.

2.2. Results

2.2.1. Individual di�erences measures

Distributions of the (z-transformed) individual differences

measures are shown in Supplementary Figure S1.

2.2.2. EEG data

2.2.2.1. Sanity check analysis

In a first step, we ran a “sanity check” analysis to determine

whether the current data showed expected modulations of

N400 amplitude by unigram frequency and global (corpus-

based) surprisal defined at the level of adjective clusters (see

section on language models above). For this, we followed

the general modeling strategy outlined in the Data analysis

section above, but including global surprisal rather than speaker-

based surprisal.

The sanity check analysis confirmed the expected effects

of word frequency and surprisal on N400 amplitude. At the

position of the critical second adjective, N400 amplitudes were

higher for words with a lower frequency of occurrence and for

words with higher corpus-based surprisal values. These effects

are visualized in Figure 2 (see Supplementary Table S1 for the

model summary). As is apparent from the model summary,

there was a significant interaction of Unigram Frequency x

Global Surprisal x Prestimulus amplitude (Estimate = 0.0497,

Std. Error = 0.0203, z = 2.45, p = 0.01). However, as we were

only interested in general trends for word frequency and global

surprisal for the purposes of our sanity check, we visualize

the partial effects of these two predictors adjusted for the

other predictors.

2.2.2.2. N400 amplitude attunes to speaker-based

surprisal over the course of the experiment

The speaker-based surprisal model (see

Supplementary Table S2 for the model summary) revealed
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an interaction of Speaker-based Surprisal x Epoch x Canonicity

x Prestimulus Amplitude (Estimate = −0.0693, Std. Error =

0.0173, z = −4.01, p < 0.0001). Figure 3 visualizes the partial

effect of Speaker-based Surprisal x Epoch x Canonicity, adjusted

for Prestimulus Amplitude. As is apparent from the figure,

FIGURE 2

Sanity check analysis for Experiment 1. Panel A shows the

relationship between N400 amplitude and (log-transformed)

unigram frequency, while Panel B shows the relationship

between N400 amplitude and global (corpus-based) surprisal, as

defined using bigrams at the adjective cluster level. Both

unigram frequency and surprisal values were z-transformed.

Shaded areas indicate 95% confidence intervals.

the effect of speaker-based surprisal becomes stronger over

the course of the experiment, i.e., the longer participants are

exposed to the peculiarities of each speaker, the stronger the

effect of speaker-based surprisal on N400 amplitude. This

supports our assumption that listeners attune their internal

predictive models to the current context. Strikingly, the effect

of speaker-based surprisal overrides the effect of adjective order

canonicity by the end of the experiment [cf. Alday et al. (2017)

for the finding that language-related EEG responses adapt to the

local context within a story].

2.2.2.3. Inter-individual di�erences in predictive model

adaptation

Having determined that effects of speaker-based surprisal

(z-transformed) on N400 amplitude became stronger over the

course of the experiment, we next sought to examine how

individuals differed with regard to this adaptation process and

which of our metrics best predicted these assumed individual

differences. To this end, we in turn added each of our individual

differences metrics of interest—individual alpha frequency

(IAF), aperiodic (1/f) slope and idea density (ID)—to the

speaker-based surprisal model without individual differences. As

revealed by likelihood ratio tests and goodness-of-fit metrics,

all of these models showed an improved fit to the data over

the base model without an individual differences predictor.

Table 2 provides an overview of the goodness-of-fit metrics,

demonstrating that all models including individual differences

FIGURE 3

Changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the course of Experiment 1 for

canonical (C) and non-canonical (N) adjective orders. The figure visualizes partial e�ects as calculated using the remef package, adjusted for

prestimulus amplitude. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning,

middle and end for visualization purposes only; epoch was included in the model as a continuous predictor.
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TABLE 2 Model comparison for the models including speaker-based

surprisal in Experiment 1.

Model dof Deviance AIC AICc BIC

1 No Ind. differences 54 513,348 513,456 513,456 513,965

2 Slope 89 512,745 512,923 512,924 513,761

3 IAF 83 513,232 513,398 513,398 514,179

4 ID 84 512,520 512,688 512,688 513,479

The table shows goodness-of-fit metrics for the best-fitting model without individual

differences in comparison to the models including aperiodic (1/f) slope, IAF, and ID,

respectively. Note that the differing degrees of freedom for the individual-differences

models are a result of the pruning of non-significant higher-order interactions from some

models; see Data Analysis section for details.

covariates outperform the model without individual differences

in terms of AIC. With the exception of the IAF model, this also

holds for BIC.

In line with our primary research question, for the

interpretation of the individual differences results, we focus on

the top-level interaction(s) involving Speaker-based Surprisal,

Epoch and the individual differences predictor of interest (cf.

the discussion of our LMM modeling approach in the Data

Analysis section).

For the model including aperiodic slope, the top-level

interaction was Prestimulus Amplitude x Speaker-based

Surprisal x Epoch x Canonicity x Frequency x Slope (Estimate

= 0.1531, Std. Error = 0.0780, z = 1.96, p < 0.05). For the

model including IAF, it was Speaker-based Surprisal x Epoch

x Canonicity x Frequency x IAF (Estimate = –0.0505, Std.

Error = 0.0172, z = –2.94, p < 0.01). The ID model showed an

interaction of Prestimulus Amplitude x Speaker-based Surprisal

x Epoch x Canonicity x ID (Estimate = 0.0821, Std. Error =

0.0163, z = 5.03, p < 0.0001). In view of the complexity of

these models and the fact that our primary interest for the

purposes of the present paper lies in examining how adaptation

to speaker-based surprisal is modulated by these individual

differences metrics, we visualize partial effects of Speaker-based

Surprisal x Epoch x Individual Differences Covariate of Interest

for each model in turn in the following, adjusting for any

additional moderating effects. For model summaries, see

Supplementary Tables S3–S5.

Figure 4 visualizes how the intra-experimental adaptation

to speaker-based surprisal is modulated by aperiodic slope.

It demonstrates that, though N400 responses had attuned

to speaker-based surprisal for all participants by the end of

the experiments (mirroring the effects observed in Figure 3),

individuals with a steep aperiodic slope adapt most rapidly

to intra-experimental contingencies (cf. the pattern of N400

responses in the middle portion of the experiment).

Figures 5, 6 show the adaptation to speaker-based surprisal

as moderated by IAF and ID, respectively. For IAF, it is apparent

that adaptation is quickest for individuals with a low IAF.

At a first glance, the pattern is similar for ID, i.e., low-ID

individuals show a more rapid adaptation to speaker-based

surprisal. However, it is notable that individuals with a high ID

show the most pronounced change in the pattern of speaker-

based surprisal N400 effects over the course of the experiment,

demonstrating a slight “anti surprisal" effect at the beginning of

the experiment but adapting to show the expected attunement to

speaker-based surprisal by the end.

2.3. Discussion

Experiment 1 examined N400 ERP responses to investigate

how, during naturalistic language processing, individuals update

their internal predictive models to reflect current contextual or

environmental information. While listening to short passages

recorded by two speakers of Australian English, participants

showed an adaptation to experiment- and speaker-specific

adjective order patterns with increasing exposure to these

patterns over the course of the experiment. By the end of the

experiment, N400 responses at the position of the critical second

adjective (ADJ2) in two-adjective noun phrases embedded in

the passages had attuned to speaker-based surprisal. In other

words: N400 amplitude reflected the (information-theoretic)

surprisal for encountering an adjective of type ADJ2 following

an adjective of the type encountered at the ADJ1 position,

given the speaker reading the passage. Adjective type was

defined using a word-vector-based clustering procedure and

speaker-based surprisal was defined incrementally via the

participant’s prior exposure to two-adjective noun phrases for

a particular speaker at each point over the course of the

experiment. N400 attunement to speaker-based surprisal led

to an alignment of N400 amplitudes for canonical and non-

canonical adjective orders by the end of the experiment. It is

important to keep in mind, however, that these measures (i.e.,

adjective clusters and surprisal) were correlations rather than

experimental manipulations.

In addition, we observed inter-individual differences in

regard to the strength of N400-attunement to speaker-based

surprisal. All three individual differences predictors examined—

aperiodic (1/f) slope, Individual Alpha Frequency (IAF) and

Idea Density (ID)—led to improvement of mixed model fit over

the best model not including individual differences predictors.

Individuals with a steep aperiodic slope, which is thought to

reflect low neural noise, showed the most pronounced and

earliest attunement to speaker-based surprisal. A similar pattern

was observed for individuals with a low IAF. For ID, the pattern

was somewhat more mixed: while low-ID individuals appeared

to show an earlier attunement to speaker-based surprisal, high-

ID individuals showed a more substantial change of speaker-

surprisal-related response from the beginning to the end of

the experiment. These findings were examined further in

Experiment 2.
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FIGURE 4

E�ect of aperiodic (1/f) slope on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the

course of Experiment 1. The figure visualizes partial e�ects as calculated using the remef package, adjusted for prestimulus amplitude,

canonicity and frequency. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised (into

beginning, middle, end) for visualization purposes only; epoch was included in the model as a continuous predictor. The same holds for 1/f

slope, which is trichotomised into steep, medium and shallow for visualization purposes but was entered into the statistical model as a

continuous predictor. Shaded areas indicate 95% confidence intervals.

FIGURE 5

E�ect of individual alpha frequency (IAF) on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude

over the course of Experiment 1. The figure visualizes partial e�ects as calculated using the remef package, adjusted for canonicity and

frequency. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning, middle and

end for visualization purposes only; epoch was included in the model as a continuous predictor. The same holds for IAF, which is trichotomised

into low, medium and high for visualization purposes but was entered into the statistical model as a continuous predictor. Shaded areas indicate

95% confidence intervals.
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FIGURE 6

E�ect of idea density (ID) on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the course

of Experiment 1. The figure visualizes partial e�ects as calculated using the remef package, adjusted for prestimulus amplitude and canonicity.

Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into thirds (beginning, middle, end) for

visualization purposes only; epoch was included in the model as a continuous predictor. The same holds for ID, which is trichotomised into low,

medium and high for visualization purposes but was entered into the statistical model as a continuous predictor. Shaded areas indicate 95%

confidence intervals.

3. Experiment 2

3.1. Methods

In view of the exploratory nature of the current study and

the novel results of Experiment 1, we ran a second Experiment to

determine whether these results could be replicated. Experiment

2 employed a very similar design to Experiment 1 with a new

sample of young adults as participants.

3.1.1. Participants

Forty young adults (mean age: 23.8 years, sd: 6.3, range:

18–39) participated in Experiment 2, with 30 identifying as

female, 9 identifying as male and 1 identifying as other.

Inclusion and exclusion criteria were as for Experiment 1

and the experiment was approved under the same protocol

by the University of South Australia’s Human Research Ethics

Committee. None of the participants for Experiment 2 had taken

part in Experiment 1.

3.1.2. Materials

Participants again listened to 150 short passages in

Experiment 2, which were adapted from those used in

Experiment 1. In contrast to Experiment 1, in which only

90 of the 150 passages contained two critical two-adjective

NPs, in Experiment 2, all 150 passages contained two

critical NPs. This change was incorporated in order to

increase the number of critical items per participant and

thus improve our ability to track changes in N400 activity

across the course of the experiment. In addition, we made

minor modifications to some of the critical NPs from

Experiment 1. As for Experiment 1, the full experimental

materials are available on the study repository (see Data

Availability statement).

The passages were again recorded by two male speakers

of Australian English, one of which had already been one

of the speakers for Experiment 1. As for Experiment 1,

one of the speakers (the “canonical speaker") had a higher

probability of producing canonical vs. non-canonical two-

adjective orders (approximately 70%:30%), while the other (the

“non-canonical speaker") had a lower probability of producing

canonical vs. non-canonical orders (approximately 30%:70%).

The assignment of speaker to the canonical or non-canonical

role was counterbalanced across participants. In order to further

accentuate the speaker-specific adjective order characteristics,

presentation of the two speakers was alternated in a block-

based manner in this experiment. The experiment commenced

with one block of the canonical speaker, followed by two blocks

of the non-canonical speaker and two further blocks of the

canonical speaker.
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Comprehension questions were again presented after

approximately 1/3 of all passages.

3.1.3. Language models

Adjective clusters and speaker-based surprisal were

calculated following the same procedure as for Experiment

1. The adjective clusters for Experiment 2 are listed in the

Supplementary materials.

3.1.4. Behavioral individual di�erences
measures

3.1.4.1. Idea density

Participants were given 10 min to produce a written text

sample of approximately 300 words in response to the prompt

“Describe an unexpected event in your life.” ID was calculated

as in Experiment 1.

3.1.4.2. Cognitive tests

Participants completed an additional battery of cognitive

tests. These included:

• The four-subtest version of the Wechsler Abbreviated

Scale of Intelligence—Second Edition (WASI-II; Pearson

Clinical), comprising Block design, Vocabulary, Matrix

reasoning and Similarities tasks

• Three subtests from the Test of Adolescent and Adult

Language-Fourth Edition (TOAL-4), namely Word

opposites, Derivations and Spoken analogies

• Semantic and phonological verbal fluency tasks

• A computer-based hearing test to measure pure-tone

hearing thresholds (pure-tone audiometry)

As for Experiment 1, we focus on ID and the resting

state EEG-based individual differences metrics (1/f slope and

Individual Alpha Frequency, IAF; see below) as our primary

measures of individual differences.

3.1.5. Procedure

The two in-lab testing sessions (behavioral and EEG) for

Experiment 2 were comparable to those in Experiment 1. The

procedure for the EEG testing session was also identical to

that for Experiment 1 with two exceptions. Firstly, participants

completed a short (approximately 3.5 min) passive auditory

oddball paradigm prior to the main language processing task.

This task was included as part of a larger lifespan study and

will not be considered here. Secondly, a subset of participants

completed two (rather than one) eyes-closed resting state EEG

recording sessions both before and after the experiment: one

in which they were instructed to relax and one in which they

were asked to try to keep their mind blank. For the purposes

of calculating resting-state individual difference metrics (IAF

and 1/f slope), we used the eyes-closed recordings with the

“relax” instructions, as these were comparable to the eyes-closed

resting-state recordings with only a single session.

3.1.6. EEG recording and preprocessing

The EEG was recorded from 64 electrodes mounted inside

an elastic cap (actiCAP) using a Brain Products actiCHamp

amplifier (Brain Products GmbH, Gilching, Germany). The

electrooculogram (EOG) was recorded via electrodes placed at

the outer canthi of both eyes as well as above and below the left

eye. The EEG recording was sampled at 500 Hz and referenced

to FCz.

Data preprocessing was undertaken as for Experiment 1 with

the exception that, as a first step in the preprocessing procedure

for Experiment 2, the data were converted to the brain imaging

data structure for electroencephalography (EEG-BIDS; Pernet

et al., 2019) using the MNE-BIDS Python package (Appelhoff

et al., 2019).

3.1.6.1. Resting-state EEG-based individual di�erences

measures: Individual alpha frequency and aperiodic

(1/f) activity

IAF and aperiodic slope estimates were calculated as for

Experiment 1. Due to slightly differing electrode configurations,

there were minor differences in the electrodes used for the

IAF and aperiodic activity analyzes in this experiment. The

electrodes used for IAF (peak alpha frequency) estimation were:

P1, Pz, P2, PO3, POz, PO4, O1, O2. The electrodes used for

aperiodic slope estimation were: F7, F3, Fz, F4, F8, FC5, FC1,

FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2 CP6, P7, P3, Pz,

P4, P8, PO9, O1, O2, PO10, AF7, AF8, F5, F1, F2, F6, FT7, FC3,

FC4, FT8, C5, C1, C2, C6, TP7, CP3, CPz, CP4, TP8, P5, P1, P2,

P6, PO7, PO3, POz, PO4, PO8.

3.1.7. Data analysis

The data analysis was undertaken as for Experiment 1.

As our primary research question for Experiment 2 was

whether it is possible to replicate the inter-individual difference

effects observed in Experiment 1, we focus on the mixed

model analyses examining 1/f slope, IAF and ID and how these

modulate the effect of speaker-based surprisal across the course

of the experiment.

3.2. Results

3.2.1. Individual di�erences measures

Distributions of the (z-transformed) individual differences

measures are shown in Supplementary Figure S2.
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3.2.2. EEG data

For the model including aperiodic slope, the top-level

interactions involving Speaker-based Surprisal, Epoch and

Slope were Prestimulus Amplitude x Speaker-based Surprisal

x Epoch x Canonicity x Slope (Estimate = –0.0421, Std.

Error = 0.0173, z = –2.44, p < 0.02) and Frequency

x Speaker-based Surprisal x Epoch x Canonicity x Slope

(Estimate = –0.0472, Std. Error = 0.0210, z = –2.24, p <

0.03).

For the model including IAF, the top-level interaction was

Prestimulus Amplitude x Frequency x Speaker-based Surprisal

x Epoch x IAF (Estimate = 0.0415, Std. Error = 0.0148, z

= 2.80, p < 0.01); for the ID model, it was Prestimulus

Amplitude x Frequency x Speaker-based Surprisal x Epoch x

Canonicity x ID (Estimate = –0.0534, Std. Error = 0.0181,

z = –2.95, p < 0.01). Model summaries are presented in

Supplementary Tables S6–S8.

The effects of interest are visualized in Figures 7–9. As

for Experiment 1, we visualize partial effects of Speaker-based

Surprisal x Epoch x Individual Differences Covariate of Interest

for each model in turn in the following, adjusting for any

additional moderating effects.

Overall, the results of Experiment 2 replicate the effects

observed in Experiment 1. Individuals with a steep 1/f slope or a

low IAF show more pronounced adaptation to speaker-based,

intra-experimental probabilistic information over the course

of the experiment in comparison to their counterparts with a

shallow 1/f slope or a high IAF. By contrast, the pattern for ID is

less clear.

3.3. Combined analysis of Experiments 1
and 2

Finally, we conducted a combined analysis of Experiments

1 and 2 in order to examine whether the inter-individual

differences of interest would also be observable with a more

substantial sample size (n=85). To this end, we again computed

the three individual-differences models involving 1/f slope, IAF

and ID using the same modeling approach as before. The only

exception was the addition of a main effect of Experiment in

the fixed effects in order to capture any intrinsic differences in

EEG activity between the two experiments (e.g., due to the use

of different amplifiers).

For the combined model including aperiodic slope, the

top-level interactions involving Speaker-based Surprisal, Epoch

and Slope were Prestimulus Amplitude x Frequency x Speaker-

based Surprisal x Epoch x Slope (Estimate = 0.0352, Std. Error

= 0.0113, z = 3.11, p < 0.01) and Prestimulus Amplitude

x Speaker-based Surprisal x Epoch x Canonicity x Slope

(Estimate = –0.0613, Std. Error = 0.0110, z = -5.58, p

< 0.0001).

For the model including IAF, the top-level interactions

of interest were Prestimulus Amplitude x Frequency

x Speaker-based Surprisal x Epoch x IAF (Estimate =

0.0424, Std. Error = 0.0109, z = 3.88, p < 0.001) and

Frequency x Speaker-based Surprisal x Epoch x Canonicity

x IAF (Estimate = –0.0432, Std. Error = 0.0118, z = –

3.65, p < 0.001). For the ID model, it was Prestimulus

Amplitude x Frequency x Speaker-based Surprisal x Epoch x

Canonicity x ID (Estimate = –0.0239, Std. Error = 0.0120,

z = -1.99, p < 0.05). Model summaries are presented in

Supplementary Tables S9–S11.

The effects of interest are visualized in Figures 10–12. As for

the analysis of Experiments 1 and 2, we visualize partial effects

of Speaker-based Surprisal x Epoch x Individual Differences

Covariate of Interest for each model in turn in the following,

adjusting for any additional moderating effects.

3.4. Discussion

The results of Experiment 2 and the combined analysis

of Experiments 1 and 2 broadly support the findings of

Experiment 1. The findings for 1/f slope and IAF are

highly compatible across all analyses: participants with a

steep 1/f slope and those with a low IAF show a more

substantial model adaptation to intra-experimental probabilistic

information than those with a shallow 1/f slope or a high

IAF. The findings for ID are not as clear for the individual

analyses of Experiments 1 and 2; however, the combined analysis

shows an emerging trend for increased model adaptation

over the course of the experiment by individuals with a

low ID.

4. General discussion

We have reported two ERP studies designed to investigate

inter-individual differences in internal model updating

during naturalistic language processing. By means of a novel

measure of speaker-based surprisal for adjective orders, we

examined the degree to which N400 responses track context-

specific probabilistic information tied to the experimental

environment. This measure, “speaker-based surprisal",

reflects the predictability of adjective type for the second

adjective in a two-adjective sequence given the type of the

first adjective for a particular speaker. Adjective type was

determined in a data-driven manner using a cluster-based

analysis of semantic (word-vector-based) similarity between

adjectives, and speaker-based probabilities were manipulated

by having one speaker utter a higher percentage of expected

orders and a second speaker utter a higher percentage of

unexpected orders.
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FIGURE 7

E�ects of aperiodic (1/f) Slope on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the

course of Experiment 2. The figure visualizes partial e�ects as calculated using the remef package, adjusted for Prestimulus Amplitude and

Canonicity. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning, middle and

end for visualization purposes only; epoch was included in the model as a continuous predictor. The same holds for the individual di�erences

variables, which are trichotomised for visualization purposes but were entered into the statistical models as a continuous predictors. Shaded

areas indicate 95% confidence intervals.

FIGURE 8

E�ects of IAF on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the course of

Experiment 2. The figure visualizes partial e�ects as calculated using the remef package, adjusted for Prestimulus Amplitude and Frequency.

Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning, middle and end for

visualization purposes only; epoch was included in the model as a continuous predictor. The same holds for the individual di�erences variables,

which are trichotomised for visualization purposes but were entered into the statistical models as a continuous predictors. Shaded areas indicate

95% confidence intervals.
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FIGURE 9

E�ects of ID on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the course of

Experiment 2. The figure visualizes partial e�ects as calculated using the remef package, adjusted for Prestimulus Amplitude, Frequency and

Canonicity. Note that position in the experiment (operationalised via epoch in the statistical model) is trichotomised into beginning, middle and

end for visualization purposes only; epoch was included in the model as a continuous predictor. The same holds for the individual di�erences

variables, which are trichotomised for visualization purposes but were entered into the statistical models as a continuous predictors. Shaded

areas indicate 95% confidence intervals.

FIGURE 10

E�ects of aperiodic (1/f) Slope on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the

course of the experiment in the combined analysis of Experiments 1 and 2 (n = 85). The figure visualizes partial e�ects as calculated using the

remef package, adjusted for Prestimulus Amplitude and Canonicity. Note that position in the experiment (operationalised via epoch in the

statistical model) is trichotomised into beginning, middle and end for visualization purposes only; epoch was included in the model as a

continuous predictor. The same holds for the individual di�erences variables, which are trichotomised for visualization purposes but were

entered into the statistical models as a continuous predictors. Shaded areas indicate 95% confidence intervals.
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FIGURE 11

E�ects of IAF on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the course of the

experiment in the combined analysis of Experiments 1 and 2 (n = 85). The figure visualizes partial e�ects as calculated using the remef package,

adjusted for Prestimulus Amplitude and Frequency. Note that position in the experiment (operationalised via epoch in the statistical model) is

trichotomised into beginning, middle and end for visualization purposes only; epoch was included in the model as a continuous predictor. The

same holds for the individual di�erences variables, which are trichotomised for visualization purposes but were entered into the statistical

models as a continuous predictors. Shaded areas indicate 95% confidence intervals.

FIGURE 12

E�ects of ID on changes in the relationship between speaker-based surprisal (z-transformed) and N400 amplitude over the course of the

experiment in the combined analysis of Experiments 1 and 2 (n = 85). The figure visualizes partial e�ects as calculated using the remef package,

adjusted for Prestimulus Amplitude, Frequency and Canonicity. Note that position in the experiment (operationalised via epoch in the statistical

model) is trichotomised into beginning, middle and end for visualization purposes only; epoch was included in the model as a continuous

predictor. The same holds for the individual di�erences variables, which are trichotomised for visualization purposes but were entered into the

statistical models as a continuous predictors. Shaded areas indicate 95% confidence intervals.
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4.1. Individuals incrementally adapt their
predictive language models to reflect
current contextual information

The current findings present compelling evidence to suggest

that individuals incrementally adapt their predictive language

models to reflect current contextual information. In spite of

only being exposed to new, intra-experimental adjective order

regularities for a relatively short period of time, participants’

N400 responses had attuned to this new information by the end

of the experimental session. Strikingly, this rapid attunement

occurred in spite of the wealth of linguistic experience

that participants bring to the laboratory from their lifelong

exposure to their native language. The importance of intra-

experimental information vis-à-vis prior linguistic experience is

further underscored by the observation that intra-experimental

surprisal effects were aligned for canonical and non-canonical

adjective orders by the end of the experiment. This suggests that

experiment-specific adjective order probabilities eventually took

on a higher weighting in shaping individuals’ predictive models

than their prior language experience.

Further attesting to the extremely fine-grained nature of

the model adaptation process is the observation that N400

amplitude increasingly reflected intra-experimental adjective

order surprisal, as calculated incrementally (i.e., on a trial-

by-trial basis) for the experimental materials to which a

participant had been exposed at each point in the experiment.

Moreover, the adaptation took speaker-specific information

into account (“speaker-based surprisal”). Previous studies have

already demonstrated an adaptation of language comprehension

processes to intra-experimental probabilities (Fine et al.,

2013), including speaker-specific information (e.g., Kroczek and

Gunter, 2017, 2021; Brothers et al., 2019). However, the present

study is, to best of our knowledge, the first to demonstrate a

gradual attunement to incremental, trial-by-trial fluctuations of

intra-experimental, speaker-based surprisal over the course of

an experiment.

When intra-experimental probabilities do not align with

prior probabilities acquired through experience outside the

laboratory, the precision of an individual’s global language

model is reduced. Model adaptation must thus take place to

accommodate speaker-based, intra-experimental contingencies.

These are increasingly incorporated into the listener’s internal

predictive model with increasing exposure to the experimental

materials. The attunement of N400 amplitudes to speaker-

based surprisal over the course of the experiment thus

provides converging support for the proposal that N400 effects

reflect precision-weighted prediction error signals (Bornkessel-

Schlesewsky and Schlesewsky, 2019). As hypothesized by

Bornkessel-Schlesewsky and Schlesewsky (2019), N400 effects

thereby functionally mirror MMN effects as observed in

auditory oddball paradigms designed to modulate predictive

model precision (Todd et al., 2011, 2013, 2014). In these

studies, the identity of standard and deviant tones within

an auditory oddball paradigm was periodically changed, thus

requiring an adaptation of the predictive model. Todd and

colleagues observed increased MMN amplitudes within tone

sequences that were presented for longer periods of time, i.e.,

when predictive models had sufficient time to stabilize and

increase in precision. However, they also found a primacy effect

such that MMN effects were larger for deviations from the

tone that was initially established as the standard (Todd et al.,

2011). This is indicative of an advantage for the first predictive

model to be established and thus attests to the integration of

new information with prior knowledge during the course of

predictive model adaptation. We suggest that our results show

a similar pattern: the observation of speaker-based surprisal

effects at the level of adjective clusters demonstrates that intra-

experimental contingencies were integrated with prior linguistic

knowledge, since the clusters were derived using corpus-based

word vectors. Participants were thus clearly still drawing on their

prior knowledge of which adjectives tend to behave similarly,

while at the same time adjusting their expectations based on the

occurrence of these adjectives within the experiment.

4.2. Individual di�erences in predictive
model adaptation

The fine-grained predictive model adaptation observed in

the current study differed between individuals. In this regard,

we had hypothesized that individuals with steeper 1/f slopes

and individuals with higher ID would show a similar adaptation

pattern on account of their strong predictive language models,

and that this pattern would contrast with that observed for

individuals with a higher IAF. Our results provided some

converging support for these assumptions but also yielded

some previously unexpected insights. Firstly, for 1/f slope and

IAF, the directionality of the effects was the opposite of what

we had expected: our results suggest a more pronounced

adaptation for individuals with a steeper 1/f slope vs. less

pronounced adaptation for individuals with a higher IAF.

Secondly, the results for ID were less clear in the individual

analyses of Experiments 1 and 2, but the combined analysis

of both experiments revealed a trend for lower-ID individuals

to show more rapid model adaptation, in line with our

original hypothesis.

In the following, we discuss 1/f slope, IAF and ID in turn.

4.2.1. Individuals with a steeper aperiodic (1/f)
slope show more pronounced e�ects of model
adaptation than those with a shallower
aperiodic slope

Participants with a steeper aperiodic (1/f) slope showed a

more substantial N400 attunement to speaker-based surprisal
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over the course of the experiment than their counterparts with

a shallower aperiodic slope. This result supports and extends

the findings by Dave et al. (2018) that individuals with a steep

1/f slope showed more pronounced prediction-related N400

effects than individuals with a shallow 1/f slope. Dave and

colleagues proposed that individuals with low neural noise, as

reflected in a steeper 1/f slope, show enhanced prediction (i.e.,

their study showed a relationship between 1/f slope and N400

effects marking successful vs. unsuccessful lexical prediction).

While we had originally hypothesized that this might correlate

with a reduced degree of adaptation to intra-experimental

contigencies, our findings suggest that, to the contrary, enhanced

prediction may in fact be related to an individual’s ability to

flexibly adapt their neural predictive coding infrastructure to

current environmental and task conditions.2

This assumption can be linked to the notion that steeper 1/f

slopes are indicative of lower levels of neural noise. It is proposed

that steeper 1/f slopes in both intracranial and scalp EEG reflect

more synchronous neural firing and concomitantly lower rates

of aberrant firing or random background activity (for a review of

the physiological mechanisms and modeling work that supports

this claim, see Voytek and Knight, 2015). The higher signal-to-

noise ratio associated with this more synchronous activity can

be viewed as reflecting lower neural noise (Hong and Rebec,

2012)3. An increase of random neural background activity in

aging (increased neural noise) goes hand in hand with increased

variability and slowing of neural and behavioral responses to

external stimuli (Hong and Rebec, 2012) as well as with a

flattening of 1/f slope (Voytek et al., 2015). For example, Tran

et al. (2020) observed that increased resting-state neural noise,

as reflected in a flatter 1/f slope, in older adults correlated

with increased variability of stimulus-related neurophysiological

responses (peak alpha inter-trial coherence, ITC) in a visual

discrimination task. In relation to predictive coding, lower

neural noise possibly allows for a more dynamic and efficient

adaptation of task- and context-related neural networks in

2 It is worth noting in this context that Dave et al. (2018) examined

on-task 1/f activity during their sentence comprehension tasks, while

we examined resting-state 1/f activity in the present study. Some recent

research suggests that 1/f slope can be linked to global states of

consciousness and arousal (Lendner et al., 2020), which could a�ect

predictive model updating through improved attentional regulation and,

hence, increased sensitivity to both prediction errors and contextual

states. Future research will need to further examine the relationship

between resting and on-task 1/f.

3 A complementary perspective on the physiological underpinnings

of the 1/f slope is that it indexes the balance between excitatory

and inhibitory activity: a flatter slope correlates with more stochastic

excitatory firing, which is consistent with reduced inhibitory firing in aging

(Gao et al., 2017).

accordance with current task demands, thus facilitating accurate

and context-appropriate predictions.

Pertermann et al. (2019b) recently suggested that there is

a relationship between neural noise as indexed by 1/f and

neural gain control via the noradrenergic system. Release of

noradrenaline from the brainstem locus coeruleus leads to

increased excitatory and decreased inhibitory responses to

a stimulus of interest, thus resulting in stronger stimulus

discriminability and a more binary response function (i.e.,

stronger neural gain, Aston-Jones and Cohen, 2005). In their

study, Pertermann et al. (2019b) observed a correlation between

1/f slope and pupil dilation—an index of noradrenergic system

activation—in a go/no-go task and specifically for no-go trials

requiring response inhibition.

The potential link between lower neural noise and higher

neural gain suggests that individuals with a steeper aperiodic

slope may be more effective in discriminating between relevant

and irrelevant information for the flexible adaptation of their

predictive models to the current context. This aligns with an

active inference perspective on attention, according to which

attention is preferentially allocated toward sensory evidence

with a high precision (Parr and Friston, 2017). By optimizing the

allocation of attention toward salient/task-relevant information,

this could lead to a more rapid establishment of higher-precision

models by individuals with a steeper 1/f slope—or, perhaps more

precisely, models in which precision is appropriately weighted in

light of prior evidence.

4.2.2. Stronger model adaptation for individuals
with lower individual alpha frequency

Turning now to IAF, it initially appears somewhat

counterintuitive that individuals with a higher IAF show less

predictive model adaptation than individuals with a lower

IAF. After all, higher IAF correlates with faster processing

cycles (Cecere et al., 2015; Samaha and Postle, 2015) and

previous findings suggest that older adults with a high IAF

show a higher propensity to reanalyze ambiguous (“garden

path") sentences when it becomes apparent that the reading

initially adopted was incorrect (Kurthen et al., 2020). On the

basis of these previous observations, we had thus hypothesized

that high-IAF individuals would show a higher propensity

for predictive model adaptation than low-IAF individuals.

Upon closer consideration, however, the present study differed

from the above-cited studies in several important respects.

Firstly, in the study by Kurthen et al. (2020), reanalysis did

not require an adaptation of the predictive model but rather

the correction of a previous processing decision within the

bounds of the current model’s strategy space. By contrast, the

adaptive demands of the present study required participants

to learn new, intra-experimental probabilities associated with

each speaker and adapt their predictive models to these new

contingencies. Secondly, the time frames relevant for these
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adaptive learning processes were substantially longer than the

perceptual windows of interest in the studies by Cecere et al.

(2015) and Samaha and Postle (2015), as participants were

required to learn two-adjective sequencing regularities over

the course of an experimental session. Previous work on the

localization of targets moving in space revealed an advantage

for individuals with a lower IAF (Howard et al., 2017), with the

authors suggesting that this result could be due to the longer

timescales involved in the task (movement was between 2 and

4 s in length) in comparison to the transient stimuli used, for

example, by Samaha and Postle (2015). In the language domain,

Nalaye et al. (2022) recently found that lower-IAF individuals

outperformed their higher-IAF counterparts when learning a

modified miniature language based on Mandarin Chinese. Akin

to the study by Howard et al. (2017), this paradigm involved

learning regularities on timescales of multiple seconds. In the

present study, lower-IAF individuals may have likewise been

better able to adapt their predictive models to the intra-

experimental probabilities that unfolded over multiple seconds

(intra-stimulus) and minutes (inter-stimulus). However, this

explanation remains tentative at present and requires more

systematic examination in future research.

4.2.3. A more complex relationship between
model adaptation and idea density

As IDmeasures the efficiency of linguistic encoding (Cheung

and Kemper, 1992; Kemper et al., 2001b; Iacono et al., 2009;

Engelman et al., 2010; Farias et al., 2012), we examined it as a

proxy for the quality of an individual’s language model. We thus

hypothesized that individuals with lower ID and, hence, a lower

quality language model, would show a faster adaptation to new

linguistic information. While the results of Experiments 1 and 2

both showed a less clear pattern for ID in comparison to 1/f slope

and IAF, the combined analysis of the two experiments does

provide some converging evidence for the hypothesis that lower-

ID individuals adapted their language models more substantially

to the intra-experimental contingencies presented to them.

Low ID in young adulthood is a risk factor for cognitive

decline and dementia in old age (Snowdon et al., 1996; Kemper

et al., 2001a) and has been suggested to reflect “suboptimal

neurocognitive development" (Kemper et al., 2001a, p.602).

The notion that lower-ID individuals show a more flexible

adaptation of their internal predictive models to the current

environment may thus, at a first glance, appear somewhat

counterintuitive. Note, however, that faster adaptation in the

present study should not necessarily be considered a superior

processing strategy. After all, high adaptability means that

individuals adjusted expectations accrued through a lifetime of

language experience to speaker-specific patterns encountered

within a brief experimental session. This could, at least under

certain circumstances, lead to the type of “overfitting” of

internal predictive models that may be problematic for cognitive

performance in older adulthood (Moran et al., 2014).

To better examine the utility of a rapid adaptation strategy,

future research could consider model adaptation in different

reward contexts, i.e., comparing circumstances where high

model malleability is useful to those where it is detrimental

to optimal performance. This could yield further insights

on calibrated model adaptation, in which the strong prior

evidence provided by a high-quality language model is weighed

against the increasing quantity of incoming evidence which

contradicts the prior model. In addition, the role of domain

specificity requires further consideration: of our three individual

differences measures of interest, only ID was directly related

to the domain under consideration (language), while the other

two can be considered to reflect more general characteristics

of neural information processing. Future research will need to

examine the role of such purported domain-specific vs. domain-

general influences in more detail.

Such considerations also reflect a limitation of the current

study, namely that possible interactions between individual

differences measures were not considered. These are, in our

view, outside of the scope of what is already a highly complex

pattern of results in a new domain of investigation. However,

if our interpretation of the present findings is correct, future

studies should be able to further illuminate the mechanics

of individuals’ model adaptation by taking into account

the interplay of the various individual differences metrics

examined here.

4.3. Implications for predictive coding in
language and beyond

Our results demonstrate that predictive processing during

language comprehension adapts flexibly to current contextual

and environmental demands, involving both intrinsic linguistic

properties (adjective type) as well as communicative aspects

(identity of the speaker). They thus extend previous work

linking N400 responses to surprisal (e.g., Frank et al., 2015;

Frank and Willems, 2017) by demonstrating that corpus-

based surprisal may need to be complemented by surprisal

metrics that are more closely aligned to the experimental

context. To further understand the implications of our findings

for predictive coding in language, future research should

examine the persistence of predictive model adaptations. It

appears unlikely that a single session of exposure to new

grammatical or communicative regularities would lead to a

permanent adaptation of linguistic models. The application

of adapted models to future situations could, however, be

governed by cognitive control processes such as those proposed

in hierarchical models of cognitive control (e.g., Koechlin and

Summerfield, 2007). Here, contextual or episodic information
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provides control cues to override prepotent stimulus-response

mappings and instantiate new mappings for the duration of the

appropriate context’s or episode’s presence. Within the context

of the present study, speaker identity could have functioned as

one such control cue—in addition to the broader contextual

cue of undertaking a language processing task in a laboratory.

Participants with a steeper 1/f slope and lower neural noise

may be more adept at using such control cues to flexibly switch

between alternate predictive models (cf. the association between

1/f neural noise and cognitive control in non-neurotypical

populations such as children with ADHD; Pertermann et al.,

2019a; Robertson et al., 2019; Ostlund et al., 2021).

A more comprehensive understanding of language

processing in contextually rich, naturalistic settings could

thus be facilitated by a closer examination of the interplay

between predictive coding and cognitive control. Alternatively,

cognitive control mechanisms could even be couched within a

predictive coding architecture, as proposed by the Hierarchical

Error Representation (HER) framework. The HER, which is

able to account for a wide range of cognitive control-related

findings including hierarchical aspects of cognitive control,

posits that “a major function of prefrontal cortex is learning to

predict likely prediction errors” (Alexander and Brown, 2018,

p.2).

Such an approach could have far-reaching implications for

language, including in helping to link linguistic phenomena

across different timescales: from processing mechanisms at

the scale of tens or hundreds of milliseconds to language

change. We have previously suggested that precision-

weighted prediction error signals could provide an “early

warning signal” for impending language change (Bornkessel-

Schlesewsky et al., 2020). Specifically, based on findings

from Icelandic, we proposed that reduced N400 effects

to a construction that is incompatible with the current

prescriptive grammar signal lower predictive precision and,

hence, a possible propensity for change. The present findings

provide converging support for the very early stages of this

proposed process by showing how a loss of precision for a

prior linguistic model can lead to rapid model adaptation

in accordance with current environmental contingencies.

They further suggest that the temporal trajectories for model

adaptation differ between individuals, with early adopters

being characterized by lower neural noise (steeper aperiodic

slope), lower Individual Alpha Frequency and, possibly, lower

Idea Density.

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories

and accession number(s) can be found below: https://osf.io/

32amz/.

Ethics statement

The studies involving human participants were reviewed and

approved by University of South Australia’s Human Research

Ethics Committee. The participants provided their written

informed consent to participate in this study.

Author contributions

IB-S, IS, CH, and EW prepared the experiments. IS, CH,

and EW collected the data. IB-S and RK performed the data

analysis. IB-S wrote the first draft of the manuscript. All authors

contributed to conception and design of the study, manuscript

revision, and approved the submitted version.

Funding

The research reported here was funded by an Australian

Research Council Future Fellowship awarded to IB-S

(FT160100437). AC acknowledges the support of the Three

Springs Foundation.

Acknowledgments

The authors would like to thank John Ellett for help with

preparing the experimental materials, Alin Grecu, TimHarrison,

and Casey Tonkin for recording the experimental stimuli and

Nicole Vass for help with data collection.

Conflict of interest

Author PA was employed by Beacon Biosignals, Boston.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fpsyg.2022.817516/full#supplementary-material

Frontiers in Psychology 24 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.817516
https://osf.io/32amz/
https://osf.io/32amz/
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.817516/full#supplementary-material
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Bornkessel-Schlesewsky et al. 10.3389/fpsyg.2022.817516

References

Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., and Friston, K.
J. (2013). The computational anatomy of psychosis. Front. Psychiatry 4, 47.
doi: 10.3389/fpsyt.2013.00047

Alday, P. (2021). Palday/JellyMe4.jl: V0.2.6 (v0.2.6). Zenodo.
doi: 10.5281/zenodo.5621582

Alday, P. M. (2018). Philistine (v0.1) [Source code]. Available online at: https://
github.com/palday/philistine/

Alday, P. M. (2019). Howmuch baseline correction do we need in ERP research?
Extended GLM model can replace baseline correction while lifting its limits.
Psychophysiology 56, 13451. doi: 10.1111/psyp.13451

Alday, P. M., Schlesewsky, M., and Bornkessel-Schlesewsky, I. (2017).
Electrophysiology reveals the neural dynamics of naturalistic auditory language
processing: event-related potentials reflect continuous model updates. eNeuro 4,
ENEURO.0311-16.2017. doi: 10.1523/ENEURO.0311-16.2017

Alexander, W. H., and Brown, J. W. (2018). Frontal cortex function
as derived from hierarchical predictive coding. Sci. Rep. 8, 3843.
doi: 10.1038/s41598-018-21407-9

Appelhoff, S., Sanderson, M., Brooks, T., van Vliet, M., Quentin, R., Holdgraf,
C., et al. (2019). MNE-BIDS: Organizing electrophysiological data into the
BIDS format and facilitating their analysis. J. Open Source Softw. 4, 1896.
doi: 10.21105/joss.01896

Aston-Jones, G., and Cohen, J. D. (2005). Adaptive gain and the role of the locus
coeruleus-norepinephrine system in optimal performance. J. Comp. Neurol. 493,
99–110. doi: 10.1002/cne.20723

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., and Friston,
K. J. (2012). Canonical microcircuits for predictive coding. Neuron 76, 695–711.
doi: 10.1016/j.neuron.2012.10.038

Bates, D., Alday, P., Kleinschmidt, D., José Bayoán Santiago Calderón, P.,
Zhan, L., Noack, A., et al. (2021). JuliaStats/MixedModels.jl: V4.4.0. Zenodo.
doi: 10.5281/zenodo.5542701

Bates, D., Kliegl, R., Vasishth, S., and Baayen, H. (2015). Parsimonious mixed
models. arXiv:1506.04967 [stat]. doi: 10.48550/arXiv.1506.04967

Bates, E., Devescovi, A., and Wulfeck, B. (2001). Psycholinguistics:
a cross-language perspective. Annu. Rev. Psychol. 52, 369–396.
doi: 10.1146/annurev.psych.52.1.369

Bates, E., McNew, S., MacWhinney, B., Devescovi, A., and Smith, S. (1982).
Functional constraints on sentence processing: a cross-linguistic study. Cognition
11, 245–299. doi: 10.1016/0010-0277(82)90017-8

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: a fresh
approach to numerical computing. SIAM Rev. 59, 65–98. doi: 10.1137/141000671

Bolker, B., and Robinson, D. (2021). broom.mixed: Tidying Methods for Mixed
Models. R package version 1019 0.2.7.

Bornkessel, I. D., Fiebach, C. J., Friederici, A. D., and Schlesewsky,
M. (2004). "Capacity" reconsidered: interindividual differences in language
comprehension and individual alpha frequency. Exp. Psychol. 51, 279–289.
doi: 10.1027/1618-3169.51.4.279

Bornkessel-Schlesewsky, I., Philipp, M., Alday, P. M., Kretzschmar, F.,
Grewe, T., Gumpert, M., et al. (2015a). Age-related changes in predictive
capacity versus internal model adaptability: electrophysiological evidence that
individual differences outweigh effects of age. Front. Aging Neurosci. 7, 217.
doi: 10.3389/fnagi.2015.00217

Bornkessel-Schlesewsky, I., Roehm, D., Mailhammer, R., and Schlesewsky, M.
(2020). Language processing as a precursor to language change: evidence from
icelandic. Front. Psychol. 10, 3013. doi: 10.3389/fpsyg.2019.03013

Bornkessel-Schlesewsky, I., and Schlesewsky, M. (2013). Reconciling time, space
and function: a new dorsal-ventral streammodel of sentence comprehension. Brain
Lang. 125, 60–76. doi: 10.1016/j.bandl.2013.01.010

Bornkessel-Schlesewsky, I., and Schlesewsky, M. (2019). Towards a
neurobiologically plausible model of language-related, negative event-related
potentials. Front. Psychol. 10, 298. doi: 10.3389/fpsyg.2019.00298

Bornkessel-Schlesewsky, I., and Schlesewsky, M. (2020). “Cross-linguistic
neuroscience of language,” in The Cognitive Neurosciences, 6th Edn, eds M. S.
Gazzaniga, G. R. Mangun, and D. Poeppel (Cambridge, MA: MIT Press), 841–848.

Bornkessel-Schlesewsky, I., Schlesewsky, M., Small, S. L., and Rauschecker,
J. P. (2015b). Neurobiological roots of language in primate audition:
common computational properties. Trends Cogn Sci. 19, 142–150.
doi: 10.1016/j.tics.2014.12.008

Brehm, L., and Alday, P.M. (2022). Contrast coding choices in a decade of mixed
models. J. Mem. Lang. 125, 104334. doi: 10.1016/j.jml.2022.104334

Brothers, T., Dave, S., Hoversten, L. J., Traxler, M. J., and Swaab, T.
Y. (2019). Flexible predictions during listening comprehension: speaker
reliability affects anticipatory processes. Neuropsychologia 135, 107225.
doi: 10.1016/j.neuropsychologia.2019.107225

Brown, C., Snodgrass, T., Kemper, S. J., Herman, R., and a Covington, M.
(2008). Automatic measurement of propositional idea density from part-of-speech
tagging. Behav. Res. Methods 40, 540–545. doi: 10.3758/BRM.40.2.540

Buzsáki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular
fields and currents – EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420.
doi: 10.1038/nrn3241

Buzsáki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.
Science 304, 1926–1929. doi: 10.1126/science.1099745

Cecere, R., Rees, G., and Romei, V. (2015). Individual differences in
alpha frequency drive crossmodal illusory perception. Curr. Biol. 25, 231–235.
doi: 10.1016/j.cub.2014.11.034

Chater, N., and Manning, C. D. (2006). Probabilistic models of
language processing and acquisition. Trends Cogn. Sci. 10, 335–344.
doi: 10.1016/j.tics.2006.05.006

Cheung, H., and Kemper, S. (1992). Competing complexity metrics
and adults’ production of complex sentences. Appl. Psycholinguist. 13, 53.
doi: 10.1017/S0142716400005427

Clark, A. (2013). Whatever next? Predictive brains, situated agents,
and the future of cognitive science. Behav. Brain Sci. 36, 181–204.
doi: 10.1017/S0140525X12000477

Clark, A. (2015). Surfing Uncertainty: Prediction, Action, and the Embodied
Mind. New York, NY: Oxford University Press.

Corcoran, A. W., Alday, P. M., Schlesewsky, M., and Bornkessel-Schlesewsky, I.
(2018). Toward a reliable, automated method of individual alpha frequency (IAF)
quantification. Psychophysiology 55, e13064. doi: 10.1111/psyp.13064

Cross, Z. R., Corcoran, A. W., Schlesewsky, M., Kohler, M. J., and Bornkessel-
Schlesewsky, I. (2022). Oscillatory and aperiodic neural activity jointly predict
language learning. J. Cogn. Neurosci. 24, 1–20. doi: 10.1162/jocn_a_01878

Daneman, M., and Carpenter, P. A. (1980). Individual differences in
working memory and reading. J. Verbal Learn. Verbal Behav. 19, 450–466.
doi: 10.1016/S0022-5371(80)90312-6

Dave, S., Brothers, T., and Swaab, T. (2018). 1/f neural noise and
electrophysiological indices of contextual prediction in aging. Brain Res. 1691,
34–43. doi: 10.1016/j.brainres.2018.04.007

Dikker, S., and Pylkkänen, L. (2011). Before the N400: Effects of lexical-semantic
violations in visual cortex. Brain Lang. 118, 23–28. doi: 10.1016/j.bandl.2011.02.006

Dikker, S., Rabagliati, H., Farmer, T. A., and Pylkkänen, L. (2010). Early
occipital sensitivity to syntactic category is based on form typicality. Psychol. Sci.
21, 629–634. doi: 10.1177/0956797610367751

Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao,
R., et al. (2020). Parameterizing neural power spectra into periodic and
aperiodic components. Nat. Neurosci. 23, 1655–1665. doi: 10.1038/s41593-020-00
744-x

Engelman, M., Agree, E. M. A. Meoni, L., and Klag, M. J. (2010). Propositional
density and cognitive function in later life: Findings from the precursors study. J.
Gerontol. B Psychol. Sci. Soc. Sci. 65, 706–711. doi: 10.1093/geronb/gbq064

Farias, S. T., Chand, V., Bonnici, L., Baynes, K., Harvey, D., Mungas, D., et al.
(2012). Idea density measured in late life predicts subsequent cognitive trajectories:
implications for the measurement of cognitive reserve. J. Gerontol. B Psychol. Sci.
Soc. Sci. 67, 677–686. doi: 10.1093/geronb/gbr162

Federmeier, K. D., and Kutas, M. (1999). A rose by any other name: long-
term memory structure and sentence processing. J. Mem. Lang. 41, 469–495.
doi: 10.1006/jmla.1999.2660

Feldman, H., and Friston, K. J. (2010). Attention, uncertainty, and free-energy.
Front. Hum. Neurosci. 4, 215. doi: 10.3389/fnhum.2010.00215

Ferguson, A., Spencer, E., Craig, H., and Colyvas, K. (2014). Propositional
idea density in women’s written language over the lifespan: computerized analysis.
Cortex 55, 107–121. doi: 10.1016/j.cortex.2013.05.012

Fine, A. B., Jaeger, T. F., Farmer, T. A., and Qian, T. (2013). Rapid
expectation adaptation during syntactic comprehension. PLoS ONE 8, e77661.
doi: 10.1371/journal.pone.0077661

Frontiers in Psychology 25 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.817516
https://doi.org/10.3389/fpsyt.2013.00047
https://doi.org/10.5281/zenodo.5621582
https://github.com/palday/philistine/
https://github.com/palday/philistine/
https://doi.org/10.1111/psyp.13451
https://doi.org/10.1523/ENEURO.0311-16.2017
https://doi.org/10.1038/s41598-018-21407-9
https://doi.org/10.21105/joss.01896
https://doi.org/10.1002/cne.20723
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.5281/zenodo.5542701
https://doi.org/10.48550/arXiv.1506.04967
https://doi.org/10.1146/annurev.psych.52.1.369
https://doi.org/10.1016/0010-0277(82)90017-8
https://doi.org/10.1137/141000671
https://doi.org/10.1027/1618-3169.51.4.279
https://doi.org/10.3389/fnagi.2015.00217
https://doi.org/10.3389/fpsyg.2019.03013
https://doi.org/10.1016/j.bandl.2013.01.010
https://doi.org/10.3389/fpsyg.2019.00298
https://doi.org/10.1016/j.tics.2014.12.008
https://doi.org/10.1016/j.jml.2022.104334
https://doi.org/10.1016/j.neuropsychologia.2019.107225
https://doi.org/10.3758/BRM.40.2.540
https://doi.org/10.1038/nrn3241
https://doi.org/10.1126/science.1099745
https://doi.org/10.1016/j.cub.2014.11.034
https://doi.org/10.1016/j.tics.2006.05.006
https://doi.org/10.1017/S0142716400005427
https://doi.org/10.1017/S0140525X12000477
https://doi.org/10.1111/psyp.13064
https://doi.org/10.1162/jocn_a_01878
https://doi.org/10.1016/S0022-5371(80)90312-6
https://doi.org/10.1016/j.brainres.2018.04.007
https://doi.org/10.1016/j.bandl.2011.02.006
https://doi.org/10.1177/0956797610367751
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1093/geronb/gbq064
https://doi.org/10.1093/geronb/gbr162
https://doi.org/10.1006/jmla.1999.2660
https://doi.org/10.3389/fnhum.2010.00215
https://doi.org/10.1016/j.cortex.2013.05.012
https://doi.org/10.1371/journal.pone.0077661
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Bornkessel-Schlesewsky et al. 10.3389/fpsyg.2022.817516

Fletcher, P. C., and Frith, C. D. (2009). Perceiving is believing: A Bayesian
approach to explaining the positive symptoms of schizophrenia.Nat. Rev. Neurosci.
10, 48–58. doi: 10.1038/nrn2536

Frank, S. L., Otten, L. J., Galli, G., and Vigliocco, G. (2015). The ERP response to
the amount of information conveyed by words in sentences. Brain Lang. 140, 1–11.
doi: 10.1016/j.bandl.2014.10.006

Frank, S. L., and Willems, R. M. (2017). Word predictability and semantic
similarity show distinct patterns of brain activity during language comprehension.
Lang. Cogn. Neurosci. 32, 1192–1203. doi: 10.1080/23273798.2017.1323109

Freeman, W. J., and Zhai, J. (2009). Simulated power spectral density
(PSD) of background electrocorticogram (ECoG). Cogn. Neurodyn. 3, 97–103.
doi: 10.1007/s11571-008-9064-y

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal
communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480.
doi: 10.1016/j.tics.2005.08.011

Friston, K. J. (2005). A theory of cortical responses. Philos. Trans. R. Soc. B Biol.
Sci. 360, 815–836. doi: 10.1098/rstb.2005.1622

Friston, K. J. (2009). The free-energy principle: a rough guide to the brain?
Trends Cogn. Sci. 13, 293–301.

Friston, K. J., Sajid, N., Quiroga-Martinez, D. R., Parr, T., Price,
C. J., and Holmes, E. (2021). Active listening. Hear. Res. 399, 107998.
doi: 10.1016/j.heares.2020.107998

Frith, C. (2007).Making up the Mind: How the Brain Creates Our Mental World.
Oxford: Blackwell.

Gao, R., Peterson, E. J., and Voytek, B. (2017). Inferring synaptic
excitation/inhibition balance from field potentials. Neuroimage 158, 70–78.
doi: 10.1016/j.neuroimage.2017.06.078

Garrido, M. I., Kilner, J. M., Stephan, K. E., and Friston, K. J. (2009). The
mismatch negativity: a review of underlying mechanisms. Clin. Neurophysiol. 120,
453–463. doi: 10.1016/j.clinph.2008.11.029

Gasser, T., Bächer, P., and Steinberg, H. (1985). Test-retest reliability of spectral
parameters of the EEG. Electroencephalogr. Clin. Neurophysiol. 60, 312–319.
doi: 10.1016/0013-4694(85)90005-7

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., et al. (2013). MEG and EEG data analysis with MNE-Python. Front. Neurosci.
7, 267. doi: 10.3389/fnins.2013.00267

Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck,
C., et al. (2014). MNE software for processing MEG and EEG data. Neuroimage 86,
446–460. doi: 10.1016/j.neuroimage.2013.10.027

Grandy, T. H., Werkle-Bergner, M., Chicherio, C., Lövdén, M., Schmiedek,
F., and Lindenberger, U. (2013a). Individual alpha peak frequency is related
to latent factors of general cognitive abilities. Neuroimage 79, 10–18.
doi: 10.1016/j.neuroimage.2013.04.059

Grandy, T. H., Werkle-Bergner, M., Chicherio, C., and Schmiedek, F. (2013b).
Peak individual alpha frequency qualifies as a stable neurophysiological trait
marker in healthy younger and older adults. Psychophysiology 50, 570–582.
doi: 10.1111/psyp.12043

Hale, J. (2006). Uncertainty about the rest of the sentence.Cogn. Sci. 30, 643–672.
doi: 10.1207/s15516709cog0000_64

Hale, J. (2016). Information-theoretical complexity metrics: Information-
theoretical complexity metrics. Lang. Linguist. Compass 10, 397–412.
doi: 10.1111/lnc3.12196

He, B. J. (2014). Scale-free brain activity: past, present, and future. Trends Cogn.
Sci. 18, 480–487. doi: 10.1016/j.tics.2014.04.003

Hedden, T., and Gabrieli, J. D. E. (2004). Insights into the ageing mind: a view
from cognitive neuroscience. Nat. Rev. Neurosci. 5, 87–96. doi: 10.1038/nrn1323

Hester, J., and Wickham, H. (2021). vroom: Read and Write Rectangular Text
Data Quickly. R package version 1.5.3.

Hohenstein, S., and Kliegl, R. (2021). remef: Remove Partial Effects. R package
version 1.0.7.

Hohwy, J. (2013). The Predictive Mind. New York, NY: Oxford University Press.

Hong, S. L., and Rebec, G. V. (2012). A new perspective on behavioral
inconsistency and neural noise in aging: Compensatory speeding of neural
communication. Front. Aging Neurosci. 4, 27. doi: 10.3389/fnagi.2012.00027

Howard, C. J., Arnold, C. P., and Belmonte, M. K. (2017). Slower resting alpha
frequency is associated with superior localisation of moving targets. Brain Cogn.
117, 97–107. doi: 10.1016/j.bandc.2017.06.008

Iacono, D., Markesbery, W. R., Gross, M., Pletnikova, O., Rudow, G.,
Zandi, P., et al. (2009). The nun study. Clinically silent AD, neuronal

hypertrophy, and linguistic skills in early life. Neurology 73, 665–673.
doi: 10.1212/WNL.0b013e3181b01077

Jurafsky, D. (2003). “Probabilistic modeling in psycholinguistics: linguistic
comprehension and production,” in Probabilistic Linguistics, volume 21, eds R. Bod,
J. Hay, and S. Jannedy (Cambridge, MA; London: MIT Press), 39–95.

Kemmerer, D., Weber-Fox, C., Price, K., Zdanczyk, C., and Way, H.
(2007). Big brown dog or brown big dog? An electrophysiological study of
semantic constraints on prenominal adjective order. Brain Lang. 100, 238–256.
doi: 10.1016/j.bandl.2005.12.002

Kemper, S., Greiner, L. H., Marquis, J. G., Prenovost, K., and Mitzner, T. L.
(2001a). Language decline across the life span: Findings from the nun study.
Psychol. Aging 16, 227–239. doi: 10.1037/0882-7974.16.2.227

Kemper, S., Thompson, M., and Marquis, J. G. (2001b). Longitudinal
change in language production: effects of aging and dementia on grammatical
complexity and propositional content. Psychol. Aging 16, 600–614.
doi: 10.1037/0882-7974.16.4.600

Kintsch, W., and Keenan, J. (1973). Reading rate and retention as a function
of the number of propositions in the base structure of sentences. Cogn. Psychol. 5,
257–274. doi: 10.1016/0010-0285(73)90036-4

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive
and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195.
doi: 10.1016/S0165-0173(98)00056-3

Knill, D. C., and Pouget, A. (2004). The Bayesian brain: The role of
uncertainty in neural coding and computation. Trends Neurosci. 27, 712–719.
doi: 10.1016/j.tins.2004.10.007

Koechlin, E., and Summerfield, C. (2007). An information theoretical
approach to prefrontal executive function. Trends Cogn. Sci. 11, 229–235.
doi: 10.1016/j.tics.2007.04.005

Kondacs, A., and Szab,ó, M. (1999). Long-term intra-individual variability
of the background EEG in normals. Clin. Neurophysiol. 110, 1708–1716.
doi: 10.1016/S1388-2457(99)00122-4

Köpruner, V., Pfurtscheller, G., and Auer, L. (1984). “Quantitative EEG in
normals and in patients with cerebral ischemia,” in Brain Ischemia: Quantitative
EEG and Imaging Techniques, volume 62 of Progress in Brain Research, eds
G. Pfurtscheller, E. Jonkman, and F. Lopes da Silva (Amsterdam: Elsevier),
29–50.

Kroczek, L. O., and Gunter, T. C. (2021). The time course of speaker-
specific language processing. Cortex 141, 311–321. doi: 10.1016/j.cortex.2021.
04.017

Kroczek, L. O. H., and Gunter, T. C. (2017). Communicative predictions can
overrule linguistic priors. Sci. Rep. 7, 17581. doi: 10.1038/s41598-017-17907-9

Kuhn, M., Jackson, S., and Cimentada, J. (2020). corrr: Correlations in R. R
package version 0.4.3

Kuhn, M., and Wickham, H. (2020). Tidymodels: A Collection Of Packages For
Modeling And Machine Learning Using Tidyverse Principles. Query: Provide the
city and publisher name for “Kuhn and Wickham, 2020.”

Kuperberg, G. R. (2016). Separate streams or probabilistic inference? What the
N400 can tell us about the comprehension of events. Lang. Cogn. Neurosci. 31,
602–616. doi: 10.1080/23273798.2015.1130233

Kuperberg, G. R., and Jaeger, T. F. (2016). What do we mean by
prediction in language comprehension? Lang. Cogn. Neurosci. 31, 32–59.
doi: 10.1080/23273798.2015.1102299

Kurthen, I., Meyer, M., Schlesewsky, M., and Bornkessel-Schlesewsky, I.
(2020). Individual differences in peripheral hearing and cognition reveal sentence
processing differences in healthy older adults. Front. Neurosci. 14, 573513.
doi: 10.3389/fnins.2020.573513

Laszlo, S., and Federmeier, K. D. (2009). A beautiful day in the neighborhood:
an event-related potential study of lexical relationships and prediction in context.
J. Mem. Lang. 61, 326–338. doi: 10.1016/j.jml.2009.06.004

Laszlo, S., and Federmeier, K. D. (2011). The N400 as a snapshot of
interactive processing: evidence from regression analyses of orthographic
neighbor and lexical associate effects. Psychophysiology 48, 176–186.
doi: 10.1111/j.1469-8986.2010.01058.x

Lendner, J. D., Helfrich, R. F., Mander, B. A., Romundstad, L., Lin, J. J., Walker,
M. P., et al. (2020). An electrophysiological marker of arousal level in humans. Elife
9, e55092. doi: 10.7554/eLife.55092

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition 106,
1126–1177. doi: 10.1016/j.cognition.2007.05.006

MacWhinney, B., Bates, E., and Kliegl, R. (1984). Cue validity and sentence
interpretation in English, German, and Italian. J. Verbal Learn. Verbal Behav. 23,
127–150. doi: 10.1016/S0022-5371(84)90093-8

Frontiers in Psychology 26 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.817516
https://doi.org/10.1038/nrn2536
https://doi.org/10.1016/j.bandl.2014.10.006
https://doi.org/10.1080/23273798.2017.1323109
https://doi.org/10.1007/s11571-008-9064-y
https://doi.org/10.1016/j.tics.2005.08.011
https://doi.org/10.1098/rstb.2005.1622
https://doi.org/10.1016/j.heares.2020.107998
https://doi.org/10.1016/j.neuroimage.2017.06.078
https://doi.org/10.1016/j.clinph.2008.11.029
https://doi.org/10.1016/0013-4694(85)90005-7
https://doi.org/10.3389/fnins.2013.00267
https://doi.org/10.1016/j.neuroimage.2013.10.027
https://doi.org/10.1016/j.neuroimage.2013.04.059
https://doi.org/10.1111/psyp.12043
https://doi.org/10.1207/s15516709cog0000_64
https://doi.org/10.1111/lnc3.12196
https://doi.org/10.1016/j.tics.2014.04.003
https://doi.org/10.1038/nrn1323
https://doi.org/10.3389/fnagi.2012.00027
https://doi.org/10.1016/j.bandc.2017.06.008
https://doi.org/10.1212/WNL.0b013e3181b01077
https://doi.org/10.1016/j.bandl.2005.12.002
https://doi.org/10.1037/0882-7974.16.2.227
https://doi.org/10.1037/0882-7974.16.4.600
https://doi.org/10.1016/0010-0285(73)90036-4
https://doi.org/10.1016/S0165-0173(98)00056-3
https://doi.org/10.1016/j.tins.2004.10.007
https://doi.org/10.1016/j.tics.2007.04.005
https://doi.org/10.1016/S1388-2457(99)00122-4
https://doi.org/10.1016/j.cortex.2021.04.017
https://doi.org/10.1038/s41598-017-17907-9
https://doi.org/10.1080/23273798.2015.1130233
https://doi.org/10.1080/23273798.2015.1102299
https://doi.org/10.3389/fnins.2020.573513
https://doi.org/10.1016/j.jml.2009.06.004
https://doi.org/10.1111/j.1469-8986.2010.01058.x
https://doi.org/10.7554/eLife.55092
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/S0022-5371(84)90093-8
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Bornkessel-Schlesewsky et al. 10.3389/fpsyg.2022.817516

Matuschek, H., and Kliegl, R. (2018). On the ambiguity of interaction and
nonlinear main effects in a regime of dependent covariates. Behav. Res. Methods
50, 1882–1894. doi: 10.3758/s13428-017-0956-9

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., and Bates, D. (2017).
Balancing Type I error and power in linear mixed models. J. Mem. Lang. 94,
305–315. doi: 10.1016/j.jml.2017.01.001

McWhite, C. D., and Wilke, C. O. (2021). colorblindr: Simulate colorblindness in
R figures. R package version 0.1.0.

Moran, R. J., Symmonds, M., Dolan, R. J., and Friston, K. J. (2014). The brain
ages optimally to model its environment: evidence from sensory learning over the
adult lifespan. PLoS Comput. Biol. 10, e1003422. doi: 10.1371/journal.pcbi.1003422

Müller, K. (2020). here: A Simpler Way to Find Your Files. R package version
1.0.1.

Nalaye, H., Cross, Z. R., Schlesewsky, M., and Bornkessel-Schlesewsky, I. (2022).
Electrophysiological indices of individual differences in adult language learning.
bioRxiv. doi: 10.1101/2022.06.07.495229

Ociepka, M., Kałamała, P., and Chuderski, A. (2022). High individual alpha
frequency brains run fast, but it does not make them smart. Intelligence 92, 101644.
doi: 10.1016/j.intell.2022.101644

Oldfield, R. (1971). The assessment and analysis of handedness: The Edinburgh
inventory. Neuropsychologia 9, 97–113. doi: 10.1016/0028-3932(71)90067-4

Ostlund, B. D., Alperin, B. R., Drew, T., and Karalunas, S. L. (2021). Behavioral
and cognitive correlates of the aperiodic (1/f-like) exponent of the EEG power
spectrum in adolescents with and without ADHD.Dev. Cogn. Neurosci. 48, 100931.
doi: 10.1016/j.dcn.2021.100931

Ouyang, G., Hildebrandt, A., Schmitz, F., and Herrmann, C. S. (2020).
Decomposing alpha and 1/f brain activities reveals their differential
associations with cognitive processing speed. Neuroimage 205, 116304.
doi: 10.1016/j.neuroimage.2019.116304

Parr, T., and Friston, K. J. (2017). Working memory, attention, and salience in
active inference. Sci. Rep. 7, 14678. doi: 10.1038/s41598-017-15249-0

Pedersen, T. L. (2020). patchwork: The Composer of Plots. R package version
1.1.1.

Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S. J., Kanwisher, N., et al.
(2018). Toward a universal decoder of linguistic meaning from brain activation.
Nat. Commun. 9, 963. doi: 10.1038/s41467-018-03068-4

Pernet, C. R., Appelhoff, S., Gorgolewski, K. J., Flandin, G., Phillips, C., Delorme,
A., et al. (2019). EEG-BIDS, an extension to the brain imaging data structure for
electroencephalography. Scientific Data 6, 103. doi: 10.1038/s41597-019-0104-8

Pertermann, M., Bluschke, A., Roessner, V., and Beste, C. (2019a). The
modulation of neural noise underlies the effectiveness of methylphenidate
treatment in attention-deficit/hyperactivity disorder. Biol. Psychiatry Cogn.
Neurosci. Neuroimaging 4, 743–750. doi: 10.1016/j.bpsc.2019.03.011

Pertermann, M., Mückschel, M., Adelhöfer, N., Ziemssen, T., and Beste, C.
(2019b). On the interrelation of 1/ f neural noise and norepinephrine system
activity during motor response inhibition. J. Neurophysiol. 121, 1633–1643.
doi: 10.1152/jn.00701.2018

Pickering, M. J., and Garrod, S. (2007). Do people use language production
to make predictions during comprehension? Trends Cogn. Sci. 11, 105–110.
doi: 10.1016/j.tics.2006.12.002

Pickering, M. J., and Garrod, S. (2013). An integrated theory of
language production and comprehension. Behav. Brain Sci. 36, 329–347.
doi: 10.1017/S0140525X12001495

Poeppel, D., Idsardi, W. J., and vanWassenhove, V. (2008). Speech perception at
the interface of neurobiology and linguistics. Philos. Trans. R. Soc. B Biol. Sci. 363,
1071–1086. doi: 10.1098/rstb.2007.2160

Posthuma, D., Neale, M. C., Boomsma, D. I., and De Geus, E. J. C. (2001).
Are smarter brains running faster? Heritability of alpha peak frequency, IQ,
and their interrelation. Behav. Genet. 31, 567–579. doi: 10.1023/A:10133454
11774

R Core Team (2021). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87. doi: 10.1038/4580

Rauschecker, J. P., and Scott, S. K. (2009). Maps and streams in the auditory
cortex: Nonhuman primates illuminate human speech processing. Nat. Neurosci.
12, 718–724. doi: 10.1038/nn.2331

Robertson, M. M., Furlong, S., Voytek, B., Donoghue, T., Boettiger, C. A., and
Sheridan, M. A. (2019). EEG power spectral slope differs by ADHD status and
stimulantmedication exposure in early childhood. J. Neurophysiol. 122, 2427–2437.
doi: 10.1152/jn.00388.2019

Robinson, D. (2021). widyr: Widen, Process, then Re-Tidy Data. R package
version 0.1.4

Salthouse, T. A. (2011). Neuroanatomical substrates of age-related cognitive
decline. Psychol. Bull. 137, 753–784. doi: 10.1037/a0023262

Samaha, J., and Postle, B. R. (2015). The speed of alpha-band oscillations
predicts the temporal resolution of visual perception. Curr. Biol. 25, 2985–2990.
doi: 10.1016/j.cub.2015.10.007

Sanborn, A. N., and Chater, N. (2016). bayesian brains without probabilities.
Trends Cogn. Sci. 20, 883–893. doi: 10.1016/j.tics.2016.10.003

Schad, D. J., Vasishth, S., Hohenstein, S., and Kliegl, R. (2020). How to capitalize
on a priori contrasts in linear (mixed)models: a tutorial. J. Mem. Lang. 110, 104038.
doi: 10.1016/j.jml.2019.104038

Silge, J. and Robinson, D. (2016). tidytext: Text mining and analysis using tidy
data principles in R. J. Open Source Softw. 1/, 37. doi: 10.21105/joss.00037

Skipper, J. I., van Wassenhove, V., Nusbaum, H. C., and Small, S. L.
(2007). Hearing lips and seeing voices: how cortical areas supporting speech
production mediate audiovisual speech perception. Cereb. Cortex 17, 2387–2399.
doi: 10.1093/cercor/bhl147

Smit, C. M., Wright, M. J., Hansell, N. K., Geffen, G. M., and Martin,
N. G. (2006). Genetic variation of individual alpha frequency (IAF) and alpha
power in a large adolescent twin sample. Int. J. Psychophysiol. 61, 235–243.
doi: 10.1016/j.ijpsycho.2005.10.004

Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D.
R., and Markesbery, W. R. (1996). Linguistic ability in early life and cognitive
function and Alzheimer’s disease in late life. Findings from the Nun Study. JAMA
275, 528–532. doi: 10.1001/jama.1996.03530310034029

Spencer, E., Ferguson, A., Craig, H., Colyvas, K., Hankey, G. J., and Flicker, L.
(2015). Propositional idea density in older men’s written language: findings from
the HIMS study using computerised analysis. Clin. Linguist. Phonet. 29, 85–101.
doi: 10.3109/02699206.2014.956263

Spratling,M. (2008). Predictive coding as amodel of biased competition in visual
attention. Vis. Res. 48, 1391–1408. doi: 10.1016/j.visres.2008.03.009

Surwillo, W. W. (1961). Frequency of the alpha rhythm, reaction time and age.
Nature 191, 823–824. doi: 10.1038/191823a0

Surwillo, W. W. (1963). The relation of simple response time to brain-
wave frequency and the effects of age. Electroencephalogr. Clin. Neurophysiol. 15,
105–114. doi: 10.1016/0013-4694(63)90043-9

Todd, J., Heathcote, A., Mullens, D., Whitson, L. R., Provost, A., and Winkler, I.
(2014). What controls gain in gain control? Mismatch negativity (MMN), priors
and system biases. Brain Topography 27, 578–589. doi: 10.1007/s10548-013-0
344-4

Todd, J., Provost, A., and Cooper, G. (2011). Lasting first impressions:
a conservative bias in automatic filters of the acoustic environment.
Neuropsychologia 49, 3399–3405. doi: 10.1016/j.neuropsychologia.2011.
08.016

Todd, J., Provost, A., Whitson, L. R., Cooper, G., and Heathcote, A. (2013). Not
so primitive: context-sensitive meta-learning about unattended sound sequences.
J. Neurophysiol. 109, 99–105. doi: 10.1152/jn.00581.2012

Tran, T. T., Rolle, C. E., Gazzaley, A., and Voytek, B. (2020). Linked sources
of neural noise contribute to age-related cognitive decline. J. Cogn. Neurosci. 32,
1813–1822. doi: 10.1162/jocn_a_01584

Vallat, R., andWalker, M. P. (2021). A universal, open-source, high-performance
tool for automated sleep staging. Preprint BioRxiv. doi: 10.1101/2021.05.28.446165

van Paridon, J., and Thompson, B. (2021). Subs2vec: Word embeddings
from subtitles in 55 languages. Behav. Res. Methods 53, 629–655.
doi: 10.3758/s13428-020-01406-3

Van Petten, C., and Luka, B. (2012). Prediction during language comprehension:
benefits, costs, and ERP components. Int. J. Psychophysiol. 83, 176–190.
doi: 10.1016/j.ijpsycho.2011.09.015

VanRullen, R. (2016). Perceptual cycles. Trends Cogn. Sci. 20, 723–735.
doi: 10.1016/j.tics.2016.07.006

Vilares, I., and Kording, K. (2011). Bayesian models: The structure of the
world, uncertainty, behavior, and the brain. Ann. N. Y. Acad. Sci. 1224, 22–39.
doi: 10.1111/j.1749-6632.2011.05965.x

Frontiers in Psychology 27 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.817516
https://doi.org/10.3758/s13428-017-0956-9
https://doi.org/10.1016/j.jml.2017.01.001
https://doi.org/10.1371/journal.pcbi.1003422
https://doi.org/10.1101/2022.06.07.495229
https://doi.org/10.1016/j.intell.2022.101644
https://doi.org/10.1016/0028-3932(71)90067-4
https://doi.org/10.1016/j.dcn.2021.100931
https://doi.org/10.1016/j.neuroimage.2019.116304
https://doi.org/10.1038/s41598-017-15249-0
https://doi.org/10.1038/s41467-018-03068-4
https://doi.org/10.1038/s41597-019-0104-8
https://doi.org/10.1016/j.bpsc.2019.03.011
https://doi.org/10.1152/jn.00701.2018
https://doi.org/10.1016/j.tics.2006.12.002
https://doi.org/10.1017/S0140525X12001495
https://doi.org/10.1098/rstb.2007.2160
https://doi.org/10.1023/A:1013345411774
https://doi.org/10.1038/4580
https://doi.org/10.1038/nn.2331
https://doi.org/10.1152/jn.00388.2019
https://doi.org/10.1037/a0023262
https://doi.org/10.1016/j.cub.2015.10.007
https://doi.org/10.1016/j.tics.2016.10.003
https://doi.org/10.1016/j.jml.2019.104038
https://doi.org/10.21105/joss.00037
https://doi.org/10.1093/cercor/bhl147
https://doi.org/10.1016/j.ijpsycho.2005.10.004
https://doi.org/10.1001/jama.1996.03530310034029
https://doi.org/10.3109/02699206.2014.956263
https://doi.org/10.1016/j.visres.2008.03.009
https://doi.org/10.1038/191823a0
https://doi.org/10.1016/0013-4694(63)90043-9
https://doi.org/10.1007/s10548-013-0344-4
https://doi.org/10.1016/j.neuropsychologia.2011.08.016
https://doi.org/10.1152/jn.00581.2012
https://doi.org/10.1162/jocn_a_01584
https://doi.org/10.1101/2021.05.28.446165
https://doi.org/10.3758/s13428-020-01406-3
https://doi.org/10.1016/j.ijpsycho.2011.09.015
https://doi.org/10.1016/j.tics.2016.07.006
https://doi.org/10.1111/j.1749-6632.2011.05965.x
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Bornkessel-Schlesewsky et al. 10.3389/fpsyg.2022.817516

Voytek, B., and Knight, R. T. (2015). Dynamic network communication as
a unifying neural basis for cognition, development, aging, and disease. Biol.
Psychiatry 77, 1089–1097. doi: 10.1016/j.biopsych.2015.04.016

Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight,
R. T., et al. (2015). Age-related changes in 1/f neural electrophysiological
noise. J. Neurosci. 35, 13257–13265. doi: 10.1523/JNEUROSCI.2332-14.
2015

Wang, L., Bastiaansen, M., Yang, Y., and Hagoort, P. (2011). The influence
of information structure on the depth of semantic processing: how focus and
pitch accent determine the size of the N400 effect. Neuropsychologia 49, 813–820.
doi: 10.1016/j.neuropsychologia.2010.12.035

Wen, H., and Liu, Z. (2016). Separating fractal and oscillatory components
in the power spectrum of neurophysiological signal. Brain Topogr. 29, 13–26.
doi: 10.1007/s10548-015-0448-0

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York, NY:
Springer. https://ggplot2.tidyverse.org

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François,
R., et al. (2019). Welcome to the tidyverse. J. Open Source Softw. 4, 1686.
doi: 10.21105/joss.01686

Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke,
C., et al. (2021). ggplot2: Create Elegant Data Visualisations Using the Grammar
of Graphics [Manual]. Available online at: https://CRAN.R-project.org/package=
ggplot2

Wilke, C. O. (2021). cowplot: Streamlined Plot Theme and Plot Annotations for
ggplot2 [Manual]. Available online at: https://wilkelab.org/cowplot/

Zhu, H. (2021). kableExtra: Construct Complex Table with kable and Pipe Syntax
[Manual]. Available online at: https://CRAN.R-project.org/package=kableExtra

Frontiers in Psychology 28 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.817516
https://doi.org/10.1016/j.biopsych.2015.04.016
https://doi.org/10.1523/JNEUROSCI.2332-14.2015
https://doi.org/10.1016/j.neuropsychologia.2010.12.035
https://doi.org/10.1007/s10548-015-0448-0
https://ggplot2.tidyverse.org
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=ggplot2
https://CRAN.R-project.org/package=ggplot2
https://wilkelab.org/cowplot/
https://CRAN.R-project.org/package=kableExtra
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	Rapid adaptation of predictive models during language comprehension: Aperiodic EEG slope, individual alpha frequency and idea density modulate individual differences in real-time model updating
	1. Introduction
	1.1. Prediction and predictive coding in language
	1.2. Precision-weighting as a source of inter-individual differences in predictive coding and possible predictors for individual differences in language
	1.2.1. Idea density
	1.2.2. Individual alpha frequency
	1.2.3. Aperiodic (1/f) activity 

	1.3. The present study

	2. Experiment 1
	2.1. Methods
	2.1.1. Participants
	2.1.2. Materials
	2.1.3. Language models
	2.1.4. Behavioral individual differences measures
	2.1.4.1. Idea density (ID)
	2.1.4.2. Cognitive tests

	2.1.5. Procedure
	2.1.5.1. Behavioral session
	2.1.5.2. EEG session

	2.1.6. EEG recording and preprocessing
	2.1.6.1. Resting-state EEG-based individual differences measures: Individual alpha frequency (IAF) and aperiodic (1/f) activity

	2.1.7. Data analysis
	2.1.7.1. Linear mixed modeling approach
	2.1.7.2. Reporting and visualization of results


	2.2. Results
	2.2.1. Individual differences measures
	2.2.2. EEG data
	2.2.2.1. Sanity check analysis
	2.2.2.2. N400 amplitude attunes to speaker-based surprisal over the course of the experiment
	2.2.2.3. Inter-individual differences in predictive model adaptation


	2.3. Discussion

	3. Experiment 2
	3.1. Methods
	3.1.1. Participants
	3.1.2. Materials
	3.1.3. Language models
	3.1.4. Behavioral individual differences measures
	3.1.4.1. Idea density
	3.1.4.2. Cognitive tests

	3.1.5. Procedure
	3.1.6. EEG recording and preprocessing
	3.1.6.1. Resting-state EEG-based individual differences measures: Individual alpha frequency and aperiodic (1/f) activity

	3.1.7. Data analysis

	3.2. Results
	3.2.1. Individual differences measures
	3.2.2. EEG data

	3.3. Combined analysis of Experiments 1 and 2
	3.4. Discussion

	4. General discussion
	4.1. Individuals incrementally adapt their predictive language models to reflect current contextual information
	4.2. Individual differences in predictive model adaptation
	4.2.1. Individuals with a steeper aperiodic (1/f) slope show more pronounced effects of model adaptation than those with a shallower aperiodic slope
	4.2.2. Stronger model adaptation for individuals with lower individual alpha frequency
	4.2.3. A more complex relationship between model adaptation and idea density

	4.3. Implications for predictive coding in language and beyond

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


