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The vigorous development of online education has produced massive amounts of
education data. How to mine and analyze education big data has become an urgent
problem in the field of education and big data knowledge engineering. As for the
dynamic learning data, knowledge tracing aims to track learners’ knowledge status over
time by analyzing the learners’ exercise data, so as to predict their performance in the
next time step. Deep learning knowledge tracking performs well, but they mainly model
the knowledge components while ignoring the personalized information of questions
and learners, and provide limited interpretability in the interaction between learners’
knowledge status and questions. A context-aware attentive knowledge query network
(CAKQN) model is proposed in this paper, which combines flexible neural network
models with interpretable model components inspired by psychometric theory. We use
the Rasch model to regularize the embedding of questions and learners’ interaction
tuples, and obtain personalized representations from them. In addition, the long-term
short-term memory network and monotonic attention mechanism are used to mine the
contextual information of learner interaction sequences and question sequences. It can
not only retain the ability to model sequences, but also use the monotonic attention
mechanism with exponential decay term to extract the hidden forgetting behavior and
other characteristics of learners in the learning process. Finally, the vector dot product is
used to simulate the interaction between the learners’ knowledge state and questions
to improve the interpretability. A series of experimental results on 4 real-world online
learning datasets show that CAKQN has the best performance, and its AUC value
is improved by an average of 2.945% compared with the existing optimal model.
Furthermore, the CAKQN proposed in this paper can not only track learners’ knowledge
status like other models but also model learners’ forgetting behavior. In the future,
our research will have high application value in the realization of personalized learning
strategies, teaching interventions, and resource recommendations for intelligent online
education platforms.
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INTRODUCTION

With the rapid development of Internet technology and artificial
intelligence technology in the field of education, online learning
platforms such as massive open online courses (MOOCs)
have become increasingly popular. Learners’ activities on
online learning platforms have generated massive amounts of
educational data. How to mine and analyze large amounts of
educational data has become an urgent problem in the field of
education and big data knowledge engineering (Hu et al., 2020).
Since learners’ behavior, knowledge state, and psychological
factors in the learning process are the key factors for evaluating
their learning effectiveness (Yang and Li, 2018), and these factors
are constantly changing over time, it is of great significance to
construct a learner model oriented to dynamic learning data.

Different from the cognitive diagnosis model (CDM) for
static learning data, knowledge tracing (KT) aims to dynamically
track learners’ knowledge status over time by analyzing
the learners’ historical exercise data, so as to predict their
performance in the next time step. The learner’s historical
exercise data is a sequence composed of the questions, the
knowledge components (KCs) contained in the questions, and
the learner’s answers (Liu et al., 2021). The three core elements
of questions, KCs and learners constitute the three basic
objects of the KT data processing, the interaction between
them is shown in Figure 1. KT is the quantitative analysis
and modeling of the relationship between three types of
objects. For example, the prediction of students’ knowledge
mastery state is to calculate the mastery probability between
“students and knowledge” by using the interaction between
“students and problems” and the correlation information
between “problems and knowledge.” The interaction between
different objects is the main information used in the KT
modeling process (Sun et al., 2021). Therefore, the KT model
not only needs to accurately assess the learner’s knowledge
state and predict their answer in the future but also needs to
provide explanations for the interaction between different objects
(Hu et al., 2020).

Traditional KT methods mainly include Bayesian knowledge
tracking (BKT) (Corbett and Anderson, 1994) based on hidden
Markov model (HMM) (Rabiner and Juang, 1986) and item
response theory (IRT) (Fan, 1998). In recent years, researchers
have tended to use more complex and flexible models like
deep networks to make full use of hidden information in large-
scale learner response datasets. The deep knowledge tracing
(DKT) (Piech et al., 2015) model introduced recurrent neural
network (RNN) into the KT field for the first time and
achieved success. Compared with the traditional KT model,
the predictive ability based on the deep learning method has
been significantly improved. However, most of the current KT
methods based on deep learning mostly use KCs to index
questions, ignoring the rich information contained in the
questions and the context. For example, investigating different
questions of the same KC may cause individual differences
between questions due to different difficulty settings. In addition,
the personalized interaction between learners’ knowledge status
and questions representation is often overlooked, which leads

FIGURE 1 | The relationship between learners, questions, and KC.

to poor interpretability of the KT method based on deep
learning. In response to the above problems, we propose a
context-aware attentive knowledge query network (CAKQN)
model based on the embedded Rasch model, which is the
single parameter IRT model. First, input the learner interaction
tuple and questions into the embedded component based
on the Rasch model to obtain personalized representations
of the learner interaction tuple and questions, and capture
the characteristics of individual differences between different
questions containing the same KC and the learners’ personal
abilities. Next, based on the definition of memory trace decline
in educational psychology theory (Bailey, 1989) that human
memory fades automatically over time, a network structure
of long short-term memory network + monotonic attention
mechanism is designed to learn personalized learner knowledge
state and context-aware representation of the questions. The
learning process of learners is continuous, so the sequence
structure of learning records cannot be destroyed in the KT
modeling process. The structure we designed uses a monotonic
attention mechanism with an exponential decay term to
reduce the importance of learner interaction tuples in the
distant past without destroying the sequence structure of the
learners’ historical learning records, and it can extract features
such as forgetting behavior that exist in the learning process
of learners. Finally, based on the fact that learners answer
questions based on their knowledge status and personal abilities,
the vector dot product is used to simulate the personalized
interaction between learners’ knowledge status and questions
to improve the interpretability of the model. We used four
publicly available real online education datasets to evaluate the
model. Experiments show that the CAKQN model has the best
performance, and its AUC value is 2.945% higher than the
existing optimal model on average. In addition, our paper also
conducted a series of ablation analysis and knowledge tracking
visualization experiments to verify the excellent interpretability
and personalization capabilities of the CAKQN model. In
the future, our research will have high application value in
the realization of personalized learning strategies, teaching
interventions, and resource recommendations for intelligent
online education platforms.
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RELATED WORK

Traditional Knowledge Tracking Methods
Traditional knowledge tracking methods are mainly divided into
two categories: IRT and BKT, and IRT is one of the important
psychological and educational theories (Cheng et al., 2019). The
single-parameter IRT model (i.e., Rasch model) outputs the
probability of learners answering the items correctly during the
test according to the learner’s ability level and the difficulty
level of the items (i.e., questions). The probability is defined by
the item response function with the following characteristics:
if the learner’s ability level is higher, the learner has a higher
probability of answering an item correctly. Conversely, if an item
is more difficult, the probability of the learner answering the
item correctly is lower. The item response function is defined as
follows:

P (a) = σ
(
θ − βj

)
=

1
1+ e−D(θ−βj)

(1)

The more complex two-parameter item response function
introduces item discrimination αj, which is defined as follows:

P (a) = σ
(
θ − βj

)
=

1
1+ e−Dαj(θ−βj)

(2)

Where σ is the sigmoid function, D is a constant, usually set
to 1.7, θ is learner’s ability level, βj is the difficulty level of item
j. Since the IRT model was originally designed for educational
testing environments, the model assumes that learners’ abilities
remain unchanged during the testing process. In reality, the
knowledge state of learners changes with time step, so it cannot
be directly applied to KT tasks.

The BKT model updates the learner’s knowledge state through
HMM modeling, and predicts the learner’s performance at
the next time step accordingly. However, many simplified
assumptions used in the BKT model are impractical. One of them
is that all learners and questions containing the same KC are
considered the same. Therefore, the researchers studied various
personalizations of the BKT model. Some researchers endow the
BKT model with personalized capabilities on specific parameters
of KC (Pardos and Heffernan, 2011) and specific parameters of
learners (Yudelson et al., 2013). Some other researchers have
also studied the synthesis of the BKT model and the IRT
model (Khajah et al., 2014; Wilson et al., 2016) to enhance the
model’s personalization ability when dealing with questions and
learners. However, such expansion usually requires a lot of feature
engineering work and will result in a significant increase in
computing requirements.

Deep Learning Knowledge Tracking
In recent years, deep learning has attracted attention from
researchers with its powerful feature extraction capabilities.
Many researchers have applied it to the KT field, which is
called DLKT (deep learning knowledge tracing) (Liu et al.,
2021). Compared with BKT and IRT, DLKT does not require
manually annotated KC information and can capture more
complex learner knowledge representations from large-scale
learner response datasets. DKT and dynamic key-value memory

network (DKVMN) (Zhang et al., 2017) have shown strong
predictive ability in predicting learners’ future performance, and
have become the benchmark for subsequent DLKT methods.
DKT takes the learner’s historical learning interaction sequence
as input, then uses RNN to encode it into the learner’s knowledge
state, and finally inputs it into a linear layer activated by
a Sigmoid function to get the prediction result. DKT, which
simply represents the learner’s knowledge state as a vector, while
DKVMN uses a static external matrix to store KC and uses a
dynamic matrix to update the learner’s mastery of KC. However,
the simple splicing between the two vectors representing the
learner’s knowledge state and KC in the DKVMN model is
not enough to explain the process of interaction between the
learner’s knowledge state and the KC contained in the question
(Daniluk et al., 2017). The knowledge query network (KQN)
(Lee and Yeung, 2019) model uses the vector dot product to
more accurately simulate the interaction between the learner’s
knowledge state and KC, and achieves better results. Self-attentive
knowledge tracing (SAKT) (Pandey and Karypis, 2019) model is
the first to use the Transformer structure in the KT field to replace
RNN to automatically focus on the record of questions in the
learner’s historical interaction sequence that has a greater impact
on the prediction results and achieves model performance. The
substantial increase. However, the above models use KCs to
index questions, that is, all different questions containing the
same KC are regarded as equivalent. This way ignores the rich
information contained in the question itself and the context.
Context-aware attention knowledge tracing (AKT) (Ghosh et al.,
2020). The framework based on the SAKT model uses the Rasch
model to regularize concept and question embeddings. These
embeddings can capture questions that contain the same KC,
without using too many parameters. In addition, AKT also
uses a new monotonic attention mechanism to link learners’
future responses to questions with their historical interaction
sequences to extract features such as hidden forgetting behavior
in the learning process of learners. However, the AKT model
also uses unreasonable vector simple splicing to simulate learner
knowledge status and question interaction, and it loses the ability
to model sequence due to the Transformer structure like SAKT.

Considering the advantages and disadvantages of KQN model
and AKT model, this paper proposes a context-aware knowledge
query network (CAKQN) based on Rasch model embedding.
It not only retains the ability of model sequence but also
obtains personalized contextual representations of questions and
learners. We improve the model’s performance in predicting
future learner responses. Moreover, the interpretability of the
model in terms of learner knowledge status and questions
interaction is enhanced.

OUR PROPOSED METHOD

This section first introduces the problem setup of knowledge
tracing and the symbolic representation of related concepts, then
introduces the difference between ordinary attention mechanism
and monotonic attention mechanism with exponential decay,
and then describes the overall context-aware knowledge query
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network model based on Rasch model embedding framework,
and finally introduce each component of the model and its loss
function in turn.

Knowledge Tracing Problem Setup
Assuming that there are M questions and N KCs in the original
dataset, each learner’s interaction record is composed of the
learner’s long questions and responses at each time step. For the
learner i at time step t, a learner interaction tuple xt = (qi

t, ci
t, ri

t)
is composed of: the question qi

t he or she answered, the KC
ci

t covered by the question, and the learner’s response ri
t to the

question. Where qi
t is the question index, qi

t ∈ {1, · · · ,M}, ci
t is

the KC index, ci
t ∈ {1, · · · ,N}, and ri

t is the response, ri
t = {0, 1}.

Under this notation, (qt, ct, 1) means learner i responded to
question qt on concept ct correctly at time step t. This setting
is different from some previous deep knowledge tracking work,
which often ignores the question index and set the learner’s
interaction tuple as (ci

t, ri
t). For convenience, the superscript i

is omitted in the following discussion. Therefore, given learner’s
historical learning interaction sequence Xt = {x1, x2, · · · , xt} at
time step t and question qt+1 on concept ct+1 at time step t + 1,
the goal of the KT model is to find the probability P(rt+1 =

1|Xt, qt+1, ct+1).

Monotonic Attention Mechanism With
Exponential Decay
Under the ordinary dot product attention mechanism, the input
is mapped to three vectors: Query, Key, and Value by embedding
layer, and values of dimension Dq = Dk, Dk and Dv. Let qt ∈

RDk×1 donate the Query corresponding at time step t, the
calculation formula of the scaled dot product attention value αt,τ
normalized by the softmax function is:

αt,τ = Softmax(
qT

t kτ
√

Dk
) =

exp( qT
t kτ
√

Dk
)∑

τ′ exp( qT
t kτ
√

Dk
)
∈ [0, 1] (3)

Where kτ ∈ RDk×1 donate Key at time step τ .
However, this ordinary zoom dot product attention

mechanism is not enough for KT tasks. The reason is that
learners have forgetting behaviors in the learning process, and
learners will have memory decline in the real world (Pashler et al.,
2009). In other words, when the model predicts the learner’s
reaction to the next question, his performance in the distant
past is not as important as his recent performance. Therefore,
Ghosh et al. (2020) add a multiplicative exponential decay term
to the attention scores. So the calculation of the new monotonic
attention mechanism is as follows:

α′t,τ =
exp(st,τ)∑
τ′ exp(st,τ′)

(4)

st,τ =
exp(−θ · d(t, τ)) · qT

t kτ
√

Dk
(5)

Where θ > 0 is a learnable decay rate parameter, and d(t, τ)
is temporal distance measure between time steps t and τ. In

other words, the attention weight of the current question to the
past question not only depends on the similarity between the
corresponding sums, but also depends on the relative time steps
between them. The calculation method of d(t, τ) is as follows:

d(t, τ) = |t − τ| ·

t∑
t′=τ+1

γ(t, t′) (6)

γ(t, t′) =
exp( qT

t kt′√
Dk
)∑

1≤τ′≤t exp( qT
t kτ′√

Dk
)

(7)

The calculation formula of the final output of the monotonic
attention mechanism is as follows:

Monotonic_Attention(Query,Key,Value) =
t∑

τ=1

α′t,τvτ (8)

Where vτ ∈ RDk×1 donate Key at time step τ .

Model Framework
This paper proposes a context-aware knowledge query network
based on Rasch model embedding. Figure 2 shows the overall
framework of the model. It contains 4 components: Embedded
Layer Based on Rasch Model, Knowledge State Encoder, Question
Encoder, and Knowledge Status Query.

(1) Embedded Layer Based on Rasch Model: Get the
personalized embedding of the learner interaction tuple at the
current time step and the next-time step question, and capture
the characteristics of individual differences between different
questions on the same KC and the learners’ personal abilities.

(2) Knowledge State Encoder: First, use the location
information provided by the long short-term memory network to
model the context of the learner’s historical interaction sequence,
and retain the ability of the model to model the sequence. Then,
the monotonic attention mechanism with exponential decay term
is used to reduce the importance of learner interaction tuples
in the distant past, extract the forgetting behavior and other
characteristics of learners in the learning process, and obtain the
contextual perception vector of the learner’s knowledge state at
the current time step.

(3) Question Encoder: It is exactly the same as the network
structure adopted by the knowledge state encoder to obtain the
context awareness vector of the question at the current time step.

(4) Knowledge Status Query: The dot product operation is
performed on the vector representing the learner’s knowledge
state and the question at the current time step to simulate
the interaction between the learner’s knowledge state and the
question, and the result of the dot product is input into the
sigmoid function to obtain the final prediction of the probability
that the learner will answer correctly at the next time step.

Embedding Layer Based on Rasch Model
Existing KT methods mostly use KC to index questions, that is,
set qt = ct , because the number of questions in the real world
is far greater than the number of KC, so using KC to index
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FIGURE 2 | The overall framework of the CAKQN model.

questions can effectively avoid over-parameterization and over-
fitting. However, this setting ignores the individual differences
between question covering the same KC, and limits the flexibility
of the KT method and its ability to be personalized.

This article uses the classic Rasch model in psychometric
theory to construct learner interaction tuples and question
embedding. There are two important parameters in the Rasch
model: the difficulty of the question and the ability of the learners.
Therefore, at time step t, the final embedded representation of the
learner’s interaction tuple is expanded to:

xt = f(ct,rt) + µt · g(qt,rt) (9)

Where f(ct,rt) ∈ RD, g(qt,rt) ∈ RD, they respectively, represent
the embedding vector of the KC response tuple and the
embedding vector of the question response tuple. And µt is a
learnable scalar, which represents the learner’s ability parameter.
At the next time step, the final embedded representation of the
question is expanded to:

et+1 = ct+1 + µt+1 · qt+1 (10)

Where ct+1 ∈ RD is the embedding vector of KC contained
in this question, qt+1 ∈ RD is the embedding vector of the
question. And µt+1 is also a learnable scalar, it represents the
difficulty parameter, which controls the degree of deviation
of the question from the KC contained in it. These Rasch
model-based embeddings strike an appropriate balance between
obtaining personalized representations and avoiding excessive
parameterization.

Knowledge State Encoder
In the Knowledge State Encoder, the structure of the LSTM layer
+ monotonic attention mechanism layer is used to obtain the
context perception results of learner interaction sequences. The
way learners understand and learn when answering questions
is based on their own knowledge state, and the learner’s
knowledge state is related to the learner’s historical learning
interaction sequence. For two learners with different historical
learning interaction sequences, the way they understand the same
question and the knowledge they gain from the exercise may
be different. Therefore, we use the LSTM structure to ensure
that the original learner history learning interaction sequence is
not destroyed on the time scale, and introduce the monotonic
attention mechanism to summarize the performance of the past
learners in the correct time range, tap the hidden features of the
learning process, and then obtain their knowledge state. Given
input xt , the knowledge state encoder first inputs it to the LSTM
layer to obtain its hidden state ht . Then input ht to the monotonic
attention mechanism layer to get the weighted vector at , and
finally a through a fully connected layer and L2 normalization to
get the final output knowledge state vector KSt . The calculation
process is as follows:



it = σ
(
Wi

[
xt, ht−1, ct−1

]
+ bi

)
ft = σ(Wf [xt, ht−1, ct−1] + bf )

ot = σ(Wo[xt, ht−1, ct−1] + bo)

ct = ftct−1 + it tanh
(
Wc

[
xt, ht−1

]
+ bc

)
ht = ottanh(ct)

(11)
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Where it , ft , ot , ct are the input gate, forget gate, output gate
and unit state, respectively.

at = Monotonic_Attention(xt, xt, ht) (12)

KSt = L2_normalize(Wh,KSat + bh,KS) (13)

Where Wh,KS ∈ Rd×HLSTM , bh,KS ∈ Rd, and HLSTM is the
size of the hidden layer of the LSTM, d is the dimension of
the knowledge state vector KSt and the question vector St+1.
L2_normalizeis L2 normalization, the reason for this limitation
is to allow the knowledge state vector and the question vector
to be a dot product. In addition, in order to avoid overfitting,
regularization is used in the output layer of LSTM.

Question Encoder
In this article, the question encoder uses the same network
structure as the knowledge state encoder, and the purpose is also
to capture the context-aware results of the question at the next
time step. The specific calculation process of the input question
embedding et+1 to obtain the question vector st+1 by the question
encoder is as follows:

it = σ
(
Wi

[
et+1, gt−1, ct−1

]
+ bi

)
ft = σ(Wf [et+1, gt−1, ct−1] + bf )

ot = σ(Wo[et+1, gt−1, ct−1] + bo)

ct = ftct−1 + it tanh
(
Wc

[
et+1, gt−1

]
+ bc

)
gt+1 = ottanh(ct)

(14)

mt+1 = Monotonic_Attention(et+1, et+1, gt+1) (15)

st+1 = L2_normalize(Wh,KSmt+1 + bh,KS) (16)

Knowledge Status Query
Do the dot product operation on the dimensional knowledge
state vector KSt and the dimensional question vector St+1
obtained by the knowledge state encoder and the item encoder,
respectively, and then input the result into the sigmoid activation
function to obtain the final prediction of the probability pt+1
that the learner answers the next question correctly. Calculated
as follows:

yt+1 = KSt · St+1 (17)

pt+1 = σ(yt+1) (18)

The dot product of knowledge state vector and question vector
conforms to the process of real world middle school learners
answering questions based on their own knowledge state (Lee and
Yeung, 2019), which makes the model more explanatory.

Optimization
We use the backpropagation algorithm to train the network
model, and update the model parameters by minimizing the cross
entropy loss of the prediction probability and the labeled result.
At each time step t, calculate the cross entropy loss result of a

TABLE 1 | Statistics of dataset.

Dataset learners KCs Questions Responses

ASSISTments2009 4,151 110 16,891 325,637

ASSISTments2015 19,840 100 – 683,801

ASSISTments2017 1,709 102 3,162 942,816

Statics2011 333 1,223 – 189,297

single learner, and sum the t = 1, · · · ,T − 1 loss of all learners
to get the total loss. The specific calculation process is:

`(θmodel|ri
t+1, pi

t+1) = −[r
i
t+1logpi

t+1 + (1− ri
t+1)log(1− pi

t+1)]
(19)

L(θmodel|r2:t+1, p2:t+1) =
∑

i

T−1∑
t=1

`(θmodel|ri
t+1, pi

t+1) (20)

EXPERIMENTS

In this section, we first introduce the details of the dataset,
experimental parameter settings and evaluation indicators, and
then show the performance of this model and other models in
4 real-world online education datasets. Finally, we use ablation
experiments to further verify the effectiveness of the Rasch
model-based embedding, monotonic attention mechanism and
question context-aware representation.

Datasets
We used four publicly available real online education
datasets to evaluate the model, namely ASSISTments2009,
ASSISTments2015, ASSISTments20171, and Statics20112. The
ASSISTments datasets are collected from the ASSISTments
online tutoring platform. And the ASSISTments2009 dataset
has been the accepted standard dataset of the KT method for
the past 10 years. The Statics2011 dataset was collected from a
university-level statics engineering course. In all datasets, the
preprocessing steps in this paper follow a series of standards in
Ghosh et al. (2020). In Table 1, we list the number of learners,
KCs (i.e., concepts, knowledge points), questions, and learner
interaction tuples. In these datasets, only the ASSISTments2009
and ASSISTments2017 datasets contain question IDs. Therefore,
the model based on the Rasch model embedding is only
applicable to these two datasets.

Experimental Setup and Evaluation Index
We use the five-fold cross-validation method to start the
experiment based on PyTorch version 1.2.0. The division of
all datasets is consistent with Ghosh et al. (2020), 20% is used
as the test set, 20% is used as the validation set, and 60% is
used as the training set. And we use the grid search method

1The ASSISTments datasets are retrieved from https://sites.google.com/site/
assistmentsdata/home and https://sites.google.com/view/assistmentsdatamining/.
2The Statics2011 dataset is retrieved from https://pslcdatashop.web.cmu.edu/
DatasetInfo?datasetId=507.
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TABLE 2 | The predicted results of different methods on knowledge tracing.

Model AUC (%)

ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

IRT+ 77.40* – – –

BKT+ 69* – 75*

DKT 80.53 ± 0.2* 72.52 ± 0.1* 72.63 ± 0.1* 80.20 ± 0.2*

DKVMN 81.57 ± 0.1* 72.68 ± 0.1* 70.73 ± 0.1* 82.84 ± 0.1*

KQN 82.32 ± 0.05* 73.40 ± 0.02* 73.33 ± 0.03* 83.20 ± 0.05*

SAKT 84.8* 85.4* 72.12* 85.3*

AKT-NR 81.69 ± 0.004* 78.28 ± 0.002* 72.82 ± 0.003* 82.65 ± 0.004*

AKT-R 83.46 ± 0.003* – 77.02 ± 0.002* –

CAKQN-R 87.04 ± 0.004 – 79.33 ± 0.002 –

CAKQN-NR 85.54 ± 0.003 88.88 ± 0.004 76.45 ± 0.003 85.43 ± 0.001

The symbol * means the result is from other paper. The best results are shown in bold.

on the validation set to determine the optimal parameters.
We use {10−6, 10−5, 10−4, 10−3, 10−2}, {64, 128, 256, 512},
{64, 128, 256, 512}, {0, 0.05, 0.1, 0.15, 0.2, 0.25}, and {32,
64, 128, 256, 512} as values of the learning rate, the input
embedding dimension, the hidden state dimension of LSTM,
the dropout rate for the LSTM network, and the dimension
of knowledge state vector and question vector, respectively.
Finally, we set the maximum number of epochs to 300,
the default optimizer to Adam, the learning rate to 10−4,
batch size to 32, the input embedding dimension to 128, the
dimension of the LSTM hidden layer to 128, the dropout
rate to 0.1, the dimension of knowledge state vector and
question vector to 128.

With reference to most of the KT research work, we use the
area under the curve (AUC) as an evaluation model to predict
the performance of the learner’s next interaction. The higher the
AUC, the better the model’s predictive performance.

Experimental Results and Analysis
Comparative Experiment
On four educational datasets, the CAKQN model proposed
in our paper is compared with several common traditional
network KT model representatives including IRT+ (Pardos and
Heffernan, 2011), BKT+ (Yudelson et al., 2013) and neural
network representative baseline models, including DKT (Piech
et al., 2015), DKVMN (Zhang et al., 2017), KQN (Lee and Yeung,
2019), SAKT (Pandey and Karypis, 2019), AKT (Ghosh et al.,
2020), the experimental results are shown in Table 2. Note that
best models are bold, the results with ∗ are form other paper.

Table 2 lists the performance of all KT methods across
all datasets for predicting future learner responses. CAKQN-
R and CAKQN-NR represent variants of the CAKQN model
with and without the embedding based on the Rasch model,
respectively. Similarly, AKT-R and AKT-NR represent variants
of the AKT model with and without the embedded Rasch model
in Ghosh et al. (2020), respectively. The experimental results
show that the CAKQN-R model proposed in this paper is better
than the existing model, and its AUC value is 2.945% higher
than the existing optimal model AKT-R on average. Note that

IRT+ and BKT+ have the lowest prediction performance on the
four datasets compared to the neural network representing the
four datasets. This indicates that both methods rely on experts
to label KC, and the model cannot capture more information
like deep neural networks. In the DLKT model, the average
prediction performance of the KQN model on the four datasets
is significantly improved compared to DKT and DKVMAN. This
is because the KQN model is more explanatory in terms of
learner knowledge interaction. And CAKQN-R and CAKQN-
NR, which also use dot products to represent the interaction
process between learner knowledge and questions, have achieved
better performance on all datasets. This is related to its
different network structure, the monotonic attention mechanism
introduced and the embedding based on the Rasch model. Taking
a closer look, the SAKT, AKT, and CAKQN models that introduce
the attention mechanism and its variants have achieved better
results than the general DLKT models such as DKT, DKVMN,
and KQN. Because the attention mechanism can link the KC
at the next time step with the related KC in the learner’s
past interaction sequence, the DLKT model with the attention
mechanism can more accurately describe the knowledge state
of each learner, thereby improving the performance of the
model. Among them, the CAKQN-R model achieved better
results than other DLKT models with attention mechanisms on
the two ASSISTments datasets with question IDs. This proves
that the CAKQN-R model can dig more complex features
such as forgetting behavior in learner interaction sequences,
obtain more accurate learner knowledge status and improve
the prediction effect. Comparing the CAKQN-NR and AKT-
NR models with the same monotonic attention mechanism,
CAKQN-NR model proposed in this paper uses the network
structure of LSTM+monotonic attention mechanism to retain
the ability of the model to model the sequence, which can
not only ensure that the original learner’s historical learning
interaction sequence is not damaged on the time scale, but
also extract complex features of learners such as forgetting
behavior. More importantly, it also provides a more interpretable
interaction process between learner knowledge and questions,
which contributes to a better prediction effect than AKT-R.
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TABLE 3 | Experimental comparison between CAKQN and variant that do not use contextual aware question and response representations.

Model AUC (%)

ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

CAKQNraw-NR 84.49 ± 0.004 85.31 ± 0.004 74.84 ± 0.002 85.13 ± 0.001

CAKQN-NR 85.54 ± 0.003 88.88 ± 0.004 76.45 ± 0.003 85.43 ± 0.001

CAKQNraw-R 86.12 ± 0.004 – 77.14 ± 0.003 –

CAKQN-R 87.04 ± 0.004 – 79.33 ± 0.002 –

The best results are shown in bold.

TABLE 4 | Experimental comparison between CAKQN and variants with other attention mechanism.

Model AUC (%)

ASSISTments2009 ASSISTments2015 ASSISTments2017 Statics2011

SAKT 84.8* 85.4* 72.12* 85.3*

CAKQN-NRnl 84.01 ± 0.005 80.52 ± 0.011 71.84 ± 0.004 83.89 ± 0.001

CAKQN-NR 85.54 ± 0.003 88.88 ± 0.004 76.45 ± 0.003 85.43 ± 0.001

CAKQN-Rnl 85.52 ± 0.004 – 75.44 ± 0.003 –

CAKQN-R 87.04 ± 0.004 – 79.33 ± 0.002 –

The symbol * means the result is from other paper. The best results are shown in bold.

Finally, comparing CAKQN-R and CAKQN-NR, we found that
CAKQN-R has better prediction performance on both datasets.
This proves that the embedding based on the Rasch model
can capture the characteristics of individual differences between
different questions of the same KC and the personal abilities of
learners, and obtain more accurate personalized representations
of learner interaction tuples and questions, thereby improving the
performance of the model.

Ablation Experiment
In order to further verify the three key innovations in
the CAKQN model: context-aware representation of question
vectors, monotonic attention mechanism, and embedding based
on the Rasch model, three additional ablation experiments were
carried out in this paper. The first experiment is the comparison
of CAKQN-R, CAKQN-NR and its variants CAKQNraw-R and
CAKQNraw-NR. The structure of CAKQNraw-R and CAKQNraw-
NR Question Encoder is the same as the KQN model. It uses
a multi-layer perceptron (MLP) to directly input the question
embedding to obtain the question vector, the number of hidden
layers is 1 and the dimension is 128. The second experiment
is to compare CAKQN-R, CAKQN-NR, SAKT models and two
variants CAKQN-Rnl and CAKQN-NRnl without monotonic
attention mechanism. The tow variants use ordinary dot product
attention to capture the time dependence in the learner’s response
data. The last one is the experiment is a comparison between
CAKQN-R and variant CAKQN-IRT. The CAKQN-IRT model
is based on the DIRT framework proposed in Cheng et al.
(2019). Specifically, the Knowledge State Encoder and Question
Encoder components used in the CAKQN-IRT model are the
same as CAKQN-R, but the difference is that CAKQN-IRT uses
direct embedding instead of Rasch embedding. The Knowledge
State Encoder component of CAKQN-IRT obtains the learners’

ability θ, one Question Encoder component inputs the question
and KC embedding to obtain the distinction of the question αj,
and the other exactly the same Question Encoder component
inputs the question embedding to obtain the difficulty of the
question βj. Finally, the obtained parameters are substituted into
the two-parameter IRT model formula in section “Traditional
Knowledge Tracking Methods” for prediction.

Table 3 shows the results of the first ablation experiment
based on the context-aware representation of the question vector.
In all datasets, CAKQN-R and CAKQN-NR are better than
CAKQNraw-R and CAKQNraw-NR. These results show that
our context-aware representation of the question is effective in
summarizing the relationship between the question at the next
time step and the historical question.

Table 4 shows the results of the second ablation experiment of
the monotonic attention mechanism. On all datasets, CAKQN-
NR is significantly better than other attention mechanisms,
including SAKT. In the case of both using Rasch-based model
embedding, CAKQN-R still achieves better results than CAKQN-
Rnl on the two datasets. The reason for this is that it is different
from the common language tasks with strong long-distance
dependence between words. The dependence of future learner
performance on the past is restricted to a much shorter time
window for their forgetting behaviors. Therefore, the monotonic
attention mechanism with exponential decay when calculating
the attention weight can effectively capture the short-term
dependence on the past on the time scale to simulate the
forgetting behavior of learners in the learning process.

Table 5 shows the results of the third ablation experiment
based on the embedding of the Rasch model. Both models
are only tested on the two ASSISTments datasets where the
question ID in the dataset is available. On these two datasets,
CAKQN-R is significantly better than CAKQN-IRT in the
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FIGURE 3 | The knowledge level output result of CAKQN-Rnl on the ASSISTments2009 dataset.

FIGURE 4 | The knowledge level output result of CAKQN-R on the ASSISTments2009 dataset.

TABLE 5 | Experimental comparison between CAKQN and CAKQN-IRT.

Model AUC (%)

ASSISTments2009 ASSISTments2017

CAKQN-IRT 84.43 ± 0.015 75.33 ± 0.020

CAKQN-R 87.04 ± 0.004 79.33 ± 0.002

The best results are shown in bold.

predictive ability of the model. This shows that although
CAKQN-IRT incorporates a more complex two-parameter
IRT model, CAKQN-R has achieved better results with a
simpler model structure. This also confirms that CAKQN-
R has more advantages in the knowledge interaction process
represented by the dot product calculation in the knowledge
query component.

Visualization of Knowledge Tracking
Another basic task of knowledge tracking is to show learners’
mastery of each knowledge point in real time. Therefore, we
visualized the probability of learners answering correctly at each
knowledge point at each time step through the Knowledge Query
component. We intercepted the learning records of a learner in
the dataset ASSISTments2009 over a period of time, and used
the CAKQN-Rnl and CAKQN-R model models to track the
changes in learners’ mastery of 5 knowledge points, as shown
in Figures 3, 4. The horizontal axis in the figure represents the

interception of the learner’s 11 time steps of learning history.
The in the tuple represents the learner’s KC (knowledge points),
represents the learner’s answer. The vertical axis represents the 5
knowledge points tracked by the model.

From the visualization results, it can be seen that at
the first time step, after the learners answered the exercises
containing knowledge points 24 correctly, the tracking results of
CAKQN-Rnl and CAKQN-R on the learners’ knowledge points
24 have been improved (the probability of correct answers
increases). The results indicate that the CAKQN-Rnl model
and the CAKQN-R model will update the mastery of the
corresponding knowledge points accordingly after obtaining the
learner’s historical answer results. In Figures 3, 4, within ten
time steps after the learner correctly answered the exercises
containing knowledge point 24 at the first time step, CAKQN-
Rnl did not update the learner’s mastery of knowledge point
24, while CAKQN-R showed that the degree of learner’s
mastery of knowledge point 24 has been declining. It can
be seen that the CAKQN-Rnl model does not consider
the learner’s forgetting behavior during the learning period,
and the CAKQN-R model fits the learner’s actual forgetting
behavior during the learning period after introducing the
multiplicative exponential decay term. The above results show
that both the CAKQN-R model and the CAKQN-Rnl model
can model the learning process of learners’ knowledge status
over time. However, the CAKQN-Rnl model cannot model the
forgetting behavior of learners, while the CAKQN-R model can
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model the forgetting behavior of learners, and more accurately
track learners’ mastery of various knowledge points in real time.

CONCLUSION

Real-time assessment of learners’ online learning knowledge level
helps to monitor learners’ own cognitive status, adjust learning
strategies, and improve the quality of online learning. As for four
real online education datasets, this paper proposes a CAKQN
model based on Rasch model embedding. It uses the vector dot
product to describe the interaction process between the learner’s
knowledge state and the question, and uses the network structure
of LSTM + monotonic attention mechanism to capture the
question and the learner’s personalized contextual representation.
Compared with most other knowledge tracking models, it can not
only track learners’ knowledge status in real time, but also model
learners’ forgetting behavior.

However, the method presented in this paper has
several limitations.

(1) CAKQN uses binary variables to represent the answer
to the question as same as other KT methods. This way is
not suitable for subjective questions with continuous score
distribution. Wang et al. (2017) and Swamy et al. (2018).
provide a new way to model subjective questions, they used
continuous snapshots of the learner’s answers as an indicator
of the answer when dealing with learners’ programming data.
Modeling subjective topics will be the direction of future research.

(2) The adaptive capacity of the model needs to be
improved. CAKQN is a supervised training method like other
deep knowledge tracking methods, so the predictive ability
of the model is dependent on the effect of training on the
current dataset. If you are faced with small data sets or other
domain datasets, the performance of the model may be poor
(Wang Y. et al., 2021).

(3) Like most other KT methods, our method is based on
the learner’s historical practice record modeling, and involves
too few features. In fact, the learning process is very complex,
involving many other features such as the text of the question, the
learning rate of the student, and the positive/negative emotions
that the student generates during the learning process. At present,
with the rapid development of technologies such as intelligent

perception, wearable devices, and the Internet of Things, multi-
modal learning analysis will become a new trend driving
intelligent education research (Wang Z. et al., 2021). Under this
trend, knowledge tracking will surpass a single behavior modality
and gradually develop into a learner model driven by the fusion
of multimodal data such as behavior, psychology, and physiology.
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