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While influential works since the 1970s have widely assumed that imitation is an
innate skill in both human and non-human primate neonates, recent empirical studies
and meta-analyses have challenged this view, indicating other forms of reward-based
learning as relevant factors in the development of social behavior. The visual input
translation into matching motor output that underlies imitation abilities instead seems
to develop along with social interactions and sensorimotor experience during infancy
and childhood. Recently, a new visual stream has been identified in both human and
non-human primate brains, updating the dual visual stream model. This third pathway
is thought to be specialized for dynamics aspects of social perceptions such as eye-
gaze, facial expression and crucially for audio-visual integration of speech. Here, we
review empirical studies addressing an understudied but crucial aspect of speech and
communication, namely the processing of visual orofacial cues (i.e., the perception of
a speaker’s lips and tongue movements) and its integration with vocal auditory cues.
Along this review, we offer new insights from our understanding of speech as the
product of evolution and development of a rhythmic and multimodal organization of
sensorimotor brain networks, supporting volitional motor control of the upper vocal tract
and audio-visual voices-faces integration.

Keywords: visual speech, multimodal integration, imitation, primate social brain, speech evolution, speech
development, audiovisual speech, face-voice integration

INTRODUCTION

This review aims to integrate seemingly disparate evidence for different kinds of communicative
behaviors (i.e., imitation, speech and lip-smacking) in humans and non-human primates (NHPs).
Accounting for recently proposed anatomic-functional networks involved in primates social
interactions, we attempt to provide new avenues for understanding how speech might have arisen
from phylogenetically conserved multimodal and rhythmic neural properties.
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We first address long-standing issues in the field of neonatal
imitation research in both human and monkey newborns. In
line with recent findings, we propose that rather than being
exclusively innate, imitative behaviors are largely scaffolded
by sensorimotor development and domain-general associative
learning of multimodal information. Importantly, we argue that
the development of these early abilities is largely supported
by socially rewarding interactions with others. By the mean of
these interactions, infants begin to associate what is seen (visual
input), with what is heard (auditory input) and performed (motor
output), and to learn the sensory consequences of their own and
others” actions. The evidence reviewed in section “Cross-Species
Developmental Trajectories of Multimodal Integration” suggests
that this socially guided and domain-general associative learning
of multimodal information begins within the first year of life
and could support the perceptual attunement for native auditory
and visual speech. Once the perceptual system has narrowed in
favor to the native stimuli present in their environment, infants
can extract the regularities of their linguistic input and learn the
multimodal associations between auditory (how it sounds), visual
(how it is pronounced) and articulatory (how to pronounce it)
aspects of their native language.

Then, we introduce the third visual pathway, a stream that
was recently proposed to update the well-established model of
the dual visual pathways and which is thought to be specialized
for dynamic aspects of social perception. More specifically, the
third visual pathway was shown to run laterally from V1 to
the anterior temporal region along the superior temporal sulcus
(STS) and to preferentially respond to biological movements of
faces and bodies. The proponents of the third visual pathway
report evidence supporting the involvement of STS in higher
order social cognition, such as the recognition and understanding
of others’ intentions and goals based on their actions and
behaviors, including grasping movements, eye-gaze direction and
facial expressions. Interestingly, the posterior portion of the STS
is known to respond both to orofacial movements (i.e., speaking
faces) and voices, making this region an ideal candidate to
support the integration of faces and voices during audiovisual
speech perception.

We begin the last section by reviewing the strongly
reminiscent rhythmic pattern of human speech and monkey
lip-smacking. Namely, these human and NHP communicative
behaviors are highly rhythmic and produced at a particular
rate within the theta frequency band. Remarkably, the
synchronization of voices and mouth movements was
documented not only during human speech production but
also during monkey lip-smacking, where the acoustic envelop
of vocalizations couples with inter-lips distance, both oscillating
rhythmically around 4-to-5 Hz. This synchronization was
recently documented in chimpanzees and marmoset monkeys,
indicating that these coupled oscillations may have been crucial
for the emergence of speech and must have evolved early in the
primate lineage.

In section “Volitional Control of the Vocal Tract] we
emphasize on an important evolutionary adaptation of
the structural connectivity of a cortico-subcortical network
supporting the cognitive control of the vocal tract, which could

have progressively allowed a finer control over speech sounds
production. More specifically, the greater control over complex
sequences of oral and vocal articulation that characterizes
human speech compared to monkeys’ vocalizations could have
been strengthened during evolution by more robust and direct
connections between the laryngeal motor cortex and brainstem
nuclei controlling volitional vocal folds vibrations as well as lips
and tongue movements.

Finally, we report evidence of cross-species similarities
and differences in developmental trajectories for audiovisual
speech perception. Namely, during the first year of life infants
show a progressive specialization of auditory (phonemes,
vocalizations) and visual (faces, speaking mouths) systems for the
discrimination of native input, at the cost of non-native input.
This developmental pattern is known as “perceptual narrowing”
and has been described in both human and NHP infants with
analogous timing. Interestingly however, although human and
monkey infants exhibit a similar interest for the eyes, monkeys’
infants have been shown to pay less attention to the mouths, a
region of other’s faces that convey critical visual communicative
cues that facilitate the auditory processing of communicative
vocal behaviors and foster expressive language development.

HOMO IMITANS? METHODOLOGICAL
AND THEORETICAL CONTROVERSIES

Do Humans Imitate From Birth?

In psychological science, imitation is understood as the ability
to copy the topography of a behavior (e.g., body movements,
vocal or facial expressions) observed in a third person or
agent (Heyes, 2021). However, researchers distinguish several
forms of imitation that may differ in the complexity of their
cognitive underpinnings (Zentall, 2012). An accurate imitation
requires the imitator to generate a correspondence between
what is seen or heard and what is performed. In other words,
crossmodal associations are needed to map the visual or auditory
information provided by the model into a matching motor
sequence. The main problem raised by imitation is how these
sensorimotor associations are established and by means of which
neurocognitive mechanisms. This problem is known as the
“correspondence problem” and it is still vividly debated in the
scientific community. Since the late 1970s, influential works
have argued that the ability to imitate is already present in
neonates from 2-to-3 weeks old who successfully imitate facial
gestures such as tongue or lip protrusion and mouth-opening
(see Figure 1A; Meltzoff and Moore, 1977, 1997; Meltzoff, 1988).
These results led to introduce the popular idea of an innate,
hardwired module for imitation and human infants started to be
considered as “Homo imitans” (Meltzoft, 1988).

Although debated for several decades, it was not until recently
that neonate imitation became one of the most controversial
phenomena in the field of developmental cognitive science
(Kennedy-Costantini et al., 2017; Heyes et al., 2020; Davis et al.,
2021). The skepticism around the idea that imitation is in our
genes arose with several studies showing that neonates elicit facial
gestures in response to different kind of stimuli (Jones, 2017;
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FIGURE 1 | (A) Human and (B) chimpanzee neonates imitating orofacial gestures (left panel: tongue protrusion; middle panel: mouth-opening; right panel: lips
protrusion) [(A) Reprinted with permission from Meltzoff and Moore (1977) and (B) Reprinted with permission from Myowa-Yamakoshi et al. (2004)]. (C) A
twenty-eight-week gestational age fetus producing aerodigestive stereotypies Reprinted with permission from Kurjak et al. (2004).

Keven and Akins, 2017). For example, 4-week-old infants were
as likely to elicit tongue protrusion when listening to music or
seeing flashlights as when observing a model performing tongue
protrusion (Jones, 1996, 2006), suggesting that the production
of such gestures are not specifically intended to be imitative
behaviors. More crucially, a recent longitudinal study involving
more than 100 newborns failed to find evidence of imitation
for any of the 9 action-types tested at 1, 3, 6 and 9 weeks of
life using the same method as the inaugural works of the 1970s
(Oostenbroek et al., 2016). This year, a meta-analysis of 336 effect

sizes (Davis et al., 2021) shed serious doubts on the reliability
of the evidence supporting the notion of Homo imitans. They
demonstrated that the results of neonatal imitation research
present an important heterogeneity that cannot be explained by
methodological factors but is rather modulated by a “researcher
affiliation” effect, with some laboratories being more likely to
report larger effects. Finally, it is a possibility that a publication
bias in the field may have increased the propensity for positive
results to get published and negative ones unpublished (Ferguson
and Heene, 2012; Heyes, 2016; Slaughter, 2021).
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Do Non-human Primate Neonates

Imitate?

Whether or not the neonatal imitation abilities observed in
human infants are present in NHPs has been particularly
challenging to evidence with robust results. A study conducted
on two chimpanzee neonates younger than a week of age revealed
that they were able to imitate different types of human orofacial
gestures (see Figure 1B). The authors claimed that, because of
their very young age, the chimpanzees had very few opportunities
for learning visuomotor associations, suggesting that they “are
born with the ability to match visually perceived oral gestures
with a proprioceptive motor scheme” (Myowa-Yamakoshi et al.,
2004). Similarly, Ferrari et al. (2006) tested a group of 21 infant
rhesus macaques at the age of 1, 3, 7 and 14 days and reported
imitative behaviors for 2/6 of the actions tested, namely lip-
smacking and tongue protrusion. It is noteworthy, however, that
these two oral gestures were imitated only at 3 days of age, nor
earlier nor later (Ferrari et al., 2006).

Nearly around the same time when the concept of Homo
imitans began to be severely questioned, a study performing a
re-analysis of data for neonatal imitation in rhesus macaques
revealed no supporting evidence. Redshaw (2019) claimed that
the gold standard cross-target approach, which controls that
gestures are exhibited specifically in response to the same
modeled action, is not correctly implemented in most the studies
of the phenomenon. Importantly, he re-analyzed the dataset of
the 163 individuals ever tested to date using cross-target analysis
and demonstrated that correct matching tongue protrusion and
lip-smacking responses in macaque neonates were not produced
at levels greater than chance (Redshaw, 2019). For instance, lip-
smacking was produced at the same odds in response to observed
lip-smacking and mouth-opening. Similarly to the unspecific
human neonates’ tongue-protrusion behaviors in response to the
same action, to music or flashlights, this study rules out the
possibility that such gestures are actually imitative. Although
the debate is far from being solved (Meltzoff et al., 2018, 2019;
Oostenbroek et al., 2018), the controversy at the heart of the
field has strongly challenged the existence of neonatal imitation
abilities in both human and NHPs.

In-Born Module for Imitation or

Sensorimotor Development?

Similar developmental trajectories of imitation were documented
for humans and chimpanzees. Several studies have shown that
tongue protrusion imitation observed during the first few weeks
after birth in both species progressively disappear around the
end of the second month of life (Abravanel and Sigafoos, 1984;
Myowa-Yamakoshi et al., 2004; Subiaul, 2010; Jones, 2017).
Some authors advocating for neonatal imitation explain that
this decrease in the incidence of orofacial imitation is “probably
due to the maturation of the cortical mechanisms inhibiting
unwanted movements that follows the development of the
organization of motor control [. . .] and reappears at an older age
in terms of intentional imitation” (Rizzolatti and Fogassi, 2016,
p-382). Although it is unclear whether imitation is present from
birth, it is undeniable that this faculty develops within the first

years of life. An alternative explanation we are more inclined
to, formulated by detractors of neonatal imitation, propose that
imitative behaviors require sensorimotor learning which instead
start to emerge at the end of the first year and extend over infancy
and childhood (Jones, 2017; Slaughter, 2021).

In a recent article that received more than 20 peer
commentaries (most of which agreed that evidence for neonatal
imitation is unreliable), Keven and Akins (2017) proposed that
the orofacial gestures observed in neonatal imitation research,
specifically tongue protrusion and mouth opening, are in
fact motor stereotypies associated with perinatal aerodigestive
development in mammalians. These stereotypies begin during
gestation and last until respiratory and swallowing systems begin
to prepare for the introduction of solid food, around month 3. As
depicted in Figure 1C, ultrasound images of fetuses have shown
that a variety of the orofacial gestures discussed above are already
consolidated at approximately 28 weeks of gestational age (De
Vries et al.,, 1984; D’Elia et al., 2001; Hata et al., 2005). Since
these gestures are spontaneously produced both in the womb
(without any model) and perinatal life but disappear around
3 months, neonatal imitation could represent an epiphenomenon
better explained by sensorimotor development. Crucially for the
purpose of the current review, Keven and Akins (2017) also
proposed that perinatal stereotypic gestures participate in the
acquisition of orofacial motor control that, in turn, may support
not only swallowing of solid food but also motor biomechanics
for speech-like sounds production emerging by month 3 (also see
Choi et al., 2017; Mayer et al., 2017).

Imitation, Mirror Neurons and
Communication

An increasing number of studies using causal (transcranial
magnetic stimulation; TMS) and lesion methodologies
demonstrate that brain areas typically displaying mirror
properties are involved in imitation. It has been shown that
inhibitory repetitive TMS of the inferior frontal gyrus (IFG)
specifically impairs imitative behaviors (Heiser et al., 2003;
Catmur et al., 2009) and that excitatory stimulation of the same
area improves vocal imitation (Restle et al., 2012). Other mirror
neuron areas of the precentral gyrus and inferior parietal region
are thought to be implicated as well (Binder et al., 2017; Reader
et al., 2018). Similar to the debated innateness of imitation, the
origins of mirror neurons have been the object of an intense
nature vs. nurture debate. Importantly, the proponents of the
mirror neuron theory take neonatal imitation as evidence for
the presence of mirror properties from birth and suggest that
they are part of an innate system for action-perception (Simpson
etal.,, 2014). On the other hand, accordingly to those who defend
that imitation emerges later during infancy, “neurons acquire
their mirror properties through sensorimotor learning” (Heyes
and Catmur, 2022). Mirror neurons were originally observed
when visuomotor neurons in the monkey premotor cortex began
to fire not only when a monkey executed a grasping task but
also when it observed the researcher performing this grasping
behavior (di Pellegrino et al., 1992). While for methodological
reasons in humans there is little direct evidence for mirror
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neurons, a mirror system has been proposed to be involved
in the simulation of others’ behaviors, providing a “view from
the inside” of the observed conduct (Rizzolatti and Craighero,
2004; Rizzolatti and Sinigaglia, 2008). After these findings,
mirror neurons were proposed by some authors to represent the
neural mechanism involved in imitation skills (Cross et al., 2009;
Tacoboni, 2009). Nonetheless, it remains unclear whether mirror
neurons emerge from some modular, inherited mechanism
where the others’ behavior is somehow represented in the mirror
neuron system, or whether they result from domain-general
processes like associative learning. One view is that grasping
mirror neurons participate in hand visuomotor control, which
by associative mechanisms may extend to the observation of
others beside the own hand (Oztop and Arbib, 2002; Kilner et al.,
2007). Once their function has been amplified to the observation
of others’ behaviors beside the own, the motor programs become
modulated by the former resulting in progressive imitation.
As opposed to the representational view, this perspective
provides a mechanistic interpretation of the mirror neuron
mechanisms based on known processes of neuronal plasticity
and development (Aboitiz, 2017, 2018b).

Mirror neurons have also been proposed to play an important
role for communication and social cognition in both humans
and NHPs. Specular activity between interacting individuals is
thought to be a mechanism contributing to the formation of
social bonds, especially between caregivers and their offsprings.
Mother-child dyads observation, for instance, revealed that
mothers actually imitate their infants’ facial gestures and
vocalizations to a greater extent than infants imitate their parents
(Jones, 2006; Athari et al., 2021). Parental imitative behaviors
offer a form of reward-based learning for infants that may
reinforce the elaboration of early learned associations between
the self-generated motor sequences and the resulting perceptual
outcomes—visual outcomes for imitative facial gestures but also
auditory outcomes for vocal imitation—in the other person.
Crucially, until they are exposed to real mirrors, infants have
no visual feedback over their own face when gesturing (unlike
for their arms and legs movements) and therefore, could use
caregivers imitations as “social mirrors” to gain knowledge into
crossmodal mapping (Ray and Heyes, 2011).

In sum and based on the evidence revised above, we
argue that imitation as well as speech are social abilities that
develop during infancy alongside with sensorimotor systems and
require associative learning of multimodal input. The purpose
of the following sections of this review is to emphasize on
the importance of these crossmodal associations between what
is performed, what is seen and what is heard (motor-visual-
auditory) for the evolution and development of human speech.

A BRAIN NETWORK FOR DYNAMIC
FACES AND VOICES PERCEPTION

A Third Visual Pathway?

Forty years ago, Ungerleider and Mishkin (1982) evidenced that
the primate visual cortex is organized in two streams. A decade
later, Goodale and Milner (1992) demonstrated a similar dual

organization in the human brain, with a dorsal and ventral
pathway distinguishable both anatomically and functionally. The
dorsal stream also known as the “where and how” stream,
projects from early visual cortices and reaches the prefrontal
cortex running along the parietal lobe. This stream was proposed
to underly the processing of visual information about objects’
spatial location and the execution of actions related to these
objects. The ventral stream, also known as the “what” stream,
runs from early visual cortices toward the inferior temporal
lobe and is widely thought to support object identification (e.g.,
animals, cars, faces). The two-visual pathways model has not
only been one of the most influential models for visual system
organization in the brain, but it has also influenced important
models of auditory cortical processing (Kaas and Hackett, 1999;
Romanski et al., 1999; Romanski, 2007), attentional networks
(Corbetta and Shulman, 2002) and the neurobiology of language
(Hickok and Poeppel, 2004, 2007) in which dorsal and ventral
streams are described accordingly to their “where and how”
and “what” functions, respectively. In the particular case of
language processing in the brain, the dorsal pathway is proposed
to connect posterior superior regions of the temporal lobe with
the frontal cortex, allowing the mapping of speech sounds with
the orofacial articulatory sequences required to produce these
sounds. The ventral pathway, connecting posterior to anterior
areas of the middle and inferior temporal gyri, is believed to
support the mapping of speech sounds onto linguistic meaning
(Hickok and Poeppel, 2004).

Last year Leslie G. Ungerleider, who first reported the dual
organization of visual processing in primates’ cortex (Ungerleider
and Mishkin, 1982), and David Pitcher reported compelling
evidence for the existence of a third visual pathway and
claimed that the two-visual pathways model needs to be updated
(Pitcher and Ungerleider, 2020). Reviewing evidence coming
from fMRI, TMS, lesion, tracers and tractography studies, they
proposed that this third visual pathway is anatomically and
functionally segregated from the existing dorsal and ventral
streams, projecting on the lateral part of both human and NHP
brains and specialized for social perception. Originating in the
primary visual cortex (V1), the third pathway sends projections
into the posterior and anterior portions of the superior temporal
sulcus (pSTS and aSTS, respectively) via the area V5/MT (see
Figure 2), an area well known for its responsiveness to visual
motion. In both monkeys and humans, the aSTS displays selective
responses to moving but not to static faces and bodies (Zhang
et al., 2020), a functional characteristic that differs from those
face areas of the ventral stream (which include the occipital and
fusiform face areas for a more static and structural identification
of faces). Altogether the evidence reported by the authors
emphasizes the role of this lateral pathway in the processing of
a wide range of socially relevant visual cues and, by extension,
in higher order social perception. For instance, based on the
eye-gaze direction or hand movements of our interlocutors,
humans are able to generate predictions about their goals and
intentions. In other words, the existence of a third visual
pathway specialized for the perception of facial and corporal
dynamics may have supported the human brain readiness for
social interactions.
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FIGURE 2 | Updated version of the visual streams model: The ventral and dorsal pathways are represented by the blue and yellow arrays, respectively, and the third
visual pathway proposed by Pitcher and Ungerleider (2020) is depicted in green. While these authors emphasized the role of the third pathway in the right
hemisphere (left panel), in this article we are focusing on its functions in the left hemisphere (right panel).

A Possible Function for the Third Visual

Pathway in the Left Hemisphere

Although a great emphasis was made on the right STS, the
authors were more elusive with respect to the role of the third
visual pathway in the left hemisphere. In fact, they leave the
following questions open: “Is the third pathway lateralized to the
right hemisphere in humans? If so, what are the visual functions
of the left STS and what is the role of speech?” (Pitcher and
Ungerleider, 2020). Here, we advocate for the existence of a third
visual pathway for social perception in the left hemisphere and
review evidence of the special role of STS for the evolution of
multimodal integration of speech.

Decades of research on the STS have consistently
demonstrated that it supports the audiovisual integration
of faces and voices. Neuronal populations of the macaque
STS have been shown to respond to both auditory and visual
stimuli, especially when the heard vocalizations matched the seen
mouth movements. Interestingly, this pattern of responses for
face/voice perception has been observed in the right (Perrodin
et al., 2014) and the left hemisphere (Ghazanfar et al.,, 2005,
2008). More recently, in a study using single neuron recordings
of face patches in macaques left (n = 3) and right (n = 1)
hemisphere, Khandhadia et al. (2021) reported greater responses
to audiovisual stimuli in the face patch AF (in the aSTS) with
respect to AM (in the undersurface of the temporal lobe). These
results are consistent with the functional distinction between a
lateral visual pathway specialized in social perception of moving
faces and a ventral pathway dedicated to more static, structural
and unimodal aspects of face processing. In humans, both right
and left STS have been reported to process communicative
facial and vocal cues, with preferential responses to audiovisual
face-voice stimuli and no responses to manual gestures (Deen
et al., 2020). Other fMRI studies have reported that different
areas of the pSTS are responsive to mouth and eye movements
(Puce et al., 1998). Interestingly, only the anterior portion
that prefers mouth-movements elicited strong responses to
voices, contrasting with the posterior portion who responded

to eye-movements but not to voices (Zhu and Beauchamp,
2017; Rennig and Beauchamp, 2018). The latter suggests
that vocal sounds and the orofacial movements that produce
them are integrated in the anterior pSTS. In line with this
functional specialization, a recent study reported homologous
representation of conspecific vocalizations in bilateral auditory
cortices of humans and macaques. More specifically, this
temporal voice area is located in the anterior temporal lobe,
dorsally to STS (Bodin et al., 2021).

It is noteworthy that, before the third visual pathway for
social perception was formally proposed, neurobiological models
of audiovisual speech processing already had included the left
MT/V5 and pSTS as critical areas (Bernstein and Liebenthal,
2014; Beauchamp, 2016; Hickok et al., 2018). Additionally, the
STS has been proposed to be critical for semantic processing,
serving as an interface between the auditory component of
speech perception and the visual recognition system, providing
a substrate for the representation of content words and scenes
containing schemas of agents and objects (Aboitiz, 2018a).

EVOLUTION AND DEVELOPMENT OF
MULTIMODAL INTEGRATION IN THE
PRIMATE BRAIN

The Rhythmic Evolution of
Communication: From Lip-Smacking to
Human-Speech Rhythm

Speech is produced rhythmically and its temporal structure
remains stable across languages, within the range of 2-to-7 Hz
with a notable peak in the theta frequency band between 4 and
5 Hz (Poeppel and Assaneo, 2020). Interestingly, the spectral
frequency of the speech envelope corresponds to the rate of
syllable production (Park et al, 2016). In turn, the acoustic
envelopes of speech and orofacial speech movements seem
to be tightly time-locked, both modulated in the 2-to-7 Hz
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frequency range. Chandrasekaran et al. (2009) have measured
and correlated the speech envelope with the area of mouth
opening associated to spontaneous production in English and
French audiovisual speech datasets. Their analysis revealed
robust correlations between inter-lip distance and speech sounds
amplitude but also a consistent interval of 100-to-300 ms between
the onset of visual speech (the initial, visible lip movements) and
the onset of the corresponding speech sound. This mouth/voice
orchestration suggests that, before the brain proceeds with
multimodal speech processing, stable and redundant temporal
information are already embedded in the audiovisual speech
stream itself (Chandrasekaran et al., 2009).

During face-to-face conversations, humans take advantage of
visual information provided by the speaker’s mouth movements
to facilitate speech comprehension, especially when the
surrounding environment is noisy (Sumby and Pollack, 1954;
also see Crosse et al., 2015). Recent studies have begun to
uncover the underlying mechanisms of audiovisual integration
in the human brain. Electrophysiological recordings have
reported that visual speech speeds up the processing of auditory
speech (Van Wassenhove et al., 2005) and allows crossmodal
predictions (Michon et al., 2020). This temporal facilitation is
consistently reflected by shorter latencies and lower amplitudes
of the auditory components N1 and P2 [see Baart (2016)
for a critical review]. Interestingly, the facilitation effect and
crossmodal predictions are more pronounced for those visual
speech cues with salient places of articulation in the upper vocal
tract (e.g., bilabial consonant-vowel/ba/) with respect to those
produced in the lower vocal tract which are visually less salient
(e.g., velar consonant-vowel/ga/). The analysis of oscillatory
brain activity has also offered critical insights with respect
to audiovisual integration and crossmodal predictions. Using
magnetoencephalography, Park and collaborators demonstrated
that the perception of speaking lips entrains visual cortex
oscillations and modulates the activity of the auditory cortex
(Park et al., 2016). In line with these results, a recent study using
intracortical recordings reported that neurons of the auditory
cortex track the temporal dynamics of visual speech cues based
on their phase of oscillations (Mégevand et al., 2020). Another
intracortical study found a sub-additive effect in which responses
to audiovisual speech were weaker compared to auditory speech
only in the left posterior superior temporal gyrus, suggesting that
visual speech optimizes auditory processing efficiency (Metzger
et al., 2020). Importantly, a partial coherence between the left
motor region oscillations and lip movements rate have also been
identified that directly predicted the participants performance on
comprehension, suggesting that motor cortex could facilitate the
integration of audiovisual speech through predictive coding and
active sensing (Park et al., 2016, 2018). Several recent studies have
proposed that visual cortex entrainment to rhythmic lip motion
modulates the responses of auditory cortex via theta phase
synchronization (Crosse et al., 2015; Zoefel, 2021; see Figure 3),
including when visual speech only is presented (Bourguignon
et al., 2020; Biau et al., 2021).

Human speech is rhythmic and multimodal; our voices and
mouth movements are temporally coordinated when we speak
and the oscillatory activity of our brain couples with and

exploits the statistical regularities present in the audiovisual
input to improve speech perception/comprehension (Figure 3).
There is now a growing body of studies revealing a similar
temporal structure is present in NHP communication. Primates’
vocalizations and communicative calls have been shown to
synchronize with the rhythm of facial expressions, such as
mouth opening/closing during lip-smacking behaviors. This
synchronization between vocalizations and lips movements has
been reported in marmosets, macaque rhesus monkeys and
chimpanzees. Critically for evolutionary accounts of audiovisual
speech perception, it appears to be phase-locked in the theta band
frequency, matching the syllable production rate observed in
humans at approximately 4 Hz (Ghazanfar et al., 2013; Ghazanfar
and Takahashi, 2014a,b; Gustison and Bergman, 2017; Pereira
et al., 2020; Risueno-Segovia and Hage, 2020). The NHP brain
is highly tuned to facial expressions accompanying affiliative calls
and, similar to humans, take advantage of orofacial visual cues
to speed up auditory processing and to enhance the perception
of vocalizations in noisy environments (Chandrasekaran et al.,
2011, 2013). Interestingly, the neural mechanisms underlying
these behavioral advantages seem to be similar across species,
reflected by reduced or suppressed responses in auditory neurons
for multimodal compared to unimodal auditory perception
(Ghazanfar and Lemus, 2010; Kayser et al., 2010).

Altogether the evidence reviewed above demonstrates that
both human and NHPs communicate rhythmically, producing
coordinated vocalizations and orofacial gestures around 4-5 Hz.
Their neural oscillations synchronize to this frequency and take
benefit from the consistency of audiovisual regularities in voice
onset and mouth opening co-occurrence. Noticeably, the syllable
production rate observed across all human languages is already
present in the marmoset lip-smacking, suggesting that rhythmic
communication may have evolved early in the primate lineage.

Volitional Control of the Vocal Tract

Additionally to their analogous rhythmic patterns, the
production of human speech and primate lip-smacking
involves a common cortical network including the IFG, the
ventrolateral and dorsomedial prefrontal cortex (VIPFC and
dmPFC) in humans and NHPs (Rizzolatti and Craighero, 2004;
Petrides, 2005; Garcia et al., 2014; Neubert et al., 2014). These
shared anatomico-functional properties across species are in
line with previous cytoarchitectonic studies establishing the
vIPFC as the NHP homolog of Brocas area, both structures
being responsible for the initiation of vocal communicative
behaviors (Petrides and Pandya, 2002; Petrides et al., 2005).
In macaques, cognitive control required to produce volitional
vocalizations has been shown to consistently recruit the IFG
(Gavrilov et al,, 2017; Loh et al., 2017; Shepherd and Freiwald,
2018). Other studies, using single neuron recordings, confirmed
that the vIPFC elicits dedicated responses during volitional
initiation of vocalizations (Hage and Nieder, 2013; Gavrilov
and Nieder, 2021). Recent research in humans indicates that
left vIPFC and premotor cortex also supports the control of
voluntary orofacial movements (Loh et al., 2020; Maffei et al,,
2020). This evidence suggests that the inferior frontal region has
an ancestral role for orofacial (lip-smacking) and vocal (affiliative
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Visual cortex entrainment to rhythmic lip motion modulates
auditory cortex responses via theta phase synchronization

FIGURE 3 | Rhythmic properties of audiovisual speech and cortical oscillations. Visual and auditory speech cues as well as neural oscillations are depicted in green
and yellow, respectively. The blue array in the bottom panel indicates feedforward modulation of auditory cortex responses via theta synchronization to visual cortex

oscillatory rhythm.

Rhythmic coupling of audiovisual speech in the theta frequency band:

Inter-lips distance

Acoustic speech signal

calls) control in NHP communication, which could be regarded
as a phylogenetic precursor of human speech control. Because
human vocalizations are much more complex, it was argued for
decades that primate lip-smacking and orofacial communication
could not have served as an evolutionary building block of
human speech. More recently however, accounting for the
above-mentioned evidence, emerging theories are advocating for
a common evolutionary origin of vocal-facial communicative
gestures that could have arisen well before the hominin radiation
(Aboitiz and Garcia, 1997; Morrill et al., 2012; Ghazanfar, 2013;
Ghazanfar and Takahashi, 2014a,b; Shepherd and Freiwald, 2018;
Michon et al., 2019; Brown et al., 2021).

Importantly, the phylogenetic role of vIPFC is not limited to
the control of orofacial effectors for the production of speech

and communicative behaviors but extends to perception as
well. In humans as in NHPs, the visual and auditory ventral
pathways project axonal terminals into vIPFC (Romanski, 2007;
Hage and Nieder, 2016). In line with this structural overlap, a
neural population was found in the vIPFC of rhesus monkeys
that responds to the perception of both conspecific faces and
vocalizations (Sugihara et al., 2006; Romanski, 2012; Diehl and
Romanski, 2013) and is also recruited when monkeys produced
vocalizations (Hage and Nieder, 2015). Moreover, a recent
study using electric stimulation combined with fMRI revealed
a common effective connectivity between auditory cortex and
vIPFC in human and monkey brains (Rocchi et al., 2021). These
results turn the vVIPFC into a phylogenetically conserved trimodal
region for the integration of audiovisual and motoric aspects of
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communication that may have contributed to the emergence of
human speech (Michon et al., 2019).

It is noteworthy that the synchronization of speaking mouths
and voices around the 4.5 Hz has been proposed to emerge as
a consequence of an intrinsic speech-motor rhythm observed in
humans (Assaneo and Poeppel, 2018). In other words, mouth
movements and vocalizations couple around the same frequency
band because they both represent the sensory consequences of
complex sequences of the orofacial effectors and vocal tract
movements, which are produced at this particular rhythm. Using
principal component analysis to investigate the joint variation
of facial and vocal movements, a recent study combining videos
of human faces articulating speech and MRI sequences of the
speaker’s vocal tract has shown that sufficient information is
available in the configuration of a speaking face to recover the
full configuration of the vocal tract (Scholes et al., 2020). The
part of the face that contributes the most to the recovery of
vocal tract configuration are those parts who are required to
produce speech sounds (e.g., upper and lower lips for bilabial
phonemes or the back of the tongue for velar phonemes). In
humans, the LMC is thought to be located in the primary
motor cortex, more specifically in area 4 and to have direct
monosynaptic projections to the ambiguous nucleus, the seat
of laryngeal motoneurons in the brainstem controlling the
vibration of the vocal cords. In NHPs by contrast, the LMC is
located in the area 6 of the premotor cortex and connects to
laryngeal motoneurons only indirectly via interneurons of the
reticular formation (Simonyan and Horwitz, 2011; Simonyan,
2014). Additionally, tractography analyses have revealed that
human LMC connectivity with somatosensory and inferior
parietal cortices are strongly enhanced compared to its NHP
homolog (Kumar et al, 2016). The latter suggests that the
evolution of LMC connectivity with both brainstem nuclei and
temporoparietal cortex may have contributed to a greater control
over the vocal tract for volitional vocalizations and to higher-
order sensorimotor coordination in response to social perception
demands, respectively. Recently, both anatomic and functional
research have proposed a division of the human LMC into a
dorsal and a ventral portion (Belyk et al., 2021; Hickok et al,
2021). The dorsal laryngeal motor cortex (dLMC) has been
shown to be causally involved in the control of laryngeal muscles
involved in voluntary vocalizations and vocal pitch modulations
used to convey meaning in human speech production (Dichter
et al, 2018). The dLMC shows greater connectivity and a
consistent role in laryngeal motor control whereas the ventral
one has fewer projections, suggesting that it could be part of the
premotor cortex as NHPs LMC (Dichter et al., 2018; Fichert et al.,
2020). Even though it was recently associated with verbal fluency
in individuals who stutter (Neef et al., 2021) and with respiration
coordination for vocal-motor control (Belyk et al., 2021), the
function of the ventral LMC remains mostly unknown.

In sum, the evidence reviewed in this section indicates that
humans and NHPs present structural and functional homologies
for the volitional control of the vocal tract in the vIPFC.
Crucially, in addition to its role in vocal production, this region
also responds to the perception of vocalizations and orofacial
movements in both species. According to its phylogenetically

conserved anatomical and functional features, we argue that the
vIPFC plays a critical role in the integration of audiovisual and
motoric aspects of communication and may have contributed to
the emergence of human speech. Nevertheless, important cross-
species differences have been documented in the connectivity
between LMC and brainstem nuclei, specifically the connections
to the ambiguous nucleus are more robust and direct in human
brains compared to NHP brains. This difference of connectivity
strength could explain why human speech has evolved toward
more complex vocal and orofacial sequences compared to
NHP lip-smacking (Brown et al., 2021).

Cross-Species Developmental
Trajectories of Multimodal Integration

One of the first multimodal associations that an infant must
learn is the matching between her caregivers’ faces and voices.
During their first months of life, human infants are capable
to discriminate a wide variety of non-native stimuli but loose
this ability by the end of the first year. This counterintuitive
developmental pattern of perception is known as perceptual
narrowing and has been described for speech sounds, faces (Kuhl
et al., 2006; Krasotkina et al., 2021) and music (Hannon and
Trehub, 2005). For instance, 6-to-8 but not 10-to-12 months
old English infants were capable to discriminate non-native
phonemic contrasts (Werker and Tees, 1984). At a similar
developmental timing, the same phenomenon occurs for non-
native faces, including faces from different races (Kelly et al.,
2007) or species (Pascalis et al., 2002). Interestingly, the visual
discrimination of speech is also subject to a perceptual narrowing
between 6 and 11 months of age (Pons et al, 2009). An
accepted interpretation of this regression in the perception of
non-native stimuli propose that the visual and auditory systems
are progressively tuning in favor of the particular input infants are
exposed to (i.e., native faces and speech sounds). The refinement
of perception for conspecific’s voices and faces is thought to
optimize the processing of the relevant information used within
one’s native social group (Lewkowicz and Ghazanfar, 2009).

As mentioned above, monkey lip-smacking and human
speech converge on a ~5 Hz rhythm but they were also
demonstrated to share homologous developmental mechanisms
strongly supporting “the idea that human speech rhythm
evolved from the rhythmic facial expressions of our primate
ancestors” (Morrill et al., 2012, p.3). In both NHPs and humans,
environmental variables seem to foster the development of social
perception skills. Dahl et al. (2013) investigated the development
of face perception in a colony of captive young and older
chimpanzees with lifelong exposure to non-conspecific faces
(human scientists) and showed that younger apes discriminate
conspecific faces better than human faces, but older apes
elicited the opposite pattern, discriminating better human than
conspecific faces. The results suggest the existence of early
mechanisms that favor perception tuning toward native-species
stimuli and of late mechanisms that narrow the perceptual
system along with the critical information of the faces frequently
encountered in the environment (for older captive monkeys,
human faces). Controlling for genetics, perinatal experience
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and growth, a study conducted on infant marmoset twins
who were exposed to different amount of social reinforcement
demonstrated that infants receiving more contingent parental
feedback show an increased rate of vocal development with
respect to their twins who were provided less contingent feedback
(Takahashi et al., 2017). Another example of the role of experience
are human infants raised in bilingual environment, who exhibit
a prolonged perceptual narrowing (Werker and Hensch, 2015).
Bilingually raised infants were able to discriminate non-native
speech sounds, which age-matched monolingual infants were
no longer able to discriminate (Petitto et al., 2012; Byers-
Heinlein and Fennell, 2014; also see Kuhl et al., 2003). This
influence of linguistic exposure has also been reported for visual
discrimination of speech (Weikum et al., 2007; Sebastian-Gallés
etal, 2012).

It is known that around the sixth month, when infants start
babbling, they start to spend more time looking at the part of
the face that conveys linguistic information (i.e., the mouth)
and that visual attention returns to the eyes around the end of
the first year when they have formed their native phonological
repertoire (Lewkowicz and Hansen-Tift, 2012). Bilingual infants
attend more to the mouth than to the eyes of a speaking face from
an earlier age and for a longer period of time, taking advantage
of the multimodal input to support the acquisition of their two
languages and respective phonological repertoires (Pons et al.,
2015). It is noteworthy that the additional linguistic information
provided by lip movements has recently been demonstrated to
foster expressive language skills during the second half of the
first year (Tsang et al, 2018) and improve the learning and
recognition of novel words in 24 months-old monolinguals and
bilingual toddlers (Weatherhead et al., 2021). Interestingly, this
preferential orientation of visual attention toward the mouth
has been reported in adults as well; when exposed to their
second non-native language, adults attend more to the speaking
mouth independently of their level of proficiency (Birulés et al.,
2020). Adjusting for between species difference in developmental
timescale, a recent study compared infant rhesus macaques’
and human infants’ face processing strategies revealing a highly
similar U-shape pattern of changes in visual engagement with the
eyes of unfamiliar conspecifics. However, they also showed that
human infants visually engage with the mouth to a greater extent
than macaque infants do, suggesting that the process of language
acquisition may require an increased reliance on the information
conveyed by orofacial movements (Wang et al., 2020). Using
functional near-infrared spectroscopy, Altvater-Mackensen and
Grossmann (2016) reported that 6-month-old infants who prefer
to look at speakers’ mouths exhibit enhanced responses in the
left inferior frontal cortex compared to those infants who prefer
the eyes of a speaker. Accordingly with the functions of the IFG
discussed above (see section “Volitional Control of the Vocal
Tract”), the authors conclude that this region plays a crucial role
for multimodal association during native language attunement
(Altvater-Mackensen and Grossmann, 2016).

Taken together the evidence supports the idea that, despite
some differences of rate due to their heterochronous neural
development, humans and NHPs share similar developmental
trajectories for multimodal integration of social stimuli.

Noticeably, within their first year of life, infants of both
species show a progressive attunement for the processing
of native or species-specific visual (faces) and auditory
(vocalizations) social stimuli.

DISCUSSION

The current review addresses the rhythmic and multimodal
aspects of communication and brain mechanisms that could have
scaffolded human brain readiness for social interactions during
evolution. Particular emphasis was placed on the importance
of sensorimotor development, in domain-general associative
learning of multimodal information and in socially rewarding
interactions for the development of communicative behavior
like imitation and speech during infancy. On the other hand,
we integrate recent evidence of anatomical and functional
homologies and differences between humans’ and non-human
primates’ social brain, specifically for the perceptual processing
of dynamic social cues (such as voices and faces) and for the
volitional control of the vocal tract. We propose to synthesize
the findings of this review around 5 questions that, in our view,
contribute to better understand the domain-general mechanisms
and properties of the primate brain underlying the evolution and
development of speech.

In-Born Module for Imitation or

Sensorimotor Development?

We began this review by addressing the controversies
surrounding the longstanding theory of neonatal imitation
in humans and NHPs. Recent data re-analysis and meta-analysis
have raised serious issues concerning the reliability of the
gold-standard methods used in neonatal imitation research.
As a consequence, the idea of Homo imitans with innate
imitative abilities has been strongly challenged. Alternatively,
imitation may rely on crossmodal associations of sensorimotor
information (e.g., visuomotor associations for facial imitation
and audiomotor associations for vocal imitation). This article
surveys evidence from developmental psychology, comparative
neuroanatomy, and cognitive neuroscience indicating that
human imitation and language are the result of brain adaptations
shaped predominantly by cultural evolution. Rather than being
an exclusively innate ability, the evidence reviewed points toward
the idea of imitation as an ability that develops during infancy
and childhood, supported by the maturation of sensorimotor
brain networks and domain-general associative learning of
multimodal information, both fostered by socially-rewarding
interactions.

What Is the Role of the Mirror Neuron
System for Imitation and

Communication?

Tacoboni and Dapretto (2006) proposed a neural circuit for
imitation that includes the pSTS where visual input is processed
and sent to the inferior parietal lobule, which is concerned
with the motoric aspect of the action and projects into the
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IFG and ventral premotor cortex, where the goal of the action
is recognized. Importantly, they also claim the existence of
“efference copies of motor imitative commands that are sent back
to the STS to allow matching between the sensory predictions
of imitative motor plans and the visual description of the
observed action” (Iacoboni and Dapretto, 2006). This network
represents a suitable candidate to coordinate the processing
of visual information and the execution of the corresponding
motor sequence required for the imitation of facial expressions,
such as lip or tongue protrusion. It is noteworthy that the
areas involved in this circuit widely overlap with well-established
regions of the mirror neuron system. The findings of the
current review point toward a substantial role of the mirror
properties of these brain areas to support the learning of
multimodal association.

Does the Third Visual Pathway in the
Language-Dominant Hemisphere Play a
Role for Audiovisual Integration of
Speech?

As discussed in the third section of this review, recent evidence
suggests that the pSTS is part of a third visual pathway that
plays a critical role for social perception. Since it is specialized
for the processing of biological movements in both human
and NHPs, this area seems highly suited for gesture and facial
expression imitation. In the left, language-dominant hemisphere,
neural populations of the pSTS preferentially respond to both
orofacial movements and vocalizations. For instance, regions
that respond preferentially to mouths (vs eyes) also fire in
response to conspecific voices. In line with the latter, the
temporal voice area identified in both human and NHPs has
a privileged location in the anterior temporal lobe, dorsally to
STS. Although empirical studies are still needed to properly
address this hypothesis, we suggest that the anatomical and
functional characteristics of the third visual pathway in the left
hemisphere turns it into a fitted circuit to support audiovisual
integration of speech and lip-smacking. Future research in this
field should investigate on brain activity lateralization during the
processing of speaking faces in the other regions of the third
visual pathway, namely, early visual areas (V1 and MT/V5) as
well as the aSTS.

What Can Cross-Species Homologies
and Differences Tell Us About the
Evolutionary Origins of Speech?

In the last section of this review, we offer insights about
the phylogenetic evolution and ontological development of
the multimodal integration of speech, accounting for cross-
species homologies and differences in brain’s anatomy, function
and developmental trajectories. We first reviewed evidence
for a common evolutionary rhythm in humans and NHPs
production of orofacial and vocal behaviors, phased-locked in
the theta frequency-band with a peak around 4-to-5 Hz. It was
suggested that this synchronization of visual (faces) and auditory
(voices) cues during social communication emerges as a result
of an intrinsic motor-speech rhythm imposed by a common

generator, namely the vocal tract. Then, we surveyed humans
and NHPs structural and functional homologies for the volitional
control of the vocal tract in the vIPFC. Crucially, this region
also responds to the perception of vocalizations and orofacial
movements in both species, converting the vIPFC into a potential
phylogenetically conserved trimodal region for the integration
of audiovisual and motoric aspects of communication that may
have contributed to the emergence of human speech (Aboitiz
and Garcia, 1997). Important cross-species differences have been
documented, however, in the pattern of connectivity between
LMC and brainstem nuclei. More specifically, the connections
with those nuclei that control the muscles engaged in vocal folds
vibrations and orofacial movements are more direct and robust
in human brains compared to NHP brains. The strengthening
of this structural connectivity across species evolution may have
contributed to the development of finer vocal and orofacial motor
control required for both imitation and speech production.

What Do Species-Specific Sensory
Development Can Tell Us About the

Evolutive Origins of Speech?

We showed that despite some differences due to their
neural development timing, humans and NHPs share similar
developmental trajectories for multimodal integration of social
stimuli. Noticeably, within their first year of life, infants
of both species show a progressive attunement for the
processing of native or species-specific visual (faces) and auditory
(vocalizations) social stimuli. Importantly, this perceptual
narrowing is highly influenced by environmental variables,
such as enriched linguistic environment or the contingency of
parental feedback, supporting the notion that early multimodal
association learning is mediated by the engagement with socially
relevant and rewarding interactions. In turn, since infants who
dedicate greater attentional resources to the mouth (vs the eyes)
of a speaker show greater expressive language development,
we argue that the visual speech cues offered by speakers
mouth movements are an important part of linguistic input
during infancy and childhood, that benefits both language
perception and production. Crucially, the prolonged wearing
of opaque facemasks in nurseries and pre-school teachers in
the context of current global pandemic may have adverse
consequences for infants’ language acquisition, especially those
with language learning impairments, since visual speech cues
are no longer accessible in a speaker wearing an opaque mask.
Finally, as mentioned at the end of the last section, human
infants visually engage with the mouth to a greater extent
than macaque infants do, suggesting an increased reliance on
the information conveyed by orofacial movements is required
for language acquisition relatively to lip-smacking, which
involves less complex articulatory sequences and vocalizations
than human speech.
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