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Parent–infant EEG is a novel hyperscanning paradigm to measure social interaction
simultaneously in the brains of parents and infants. The number of studies using parent–
infant dual-EEG as a theoretical framework to measure brain-to-brain synchrony during
interaction is rapidly growing, while the methodology for measuring synchrony is not
yet uniform. While adult dual-EEG methodology is quickly improving, open databases,
tutorials, and methodological validations for dual-EEG with infants are largely missing.
In this practical guide, we provide a step-by-step manual on how to implement and
run parent–infant EEG paradigms in a neurodevelopmental laboratory in naturalistic
settings (e.g., free interactions). Next, we highlight insights on the variety of choices
that can be made during (pre)processing dual-EEG data, including recommendations
on interpersonal neural coupling metrics and interpretations of the results. Moreover,
we provide an exemplar dataset of two mother–infant dyads during free interactions
(“free play”) that may serve as practice material. Instead of providing a critical note, we
would like to move the field of parent–infant EEG forward and be transparent about the
challenges that come along with the exciting opportunity to study the development of
our social brain within the naturalistic context of dual-EEG.

Keywords: brain-to-brain synchrony, dual-EEG, EEG, hyperscanning, parent–infant interaction, neural synchrony

INTRODUCTION

Starting from birth, dyadic interaction between parent and infant shapes the developing social brain
(Feldman, 2012, 2021; Bell, 2020). Optimal parental interactions can be defined as a synchronous
relationship in which the parent is attuned to the infant’s moment-by-moment state and social
signals and provides stimulation accordingly (Feldman, 2007b). These interactions contain, by
definition, episodes of matching alongside moments of non-matching (for instance, the infant
is attentive and the mother is socially stimulation) or moments of mismatch and reparation
(Tronick and Cohn, 1989); still, the entire social episode is coordinated and synchronous. The
theoretical synchrony model indicates that optimal interactions between parents and infants
serve as a regulatory function to the infant’s emerging social abilities and neurobiological states
(Feldman, 2007b, 2016; Carollo et al., 2021). Several decades of research have shown that behavioral
synchronization is indeed a key feature of parent–infant interaction that has long-term effects on
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socialization and empathy, emotion regulation, mental health,
and maturation of the social brain across childhood, adolescence,
and up until adulthood (Feldman, 2007a, 2010; Leclere et al.,
2014; Levy et al., 2017, 2021). In parallel, disruptions to the
synchronous relationship between parent and child, due to
conditions such as maternal postpartum depression or child
early life stress, carry long-term negative consequences for social
development and the social brain (Pratt et al., 2017, 2019; Levy
et al., 2019; Feldman, 2020). Disruptive synchronous interactions
typically come in two forms; those with reduced sensitivity of
the parent with no temporal contingencies between the infant’s
communication and the parent’s response and those in which
the parent is intrusive and overstimulating, disregarding the
infant’s signal for rest and regrouping (Cohn and Tronick, 1988;
Feldman et al., 2009; Granat et al., 2017). More recent studies
have shown that synchrony between parent and infant can be
observed across neurobiological systems, including parent–infant
synchrony of heart rhythms (Feldman et al., 2011) or oxytocin
response (Feldman et al., 2010a), which are accompanied by
behavioral synchrony (for review see, Feldman, 2020). Only
recently, empirical studies using a parent–infant hyperscanning
paradigm began to show that adult’s and infant’s neural activity
is also synchronized during social interaction (see for review:
Markova et al., 2019; Wass et al., 2020; Turk et al., 2022).

In developmental research, hyperscanning comprises the
simultaneous measurement of brain activity in parent/adult and
child using different neuroimaging methods, including dual-
EEG (Atzaba-Poria et al., 2017; Leong et al., 2017; Krzeczkowski
et al., 2020; Endevelt-Shapira et al., 2021; preprint Wass et al.,
2018; Leong et al., 2019; Perone et al., 2020; Santamaria et al.,
2020), dual-fNIRS (Reindl et al., 2018; Azhari et al., 2019;
Miller et al., 2019; Nguyen et al., 2020, 2021a,b,c; Piazza
et al., 2020; Quinones-Camacho et al., 2020; Wang et al.,
2020) and dual-MEG (Hirata et al., 2014; Hasegawa et al.,
2016) or sequential-MEG (Levy et al., 2017, 2021). While all
these studies clearly demonstrate that social interactions are
marked by the coordination of two brains, so called brain-to-
brain synchrony, the empirical methods used in these studies
show great variability (Czeszumski et al., 2020). As compared
to MEG, EEG and fNIRS are the most mobile and infant-
friendly systems. One of the main differences between EEG
and fNIRS, is that they measure different types of neural
activity. While EEG measures the electrical activity of the brain,
fNIRS measures changes in BOLD signal. As a results, the two
methods have different temporal and spatial properties (e.g.,
respectively, fast versus slow neural responses and, spatially
more general versus specific to certain cortical regions), and
therefore answer different aspects of neurobehavioral attunement
of social partners (Hamilton, 2021). Moreover, EEG facilitates
the opportunity to reduce the amount of movement-related
artifacts, while fNIRS has a much better tolerance to movements
due to the compatibility with motion sensors (Lloyd-Fox
et al., 2010). Recently, a complete guide of parent-child (i.e.,
hyperscanning) fNIRS data processing and analysis is developed
to accommodate the growing need for transparency and
replicability in performing fNIRS studies (Hoehl et al., 2021;
Nguyen et al., 2021a).

Here, we will focus on parent–infant EEG as it enables the
exploration of synchrony at the level of brain rhythms and
importantly because it is a well-adapted infant-friendly method
to tackle brain-to-brain synchrony at the speed of fast changing
social interaction in a natural setting. Parent–infant EEG studies
provided accumulating evidence for the coupling of neural
activity and attunement of fast-changing social signals such as
attention (Wass et al., 2018), mutual gaze (Leong et al., 2017;
Endevelt-Shapira et al., 2021), negative behavior (Atzaba-Poria
et al., 2017), and emotions (Krzeczkowski et al., 2020; Perone
et al., 2020; Santamaria et al., 2020) between parent and infant.
These fascinating initial findings underscore the multitude of
possibilities to investigate parent–infant synchrony on a whole
new multimodal and interpersonal level (for review see, Markova
et al., 2019; Wass et al., 2020; Turk et al., 2022), making it possible
to explore new neurobiological aspects of natural interaction and
to examine differences in clinical cohorts (Leong and Schilbach,
2019).

The number of studies that simultaneously measure EEG-
based brain activity during parent–infant interaction are rapidly
growing. However, common grounds on how to acquire the data
and estimate brain-to-brain synchrony as well as the validity
of the method are still largely lacking (Burgess, 2013; Turk
et al., 2022). Consequently, instead of getting new insights in
underlying interpersonal neural interactions, this variety may
make it hard to compare studies and may lead to problems
of reliability and validation of synchronization (Burgess, 2013;
Hamilton, 2021). There are numerous methodological issues
in the dual-EEG field and in parent–infant EEG in particular.
Multiple efforts are taken by hyperscanning-researchers to
overcome challenges by sharing their experiences and expert
opinions. So far, hyperscanning-researchers already provided
an overview of experimental setups of dual-EEG (Barraza
et al., 2019), the HyPyP pipeline for analyzing dual-EEG
data to compute (various forms of) brain-to-brain synchrony
(Ayrolles et al., 2021), and, very recently, the DEEP pipeline
for the (pre)processing of developmental dual-EEG (Kayhan
et al., 2022). Additionally, comprehensive expert opinions on
hyperscanning sensitivity analyses (Burgess, 2013), mechanistic
interpretations of brain-to-brain synchrony (Hamilton, 2021),
infant EEG and data loss (Stets et al., 2012; Cuevas et al., 2014;
van der Velde and Junge, 2020), practical aspects of infant ERP
(Hoehl and Wahl, 2012), movement artifacts in infant and adult
EEG (Georgieva et al., 2020), and the challenges and solutions of
EEG research with infants in social experiments (Noreika et al.,
2020), tackle a lot of challenges that dual-EEG and infant EEG
researchers may encounter and move the field forward. Yet, thus
far, a comprehensive guide specifically for parent–infant EEG is
missing from the literature.

Parent–infant EEG is an exciting novel technique, and we
would like to address the growing need of researchers to have a
well-documented overview of the possibilities and requirements
of a parent–infant EEG experiment. The goal of this review is to
assist in developing parent–infant EEG experiments by guiding
researchers through all aspects of the research: equipment, data
collection, preprocessing, analyzing parent–infant EEG, and data
interpretation. In this guide, we provide practical tips for the
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experiment from our own experiences and examples from the
literature. It is important to emphasize that there is no consensus
on the best practices of parent–infant EEG (or dual-EEG in
general) yet. Consequently, we rather provide an overview of
different practical possibilities without suggesting superiority of
one method over the other. Additionally, we included an open-
access example of a mother–infant EEG dataset (N = 2) that may
help to explore the various forms of brain-to-brain synchrony
during natural interaction and test out preprocessing pipelines
before data collection.

EXPERIMENTAL EQUIPMENT AND
DESIGN

Parent–Infant EEG Equipment
The laboratory setup must be compatible with two connected
EEG systems to be able to acquire simultaneous measurement of
brain activity in parent and infant. It is challenging to transform
an EEG laboratory setup - that is usually designed for single-
adult experiments – to a parent–infant EEG setup. Practical
steps that can be taken to build a laboratory setup for dual-EEG
experiments are extensively described by Barraza et al. (2019). In
this methodological overview, the authors (including our group)
provide implementations of EEG setups, allowing independent
measures of each individual and measures of synchronization
between the signals of two different brains, using hardware and
software from different companies (including Brain Products,
ANT, EGI, and BioSemi) (Barraza et al., 2019). With minor
adaptations, this protocol can easily be translated to a parent–
infant EEG experiment. In short, the EEG box/amplifier of
the infant has to be connected to the adult box/amplifier to
allow savings of both recordings into one file. The way this
is accomplished varies between EEG systems used. Figure 1
displays the experimental dual-EEG setup with hardware from
Biosemi (ActiveTwo AD-box with extra input socket, called a
“daisy-chain,” Biosemi, Amsterdam, Netherlands) that has been
used by our group. The 64-electrode caps of mom and infant
are connected to separate boxes with different speed modes, to
identify the different EEG datasets. The boxes are connected in
series and one of the two boxes (the ‘master’ box) is connected
to the computer and sends both datasets to the software (e.g.,
ActiView). More technical details can be found in the methods
paper of Barraza et al. (2019).

Besides the stationary EEG systems, mobile (i.e., portable)
EEG systems are gaining ground in outside-the-laboratory
research with children (Giannadou et al., 2022; see for review,
Lau-Zhu et al., 2019), infants (Troller-Renfree et al., 2021) and
in EEG hyperscanning (i.e., dual-EEG or EEG with more than
one social partners) studies (Dikker et al., 2017, 2021). There are
- as far as we are aware – no dual-EEG studies with infants that
use mobile EEG systems, but it would be a major opportunity
for future purposes. Portable systems have no cables hanging
around that could distract the infant, it can be used outside
the laboratory, it allows more freedom of movements (Lau-Zhu
et al., 2019) and it is possible to track head motion at the same
time (see for example, Straetmans et al., 2022). However, mobile

EEG systems have their own challenges; they often have fewer
electrodes, dry-type electrodes (without gel), and can suffer from
connectivity issues (not saving data).

For parent–infant EEG, you need an age-specific EEG cap
for the infant with the same number of electrodes on the same
topological space as the adult cap, including (for some systems)
multiple infant-friendly online and offline reference electrodes
that define common ground in the adult and infant. Different
reference electrodes have their advantages and disadvantages and
which reference electrode options you have are also dependent
on the system/caps that you are using. An overview of different
dual-EEG setups can be found in Barraza et al. (2019). In the
ActiveTwo setup we are using a combination of CMS (Common
Mode Sense) and DRL (Driven Right Leg), which are online
reference electrodes or so-called ground electrodes that are built
in the cap of the ActiveTwo system, and electrodes that are
placed on the mastoids (M electrodes) for offline referencing.
Electrodes on the mastoids seem to be picking up the most
trustworthy ground signal, as they are placed on the bones next
to the ears. However, placement on a moving infant can be
difficult and removing the adhesive tape can be painful (due
to hair) if not executed well (Noreika et al., 2020). In our
experience, well trained experimenters can place and remove the
mastoid electrodes without causing distress in the infant. Cz (or
FCz-electrode on top of the head) is the most commonly used
child-friendly alternative, but not preferably because you have
to sacrifice an electrode for brain activity measures (Noreika
et al., 2020), and the Cz seems especially vulnerable for artifacts
introduced by arm and leg movements (Georgieva et al.,
2020). In systems such as ActiveTwo, we recommend placing
a combination of multiple ground and reference electrodes
(CMS, DRL for online reference and mastoids for post-processing
re-referencing) to get the most out of the data. This way,
disturbances in one of the ground electrodes will not lead
to complete removal of the participant from the study. After
collection, re-referencing can be done to the coupled mastoids,
one mastoid or average referencing over all electrodes. Some
systems, such as Neuroscan (Compumedics, Leipzig, Germany),
are using amplifiers that apply an electrical reference directly (i.e.,
the ability to suppress voltages common to multiple electrodes)
and referencing has to be performed by post-processing average
referencing only (Bigdely-Shamlo et al., 2015). And the third type
of systems have extra online and offline electrodes embedded in
their caps, see for example the ActiCap system (Brain Product,
Gilching, Germany), which has an online reference electrode on
the left mastoid (TP9) and then offline to the corresponding right
mastoid (TP10, see for example in Langeloh et al., 2018).

Parent and Infant-Friendly Laboratory
Besides the technical aspect of building a dual-EEG laboratory
setup, research with infants and (young) parents requires the
setting to be infant-friendly. Practically, there are a few factors
that need to be taken into account when setting up your room
for the experiment. Firstly, observations of direct eye contact are
needed for most behavioral paradigms; therefore, we recommend
to put the parent and infant on the same height. This can
be accomplished by including an age-specific infant chair that
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FIGURE 1 | Parent–infant EEG setup and exemplary data. ‘Lab setting’ on the (Left), image is showing our lab’s parent–infant dual-EEG setup using BioSemi
ActiveTwo. The infant is placed in a baby car seat on top of the table which enables the direct eye contact between parent and infant. The parent (red) and infant
(light blue) caps with 64 electrodes (installed after cap placement) are each connected to a separate AD-Box that is interconnected with the other AD-Box. For
technical details of the BioSemi setup, see Barraza et al. (2019). For this explanatory guideline we used the free play task as paradigm of 3 min, while recording
dual-EEG, video and audio. EEG measures during free play represents the brain state of natural interaction between parent and infant. ‘Intra brain and inter brain
visualization’ on the (Right), image is showing PLV connectivity based on infant Alpha (6–9 Hz). The visualizations are based on one dyad from the (freely available)
dataset for this study including the data of 2 mother–infant dyads and are analyzed in HyPyP. Infant’s age was 11 months. The connections (red lines) represent
positive significant associations, the thickness of the lines represents the connectivity strength (PLV values transformed to Cohen’s D, threshold = 2). Dyads were
included from Tilburg University’s Brains-In-Sync cohort (PI: van den Heuvel). Privacy note: the neural data does not correspond to the mom and infant on the image.

can be moved upside down (e.g., Stokke Tripp Trapp). As an
alternative for younger infants, a baby car chair can be put on
a table that is able to be moved up or down (see for example
our laboratory setting in Figure 1). Secondly, the environment
for the experiment is extremely important for the outcome of
the results. Therefore, one should focus on making the room
as comfortable and save as possible for the parent and infant.
As with any participants, the experimental room has to be
neat and clean, but it also has to be baby-proof, including
tidying up cables and protecting sockets. It can be helpful to
make the room infant-friendly by hanging wall posters with
cartoons, a changing table, placing an age-specific chair and a
comfortable chair for the parent and create a comfortable place
for (breast)feeding.

Multimodal Equipment and Tools
To make use of the full potential of parent–infant EEG,
we recommend collecting and integrating data from multiple
modalities during real life interaction, including audio and
video recordings from multiple angles. Video recordings of
the session are useful to gather behavioral information and to
pinpoint low-motion epochs later in the process of data-analysis
(Leong et al., 2017; Wass et al., 2018; Georgieva et al., 2020;
Santamaria et al., 2020). Besides neural and behavioral data on
video, other biological measurements can complement research
by providing information about the physiological state of both
individuals during dual-EEG. Electrocardiography (ECG), for
example, could be an interesting consideration, as heart rate
activity is able to measure stress-related activity and can be a
really easy-to-apply addition to the EEG setup.

Given that a multitude of different types of data (EEG, ECG,
and video) may have different but additional functional roles, it is
important that all data is temporally synchronized; i.e., collected
and analyzed simultaneously. It is advised to use software (e.g.,
non-commercial lab streaming layer or the Noldus Observer XT
commercial software) that allows the integration, visualization,
and processing of behavioral and neural data (example displayed
in Figure 2). Correct temporal alignment of multiple datasets of
different modalities is challenging but extremely important for
dual-EEG studies. It is essential to add triggers to your data, to
provide a cue of when a task starts, ends, or to mark certain
conditions within a task. Previous parent–infant EEG research
showed to be successful in synchronizing video to dual-EEG data,
using a push button radiofrequency trigger signal that was sent
simultaneously to both EEG amplifiers and concurrently emitted
a light pulse that was visible on both video recordings (Wass et al.,
2018; Santamaria et al., 2020). These start and end points of EEG
and video need to be aligned before processing the data. Another
way to synchronize EEG data with other modalities, such as
video, is to use software that triggers the recoding of several data
types simultaneously (e.g., lab streaming layer, Noldus Observer
XT, E-prime, and OpenSesame).

Age-Appropriate Designs of the
Experiment
Parent–infant EEG is suited to tackle ecological validated or
controlled experiments, measuring real-life social dynamics of
parent and infant. However, the age of the infant who is taking
part in the EEG research strongly influences the design of the
experimental paradigm to maintain the quality of the research.
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FIGURE 2 | Synchronization of multimodal data and behavioral coding. Image is showing the visualization of the temporal synchronization of behavioral (video and
coding) and neural (EEG) data from (a fabricated) parent–infant EEG session of 1-min-interval. On (Top), three videos are displayed with mom-view, infant-view and
overview. (Middle) Timeline and behavioral coding for mutual gaze, infant smile and parent smile are displayed. Color (orange/yellow) represents the existence of the
behavior and white represents the absence of the behavior. (Bottom) EEG signal of two parent electrodes and two infant electrodes are displayed.

First of all, the duration of the paradigm has to be adjusted
to the age of an infant and should be planned around naps.
We recommend to keep a maximum duration of ∼30 min for
younger infants (<6 months) and a maximum of ∼60 min for
older infants (between 6 and 18 months) for the whole session
and keeping the experimental tasks to 2–3 min per condition,
with short breaks in between (Noreika et al., 2020). Secondly,
the interaction task between parent and infant has to be adapted
to the social, motor and cognitive abilities of the infant. This
can be reached by implementing age-specific paradigms and take
potential developmental disorders that may influence the infant’s
ability to perform the task into account. Infants can, for example,
participate in a “resting-state” paradigm while watching a short
movie together with a parent or participate in a task, such as,
“free play” (i.e., natural interaction) (Hasegawa et al., 2016), still
face paradigm (Perone et al., 2020) or a task in which the parent
reads from a book. Besides parent–infant interactions, it may be
interesting to conduct experiments between siblings or between
infants, instead of their parents, which can provide interesting
information about socio-emotional competence.

Relatedly, it is important to pre-define good baseline and
control conditions for the experimental questions. Baseline
conditions are usually conditions where no interaction takes
place, and these periods can be used to define neural baseline

activity or resting-state activity of the parent and infant brain.
Resting-state activity in adults can be acquired by monitoring the
brain activity while the adult is sitting still and is doing nothing,
for example by closing their eyes or averted gaze. Obtaining
resting-state activity in infants is more challenging, but can be
achieved through various tricks (Anderson and Perone, 2018),
including individual play (Benasich et al., 2008; Santamaria et al.,
2020), watching an age-appropriate cartoon on a screen (without
sound), gaze at a toy held by an experimenter (Wolfe and Bell,
2007), or gaze at bubbles that are blown by the parent or one of
the experimenters. Another major benefit from comparing joint
and individual play conditions is that it enables to control for
the impact of shared external stimuli on the EEG signal (Burgess,
2013; Wass et al., 2020; Hamilton, 2021; Hoehl et al., 2021), see
also Sections “Choosing a Metric for Interpersonal Coupling”
and “Interpretation of the Outcome” about the problem of shared
environmental input. Other control conditions can be part of an
interaction where a certain type of behavior is present or missing,
for example by comparing mutual gaze versus no mutual gaze, or
touch by no touch.

Another point of consideration when designing the
experiment is to keep in mind that your parent–infant EEG
dataset will be contaminated with motion-related artifacts. You
cannot simply explain an infant that it needs to sit still during
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the experiment. Additionally, the parent can be instructed
to sit still, but you want to maintain a high level of natural
interaction during your experiment, including head motion and
gaze shifts toward the infant. Complete prevention of motion-
related artifacts is not possible nor desirable during naturalistic
parent–infant interaction, and therefore a lot of data will end up
being excluded. In our experience, the extend of motion-artifacts
and related data loss depends largely on the task. Tasks that
elicit stress responses in the infant (e.g., crying and fussiness),
such as a still face paradigm, lead to more motion artifacts than
reading a book together (although animated reading can also
cause many artifacts). Piloting your design for motion artifacts,
testing out different instructions (e.g., “please read the book
quietly and calm”), or different toys/books (e.g., some toys
trigger more movement than others) is highly recommended.
Still, motion-artifacts are inevitable and, therefore, we suggest to
test twice the number of dyads than would be required based on
standard power calculations (Noreika et al., 2020).

DATA COLLECTION

Best Practices in Improving Data-Quality
Parent–infant EEG data acquisition is challenging, especially
with younger infants that are easily distracted, hard to instruct
and have rapid fluctuations in arousal states. Sleepiness and
fluctuating arousal states may influence the EEG signal and are
therefore undesirable for collecting high quality parent–infant
EEG data (Noreika et al., 2020). Specifically, differences in arousal
states from parent and infant -that are a consequence of personal
or environmental factors (i.e., bad night sleep) instead of the
EEG paradigm- are a confounding factor on the brain-to-brain
measurements and will affect data-quality. The state of alertness
influences the spectral EEG fingerprint of adults (Ogilvie, 2001)
and infants (Grigg-Damberger et al., 2007; Otte et al., 2013).
For example, arousal shifts from wakefulness to drowsiness in
infants from 6 to 8 months old are accompanied by a diffuse
high amplitude synchronous 3–5 Hz activity, and activity that is
1–2 Hz slower than the waking EEG background activity (Grigg-
Damberger et al., 2007). Many tips from infant EEG research
that are described in the paper of Noreika et al. (2020) apply for
parent–infant EEG research to overcome the problem of arousal,
but there are additional challenges when testing infant and parent
during interaction. For example, the duration of preparation can
be problematic. Since you need to apply two (instead of one)
caps, the infant may become tired or frustrated before you are
done with the set-up. Additionally, we have noticed that parents
and infants pick up stress and anxiety signals from nervous
and unexperienced team members, which sometimes lead into
stressed parents and over-aroused infants. Fortunately, there are
several preparations you can take to speed up the preparation
time and overcome frustration, high arousal states or sleepiness
from either the infant or parent.

The following tips are a mix of practical instructions based on
general developmental research and tips from our own parent–
infant EEG experience (from two labs: Tilburg University, PI: van
den Heuvel, and Interdisciplinary Center Herzliya, PI: Feldman).

Good preparation and planning of the research team is needed
to be as fast and precise as possible when applying the caps.
This starts, for instance, by planning your lab appointment just
after a nap of the infant. Parent–infant EEG cannot be conducted
by one researcher alone. Instead, multiple trained researchers
are needed to fulfill different roles, enabling the simultaneous
application of the EEG caps and entertaining the infant. However,
be careful that the room is not too crowded, that may overwhelm
the infant or parent. We recommend including three researchers
that are present during the setup: one project leader that has the
most contact with the mom and is leading the placement of the
EEG equipment, one technical assistant for EEG placement and
technical preparations and control of the camera’s, computers and
other equipment and one assistant that is mainly focusing on
entertaining the infant. It is important that team members that
will apply the cap and sensors are well trained in applying the
sensors systematically and correct on subjects that are moving
around. The training is also important for the team to get
confidence before they start to work with infants. Capping an
infant is extra challenging, because you have to work silently
(e.g., sensors bumping into each other make an infant-attractive
sound) and invisibly (e.g., work from behind the infant without
blocking their visual field). Additionally, some EEG systems
allow to prepare the EEG cap (e.g., by pre-gelling) before the
participants enter the room, this will save time. It is usually best to
start with the setup of the parent first, thereby you show the infant
an example of what is going to happen with them and provide
more time to explore the room and “warm-up.”

Generally, the steps for setting up the parent–infant EEG
equipment are: (1) place sensors on the mastoids of the parent,
(2) place EEG cap on the head of the parent, (3) place all sensors
from frontal to occipital, (4) place additional sensors, including
other physiological sensors such as ECG and, (5) repeat steps 1–4
on the infant. Clear and calm communication with the parent and
infant is necessary to avoid high arousal states; stay relaxed during
the communications and explain calmly what you are doing in
real time. Focus on relaxing the parent, because the infant senses
parental stress and this can increase the change of a fussy infant.
We have noticed that food and quietly blowing bubbles really
relaxes most infants. In case of very grabby infants, it is also a
possibility to put a cap on top of the EEG net, but be careful with
overheating the infant in case of warm room temperatures. Before
you start the setup and experiment, let the infant explore the
experimental room. You can also include the parent in preparing
the set-up, the parent knows the infant best and is able to comfort
the infant. In general, good preparation and clear communication
are fundamental aspects of improving data quality.

PREPROCESSING PARENT–INFANT EEG

Preprocessing Software
An open available pipeline that is built for the preprocessing of
dual-EEG data with infants/children (DEEP software) can been
found in the recent work of Kayhan et al. (2022). Alternatively,
researchers can build their own pipeline to preprocess the parent-
infant EEG data. A good preprocessing pipeline for parent–infant
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EEG must meet two important conditions. First, it has to be
compatible with a hyper-EEG dataset (i.e., parent and infant
EEG in one file). Software that provides this opportunity are
DEEP (Kayhan et al., 2022), Brain Vision Analyzer 2.0 (although
not perfect1 ) and HyPyP (Hyperscanning Python Pipeline;
Ayrolles et al., 2021) that is developed for the preprocessing
and analysis for adult dual-EEG data in Python. Alternatively,
software such as MNE-Python, Fieldtrip, and EEGLAB can be
used to preprocess separated infant and adult data files and the
hyper-EEG dataset can be made after artifact removal (see for
example, the split/merge functions in HyPyP). Second, given
that the preprocessing pipeline has to be suited to analyze both
infant and adult EEG, the pipeline has to include multiple
removal and correction software/algorithms that match infant-
and adult-specific artifacts. Detailed artifact detection, reduction
(e.g., filtering) and removal software are widely available for
motion-contaminated epochs in adult EEG data (see for review
Islam et al., 2016), but the literature and software to reduce the
signal-to-noise ratio in infant EEG is limited.

Fortunately, recent papers provide some infant EEG
preprocessing software that may help to develop a preprocessing
pipeline for denoising parent–infant EEG data. The HAPPE
and HAPPE + ER preprocessing pipelines, for instance, are
great examples of MATLAB-based algorithms to clean and
process continuous and event-related infant EEG data (Harvard
Automated Processing Pipeline for Electroencephalography;
Gabard-Durnam et al., 2018; HAPPE plus Event-Related; see
preprint Monachino et al., 2021). Other recently developed
EEG preprocessing pipelines include: the MADE preprocessing
pipeline (Maryland Analysis for Developmental EEG; Debnath
et al., 2020), the EEG-PI-L preprocessing pipeline (EEG
Integrated Platform Lossless; Desjardins et al., 2021), the APICE
(Automated Pipeline for Infants Continuous EEG, see preprint
Fló et al., 2021), the ADJUST ICA algorithms (Leach et al., 2020),
and iMARA ICA algorithms (Haresign et al., 2021b). More
details about the preprocessing steps can be found in the next
paragraph.

Cleaning Data
Artifacts in general, but especially motion-related artifacts in the
parent’s and infant’s EEG signal during naturalistic interaction
are unavoidable, and need to be corrected or removed from
the data. A study has found that the amount of EEG data that
was contaminated with movement artifacts was around 95%
of the total experiment time in infants (11 months of age)
and adults during free interactions (Georgieva et al., 2020).
Information about the amount of movement artifacts in parent–
infant EEG is, however, sparse and therefore we have to be careful
to draw conclusions from it. In our experience, the parent–
infant EEG-data is usually less contaminated with movement
artifacts and the extend of artifacts and related data loss depends
largely on the design of the study and the age of the infant

1Brain Vision Analyzer can be used for preprocessing and analyzing dual-EEG
data, but some issues need to be prevented. For example, a dual-EEG dataset
contains all electrodes twice. This can give errors when interpolating your data
or running ICA based on electrode positions. By renaming your channels, e.g.,
Cz-Baby and Cz-Mother, you can prevent this issue from happening.

(see section “Age-Appropriate Designs of the Experiment”).
High-motion contaminated epochs, including facial, limb and
postural movements, have to be either removed from the data by
employing strict rejection procedures or corrected by data-driven
algorithms to separate the neural signal from motion artifacts.
Analyses that differentiate and remove motion from neural data
as measured during parent–infant EEG paradigms are therefore
crucial to perform.

In short, a general parent–infant EEG preprocessing steps
includes the following steps: (1) visually inspection of the raw
data and removal of flat electrodes, (2) re-referencing the data
(optional; see discussion on reference electrodes in Section
“Parent–Infant EEG Equipment”), (3) filtering the data (e.g., 1–
30 Hz bandpass and a 50/60 Hz notch filter), (4) interpolation
or removal of spurious electrodes, (5) manual artifact rejection
of high motion-contaminated segments according to the video
(see for example, Leong et al., 2017; Wass et al., 2018) or visual
assessment of the EEG signal by an experienced researcher, (6)
data-driven algorithms for the detection of motion based on
independent component analysis (ICA) or wavelet analysis, (7)
manual or (semi)automatic artifact rejection to further exclude
segments where the amplitude of infants’ or adults’ EEG exceeded
a certain voltage (e.g., +100 µV), (8) segmentation into 2 s
overlapping [epochs (1 s overlap) or 1 s epochs with 500 ms
overlap (Endevelt-Shapira et al., 2021)]. Down sampling can help
with reducing computational power needed to perform heavier
preprocessing steps, such as ICA. However, note that choosing
a too low down-sampling rate can affect high frequency analysis
(i.e., gamma band). Nevertheless, using a 512 Hz rate or higher
should be enough for most high frequency analyses. Also note
that when data needs to be re-referenced this needs to be done
after the reference electrodes are checked. This is even more
important when using an average reference (using the average
signal over all electrodes as a reference).

During preprocessing some important decisions need to be
taken, including the question if it is best to remove bad electrodes
completely from the data or to replace the signal by interpolation
with neighboring electrodes. Identification of noisy or ‘bad
electrodes’ that show high impedances or displacement during
recording include the following type of electrode signals: no
signal, a large deviation of the electrodes’ amplitude compared
to the other electrodes, a relatively flat signal compared to other
electrodes, high frequency noise and the lack of correlation with
any other electrode (Bigdely-Shamlo et al., 2015). To keep as
many electrodes/participants as possible it is ideal to interpolate
a few bad electrodes with the signal of surrounding channels,
but one should be aware that interpolation is the creation
of dependent data and thereby might result into false neural
connectivity estimates. As a general rule of thumb, some parent–
infant EEG researchers have used the following rule: if <5% of the
electrodes within an individual are bad in less than <5% of the
group, interpolation is an accepted technique (see for example,
Leong et al., 2017). How many epochs and electrodes you need
from every participant to include them in the sample depends
on the research question and type of paradigm. Data-selection
for further analysis should be based on a minimum number of
acceptable “hyper-epochs” (i.e., aligned epochs from participants
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1 and 2, see Ayrolles et al., 2021), and if a dyad has less hyper-
epochs than this acceptable minimum, it has to be excluded from
the analyses. We recommend to at least have 8–10 artifact-free
hyper-epochs per dyad (of 1 or 2 s of data), per condition. We
also highly recommend to always report on this minimum and to
report the average number of epochs that were retained. To keep
as many participants in the study as possible, we advise to (first)
closely evaluate the signal from electrodes that are known to be
sensitive to movement. For example, a recent infant EEG study
showed that especially electrodes C3, CP2, CP5, Cz, P7, T7, and
TP9 are high-motion contaminated electrodes in infants during
free play (Georgieva et al., 2020). Alternatively, one is advised
to remove electrodes and segments that show a spurious signal
in many participants of the study. Parent–infant studies so far,
seem to follow this strategy by including between two (Leong
et al., 2017; Wass et al., 2018) and sixteen (Santamaria et al., 2020)
electrodes for further analysis.

There are several approaches of data cleaning needed to
distinguish neural data and physiological and non-physiological
artifacts. Different cleaning techniques have their own benefits
and pitfalls. For example, visual assessment and removal of data
significantly improves data quality, but it is time consuming
and inter-observer variability might introduce subjective, biased
variation in the data. Beside visual assessment of the EEG
signal, applying an automatic algorithm to detect noisy segments
might be an option for dual-EEG processing as well, such
as MNE’s “AutoReject” with Bayesian optimization as the
threshold method (Djalovski et al., 2021; Endevelt-Shapira et al.,
2021). Autoreject is an automatic data-driven algorithm for
detection and repair of bad segments, using optimal peak-to-peak
rejection thresholds subject-wise (Jas et al., 2017). The Autoreject
algorithm removes trials containing transient jumps in isolated
electrodes, but does not work well for systematic physiological
artifacts that affects multiple electrodes. Another important
approach of data-correction is independent component analysis
(ICA). ICA has its imperfections, such that removing the ICA
components partially distorts the data and may potentially
impact the sensitivity of later analyses (Dimigen, 2020), but it
generally works great for data-correction and also provides a
major opportunity to limit the amount of data loss. In general,
ICA is useful for extremely stereotypic motion, such as eye blinks
in adults, but is more limited when processing infant EEG data
due to the less stereotypical nature of those movements (Fujioka
et al., 2011; Georgieva et al., 2020; Noreika et al., 2020). It is
recommended to add ICA as an additional preprocessing step,
specifically to correct for stereotypical movement artifacts and to
limit data loss as a consequence of strict rejection procedures. For
example, semi-automatic ICA, such as MNE’s implementation
of FastICA and CORRMAP (Viola et al., 2009), seems to work
well with oculomotor artifacts in parent–infant EEG (Endevelt-
Shapira et al., 2021). The CORRMAP algorithms are based on
the idea that stereotypical artifacts are generally similar over
large number of participants from the same sample and age
(e.g., parents or infants). CORRMAP works as follows: the code
allows to manually select an independent component (IC), eye
blinks for example, for exclusion in one participant. This chosen
component serves as a template for selecting and excluding

similar (highly correlated) components in other participants.
Most software algorithms are generally not trained on infant
EEG and therefore ICA is usually not good enough to detect and
correct most motion artifacts in infant EEG.

However, newly developed automatic ICA (iMARA; see
Haresign et al., 2021b; ADJUST; see Leach et al., 2020)
and wavelet-thresholding software combined with MARA
(HAPPE + ER; see preprint Monachino et al., 2021) for infant
EEG are promising tools for isolating and correcting artifacts.
At this stage, iMARA and ADJUST ICA algorithms are trained
on and verified for, respectively, continuous EEG and ERP of
infants that are between 10 and 12 months old and ERP of infants
between 4 and 6 months old. As a result, the algorithms may
work less well on EEG data collected at different age ranges or
under different conditions. We therefore recommend to visually
inspect and verify selected independent components, especially
in EEG data from infants with another age range than those
that are verified in the papers. Additionally, it is recommended
to visually inspect and verify randomly selected segments for
excessive noise in the EEG signal after all automatic removal and
correction steps. We believe that combining manual assessment
of data cleaning with automatic algorithms and visual inspection
of the outcome result is of the utmost importance. Comparing
different EEG cleaning techniques will be paramount in learning
what the best options are for parent–infant EEG. Altogether,
cleaning parent–infant EEG data is time consuming and multiple
visual inspections and (semi-)automatic techniques are needed to
remove and correct artifacts from EEG data. Researchers should
be aware that many data will get lost, since you need good data
from both parent and infant. Finding a balance in removing
enough movement-contaminated data from the actual neural
data and prevent overcorrection is challenging (Fujioka et al.,
2011).

ANALYZING DATA

Techniques for Interpersonal Behavioral
and Neural Coupling
Parent–infant EEG enables the rich collection of behavioral
and neural information of the two participants, making all
types of neurobehavioral coupling analyses possible. Behavioral
parameters have important purposes in the analysis. More
specifically behavioral information should lead the decision on
which EEG segments are going to be analyzed and which are
excluded. First, behavioral information may help to select low-
motion contaminated EEG data by identifying and removing
periods with high motion artifacts such as jaw and limb
movements. Second, behavioral coding provides the opportunity
for neurobehavioral coupling by labeling each EEG-epoch with
the behavioral label of interest (e.g., mutual eye contact versus
no eye-contact; joint play versus individual play; affective touch
versus no touch). Moreover, microanalytic coding (i.e., intervals
of 1 s or even per frame) and global analytic coding (i.e., minutes
or session wise) of the behavior enables the neurobehavioral
coupling of specific behavioral states, social cues, or task-
conditions of interest. Microanalytic coding usually includes
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micro-behaviors, such as eye gaze, vocalizations, while global
analytic coding usually includes broader concepts, such as
maternal sensitivity and mutual interactions.

Analytic scores are generally based on conditions such as
0 (not apparent) and 1 (apparent) or on Likert scales. See
Figure 2 to get a basic idea of possible labels during a free
interaction (“free play”) experiment. There are many behavioral
coding systems that have been developed for parent–infant
interactions that have been used in behavioral synchrony papers.
See for example, the MACY system that distinguishes between
‘positive and negative parenting’ based on a large set of maternal,
infant, and dyadic rating scales for scoring multiple qualitative
dimensions of interactive behavior (Boeve et al., 2019), the
Coding Interactive Behavior (CIB) for a rating scale of parent,
infant, and dyadic affective states and interactive styles (Feldman,
1998; Endevelt-Shapira et al., 2021), the Infant regulatory and
maternal regulatory scoring system (IRSS and MRSS) for facial
affect, direction of gaze, vocalizations, gestures, leaning, touching,
self-comforting, distancing and stress (Weinberg et al., 2008),
maternal sensitivity and attachment (Beebe and Steele, 2013),
and attention, affect, orientation, touch, and composite facial-
visual engagement (Beebe et al., 2016). Other interesting (and
more basic) parameters during parent–infant interactions can
be measured as well: infant-directed speech (Shruti et al., 2018;
Kalashnikova et al., 2020), infant vocalizations (e.g., cry, fuss,
yawn, and positive vocalizations, Feldman et al., 2010b), and
dyadic coordination of gaze (Northrup and Iverson, 2020). These
behavioral coding schemes and labels are just a few examples
of the enormous number of possibilities that facilitate all kinds
of behavioral coding available during parent–infant interaction.
Choosing the best coding-scheme can therefore be difficult. The
most important criterium for the coding scheme is that it has
to be adapted to the research questions of interest. If one,
for instance, is interested in how parental touch may induce
brain-to-brain synchrony, it is important to choose if you are
interested in the duration (Moreno et al., 2006), the number of
instances (Reece et al., 2016), or in the quality of touch (Feldman
et al., 2010b; Brzozowska et al., 2021). Additionally, it might be
interesting for this research question to include conditions such
as maternal touch during mutual gaze versus maternal touch
during infant’s averted gaze (see for example, Feldman et al.,
2010b), then gaze is also important to code. It is crucial to note
that behavioral coding can be time consuming and each extra
label means that you have to go over the video one more time,
a good trade-off between enough and not too many labels is
therefore essential.

Choosing a Metric for Interpersonal
Coupling
The level of brain-to-brain coupling from parent–infant EEG
data can be estimated through various methods and even
more corresponding metrics (Czeszumski et al., 2020). Different
techniques answer different aspects on the interpersonal
coupling. Finding the best-method to run the data is therefore
crucial for the outcomes and the interpretation of the
results (Hamilton, 2021). It is challenging to determine which

interpersonal connectivity variable provides the most valuable
information about the relationship between parent and infant
for a specific research question. Figure 3 shows a decision
tree for the (postprocessing) analysis of parent–infant EEG that
may help picking the method of choice. One can explore the
analyses options with our open available parent–infant Hyper
EEG dataset (example data can be downloaded from our OSF
page2). A description of our open available parent–infant EEG
dataset can be found in Figure 1. We used Brain Vision Analyzer
2.0 to preprocess the data and MNE and HyPyP (Ayrolles
et al., 2021) to compute and visualize PLV values of intra- and
interbrain connections.

The amount of research questions that can be analyzed
from neurobehavioral coupling during parent–infant free play
interactions are limitless. The first step (Figure 3) of choosing
the best method is by deciding whether the research question
is about concurrent (synchronous or non-directed) or sequential
(causal, time-lagged, or directed) interpersonal neurobehavioral
coupling during social interaction. Synchronous coupling is the
method of choice when the research outcome is expected to be
the same in both social partners, for example, if X (e.g., the
parent EEG) is high than Y (e.g., the infant EEG) is also high
(Wass et al., 2020). This approach includes the computation how
behavior and neural activity covary or correlate within the dyad
during a specific condition or during the whole experiment. Here,
we will give a few examples for synchronous coupling within
free play paradigms: ‘Does overall more parental touch during
the experiment leads to enhanced brain-to-brain coupling,’ ‘Does
the group with more positive parenting scores show enhanced
brain-to-brain coupling?’, ‘Does the amount of infant-directed
speech influence alpha power in infants, and, does the quantity
of vocalizations from the infant influence alpha power in mom?’
(concurrent, brain-to-behavior coupling). Sequential coupling is
the method of choice when the research question(s) include a
(causal or forward/backward) prediction on activity or behavior
within the dyad, for example, the hypothesis that X (e.g., the
parent EEG) influences the signal of the social partner Y (e.g.,
the infant EEG) over time (Wass et al., 2020). In the sequential
coupling method, the timescale and direction of the relationships
are important to include in the research question. Examples of
research questions that include sequential coupling methods are:
‘Does parental theta power positively predict infant theta power
during joint play?’, ‘Does infant gaze directed to mom leads to
changes in the mom’s EEG, and does it forward-predict changes
in the infant’s EEG?’.

Globally, concurrent and sequential relations can be computed
from different aspects of the signal (Figure 3): power/amplitude
and phase (Haresign et al., 2022). Therefore, the next step of
choosing the best method is to determine which part of the signal
is important for the research question. First, power correlations
and coherence measures are usually used for measuring the
similarity between cognitive states of two individuals that remain
stable over a larger time window (Ayrolles et al., 2021). For
instance, EEG power represents the amount of activity in a
certain frequency range and is linked to different brain functions,

2osf.io/krdn5/

Frontiers in Psychology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 833112

https://osf.io/krdn5/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-833112 April 21, 2022 Time: 14:35 # 10

Turk et al. Practical Guideline for Parent–Infant EEG

FIGURE 3 | Decision tree of brain-to-brain coupling analysis. Image showing steps of a decision tree for the interpersonal coupling analysis after preprocessing. This
flow-chart supports in finding a metric that is in line with the research question. Each dark-orange node represents a question about the research question (e.g.,
“Does your analysis aim to test causality of synchrony?”), each connection represents the answer (e.g., “yes” or “no”) or shows a choice between options (e.g., “or”),
each yellow node represents a single or various coupling metrics (e.g., Partial directed coherence) that are in line with the research question. The decision tree starts
at the orange node with the text: “Is your research question directed (sequential: time-lagged or causal) or non-directed (continuous in synchrony)”?

such as control of behavior in social situations with substantial
attentional (Orekhova et al., 2006) and emotion load (Allen
et al., 2018). In parent–infant EEG research, fluctuations in
theta power are linked to changes in shared attention during
solo and joint play of parent and infant (Wass et al., 2018),
enhancement of alpha and theta power in both parent and
infant are linked to changes in directed gaze (Leong et al.,
2017) and fluctuations in alpha band (e.g., fluctuations in alpha
asymmetry) are linked to changes in emotional states of mother
and child (Atzaba-Poria et al., 2017; Krzeczkowski et al., 2020;
Perone et al., 2020; Santamaria et al., 2020). Second, phase
synchronization of neural oscillations (i.e., the interpersonal
synchronization of oscillatory signatures) is the most common
alternative for power correlations in the analysis of dual-EEG.
Phase-locking measures have a finer-grained account of timing
and have been used to measure fluctuations of ongoing cognitive
processing on a smaller timescale (Ayrolles et al., 2021). Parent–
infant EEG studies so far showed that brain waves (phases)
of mother and infant are synchronized to each other and
that this synchronization is modulated by emotional valence
(Santamaria et al., 2020) and maternal chemosignals (body
odor) (Endevelt-Shapira et al., 2021). Moreover, enhanced phase-
locked brain-to-brain synchrony predicts higher infant social
learning likelihood (preprint, Leong et al., 2019). A review
of existing parent–infant EEG studies so far is beyond the
scope of this guideline paper, please see the reviews of parent-
child EEG for an extensive overview of the conditions, findings
and possibilities of parent–infant EEG for developmental

research (Markova et al., 2019; Wass et al., 2020; Turk et al.,
2022).

The next step of the analysis is to decide which connectivity
or coupling method is the best for your data (Figure 3). There
are many methods to compute brain-to-brain and interpersonal
brain-to-behavior coupling and there is no golden standard
yet (Turk et al., 2022). Common analysis techniques in the
dual-EEG field to compute concurrent (non-directed) brain-
to-brain or brain-to-behavior coupling are: correlations (Corr)
of power/amplitude and coherence-based (Coh) measures of
power/amplitude in a specific frequency range (Atzaba-Poria
et al., 2017; Zamm et al., 2018; Krzeczkowski et al., 2020).
Non-directed phase synchrony can be measured through phase-
locking value (PLV) (Santamaria et al., 2020), (weighted)
phase-locking index (PLI or wPLI) (Sanger et al., 2012;
Endevelt-Shapira et al., 2021), circular correlation coefficients
(CCorr) (Burgess, 2013), and subsequently by graph analysis
to explore functional network within and between dyads
(Sanger et al., 2012; Santamaria et al., 2020). Sequential brain-
to-brain coupling can be computed using Granger causal
relations or relations with a specific lag. Common measures
including time-lagged cross correlations (Wass et al., 2020),
and partial directed coherence (PDC) (Leong et al., 2017;
Santamaria et al., 2020) are methods to estimate if certain
brain activity of one brain forward (or backward) predicts
the neural activity response of the social partner. PDC is a
directed connectivity measure reflecting a frequency-domain
representation on the concept of Granger causality (GC)
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(Baccalá and Sameshima, 2001). Specifically, PDC is calculated
from the multivariate autoregressive (MVAR) coefficients which
are generally obtained from fitting autoregressive models to
the ‘raw’ power/amplitude data in a specific frequency domain
(Baccalá and Sameshima, 2001). PDC or GC can be used to
test a hypothesis at a large time-scale (e.g., whole conditions):
the hypothesis that X (e.g., the parent EEG) is Granger causal
of Y (e.g., the infant EEG), by showing that a combination of
X and Y better predicts Y than X would predict Y alone. At
the fine timescale, time-lagged cross correlations are a better
alternative to estimate if X (e.g., certain micro behavior or
neural correlate of parent) predicts Y (e.g., behavioral or neural
response of infant), because GC excludes information on micro
behavioral or neural fluctuations over time (Novembre and
Iannetti, 2021). It is important to note, however, that time-
lagged cross correlations are not measuring causality and if causal
relations are hypothesized then PDC should be used to estimate
the directed relationships between participants.

Furthermore, all connectivity and coupling metrics are in
some extend vulnerable for detecting false-positive connections,
but some show to be more robust and may therefore be
the metric of choice for outside laboratory conditions. Studies
from the past few years used dual-EEG to test brain-to-brain
synchrony “in the wild,” outside the laboratory, during a variety
of naturalistic interactions; in daily conversations, classroom
settings (Dikker et al., 2017), museums and festivals (Dikker et al.,
2021), or sports (Stone et al., 2019). Several authors have argued
that for research using ecologically-valid paradigms in non-
controlled settings, the classical methods such as phase-locking
value, correlation and coherence are not the methods of choice
(Burgess, 2013). One of the methodological issues that have been
discussed regarding the use of dual-EEG metrics is that they
may ‘detect’ changes in synchrony in response to shared sensory
stimuli – a risk that is greater in noisy, uncontrolled settings
outside the lab (Burgess, 2013; Wass et al., 2020; Hamilton,
2021; Hoehl et al., 2021). Specifically, Burgess (2013) showed
that false-positive phase synchrony-based hyper-connections
arose between pseudo-pairs from different people independently
measured, but under the same experimental conditions. There are
several measures that avoid (in a larger scale) false-positive hyper-
connections. For example, in an extensive qualitative analysis, the
author show that CCorr is less (as compared to PLV for example)
susceptible of picking up spurious hyper-connections (Burgess,
2013). CCorr is the alternative correlation metric for circular
data and measures the circular covariance of differences between
the observed phase and the expected phase (i.e., the phase
variance) (Burgess, 2013). Along with this, in a recent infant-
adult dual-EEG study using face-to-face free interactions, to
avoid spurious hyper-connections that could be result of similar
sensory experiences of the participants, the authors decided to use
wPLI (weighted extension of PLI) as their measure for inter-brain
phase synchrony (Endevelt-Shapira et al., 2021). By weighing
each phase difference according to the magnitude of the lag,
phase differences around zero only marginally contribute to the
calculation of the wPLI. This procedure reduces the probability
of detecting false-positive hyper-connectivity in the case of noise
sources (shared environmental inputs at the perceptual level)
with near-zero phase-lag and increases the sensitivity in detecting

phase synchronization. Finally, imaginary coherence (ICoh, i.e.,
the absolute value of the imaginary part of coherence) seems
to be a more robust alternative for coherence-based measures
of intra-brain connectivity (Nolte et al., 2004) and brain-to-
brain synchrony in relatively noisy settings (Dikker et al., 2021).
Specifically, ICoh is calculated by computing the spectral density
(power) of each participant and the cross spectral density between
them, to describe the average phase difference and consistency
of the phase difference (Dikker et al., 2021). The end result of
the computation is a complex number to describe the coherence,
including a real part representing how much of the coherence is
driven by instantaneous interactions and an imaginary part that
shows how much of the coherence is based on lagged interactions
(Nolte et al., 2004; Dikker et al., 2021). Choosing a more robust
metric, such as CCorr or ICoh, might result in less false positive
estimations of interpersonal synchrony when studying dual-EEG
outside the lab.

The next challenge of the analysis lies in choosing the
frequency band-width for the computation of interpersonal
brain-to-brain coupling in the power band of interest. It
is important to note that different frequency ranges have
different functional roles in the brain and that frequency
peaks differ between infant and adult (Noreika et al., 2020).
Specifically, frequency peaks are increasing over age due to
neurodevelopmental changes (Orekhova et al., 1999; Marshall
et al., 2002), and therefore, EEG power spectrums of parent
and infant show large differences (Noreika et al., 2020). For
instance, alpha power has a peak frequency from 6 to 9 Hz
in infants (from 5 months to 4 years of age, Marshall et al.,
2002), while adult alpha peaks between 9 and 12 Hz (Hill
et al., 2020). A problem related to the different frequency band
activity of parent and infant is the fact that the slower nature of
infant neural responses might cause a delay in the establishment
of interpersonal neural relations between adult-infant dyads as
compared to adult-adult dyads. Slow infant EEG activity might
affect the timescale in sequential analysis, which makes it essential
to optimize the temporal resolution (i.e., the lag) of the analysis.
A smart technique for temporal and frequential optimization
in parent and infant has been shown in the parent–infant EEG
paper of Wass et al. (2018), who showed that optimization can
be reached by selecting the peak cross-correlation value from all
computed cross-correlations for different time-lags and power of
a whole frequency range. Many interpersonal measures estimate
interpersonal coupling within identical frequency bands, which
can be problematic when comparing the EEG time series of adults
and infants, because it forces you to decide which peak frequency
is guiding. Parent–infant EEG studies have focused mainly on the
infant’s frequency band (e.g., Leong et al., 2017; Santamaria et al.,
2020), while it would be interesting to look at both spectra using
a cross-frequency method (Haresign et al., 2022).

Cross-frequency coupling overcomes the problem of
measuring synchronization across different dominant
frequencies, which makes them valuable metrics for parent–
infant EEG (Noreika et al., 2020). Cross-frequency coupling
is possible through (1) phase-phase, measuring the quantity
of phase-locking across frequencies of parent and infant, (2)
phase-amplitude, measuring if amplitudes in specific frequencies
in the infant are coupled to the phase of an oscillation in the
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parent, and (3) amplitude-amplitude coupling, measuring the
correlation of frequency power in their age-specific frequency
band (Canolty and Knight, 2010; Palva and Palva, 2018). The
first option, cross-frequency phase-phase coupling (i.e., cross-
frequency phase-locking), provides a method for linking activity
that occurs at significantly different frequency rates (Canolty
and Knight, 2010), and might therefore be a more appropriate
method to measure phase-locking between adult and infant
EEG (Haresign et al., 2022). The DEEP pipeline includes scripts
to compute cross-frequency PLV between adult and infants
(Kayhan et al., 2022). A dual-EEG dataset and a full pipeline
to measure a wide variety of event-locked EEG changes in
child-adult neural connectivity can be found on Github (see
preprint, Haresign et al., 2021a). The second option, cross-
frequency phase-amplitude coupling, provides the opportunity to
examine research questions that address the different operating
frequencies in the adult and infant brain, and thereby reveal
possible differences in functions. For example, by examining the
possible modulating role of parental low-frequency oscillations
on the infant’s amplitudes of higher frequencies during joint play.
Although not implemented in parent–infant research, a recently
proposed method of time-frequency based cross-frequency
phase-amplitude coupling (the time-frequency phase-amplitude
coupling software, t-f PAC) of Munia and Aviyente (2019) seems
promising for the implementation in dual-EEG with parent–
infant dyads. Specifically, the t-f PAC method is built to measure
coupling strength between different frequencies by estimating
phase and envelope of low and high frequency oscillations and
is more robust to address varying signal parameters (Munia and
Aviyente, 2019). The third option, cross-frequency amplitude-
amplitude coupling, provides a method to correlate amplitude
envelopes of distinct (e.g., slow and fast) frequency bands without
taking the phase into account (Palva and Palva, 2018). To date,
cross-frequency coupling is largely unexplored in parent–infant
EEG. We believe that the implementation of this method will
provide many exciting opportunities and might reveal new
interbrain discoveries in future studies.

Statistics and Robustness of Results
Differences between conditions within-dyads (e.g., during joint
gaze versus averted gaze) or groups (e.g., brain-to-brain
synchrony of dyads with anxious or non-anxious parents)
can be analyzed with a t-test or ANOVA. If assumptions
of independency of the data are not met (i.e., non-normally
distributed data) than generalized linear mixed models (GLMM)
are a better alternative to perform the analysis (Nguyen et al.,
2021a). GLMM is comparable with an ANOVA, but estimates
fixed and random effects, in which the linear predictor contains
random effects in addition to the usual fixed effects. GLMM is
especially suited for the analysis of dual-EEG and multimodal
data, because it allows for the integration of different types of
behavior and interacting brains in one analysis-model (see for
review, Hamilton, 2021). GLMM has been adopted by parent-
child fNIRS studies (not by parent–infant EEG studies so far).
For instance, Nguyen et al. (2021b) used GLMM to show that
turn-taking between child and parent was predictive for neural
synchronization during the conversation over time.

Due to the possibility of detecting spurious connections, it is
strongly recommended to include covariates, control conditions
and sensitivity analyses to validate the robustness of the results
(Burgess, 2013; Hamilton, 2021; Hoehl et al., 2021). Small
variations in sample conditions, experimental conditions and
analysis methods can influence the outcome and have to be
taken into account as covariates. For example, variations in
infant age and the accompanied developmental shifts in spectral
activity (Anderson and Perone, 2018) or low and high arousal
states of the infants (Noreika et al., 2020) could influence the
connectivity strength. Additionally, environmental conditions,
such as smartphones, air-conditioning and the presence of
another person in the experimental room diminishes oscillatory
behavior (Rolison et al., 2020). It is therefore important to
exclude EEG of the dyads with altered environmental or
experimental conditions from the sample. Sensitivity analyses
can be built into the research design using control groups, for
instance by comparing mom and infant brain-to-brain coupling
versus adult stranger and infant brain-to-brain coupling, if
one is interested in caregiver-specific interactions or synchrony
(Endevelt-Shapira et al., 2021). A more common method is
non-parametric permutation testing by creating random pseudo-
dyads or pseudo-conditions from the sample to compare real
pairs/conditions versus a distributions of pseudo pairs/conditions
(Burgess, 2013; Ayrolles et al., 2021). Specifically, a permutation
test is a type of statistical significance test in which a distribution
of connectivity measures is obtained by calculating all possible
values between conditions or groups by randomizing time (EEG
epochs) or by randomizing pairing of participants (pseudo-
dyads).

When running multiple tests for hypothesis-driven analyses,
it is recommended to implement false discovery rate (FDR)
correction to control for multiple comparisons when comparing
the averages of a group or a condition (i.e., in which the
frequency, the specific electrodes and the timing or lag has
been selected). In contrast, FDR is usually not suitable for
exploratory analysis, in which researchers conduct many different
tests to explore different frequencies, spatial and/or timing points.
Relatively stringent multiple correction procedures such as FDR
are based on the number of tests and may fail to detect true effects
in exploratory analysis. Non-parametric permutation testing is
often considered the best correction method for exploratory
analysis since it uses a distribution derived from permuting the
observed scores, rather than assuming that the population has
a specific distribution, for instance, a normal distribution. FDR
and permutation tests, which are built in the pipelines of MNE-
python and HyPyP, allow for the calculation of intra and inter
connectivity measures by randomizing conditions (in time) or
pairing of participants (pseudo dyads or pseudo groups) (Ayrolles
et al., 2021).

DATA INTERPRETATION

Interpretation of the Outcome
The final stage of this guideline assists with the interpretation
of the findings. In some situations, brain-to-brain coupling is
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mostly driven by shared cognitive and affective processes, as
opposed to more natural and interactional situations where
simultaneous motoric behavior (synchrony in motoric behavior)
and shared environmental input have a bigger influence
on brain-to-brain coupling (for a discussion on the neural
pinnings of brain-to-brain synchrony see reviews: Markova
et al., 2019; Wass et al., 2020; Hamilton, 2021; Turk et al.,
2022). The interpretation of brain-to-brain coupling outcome
includes more than simply describing enhanced or reduced
brain-to-brain synchronization in certain groups or conditions.
It is important to understand that alternative interpretations
of enhanced/reduced brain-to-brain synchrony need to be
considered as other factors such as behavioral synchrony
and shared environmental stimuli could drive synchrony as
well.

Parent–infant interaction is characterized by coordination of
behavior and brain-to-brain synchronization (Markova et al.,
2019), making motoric synchronization an important factor to
implement in the research and interpretation, even in low-
movement interactional conditions when subjects are sitting
still. For example, eye movement and other micro-interactions
are closely linked to social interaction and thus to neural
data of interest (Leong et al., 2017; Wass et al., 2018). This
suggests that synchronization in motor behavior and facial
affect (e.g., raising brows simultaneously) may drive brain-to-
brain synchrony as well. A significant amount of the movement
artifacts will be reduced after proper data cleaning and sensitivity
analyses. However, there always remains a risk that motion-
contaminated data may drive EEG power, phase estimations and
intra- and interpersonal correlations (Burgess, 2013; Noreika
et al., 2020; Hamilton, 2021). An approach to reduce the signal-
to-noise ratio is by analyzing only specific frequency bands that
are less sensitive for motion. High-frequency activity, such as
gamma-band activity, shares many spatial, temporal and spectral
properties with muscle artifacts in adults (Muthukumaraswamy,
2013) and is therefore more at risk for being contaminated with
motor synchrony. Unfortunately, information about spectral
signatures of infant movements is largely undocumented. Most
reliable frequency bands in infant EEG are baby-alpha (6–
9 Hz) and theta (3–6 Hz) (van der Velde et al., 2019; Haartsen
et al., 2020). Moreover, a small cohort study (N = 12) showed
that infant jaw and arm movements are related to increased
beta power (∼15 Hz), but also baby-alpha and theta power
are decreased for all (jaw, hand, arm, foot, and leg) motion
types (Georgieva et al., 2020). Selecting only motion free
epochs in baby-alpha and theta band could therefore result
in enhanced power spectra of both partners and thus in
enhanced brain-to-brain synchrony. An approach would be to
embrace motoric synchronization of parent–infant interaction
and adopt this measure of synchronization into the statistical
model, for example to show that motoric synchronization
drives brain-to-brain coupling as well as the internal cognitive
processes (Kruppa et al., 2020; Wass et al., 2020; Hamilton,
2021). For pure measures of brain-to-brain synchronization
it is important to minimize alternative interpretations, for
example by filter out as many movement artifacts as possible
from the EEG data.

The second interpretation challenge is the problem of shared
environmental input that could drive the amount of brain-to-
brain synchrony (Burgess, 2013). This interpretation challenge of
dual-EEG (and hyperscanning in general) is extensively discussed
in a recent review of Hamilton (2021). There is not a single
solution to encounter this problem, but integrating multimodal
data into the theoretical framework of parent–infant EEG
analysis (e.g., by implementing mathematical models to predict
brain, behavioral and physical correlates in both individuals using
general linear modeling or the mutual prediction theory) seems
to have the highest potential (Hamilton, 2021). In all, we believe
that naturalistic experimental conditions, sophisticated statistical
models and validation, significantly reduces the problem of
shared environmental input and motoric synchrony as potential
drivers of brain-to-brain synchronization, but do not complete
rule them out. Behavioral and neural connectedness, as well as the
shared environment are all part of parent–infant synchrony and
therefore being honest about the strength and flaws of the dataset,
design and analyses is absolutely necessary for the interpretation
of the research.

CONCLUDING REMARKS

The rapidly evolving field of parent–infant EEG is exciting
and brings many opportunities to study novel interpersonal
neurobehavioral correlates. To accommodate the growing
demand for open parent–infant EEG databases and transparent
methodological pipelines, this article aimed to support scientific
progress by making our methods and approach openly available
and showcase a guideline on how to implement, run, and analyze
parent–infant EEG paradigms during natural interactions.
Moreover, we reviewed and have provided practical tips and
tricks that tackle the challenges that one may encounter
during preparation of the experimental setup, data-collection,
preprocessing of dual-EEG, analyzing brain-to-behavior and
brain-to-brain coupling and interpretation of the outcome.
The parent–infant EEG guideline provided here will facilitate
standardized dual-EEG analyses. We hope to support the
scientific progress of parent–infant EEG to replicate former
results, and help in the discovery of new interpersonal neural
correlates of the developing social brain.
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