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The main purpose of this study is to examine the impact of the big data management
capabilities on the performance of manufacturing firms in the Asian Economy during
coronavirus disease 2019 (COVID-19). In addition to this, this study is also planned
to examine the mediating role of organizational agility in the relationship between the
big data management capabilities and the performance of Chinese manufacturing firms
during COVID-19. Last, this study has examined the moderating role of information
technology capability in the relationship between the big data management capabilities
and performance of Chinese manufacturing firms during COVID-19. This study adopted
the quantitative method of research with a cross-sectional technique. This study
employed a questionnaire to gather the data as a research instrument. This study
has used the purposive sampling method by keeping in mind the context of this
study. Employees of the Chinese SMEs that were at least 10 years old were the
population of this study. The research model was being analyzed by employing the
“partial least squares” technique through statistical software the Smart PLS version
3. The results are in line with the proposed hypothesis. This study contributed to
the literature by suggesting characteristics that promote or prevent the organization
from successfully implementing big data and pointed out that showing resistance
in information management system implementation may have different effects on
the organization. Besides, the study also discussed the relationship between such
information systems and the organization. Findings of these two factors provide insights
for the practitioners and researchers in assessing the success or failure of organizations
for using big data.
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BACKGROUND

Big data have gained huge popularity due to advancements in
hardware and software technologies. Numerous practitioners and
scholars have been attracted to big data, as it is expected to be
a big thing in the coming era of management. Scholars have
also a new term for big data, i.e., next management revolution.
Among business communities and scholars, big data analytics
(BDA) has become one of the emerging concepts as it has
revolutionized statistical tools and is adding both non-financial
and financial value to firms. Several white papers and articles have
been presented on the potential and current BDA applications.
According to a report, businesses have been planning to make
investments in business intelligence and analytics tools to
enhance HR capabilities in the future. According to the survey,
the chief information officers are going to face a huge challenge in
meeting digitization aims and this challenge would be the talent
gap that is expected to emerge in the coming years. In a survey
conducted by, it is revealed that in view of 63% executives, it is
essential to hire talent who possesses the required expertise as it
is essential to cope with the existing talent gap.

Classical business models and organizations’ knowledge
management have significantly evolved with the emergence of big
data (Khan and Vorley, 2017; Pauleen and Wang, 2017; Şerban,
2017; Rialti et al., 2019). Big data refers to a heterogeneous and
large set of data that involve information in various quantities
and types (Lioutas and Charatsari, 2020). Big data allows
managers to know well about their competitors, customers,
and their own organization. Particularly, using big data enables
effective monitoring of internal processes, supply chain processes,
and the performance of all processes, assets, and business
units within the organization (Rialti et al., 2019). Through
big data, updated as well as new data can also be accessed
to get information about the competitors’ potential maneuvers
(Cappa et al., 2021). Furthermore, it also provides information
to the producers concerning the complaints, requests, and
behavioral patterns of customers at an individual and aggregate
level, i.e., information regarding customer base, and how
individual customer behavior changes over time (Liu et al.,
2021). Therefore, big data analytic capabilities must be developed
by the organizations for selecting relevant information and
then processing it to take decisions based on this information.
Organizational BDA capabilities refer to a set of capabilities
involving personnel capabilities, infrastructure flexibility, and
the management capabilities (Korherr and Kanbach, 2021).
Promoting BDA capabilities bring about various outcomes.
However, several prior studies have reported the effects of BDA
capabilities on the economic performance of the organization.
Such as, a study discussed the impact of BDA capabilities
on the marketing capabilities of an organization, as well as
its ability to timely respond and create new strategies. This
study also revealed that the performance of an organization
can be improved by obtaining new information regarding its
customers. On the contrary, a few studies also analyzed how
the emergence of BDA capabilities has transformed the supply
chain management. Gangwar (2018) also emphasized the role
of BDA in improving the organization’s internal processes and

operations, such as, its efficiency. In Korherr and Kanbach
(2021) study, they analyzed ways through which BDA capabilities
influence the organization’s dynamic capabilities. Thus, through
its impact on the organization’s adaptability and capability, the
big data influences the performance of an organization. The
key beneficiary of BDA and big data is the large organizations
since they are usually in a good position to easily adopt and
process it (Korherr and Kanbach, 2021). Although the literature
provides evidence concerning BDA and its effects, still there
is an existing gap in the literature. It is only recently that
scholars have started realizing the significance of BDA and are
trying to develop understanding of the relationships between
organizational performance and BDA development. At the same
time, research in this area is mostly qualitative and theoretical
and is still at the infancy stage in context to qualitative research
(Korherr and Kanbach, 2021; Vaio et al., 2021). Therefore, it
clearly gives rise to the demand for more research especially the
investigation of those areas or traits that are greatly influenced
by the organization’s BDA capabilities, and how performance
is affected by these capabilities. Moreover, factors that impede
BDA implementation must also be identified. This study aims
to fill this research gap. The objective of this study is to
empirically test the proposed hypotheses, which assume factors
that are likely to influence the organizational performance—big
data relationship.

This study is conducted to identify the impact of two
moderators (i.e., the resistance of organization to implement IMS
and the relationship between organization and such systems) and
two mediators. Large organizations are the main emphasis of this
study, since they are the key beneficiaries and consumers of big
data (Mauro et al., 2018). Furthermore, major investments are
required to develop BDA capabilities, and such investments can
only be made by big firms (Vaio et al., 2021). In an endeavor
to cover the identified research gap, undermentioned research
questions are designed in the selected area:

– To examine the impact of big data management capabilities
(BDMC) on the firm performance during coronavirus
disease 2019 (COVID-19).

– To examine the mediating role of organizational agility in
the relationship between the BDMC and firm performance
during COVID-19.

– To examine the moderating role of information technology
capabilities in the relationship between the BDMC and firm
performance during COVID-19.

HYPOTHESIS DEVELOPMENT

The resource-based theory posits that it is the valuable, rare,
and hard to imitate resources that create competition between
the organizations (Barney, 1991). According to Grant (1996),
organizational resources are of three types, namely, intangible
resources, human resources, and tangible resources, where
tangible resources can both be sold or bought as an asset.
Intangible resources are the non-physical resources, for instance,
knowledge-based resources, while the resources that come
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under human resources are the relationships, skills, experiences,
employees training skills, etc. In organizations, it is the commonly
used theory as it explains and predicts the relationships within
the organization (Barney et al., 2011). Resource-based theory
also suggests that the performance of the firm mainly depends
on the organizational resources (Wade and Hulland, 2004). In
accordance with the literature on big data and IT capabilities,
this study analyzed organizational big data analytic capabilities
(BDAC) using specified resources related to big data, such
as basic resources, technology, data, managerial skills, data
skills, data-driven culture, data quality, domain knowledge, and
bigness of data (Wang and Strong, 1996; Gupta and George,
2016). In addition, based on the Grant’s classification, basic
resources, data resources, and technology fall under tangible
resources, while data-driven culture, the bigness of data, and
data quality are classified as intangible resources; and domain
knowledge, technical, and managerial skills are classified as the
human resources.

Traditional datasets and big data files are different from
each other in seven ways, which include veracity, velocity,
volume, visualization, variety, variability, and value. Big data
refer to the complex and large datasets, for which the traditional
statistical models are usually insufficient or cannot provide
efficient outcomes (Lioutas and Charatsari, 2020). Organizations
face several challenges in managing big data. For information
utilization, big data architectures are needed to be designed. Rialti
et al. (2019) defined big data architectures as the network of
machines, datasets, and processors which collect, store, analyze,
and process big data. Big data architectures use data lakes for
storing data at every scale and in its original format. The term
data lake refers to a repository or system that is used for storing
the enterprise’s unstructured or structured data, which can
take the form of transformed data from internal processes and
monitoring machines or in the form of raw source system data
(Rialti and Marzi, 2020). In addition, nested computer networks
are also used by the organizations which enable the company to
simultaneously process various kinds of data. Nested computer
networks are operated on the basis of open-source software,
which allows parallel computing and operability between the
organizations. Jensen et al. (2019) argue that such features assist
in categorizing, collecting, analyzing, and storing data in the
enterprise’s repositories.

According to Vaio et al. (2021), data architectures are required
to be agile, so they could quickly adapt when changes occur in
the organizational structures. Given the big data management
complexity, machinery does not seem to be sufficient in
this regard and requires professional training or hiring of
professionals to perform such tasks (Korherr and Kanbach, 2021).
Scientists, engineers, and BDA must be proficient in models
which are based on the paradigm of artificial intelligence, such as
schema-less data retrieval, Not Only SQL (NoSQL) data models,
R, Hadoop, and R (Zhang and Lam, 2019). Thus, in order to deal
with challenges arising from big data, simple personnel retraining
would be insufficient. Rather, the organization’s entire culture
must adapt to the big data culture paradigm (Rialti and Marzi,
2020). According to this paradigm, business-related decisions can
solely be relied on the complete or partial utilization of data and

machines (Rialti et al., 2019). Hallikainen et al. (2020) argue that
computer-aided decision-making should be encouraged among
managers to acquire big data benefits.

Besides, another concept, i.e., organizational BDA capabilities
was also outlined by Wamba et al. (2017) and defined it as the set
of capabilities that enable to deploy and mobilize combination
of capabilities and resources, including BDA-based resources.
According to Wamba et al. (2017), an organization must develop
three fundamental capabilities, these are: (i) BDA personnel
capabilities, (ii) BDA management capabilities, and (iii) BDA
infrastructure flexibility. There are various reasons why personnel
is needed to be skilled; these are: (i) having such skills in people
minimizes the chance of BDA rejection and allows integrating
new information management system (IMS) for smooth BDA
functioning; (ii) since data analysis is usually done by the
employees, therefore, they need to be skilled so they could make
the right choice for data analysis and then draw conclusions
based on their assessments (Korherr and Kanbach, 2021); and
(iii) managers are responsible for choosing appropriate technical
solution according to the needs of the organization. For this
purpose, managers need to learn data analytics skills since such
skills help in decision-making, particularly in the case of new data
(Kiradoo, 2019).

Big data analytics managerial capabilities play a key role in the
selection and implementation of the right information and BDA
infrastructure from the dataset. Finally, the BDA infrastructure
refers to the information systems which can collect, store, analyze,
and process big data and is fundamental for the organization
since it ensures smooth data flow and processing under various
situations with the help of technologies (Vaio et al., 2021). The
literature suggests that developing such capabilities can be helpful
for the organization to achieve competitive advantage (Şerban,
2017).

An organization needs to make a huge investment to gain the
benefits of BDA. Raguseo and Vitari (2018) argue that several
small and medium enterprises (SMEs) do not have enough
capital to invest in such systems such as data lakes and parallel
computing and do not have the capability to retrain or hire the
required personnel for that system. Therefore, only large firms
usually gain the advantages arising from BDA. For instance,
Ylijoki and Porras (2018) mentioned in a report how BDA is
implemented in large firms and makes their processes efficient.
In another study, Liu et al. (2021) claimed that retailers can bring
improvement in the overall experience of the customers by using
big data. A few scholars (Johnson et al., 2017; Vaio et al., 2021)
also analyzed the role of BDA in large organizations and found
that it helps in identifying opportunities. In Singh and Kassar
(2019) study, they revealed that BDA is proved to be helpful for
the large firms in exploiting new opportunities through deploying
existing resources.

Several prior studies have attempted to investigate the
relationship between firm performance and BDA capabilities and
highlighted the importance of decision-making based on the
evidence. A study found a positive significant association between
firm performance and IT capabilities reported the mediating
effects of decision-making performance and business process
performance on the relationship between firm performance
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and information management capabilities. In this study, they
analyzed the role of BDA capabilities on firm performance
using business strategy alignment as a mediator. Furthermore,
another study empirically examined the data obtained from
the firms in Italy. The study revealed the significance of big
data in decision-making to achieve better performance. For the
successful implementation of BDA capabilities in the healthcare
sector, five strategies were suggested. These are: (i) creating
a culture of information sharing, (ii) implementing big data
governance, (iii) providing BDA-related training, (iv) developing
new ideas for business through BDA, and (v) incorporating cloud
computing in the BDA of the organization. In addition, a positive
and significant association among big-data-driven actions, big-
data-savvy teams, and firm performance was examined in a
study. In their study, those techniques and skills were examined
that are usually adopted by big data-savvy teams. Such teams
consist of a group of professionals with diversified knowledge and
skills. In this study, BDA capabilities (human skills, intangible,
and tangible skills) and innovation were found to be positively
associated with the dynamic capabilities as a mediator. The study
also highlighted the role of environmental factors and their role
as a moderator on the relationship between innovation and BDA
capabilities. An organization in which resources are deployed
collaboratively and decision-making is usually done based on
evidence will likely result in performance gains for the firms.
Recently, a different approach was adopted for analyzing BDA’s
effects on firm performance. For this purpose, a framework was
developed involving four domains explaining how adoption and
implementation of BDA approaches may cause failure to the firm.
Therefore, those firms which integrate simple data and develop
ordinary capabilities have the tendency for business failure.

Based on the literature reviewed, the study has proposed the
following hypothesis:

H1: Organizational BDA capabilities have a significant
impact on the performance of the firms.

H1a: Big data contextualization capability has a significant
impact on the performance of the firms.
H1b: Big data democratization capability has a significant
impact on the performance of the firms.
H1c: Big data execution capability has a significant impact
on the performance of the firms.

The term organizational agility is defined as the business’s
ability to renew itself and quickly respond (Ardito et al.,
2019). Organizational agility is derived from the ability of an
organization to adjust to the new situations with the existing
set of resources/assets. In fact, organizational agility and its
dynamic capabilities are often connected. An organization can
significantly increase its agility when the information processing
procedures and architectures do not become a burden to
the organization’s culture of dynamism (Eslami et al., 2021).
Organizational agility refers to the permanently available and
learned dynamic capability which can be efficiently and quickly
performed when needed in a certain way under an uncertain
market environment for improving the business performance.
Several researchers argued that organizational agility positively

influences business performance. Several practitioners and
information system scholars have pointed out that BDA
capabilities can be integrated into the business operations
(Gao, 2013; Wamba and Mishra, 2017). The BDA capable
firms are considered as the information systems which collect
huge data from the business processes, carry out data analysis,
and then share the obtained results with the involved parties
(Wamba and Mishra, 2017). Just like traditional BPM systems,
these firms also aim to achieve innovation, effectiveness, and
efficiency. However, these firms are different when it comes
to fundamental aspects. According to Gao (2013), integrating
BDA into the business processes provides situational awareness
to the participants, besides, it also allows them in shaping
their responses. Furthermore, in order to get advantage from
big data, the BDA firms must be agile, automatic, analytical,
and adaptive (Vossen, 2014; Vera-Baquero et al., 2015). It also
improves the capability of the system to carry out advanced
analysis besides performing multiple business data processing
(Wamba and Mishra, 2017). These systems when integrated in
multiple organizations promote information exchange within
the organizations (Vera-Baquero et al., 2015). If the firms are
adaptive in nature, they can develop complex data and can
become more adaptable to the situations. In addition, such firms
also promote agility, dynamism, and organizational flexibility.
Such systems allow to successfully provide customer satisfaction,
improve collaboration between organizations, and to capture
responses to the market changes (Scuotto et al., 2017; Wamba
and Mishra, 2017). Thus, the implementation of such systems
depends on the market capitalization agility of the organization.
Lu and Ramamurthy (2011) argue that the relationship between
operational adjustment agility and such systems can also be
observed. BDA capable firms have this unique ability to analyze
the data on internal business processes and on the basis of this
data, they allow firms to promote the efficiency of these processes.
BDA firms also have the potential to improve exploitation
capabilities as well as the organizations’ exploration capabilities
(Sivarajah et al., 2017). The significant number of studies have
been carried out concerning the significance of information
systems and their importance in ambidextrous firms, however,
not enough studies have been conducted in context to BDA
capable firms. Such firms, significantly contribute to increase
agility in ambidextrous organizations. Besides, they are also
capable of influencing the organization’s operational adjustment
agility and market capitalizing agility. Therefore, we propose:

H2: Organizational BDA capabilities have a significant
impact on the organizational agility.

H2a: Big data contextualization capability has a significant
impact on the organizational agility.
H2b: Big data democratization Capability has a significant
impact on the organizational agility.
H2c: Big data execution capability has a significant impact
on the organizational agility.

This notion is associated with the idea that free-flowing
information in an organization develops understanding among
people about what they are required to do. These findings are
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relevant to the literature on the significance of BDA capabilities.
Researchers argue that collecting information through BDA
infrastructure facilitates the BDA skilled personnel and managers
in quickly responding and making decisions, which ultimately
affect the ability of an organization to respond (Şerban, 2017).
All such findings suggest the impact of organizational BDA
capabilities on the agility of a firm (Hyun et al., 2020). Moreover,
organizational performance is often linked to organizational
agility, which suggests that organizations having the ability of
agility and adaptability can thrive and come out of difficult
situations. Therefore, we propose:

H3: Organizational agility has a significant impact on the
performance of the firms.

H4: Organizational agility of the firm mediates the
relationship between the organizational BDA capabilities
and performance of the firms.

H4a: Organizational agility of the firm mediates the
relationship between the organizational Big Data
Contextualization capability and performance of the
firms.
H4b: Organizational agility of the firm mediates the
relationship between the organizational Big Data
Democratization Capability and performance of the
firms.
H4c: Organizational agility of the firm mediates the
relationship between the Big Data Execution Capability and
performance of the firms.

Several distinguished scholars have suggested to view IT from
a broader perspective to understand IS investments and its
business value and assess the productive paradox with regards to
IT (Bharadwaj, 2000; Santhanam and Hartono, 2003; Bhatt and
Grover, 2005). According to these scholars, IT capability should
be of prime focus, and Bharadwaj (2000) defined IT capability as
“the ability of a firm to deploy and mobilize a combination of IT
resources with other organizational capabilities and resources.”
Most IT capability-based studies (Bharadwaj, 2000; Santhanam
and Hartono, 2003) have integrated RBV that is derived from
the firm’s strategic management. The extant literature indicates
that organization can successfully gain a competitive advantage
by employing valuable, inimitable, and distinctive capabilities and
resources (Bhatt and Grover, 2005). Santhanam and Hartono
(2003) argued that IT capability concept assumes that generally
there is an easy replication of resources, but a firm’s distinctive
capabilities cannot easily be replicated, thereby leading a firm
toward achieving sustained competitive advantage. Another
study (Aral and Weill, 2007) claimed that investments in IT
assets are driven by the organizational strategies which add value
to the firm’s performance in various dimensions, particularly
in the context of strategic management. In this study, we used
IT capability, i.e., IT functionality for supporting and shaping
business strategy to successfully achieve strategic integration (van
Der Zee and De Jong, 1999). In addition, Porter and Millar (1985)
also argue that through casual ambiguity, social complexity, and
path dependency, the original capability can ultimately result in

a competitive advantage. Therefore, this study considers BDAC
as a key capability that helps to achieve sustained competitive
advantage in the context to big data (Davenport, 2006; Davenport
et al., 2007; McAfee et al., 2012; Goes, 2014).

Several prior studies have proposed various types of IT
capabilities, such as IT capability is defined by Bhatt and
Grover (2005) in terms of heterogeneity, imperfect mobility, and
value. In view of these scholars, heterogeneity and value of IT
capability are essential, and imperfect mobility is an important
condition to achieve competitive advantage. Furthermore, they
also proposed three different capabilities for understanding IT-
based sources of competitive advantage, these are: competitive
capability (i.e., IT business expertise quality), dynamic capability
(i.e., organization’s learning intensity), and value capability (i.e.,
IT infrastructure quality). Another study (Kim et al., 2012)
conceptualized the IT capability of a firm using a social-
materialistic approach. They observed that IT capability is driven
by IT personnel capability, IT infrastructure capability, and IT
management capability. Developing models based on social-
materialism stresses upon the interconnection between these
capabilities (IT personnel capability, IT infrastructure capability,
IT management capability), which is in contradiction to the
traditional IS approaches, that characterize IT capability as
unrelated and a unidirectional concept.

Authors found that IT capability and firm performance are
positively related. This finding is in line with several prior
studies which analyzed how IT capability is related to firm
agility, firm performance, stock market returns, etc. (Lin, 2007).
Similarly, we also reviewed BDA capabilities and found three
dimensions, i.e., personnel, infrastructure, and management
capabilities. In McAfee et al.’s (2012) study, they suggested
that some of the critical capabilities in the data economy
are technology infrastructure, corporate decision-making, and
personnel management. Another study (Kiron et al., 2014)
reported analytics platform, analytics skills of employees, and
organization culture as the key BDA dimensions. Moreover,
in Davenport et al.’s (2012) study, they pointed out an
interrelationship between people, technology, and management
under a big data environment and suggested that it facilitates
in achieving firm performance. Barton and Court (2012) also
supported these dimensions and the relationship among them.
They highlighted the essential role of technology capability
for data exploring and management; the role of management
capability for improving decision models, and the importance
of data science capability for understanding, creating, and
implementing analytics models.

Several distinguished scholars highlighted the significance
of viewing IT through a broader perspective for it allows to
determine the IS investment’s business value and ways to handle
IT productive paradox. In study, he emphasized the significance
of IT capability and referred IT capability as the ability of
a firm to utilize and mobilize IT resources combining with
other capabilities and resources. Resource-based view (RBV) is
a commonly used perspective when it comes to IT capability
and is derived from strategic management. Research in this area
suggests that an organization can use inimitable, distinctive,
and valuable capabilities and resources to achieve a competitive
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advantage. They argued that a firm’s distinctive capabilities
cannot be replicated and, thus, lead the firm to the competitive
advantage. Basically, this assumption governs the whole concept
of IT capability.

Scholars in the area of strategic management suggested
that firms’ strategies determine the investments that are to
be made in various IT assets. Besides, these strategies also
provide value in various dimensions. For achieving strategic
integration in this research, IT capability will be integrated for
IT functionality, i.e., for supporting and shaping the business
strategy. They argued that through causal ambiguity, social
complexity, and path dependency, the original capabilities are
likely to result in sustained competitive advantage. Prior studies
also confirmed and suggest BDAC as important because it brings
about the competitive advantage to the firm in the organizational
setting with big data.

Scholars have proposed various typologies concerning IT
capabilities, such as in study, IT capability is categorized as
imperfect mobility, heterogeneity, and value. They further argued
that in order to achieve a competitive advantage, IT capability
heterogeneity and value are essential; however, for the sustained
advantage, imperfect mobility is essential. Also, conceptualized
capabilities as competitive capability, dynamic capability, and
value capability are also essential. Furthermore, in this study,
they considered a sociomaterialistic view and suggested that IT
capability is a function of personnel capability, IT infrastructure
capability, and IT management capability. Unlike traditional IS
approaches, which conceptualize IT capability as unrelated or
unidirectional, the sociomaterialism-based modeling emphasizes
the integration of the discussed IT capabilities. Furthermore, a
positive relationship was also reported among the firm’s financial
and business process performance with the IT capability. Similar
findings were reported in the literature, where IT capability’s
relationship has been observed with stock market returns, firm
performance, and firm agility. Therefore, a BDA capabilities
literature was also reviewed which presented dimensions
like the infrastructure, personal capabilities, and management
capabilities dimensions. Such as, according to, the three
critical capabilities are corporate decision making, technology
infrastructure, personnel management in context to the data
economy. Furthermore, the analytical skills of employees and
analytics platforms are identified as the core BDA dimensions.
In study, they pointed out the three interlinked dimensions
namely: people, technology, and management. These dimensions
under big data environment provide support in improving the
firm performance. Findings were also consistent with these
BDA dimensions. They also highlighted the significance of
management capability in optimizing decision models. Besides,
the capability of data science helps in developing, understanding,
and in the application of analytics models, while technology
capability helps in managing and exploring various types of data.
Based on the literature reviewed the study has proposed the
following hypothesis:

H5: IT capability of the firm mediates the relationship
between the organizational BDA capabilities and
performance of the firms.

H5a: IT capability of the firm mediates the relationship
between the organizational big data contextualization
capability and performance of the firms.
H5b: IT capability of the firm mediates the relationship
between the organizational big data democratization
capability and performance of the firms.
H5c: IT capability of the firm mediates the relationship
between the big data execution capability and performance
of the firms.

RESEARCH METHODOLOGY

This study has been carried out in China to investigate the
effect of BDMC on competitive advantages performance (CAP)
of SMEs who are related to manufacturing business. This study
adopted the quantitative method of research with a cross-
sectional technique. This study employed a questionnaire to
gather the data as a research instrument. This study has used
the purposive sampling method by keeping in mind the context
of study. Employees of the Chinese SMEs that were at least
10 years old were the population of this study. The researchers
select the sample size by using the recommendations of Kyriazos
(2018). According to the suggestion of Kyriazos (2018), the
sample size of the respondent should be 300 because it is assumed
a good sample; however, the 50 respondents are supposed a
weaker sample, 100 respondents are reflected a weak sample,
while a sample of 200 respondents considers an adequate. Thus,
this study chooses a 300 respondents as a sample. A total of
500 survey questionnaires were disseminated among the selected
population. Out of 500 distributed questionnaires, only 312
questionnaires were returned and usable for the purpose of
analysis. It shows that the response rate was 62.4%. According to
Sabir et al. (2019), the average response rate in the management
sciences study is 56% and this study achieved the adequate level
of response rate.

MEASUREMENT

A 18-item scale is adopted in this study, which has also been
previously adopted by Wamba et al. (2017) to measure the
BDA capabilities of an organization. Following prior research
by Mikalef and Pateli (2017), organizational BDA capabilities
are taken as a second-order construct. The variables that were
selected for this study were derived from first-order constructs,
namely, BDA management capabilities (with seven items), BDA
personnel expertise (with five items), and BDA infrastructure
(with six items). In this study, the BDA infrastructure-related
statements were used as latent constructs that are based
on compatibility (i.e., software applications can be easily
integrated at various analytical platforms), connectivity (i.e.,
our industry owns required analytical systems in comparison
to our industry rivals), and modularity (i.e., in developing
new system, reusable software modules are used widely in this
context). Besides, statements that were used as latent constructs
of BDA management capabilities include statements that are
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related to coordination (e.g., line people and business analysts
in our organization meet on regular basis for the purpose
of discussing key issues), control (i.e., analytics development
responsibility is clear in our organization), decision-making (i.e.,
while making decision-related to business analytics investment,
we also measure its impact on the employees’ work productivity),
and planning (e.g., innovative opportunities are continuously
examined to be adopted in business analytics). Last, the BDA
personnel expertise-related statements that were used as variables
include those which are linked with business knowledge (e.g.,
analytics personnel in our organization are capable enough
to identify business problems, and find appropriate solutions),
relational knowledge (i.e., close coordination is practiced by
the analytics personnel to develop client relationships), and
technical knowledge (i.e., analytics personnel in our organization
are capable enough to regulate decision support system, such
as, data warehousing, data mining, expert systems, and artificial
intelligence, etc.) (Wamba et al., 2017).

Furthermore, Navarro et al. (2016) scale with six-items was
also used in this study for measuring organizational agility. This
scale has also been previously used by researchers to analyze
how technologies and information systems affect organizational
agility. In addition, we adopted a 12-item scale [e.g., organization
performs well to satisfy customers by Gomes and Facin (2019) for
organizational performance measurement].

ANALYSIS AND RESULTS

The research model was being analyzed by employed “partial least
squares” technique through statistical software the Smart PLS
software version 3 (Ringle et al., 2015). The two-level analyses
method suggested by Henseler et al. (2014) and Ramayah et al.
(2017) was used for the analysis of data. The measurement model
was assessed in the first stage and then the structural model was
estimated by this study (Hair et al., 2019; Shehzadi et al., 2020).

Measurement Model Evaluation
The measurement model was estimated to assess the validity of
constructs. Estimation of measurement model used to examine
the discriminant and convergent validity. The values of outer
loadings, “average variance extracted” (AVE) and “composite
reliability” (CR), are applied to examine the convergent validity
of variables (Henseler et al., 2014; Nisar et al., 2021). However,
the loadings must be greater than 0.5 and the value of
CR and AVE must be above from 0.7 to 0.5, respectively,
to validate the convergence of the model (Sarstedt et al.,
2020). To validate the model from the discriminant point,
two measures are used, one is HTMT ratio and the other
one is the Shiau et al. (2019) criteria. HTMT ratio must
be higher than 0.85 to established discriminant validity. The

FIGURE 1 | Measurement model assessment.
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TABLE 1 | Internal consistency, convergent validity, composite reliability, and average variance extracted (AVE).

Construct Indicators Loadings Cronbach’s alpha Composite reliability AVE

Big Data Contextualization Capability (BDCC) BDCC1 0.681 0.810 0.868 0.570

BDCC2 0.714

BDCC3 0.742

BDCC4 0.823

BDCC5 0.806

Big Data Democratization Capability (BDDC) BDDC1 0.839 0.791 0.856 0.544

BDDC2 0.735

BDDC3 0.706

BDDC4 0.747

BDDC5 0.647

Big Data Execution Capability (BDEC) BDEC1 0.832 0.792 0.854 0.563

BDEC2 0.890

BDEC3 0.826

BDEC4 0.756

BDEC5 0.683

Competitive Advantages Performance (CAP) CAP1 0.796 0.842 0.888 0.613

CAP2 0.800

CAP3 0.792

CAP4 0.759

CAP5 0.768

Information Technology Capability (ITC) ITC1 0.903 0.945 0.961 0.859

ITC2 0.943

ITC3 0.945

ITC4 0.916

ITC1 0.903

Organizational Agility (OA) OA1 0.857 0.808 0.874 0.635

OA2 0.855

OA3 0.778

OA4 0.686

results of the measurement model are given in Figure 1 and
Tables 1–3.

Table 1 presents that this study meets the criteria of
convergent validity according to the suggestion of Sarstedt
et al. (2019). The value of loadings is above 0.6, the CR
values are greater than 0.7, and the AVE values are higher
than 0.5.

Table 2 illustrates that this model achieves the discriminant
validity according to the recommendations of Shiau
et al. (2019). The values of the AVE square root of all
the variables are higher than the correlations with other
variables.

TABLE 2 | Fornell–Larcker criterion.

BDCC BDDC BDEC CAP ITC OA

BDCC 0.755

BDDC 0.673 0.738

BDEC 0.386 0.508 0.750

CAP 0.638 0.710 0.505 0.783

ITC 0.341 0.562 0.502 0.468 0.927

OA 0.425 0.568 0.515 0.522 0.650 0.797

Table 3 indicates that HTMT ratios are lesser than 0.85;
therefore, this model achieves the discriminant validity according
to HTMT criteria.

Structural Model Evaluation
The bootstrapping procedure was adopted to estimate the
hypotheses, to check the effect of independent variables on
the dependent variable, and to check the mediation and
moderation effects (Sarstedt et al., 2019). A resamples of 1,000
in bootstrapping were employed to estimate the hypotheses.
The results of the structural model are given by Figure 2 and
Tables 4–6.

TABLE 3 | Heterotrait-monotrait (HTMT) ratio.

BDCC BDDC BDEC CAP ITC OA

BDCC

BDDC 0.819

BDEC 0.505 0.610

CAP 0.766 0.843 0.578

ITC 0.392 0.634 0.558 0.523

OA 0.517 0.696 0.607 0.624 0.734
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FIGURE 2 | Structural model assessment.

Table 4 indicates the direct effects hypotheses estimation
results. Findings indicated that big data contextualization
capability has a positive and significant effect on CAP (β = 0.195,
t = 2.849) and big data democratization capability also positively

TABLE 4 | Structural model assessment (direct effect results and decision).

Hypotheses Relationship Beta STD T value P-values

H1a BDCC→CAP 0.195 0.068 2.849 0.005

H1a BDDC→CAP 0.442 0.082 5.388 0.000

H1a BDEC→CAP 0.114 0.052 2.192 0.000

H2a BDCC→OA 0.201 0.021 2.741 0.007

H2b BDDC→OA 0.381 0.057 3.323 0.008

H2c BDEC→OA 0.227 0.063 4.121 0.000

H3 OA→CAP 0.401 0.037 2.901 0.000

TABLE 5 | Structural model assessment indirect effect (mediation effects).

Hypotheses Relationship Beta STD T value P-values

H4a BDCC→OA→CAP 0.232 0.086 2.698 0.001

H4b BDEC→OA→CAP 0.111 0.022 5.045 0.006

H4c BDDC→OA→CAP 0.214 0.027 7.926 0.000

TABLE 6 | Structural model assessment (moderation effects).

Hypotheses Relationship Beta STD T value P-values

H5a BDCC*ICT→CAP 0.378 0.073 5.168 0.003

H5b BDDC*ICT→CAP 0.212 0.073 2.904 0.004

H5c BDEC*ICT→CAP 0.169 0.077 2.191 0.000

and significantly effective to CAP of Chinese manufacturing firms
(β = 0.442, t = 5.388). Furthermore, big data execution capability
also has a significant influence on CAP (β = 0.114, t = 2.192).
Thus, H1, H2, and H3 are supported.

The results of mediating analysis are shown in Table 5. Results
elucidated that organizational agility has a significant mediation
effect in the association of Contextualization Capability and CAP
(β = 0.232, t = 2.698). Organizational agility also significantly
mediated the association of Big Data Democratization Capability
with CAP (β = 0.111, t = 5.045). Moreover, the association
between Big Data Execution Capability and CAP significantly
mediates with organizational agility (β = 0.214, t = 7.926).

Table 6 indicates the output of moderation analysis. Results
indicated that Information Technology Capability significantly
moderates the association of contextualization capability with
CAP (β = 0.378, t = 5.168). Information technology capability
also has a significant moderating role on the association of big
data democratization capability with CAP (β = 0.212, t = 2.904)
and it also has a moderating role on the relationship of big data
execution capability with CAP (β = 0.169, t = 2.191).

DISCUSSION AND CONCLUSION

Findings obtained in this study show that a large organization’s
structure can be reshaped with organizational BDA capabilities.
It is found that meaningful information is extracted from the
big dataset using required skills, processes, and infrastructures,
which enable large organizations to pursue better opportunities
available in the market. This study also provides useful insights
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for the organizations on the firm performance and big data
relationship. This study significantly contributed to the BDA
capabilities literature. In this study, the role of agility is analyzed
for collecting data from the big dataset, and how organization
performance improves through agility (Korherr and Kanbach,
2021). The outcomes and findings obtained from this research
also add to the dynamic capabilities and big data literature
since a moderated multimediation model is proposed in this
study, which develops understanding of the interrelationships
and complex dynamics in this context. The findings of this
study are consistent with Altay et al. (2018) study indicating that
organizational ability to strive under competitive situations and
organizational dynamic capabilities are related.

It is noteworthy that BDA infrastructure promotes
organizational agility, especially in large firms. However,
this finding contradicts with the notion of IMS. Prior studies
such as Acosta et al. (2018) have often emphasized the rigidness
of IMS (BDA infrastructure) and it hinders organizational
dynamism. Such discrepancy may occur because the operational
performance of BDA infrastructure is better in comparison
to the traditional IMS because of the technical features of
BDA infrastructure. Regardless of the type of infrastructure,
such as data lakes, Internet of Things, or cloud computing,
BDA infrastructures operate on the leaner architectures as
compared to the traditional systems. It can be due to the fact
that BDA infrastructure improves the large organizations’ ability
to identify, and exploit opportunities by providing enough
information and then enables them to quickly respond to
the changes. Therefore, due to the abovementioned reasons,
large organizations are regarded as less agile and more rigid as
compared to the SMEs, and BDA infrastructures can address
this problem well as compared to the traditional IMS (Mauro
et al., 2018). In fact, communication among organizational
units also improves by integrating BDA infrastructures, as it
helps them in timely responding to the issues and opportunities
(Vaio et al., 2021).

Several business value-based studies also found mixed
findings, such as “IT productive paradox.” A few researchers
(Roach et al., 1987; Solow, 1987; Strassmann, 1990) argued
that the idea “IS investments result in the improvement in
efficiency and effectiveness of operations” cannot always be
true. On the contrary, a few scholars (Barua et al., 1995, 2004;
Brynjolfsson and Yang, 1996) also found firm performance and
IS investments as positively related in their studies. Such findings
are indicative of the fact that failure to obtain positive linkage
among firm performance and IS investment may occur due to
several other factors such as time lags between the generated
business value from such investments and IS investments,
lack of appropriate data, benefit analysis of IS investments,
and no assessment for ITs indirect benefits (Brynjolfsson and
Yang, 1996; Brynjolfsson and Hitt, 2000; Devaraj and Kohli,
2003; Anand et al., 2013). Indeed, in context to this research,
scholars (Mooney et al., 1996; Anand et al., 2013) claimed that
several intermediate variables can be responsible to mediate
the effects of IT on the organizational performance. They also
suggested to consider the impact of IT resources using a broader
perspective, i.e., considering various dimensions while studying

the business value of IT capabilities or IT. Therefore, this
study aims to extend the literature by analyzing those factors
which lead to better organizational performance, resulting from
BDA investments.

Big data analytics through its strategic and operational
potential has entirely changed the game and thus improves the
effectiveness and efficiency of the businesses. Recent research
(e.g., Germann et al., 2014) on BDA has reported a positive
association between firm performance and the use of customer
analytics. Such as Brands (2014) stated that BDA enables the
use of data lens for managing and analyzing firm strategy. Hagel
(2015) also acknowledged and highlighted the significance of
BDA in the firm’s decision-making processes. According to Liu
et al. (2014), BDA differentiates high-performing firms from the
low-performing firms, since it increases organizational revenue,
minimizes its customer acquisition by 8 and 47%, respectively,
and enables firms to develop capabilities, such as forward-
looking and proactiveness to gain such benefits (Liu et al., 2014).
Literature review suggests various examples where BDA has
been used by firms, one such example is the case of Target
Corporation. The company used BDA for tracking the purchasing
behavior of their customers through using a loyalty card program
which thus enabled them to predict the future buying trend of
their customers. Amazon.com also took advantage from BDA,
in fact, Amazon.com generated 35% of its purchases based on
BDA, i.e., by suggesting its customers with personalized purchase
recommendations (Wills, 2014).

MANAGERIAL IMPLICATIONS

This study provides senior management with the insights
about how firm performance can be improved through BDA
capabilities. It also points out areas that lead to the maximum
utilization of BDA capabilities. Pakistan likes other emerging
markets needed to create business environment characterized
with technological advancements. Thus, this study emphasizes
and points out the BDA capabilities of firms in Pakistan and how
they are related to the firm performance. This will allow the top
management to determine the weaknesses and strengths of the
firm and devise strategies accordingly. The operational efficiency
of sample firms can be improved by integrating IT and IS systems
through non-financial and financial investment for developing
the BDA capabilities.
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