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Verbal learning and memory summaries of older adults have usually been used to
describe neuropsychiatric complaints. Bayesian hierarchical models are modern and
appropriate approaches for predicting repeated measures data where information
exchangeability is considered and a violation of the independence assumption in
classical statistics. Such models are complex models for clustered data that account for
distributions of hyper-parameters for fixed-term parameters in Bayesian computations.
Repeated measures are inherently clustered and typically occur in clinical trials,
education, cognitive psychology, and treatment follow-up. The Hopkins Verbal Learning
Test (HVLT) is a general verbal knowledge and memory assessment administered
repeatedly as part of a neurophysiological experiment to examine an individual’s
performance outcomes at different time points. Multiple trial-based scores of verbal
learning and memory tests were considered as an outcome measurement. In this article,
we attempted to evaluate the predicting effect of individual characteristics in considering
within and between-group variations by fitting various Bayesian hierarchical models via
the hybrid Hamiltonian Monte Carlo (HMC) under the Bayesian Regression Models using
‘Stan’ (BRMS) package of R. Comparisons of the fitted models were done using leave-
one-out information criteria (LOO-CV), Widely applicable information criterion (WAIC),
and K-fold cross-validation methods. The full hierarchical model with varying intercepts
and slopes had the best predictive performance for verbal learning tests [from the
Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study dataset]
using the hybrid Hamiltonian-Markov Chain Monte Carlo approach.

Keywords: predicting, Hamiltonian Monte Carlo, Verbal Learning Test, hierarchical, model

1. INTRODUCTION

Verbal learning and memory tests are highly varied among older-aged adults due to various
influences. Early cognitive intervention in older adults is a critical program to reduce the future risk
of dementia (Thomas et al., 2019). The efficacy of the Chinese form Hopkins Verbal Learning Test
(HVLT) for screening dementia and mild cognitive impairment in a Chinese population showed
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that HVLT scores were affected by age, education, and sex (Shi
et al., 2012). The dataset of Advanced Cognitive Training for
Independent and Vital Elderly (ACTIVE) study consists of two
hierarchies in which four different repeated measures are nested
within each participant (Luo and Wang, 2014). The outcome
measures of the cognitive training interventions were the total
HVLT from three learning trials and the baseline measure
(Gross, 2011).

Bayesian logistic and hierarchical probit models of accuracy
data that allow two levels of mixed-effects in repeated-
measures designs have been implemented. The Bayes factor
through the Bayesian information criterion estimate and the
Widely applicable information criterion (WAIC) model selection
techniques were used (Song et al., 2017). Duff (2016) used
stepwise regression model to scrutinize the effect of age,
education, and gender on HVLT scores in 290 cognitively
intact older adults. The study revealed that age was negatively
correlated with the HVLT score, while education status
was positively correlated. Moreover, there were fewer gender
differences among four repeatedly measured verbal learning tests
(Lekeu et al., 2009).

Another study showed that besides capabilities through
training, personal characteristics like age, unmarried status,
and lower occupational cognitive requirements increased the
likelihood of cognitive risk (Silva et al., 2012). Higher educational
levels and active engagement in exercise may contribute to
cognitive reserve and have a protective effect on cognitive decline
in late life (Shen et al., 2021).

Gender effects on neuropsychological performance were
negligible when the age and educational status of elderly
people were controlled (Welsh-Bohmer et al., 2009). Recently,
the Markov chain Monte Carlo (MCMC) methods have
been widely used to generate samples from complicated and
high-dimensional distributions (Hadfield, 2017). Among
all Bayesian computational methods, the Hamiltonian
Monte Carlo (HMC) (Almond, 2014) approach is the most
efficient for approximating complex data structure models
and converges faster than the traditional Metropolis-Hastings
and Gibbs methods (Kruschke and Vanpaemel, 2015). The
common MCMC approaches show poor performance and
tremendously slow convergence in complex parameter structures
(Yao and Stephan, 2021).

The HVLT is the ultimate in situations calling for
multiple neuropsychological assessments (Benedict et al.,
1998). Classical statistical inferences and single-level
models have limitations for predicting naturally nest data.
Bayesian hierarchical models (Congdon, 2020) were able
to predict verbal learning test and memory scores from
baseline personal characteristics, such as age, gender,
cognitive status [mini-mental state exam (MMSE) score],
years of education, and participants’ booster training
and reasoning ability measured by training progress
(Kuslansky et al., 2004).

In Bayesian inference, the WAIC, the leave one out
information criterion (LOO-IC), and K-fold cross-validation
(K-fold-CV) are recently developed measures of complexity
penalized fitting models (Almond, 2014; Sivula et al., 2020).

In this article, model comparisons and model selections were
performed using these three methods under the Bayesian
Regression Models using ‘Stan’ (BRMS) package of R (Bürkner,
2018). In most cases, WAIC and LOO-IC showed a slight
preference for the random slope model over other models
(Bürkner, 2018). However, the general model selection principle
shows to choose the null model when diffuse priors are used in
the parameters to be included or rejected by the algorithms (Liu,
2000). Therefore, in this article, we used the HMC approach to
fit the three different Bayesian hierarchical models and select the
best predictive model.

2. MATERIALS AND METHODS

2.1 Data and Variables
The ACTIVE study was a randomized controlled trial conducted
in 1999–2001 at six diverse research centers in the United States
and organized by the New England Research Institutes (NERI).
A total of 1,575 purposively selected older adults were included
in this study (Willis et al., 2015), in which 26% of the participants
were African American. The ACTIVE dataset accessed from
the study of Willis et al. (2015) has 13 variables. However,
this modeling paper used six explanatory variables, and the
dependent variable HVLT is used as repeated measures of
learning tests and memory ability. In this dataset, HVLT has four
different repeated measurement scores doi: 10.3886/ICPSR04248.
v3.

2.2 Bayesian Hierarchical Model for
Repeated Measures Data
Suppose X is the matrix of explanatory variables, and Y is the
outcome variable that is the Total Hopkins Verbal Learning Test
Score (THVLTS). Besides the classical statistics, a more flexible
Bayesian model is required that can accommodate the varying
correlation between covariates and independent variables that
occur in repeated measures-type longitudinal data. The general
form of the Bayesian hierarchical model for repeated measures
data can be expressed as:

YN × 1 = XN × pβp × 1︸ ︷︷ ︸
fixed effects

+ZN × mqUmq × 1︸ ︷︷ ︸
random effects

+ εN × 1︸ ︷︷ ︸
residuals(error term)

(1)
Where Y denotes the vector

(
y′1, y′2, . . . y

′
m
)′ of outcome

variable; β denotes a vector of fixed effects parameters; U
denotes a vector

(
u′1, u′2, . . . u

′
m
)′ of associated random effects

(specific to each subject); X is a matrix of covariates (explanatory
variables); Z denotes a block diagonal matrix of covariates for
the random effects as a complement of X embraced of m blocks
that each block has ni × q dimension matrix and ε denote a
column vector of residuals. We assumed that the random effects
U ∼ N (0d, �) and the residuals ε ∼ N

(
0ni , R = σ2

e
)
. Where

U and ε are independently distributed. Based on the unknown
vector of ϕ� and ϕR, the unknown random effects in � and R
can be written as6 = (ϕ�,ϕR) (Laird and Ware, 1982).

Yi = X(F)i β(F) + X(R)i β(R) + εi
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Where X is divided into two columns corresponding to
fixed effects and a corresponding random effects design matrix
denoted as X(F)i and X( R)

i , respectively. And the parameters are
divided into fixed effects β(F) and random effects β(R) = U.
Cov (ui, ui) = Var (ui) = � and[

u
β

]
∼ MVN

((
µu
µβ

)
,

(
σ2

u ρσuσβ

ρσuσβ σ2
β

))

It can be assumed that the hyperparameters of both
the intercept and the coefficient/slope model have uniform
hyper-prior distributions with appropriate assumptions for the
parameters µu,µβ, σu, σβ ve ρ. Then, the mathematical form of
the three possible Bayesian hierarchical models (Nalborczyk and
Vilain, 2019) for predicting the verbal learning and memory test
with two (group/subject and time) random effects (Hilbe, 2009)
can be written as follows:

Model 1: Null Model
Here, the model is fitted by varying the intercept without
including any predictor variable. Thus, this model shows the
overall within and between-subject variations of the outcome
variable (Goldstein et al., 2009).

THVLTSi ∼ Normal (µi, σe) , i = 1, 2, 3, . . . n

µi = α + αsubject[i] + αtime[i]

αsubject ∼ Normal(0, σsubject)

αtime ∼ Normal(0, σtime)

α ∼ Normal (0, 10)

σsubject ∼ HalfCauchy (0, 1)

σtime ∼ HalfCauchy (0, 1)

σe ∼ HalfCauchy(0, 1)

Model 2: Varying Intercept Model
Here, the BRMS command is fitted in R with varying intercepts
for both clusters (i.e., participating subjects) and repeated
measures (i.e., measurement time point) by including all
predictor variables in the model. Thus, this model can be called a

random intercept and fixed slope model (McGlothlin and Viele,
2018).

THVLTSi ∼ Normal (µi, σe)

µi = α + αsubject[i] + αtime[i] + βXi

αsubject ∼ Normal(0, σgroup)

αtime ∼ Normal (0, σtime)

β ∼ Normal (0, 10)

α ∼ Normal (0, 10)

σsubject ∼ HalfCauchy (0, 1)

σtime ∼ HalfCauchy (0, 1)

σe ∼ HalfCauchy(0, 1)

Model 3: Varying Slopes
Here, we can focus on examining the dependence between the
random intercepts and the random coefficients (Bafumi and
Gelman, 2011). In this case, we are interested in whether the
effects of age and reasoning skill have correlations with variations
in verbal and memory test skills measured by trail scores.

THVLTSi ∼ Normal (µi, σe)

µi = α + αsubject[i] + αtime[i] + βXi +
(
β + βsubject

)
Xi)

[
αsubject
βsubject

]
∼ MVN(

[
α

β
, S
]

S =
[(

σα 0
0 σβ

)
R
(

σα 0
0 σβ

)]
=

[
σ2

α,subject σασβρ

σασβρ σ2
β,subject

]

αsubject ∼ Normal(0, σsubject)

αtime ∼ Normal (0, σtime)

β ∼ Normal (0, 10)

α ∼ Normal (0, 10)

σα,subject ∼ HalfCauchy (0, 1)

σtime ∼ HalfCauchy (0, 1)
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, X

FIGURE 1 | A varying intercept and slope model (Bayesian Framework).

σe ∼ HalfCauchy(0, 1)

σβsubject ∼ HalfCauchy (0, 1)

R ∼ LKJcorr(2)

Where S is the covariance matrix, R =

(
1 ρ

ρ 1

)
is the

corresponding correlation matrix, and ρ is the association
between intercepts and coefficients used in the calculation of S.
The prior matrix R is the LKJ-correlation (Lewandowski et al.,
2009) with a parameter ζ(zeta) which regulates the strength of
the association.

As shown in Figure 1 above, each component of the mixed
effect model appears in the graph as a node. The dotted
arrows represent deterministic (fixed) dependencies between
the parameters (e.g., from β to µij), whereas the solid arrows
represent probabilistic (random) dependencies (e.g., from σ2

e to
Yij) (Bürkner, 2018). The hyper-parameters of the varying both
intercept and slope model (µα, µβ, σα, σβ, and ρ) can be assumed
to have hyper-prior distributions with appropriate assumptions
for the parameters (Liu, 2016; Congdon, 2020).

2.3 Bayesian Information Criterion for
Model Comparison and Selection
Watanabe’s Widely Applicable (WAIC)
WAIC (Watanabe, 2010) could be achieved as an improvement
over the divergence-based information criterion (DIC) for
Bayesian models. The deviation term used in the calculation
of the WAIC is Log-Point Based -Requires Predictive-Density
(LNTTY). LNTTY is calculated as:

LNTTY =
N∑

i = 1

log
∫

p
(
yi|θ

)
× ppost (θ) dθ

The whole ppost (θ) is the posterior distribution used in the
calculation of LNTTY. Similar to LNTTY, WAIC’s penalty term

is purely Bayesian and is computed as:

pWAIC =

N∑
i = 1

Varpost
(
log p

(
yi|θ

))
Where pWAIC is the penalty term which is the variance of the

log-predictive-density terms aggregated over N data points. Thus,
the WAIC can be calculated as:

WAIC = − 2LPPD + 2pWAIC

Leave-One-Out Information Criteria (LOO-CV)
Bayesian leave-one-out cross-validation (LOO-CV) is different
from the WAIC. Because there is no penalty term in its
calculation. LOO-CV can be computed as:

LOOIC = − 2LPPDloo = − 2 ∗
N∑

i = 1

log

∫
p
(
yi|θ

)
× ppost(−i) (θ) dθ

Where ppost(−i) (θ) is the posterior distribution based on a
sub-set of the data at point i from the dataset. LNTTY used
ith data points to calculate both the posterior distribution and
the parameter estimation. Here, in contrast, the log-pointwise
predictive density (LPPDloo) is used the same for prediction only.
Therefore, there is no need for a penalty term to correct potential
bias by using the data twice (Vehtari et al., 2017).

K-Fold Cross-Validation
Sometimes, multiple Pareto Corrected Significance Sampling
(PSIS-LOO) fails, and it takes too long to remodel in the
iteration. Therefore, we can estimate LOO-CV using K-fold-
CV by separating the data into completely random multiples,
which leads to looking at each cross-validation estimate distinctly
(Vehtari et al., 2018).

The Bayesian K-fold-CV partitions the dataset into k subsets
yk(k = 1, 2, . . . ,K). The Bayesian hierarchical model (BHM)
generates each training dataset y(ke) separately, which returns

a ppost(e) (θ) = p
(
θ|y(ke)

)
posterior distribution (Vehtari and

Gelman, 2014). To preserve reliability with WAIC and LOO-IC,
defining the predictive accuracy of every point in the dataset is
essential. Therefore, the log-predictive distribution function is

log ppost(k.e)
(
yı
)
− log

∫
ppred

(
yı|θ

)
ppost(k.e) (θ) dθ, iεk.

Using “S” simulations corresponding to a subset of k (usually
K = 10) containing the ith data point and the posterior
distribution P

(
θ|y(ke)

)
. The overall estimate of the expected

log point predictive density for a new dataset is determined as
follows:

êlpdval =

n∑
i = 1

l̂pdi =

n∑
i = 1

log

(
1
S

S∑
s = 1

p
(

yi|θ
k,s
))

Therefore, a point estimate of the k-fold value is the sum of the
iterative folds from the data points.
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2.4 The Hamiltonian Monte Carlo
Algorithm in Bayesian Regression
Models Using ‘Stan’ Package of R
Similar to Gibbs sampling, HMC practices a proposal distribution
that changes subject to the recent location in the parameter space
(Liu, 2000). However, unlike the Gibbs algorithm, HMC does
not rely on computing the conditional posterior distribution
of parameters and sampling from it (Mai and Zhang, 2018).
HMC has two advantages over other MCMC methods: little
or no autocorrelation of the samples and fast mixing, i.e., the
chain converges to the distribution immediately (Nalborczyk
and Vilain, 2019). Therefore, it is the best approach for
continuous distributions with low (auto) correlation and low
rejection of samples.

When the model parameters are continuous rather than
discrete, HMC, also known as Hybrid Monte Carlo, can
overpower such random walk behavior using a clever scheme
of supplementary variables that converts the tricky of sampling
from the targeted function into the simulating Hamiltonian
dynamics (Britten et al., 2021). HMC is an MCMC algorithm
that avoids the random walk behavior and sensitivity to
correlated parameters that outbreak other MCMC approaches
by performing a series of steps informed by first-order gradient
information (Hilbe, 2009).

The HMC algorithm is based on the Hamiltonian (total
energy) calculating the trajectory for a time t = 0, . . ., T and
then taking the final position X (T) = Xn + 1.

The steps of the algorithm are as follows:

HMC algorithm

1. Choose a starting point and a velocity distribution
θ0 = X0q (v)

2. for n = 0, . . .
3. Set the initial position as X (t = 0) = Xn
4. Draw a random initial velocity, v (t = 0) ∼ q (v);
5. Integrate the orbit numerically with the total energy for

some time (use the Leapfrog method):

H (X, v) = U (X) + K

= − log p (X)− log q(v) T

6. Calculate the probability of acceptance:

α (Xn + 1,Xn) = min
{

1,
exp [−H(Xn + 1, vn + 1)]

exp [−H (Xn, vn)]

}
7. Set Xn + 1 = X(t = T)
8. Increment

3. RESULTS

In practice, the three basic Bayesian hierarchical models have
been fitted in BRMS default settings, and population-level (fixed)
effects and subject-level (random) effects were obtained (Luo
et al., 2021). All three models (Models 1, 2, and 3) had both fixed

TABLE 1 | Results from the fitted null model: Model 1.

Outcome variable Covariates Estimate Est. Error Bulk_ESS Tail_ESS R̂ 95% CI

Fixed effects Lower Upper

Total hopkins verbal learning test score (THVLTS) Intercept 26.3312 0.7331 1371 1875 1.01 24.8501 27.7214

Random Effects Lower Upper

σintercept,subject 4.3105 0.0852 810 1450 1.00 4.1524 4.4751

σintercept,time 1.3035 0.6456 2047 2429 1.00 0.5754 3.0562

σe(sigma) 3.1134 0.0256 3315 3296 1.01 3.0462 3.1662

TABLE 2 | Results from the fitted varying intercept model: Model 2.

Outcome variable Covariates Estimate Est. Error Bulk_ESS Tail_ESS R̂ 95% CI

Fixed effects Lower Upper

Total hopkins verbal learning test score (THVLTS) Intercept 9.2314 1.9411 1260 189 1.00 5.4712 12.9510

Age −0.1211 0.0212 926 1702 1.01 −0.1611 −0.0854

Edu −0.0034 0.0011 4139 2838 1.01 −0.0101 0.0042

Booster 0.1865 0.1754 645 1838 1.00 −0.1511 0.5432

Gender 2.6564 0.2015 910 1607 1.00 2.2752 3.0654

Reason 0.1464 0.0112 980 1673 1.00 0.1310 0.4232

MMSE 0.6012 0.0462 1032 2128 1.00 0.5013 0.7012

Random effects Lower Upper

σintercept,subject 3.0312 0.0654 1146 2271 1.00 2.8845 3.1645

σintercept,time 1.2654 0.6572 1852 2121 1.00 0.5832 3.0812

σe(sigma) 3.1102 0.0312 4264 3029 1.00 3.0462 3.1761
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FIGURE 2 | Bayesian hierarchical varying slope convergence diagnosis.
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FIGURE 3 | Bayesian hierarchical varying slope convergence diagnosis (Continuous).

and random (mixed) parts but with different estimated parameter
types. In the result, the estimate shows the posterior mean and
Est. Error is the SD for each parameter. Model convergence
was achieved well enough both the bulk effective sample size
(Bulk_ESS) and the tail effective sample size (Tail_ESS) for the
95% CIs were adequate (Vehtari et al., 2017). In general, every
parameter is summarized using the posterior distribution’s mean
(“Estimate”) and SD (“Est. Error”), as well as two-sided 95%
credible intervals as lower and upper bounds based on quintiles.

Table 1 of the fixed effects shows that the posterior mean
verbal testing score was estimated to be 26.33 with an SD of 0.73.
The 95% credible interval shows that the posterior distribution
mean (intercept) was significant. On the other hand, the random
effect showed significant verbal score test variation between
groups (participant subjects) and within-subjects (between
different measurements of different time points). Thus, according
to the null model, the HVLT score showed more between-
group/subject variation than within-group (between repeated
measurements) variation.

Table 2 showed that the coefficient of booster training was
positive with a zero overlapping 95% CI. This indicates that,
on average, there is little evidence that taking booster training

increases elderly adults’ verbal learning and memory test scores
by 0.1865, but the evidence-based on the data and random
intercept model. On the other hand, adults’ years of education
(edu) estimate was negative with a zero overlapping 95% CI.
This negative estimate indicates that, on average, in the random
intercept model, there is little evidence that increasing the years
of education decreases elderly adults’ verbal learning and memory
test scores by 0.0034 units.

According to the predictive effects of each explanatory variable
shown in Figure 2 and Table 3, taking booster training, age, and
gender were the most influential factors affecting participants’
cognitive verbal test and memory ability. Table 3 reveals that
there is also an adverse association between the intercepts and
coefficients for reasoning ability, which implies reasoning ability
has a large average score value showing additional variability
by poor reasoning ability than by good reasoning ability.
Nevertheless, it can be seen that the slope estimate of such
a model is even further unreliable than that of the preceding
models, as it can be clearly understood from the associated
standard error and the size of the 95% CIs. Table 3 also showed
that booster training had a significant positive predictive effect
on elderly adults’ verbal learning and memory test scores. In
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TABLE 3 | Results from the fitted varying slope mode: Model 3.

Outcome variable Covariates Estimate Est. Error Bulk_ESS Tail_ESS R̂ 95% CI

Fixed effects Lower Upper

Total hopkins verbal learning test score (THVLTS) Intercept 9.8412 2.0602 3157 2918 1.00 5.8523 13.9344

Age −0.1211 0.0213 2846 2720 1.01 −0.1513 −0.0823

Edu (education) −0.0033 0.0012 5523 2770 1.00 −0.0122 0.0012

Booster 0.1412 0.1703 3362 2876 1.00 −0.2145 0.4831

Gender 2.5505 0.2004 3236 2866 1.01 2.1712 2.9331

Reason 0.1444 0.0113 3087 2867 1.00 0.1313 0.4402

MMSE 0.5803 0.0512 3256 3042 1.00 0.4822 0.6840

Random effects Lower Upper

σintercept,subject 1.9222 1.2833 111 488 1.00 0.0724 4.3111

σintercept,time 1.3022 0.8004 2027 2270 1.00 0.5702 3.1343

σage 0.0424 0.0133 100 833 1.00 0.0123 0.0625

σreason 0.0405 0.0132 138 391 1.00 0.0212 0.0732

corIntercept,age 0.1033 0.4333 111 255 1.00 −0.7042 0.8303

corIntercept,reason −0.3902 0.4204 100 388 1.00 −0.9011 0.6212

corage,reason −0.5922 0.2645 519 1053 1.00 −0.9042 0.1407

σe(sigma) 3.1102 0.0333 3767 2748 1.00 3.0533 3.1710

TABLE 4 | Model comparisons based on predictive performance.

Model type Model selection criteria from BRMS package

WAIC LOO-IC 10-fold

Estimate SE Estimate SE Estimate SE

Null model (Model 1) 33638.0 134.6 33744.1 136.2 33923.8 136.4

Varying Intercept model (Model 2) 33494.5 139.5 33574.9 140.6 33717.0 141.4

Varying slopes model (Model 3) 33488.4 141.8 33567.5 143.0 33685.2 140.8

contracts, adults’ years of education had a significant negative
impact on elderly adults’ verbal learning and memory test scores.

We also noticed in Figure 2 and Figure 3 below that
adding any term to the early model showed predictive
performance improvements on the fitted models are ordered
from Models 1 to 3 (full model). However, such a result
may not be interpreted as a universal rule, subsequent adding
extra terms to a unique model may also result in overfitting,
which corresponds to a condition in which the fitted model
is over-specified about the data, making the model good
at clarifying the sample dataset but poor at predicting no
observed data. The model convergence diagnosis plots are
hairy caterpillars which showed the model converged. On the
other hand, the models have well converged based on the
estimated statistical values. This means that the R-hat

(
R̂
)

statistics were close to 1 and the (bulk and tail) ESSs values
were sufficiently high when ESS > 100 was chosen as the
cutoff (Vehtari et al., 2021). The majority of parameters still
showed sufficiently high ESS values when more conservative
cutoffs were chosen (i.e., ESS > 400 or even 1,000, see
Zitzmann and Hecht, 2019).

Based on the fitted varying slope model, which accounted
for six predictors from the data, fixed effects showed that age,
gender, reasoning ability, and booster training were significant

predictors of verbal learning and memory test scores, whereas
random-effect showed that much of the variation in test scores
occurred within-subjects (between measurement time points)
than between subjects.

After we have built the three different models, it is
necessary to identify relatively the best model that can be
used to predict the outcome variable and make inferences.
However, choosing the model that has the best predictive
and a better fit on the actual data is complicated with
diverse information criteria since all selected models on the
actual data might not essentially achieve as fit on a different
dataset. In its place, it is necessary to decide on a model
that fits best in terms of predicting new data which had
not been practiced.

In case of the non-existence of extra information, cross-
validation methods such as WAIC and LOO-CV can be used.
According to Table 4, the varying slope model has the lowest
WAIC, LOO-IC, and 10-fold estimates. However, the difference
is relatively small when we compare the difference in estimates
of criteria for each model and the corresponding standard errors
(in the column SE).

Among the fitted models above, it looks like the final model
(Model 3) in the HMC algorithm is the best model. Therefore,
as a function of the six explanatory variables and the random
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FIGURE 4 | Bayesian hierarchical varying slope fitted model on the observed and predicted outcomes.

FIGURE 5 | Bayesian hierarchical varying slope model marginal prediction effects.

Frontiers in Psychology | www.frontiersin.org 9 April 2022 | Volume 13 | Article 855379

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-855379 April 9, 2022 Time: 14:20 # 10

Ebrahim and Cengiz Predicting Verbal Learning and Memory

coefficient for age and reasoning ability, Model 3 has the best
predictive performance for the cognitive HVLT.

According to Figure 4, the varying slope and intercept
model fit well and produced nearly identical posterior observed
density and posterior predictive distribution plots of the outcome
variable of THVLTS from the ACTIVE study.

Furthermore, the marginal effect of each predictor variable
revealed (Figure 5) that age and reasoning skills are the most
significant explanatory variables that predict the THVLTS of
the ACTIVE study.

4. DISCUSSION

Based on the selected sample participants in the ACTIVE
study dataset (Willis et al., 2015), the Bayesian hierarchical
linear models of three types were fitted by considering only
six explanatory variables as predictors of the cognitive verbal
learning test. The null model without any predictor effect but with
only the intercept term was fitted, and it shows a mass of cognitive
verbal learning ability variability across subjects. The varying
intercept model with the addition of all predictor variables
was fitted; and getting booster training, age, and reasoning
ability were significant predictor of verbal test scores (Duff,
2016). The varying coefficient/slope model (i.e., Model 3) is
the best-fitted model than the other fitted models since it had
the lowest WAIC, LOO-IC, and 10-fold estimates (Bafumi and
Gelman, 2011). A bulk of participants’ cognitive verbal test scores
variations were observed between subjects (Ryoo, 2011). The
full hierarchical model with varying intercepts and slopes has
the best performance for predicting verbal learning tests (from
ACTIVE study dataset) using the hybrid Hamiltonian Markov
Chain Monte Carlo approach.

Socio-demographic and training-related characteristics
influence elderly verbal learning tests that can be measured in
multiple occupations (Welsh-Bohmer et al., 2009).

5. CONCLUSION

Total Hopkins Verbal Learning Test Score from the ACTIVE
study can be used as a measure of elderly adults’ cognitive verbal
learning ability. Four demographic characteristics of adults,
such as age, gender, educational status, and cognitive status
(MMSE score), were measured at the baseline, and characteristics
measured after cognitive training such as reasoning ability and
booster training were considered. THVLTS from the ACTIVE
study can be used as a measure of elderly adults’ cognitive verbal

learning ability. According to the findings, the varying intercept
and slope model fit best, and age, gender, booster, and reasoning
ability are the main significant predictors for THVLTS, which
measures cognitive verbal learning. Taking booster training had
a positive significant predictive effect, while years of education
(edu) had a negative significant predictive effect on THVLTS.
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APPENDIX

The Priors in Bayesian Hierarchical Models and Sensitivity Analysis
Different scholars suggested various priors for a component in a hierarchical model of variability parameters depending on the fitted
Bayesian model structure and MCMC method. Some researchers proposed non-informative prior distributions, including uniform
and inverse-gamma families in Gibbs sampling. Other researchers suggested a half-t family for the hierarchical model and demonstrate
relatively weakly informative prior distribution. Half-student-t prior, a default prior in BRMS for SD parameters leads to better
convergence. Still, the local shrinkage parameters lead to an increased number of divergent transitions in the BRMS of Stan (Piironen
and Vehtari, 2016). The robust options for group-level standard deviations in Bayesian hierarchical models are half-normal (0,100),
half-Student t with 3 degrees of freedom, or half-Cauchy prior distributions (Congdon, 2020).

Bürkner (2019) and McElreath (2020) proposed a half-normal distribution for SD priors in BRMS. Choosing a truncated normal
distribution considers a good idea that the standard deviation cannot be less than 0. However, a prior on the random effect parameter
with a long right tail has been revealed as “conservative” because it allows for bulky value estimates of the SD parameters.

Gelman (2006) suggested half-Cauchy prior with a mode at 0 and scale set to a considerable value by reasonably explaining the
restrictive nature of half-Cauchy prior in providing enough information for the small numbers of groupings in the hierarchical nature
of the data. Bayesian hierarchical model, to reduce the occurrence of unrealistically large SD estimates, BRMS-Stan documentation
suggested half-Cauchy is the prior that automatically bound at 0. R-Stan renormalizes the distribution used so that the sum of the area
between the bounds is 1.

The half-Cauchy (0, 1) prior is a case of the half-Student t-distribution with v 1 degrees of freedom parameterized in the SD
metric. It occupies a reasonable middle ground of different prior classes that performs well near the origin. It does not lead to drastic
compromises estimates of the population-level (location) and group-level effect of the parameter space (Polson and Scott, 2012).

Sensitivity analysis of priors Appendix Table 1 shows the robustness of a Bayesian analysis when choosing different prior
distributions in the fitted models. According to Bürkner (2019), for each SD component of the random parameters in hierarchical
models, any prior distribution is practically well-defined on the non-negative real numbers only. In this study, we used the default in
BRMS, the truncated Student’s t distribution with 3 degrees of freedom considered a reference prior. Then, because negative values
are incredible for a standard deviation, we practiced a very strong informative truncated normal prior with a mean of 5 and a standard
deviation of 0.01, and a half Cauchy prior for the sensitivity analysis of the impact of the prior on the Bayesian hierarchical models for
the applied dataset.

Models with an effective sample size greater than 1000 and R-hat closest to 1.00 but not greater than 1.10 showed the consistency of
an ensemble of Markov chains (Dominique, 2015). Moreover, both Bulk-ESS and Tail-ESS should be at least 100 (approximately) per
Markov chain to be reliable and indicate that estimates of the respective posterior quantiles are reliable (Vehtari et al., 2021). In this
paper, the R-hat, Bulk-ESS, and Tail-ESS results of the null, varying intercept, and varying coefficient models fulfilled these convergence
diagnosis metrics. Therefore, the effective sample sizes (ESS) and potential scale reduction (R-hat) convergence diagnostic metrics are
sufficient for stable estimates in each fitted model.

We used the sensitivity analysis for priors to scrutinize the final fully hierarchical specified model (Model 3) results, based on the
default (or reference) prior, with the results obtained using different prior distributions. The posterior distributions and 95% posterior
density (HPD) intervals by the median for the fixed effects and random effects, including SD of the verbal learning test score, did not
change much depending on the priors specified, which indicates a practically identical interpretation of the estimates depending on
the priors. Thus, because of no significant percentage deviation among models depending on the alternative prior specification, we
reported the model results with the half-Cauchy prior that yielded good model convergence and sufficient ESS values (i.e., greater than
or equal to 100). Besides, a good-looking posterior density plot of the predicted versus the observed data in Figure 4 was considered.

As it can be explained by Depaoli and van de Schoot (2017), and Depaoli et al. (2020), sensitivity analysis results could be provided
through visuals, akin to the Shiny app plots or it may be in a table format indicating the degree of discrepancy in estimates or HPD
intervals across parameters as we presented in the Appendix table below.
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APPENDIX TABLE 1 | Posterior estimates with the verity of priors: Sensitivity analysis results.

Alternative priors Parameter/Covariates Estimate (SD) Median (50%) 5–95% HDP Default estimate (SD) Percentage deviation

Alternative prior I: Half-
Cauchy (0,1)

Intercept 9.8412 (1.521) 9.8331 5.8523, 13.9344 9.8321 (1.932) 0.0926

Age −0.1211 (0.021) −0.1201 −0.1513, −0.0823 −0.1223 (0.423) −0.9812

Edu (education) −0.0033 (0.001) −0.0033 −0.0122, 0.0012 −0.0034 (0.005) −2.9412

Booster 0.1412 (0.102) 0.1413 −0.2145, 0.4831 0.1411 (0.623) 0.0709

Gender 2.5505 (0.112) 2.5504 2.1712, 2.9331 2.5487 (0.222) 0.0706

Reason 0.1444 (1.902) 0.1443 0.1313, 0.4402 0.1443 (2.081) 0.0693

MMSE 0.5803 (0.028) 0.5921 0.4822, 0.6840 0.5801 (0.082) 0.0345

σintercept,subject 1.9222 1.9221 0.0724, 4.3111 1.9212 0.0521

σintercept,time 1.3022 1.3102 0.5702, 3.1343 1.3032 −0.0767

σage 0.0424 0.0403 0.0123, 0.0625 0.0425 0.0126

σreason 0.0405 0.0402 0.0212, 0.0732 0.0401 −0.9975

corIntercept,age 0.1033 0.1032 −0.7042, 0.8303 0.1031 0.1040

corIntercept,reason −0.3902 −0.8902 −0.9011, 0.6212 −0.3904 −0.0512

corage,reason −0.5922 −0.5887 −0.9042, 0.1407 −0.5923 −0.0169

σe(sigma) 3.1102 3.2041 3.0533, 3.1710 3.1112 −0.0321

Parameter Estimate (SD) Median (50%) 5–95% HDP Default estimate (SD) Percentage deviation

Alternative prior II:
Normal (5, 0.01)

Intercept 9.8423 (1.543) 9.8231 6.1415, 13.6552 9.8321 (1.932) −0.0112

Age −0.1212 (0.034) −0.1212 −0.1514, −0.0855 −0.1223 (0.423) −0.0825

Edu (education) −0.0034 (0.011) −0.0034 −0.0124, 0.0015 −0.0034 (0.005) −2.9412

Booster 0.1413 (0.124) 0.1412 −0.2165, 0.4871 0.1411 (0.623) −0.0708

Gender 2.5514 (0.142) 2.5505 2.1722, 2.9371 2.5487 (0.222) −0.0353

Reason 0.1445 (2.013) 0.1444 0.1453, 0.4562 0.1443 (2.081) −0.0692

MMSE 0.5802 (0.035) 0.5872 0.4852, 0.6951 0.5801 (0.082) 0.0172

σintercept,subject 1.9213 1.9221 0.0724, 4.3413 1.9212 0.0468

σintercept,time 1.3033 1.3102 0.5622, 3.1344 1.3032 −0.0844

σage 0.0425 0.0403 0.0123, 0.0627 0.0425 −0.2353

σreason 0.0406 0.0402 0.0212, 0.0733 0.0401 −0.2463

corIntercept,age 0.1034 0.1032 −0.7044, 0.8304 0.1031 0.0969

corIntercept,reason −0.3903 −0.8902 −0.9021, 0.6217 −0.3904 −0.0256

corage,reason −0.5923 −0.5987 −0.8045, 0.1404 −0.5923 −0.0169

σe(sigma) 3.2115 3.2141 3.0533, 3.5710 3.1112 −3.1543

The relative percentage deviation can be computed as: {[(estimate using new alternative prior)–(estimate using default/reference prior)]/ (estimate using default/reference
prior)}*100. Interpreting percentage deviation results is largely subjective and dependent on the metric of the parameters. However, percentage deviation under 10%
would likely be considered negligible (Depaoli and van de Schoot, 2017). Default estimate = posterior estimate (mean) of analysis with the BRMS default/ reference prior
[Student’s t (3); 5–95% is the highest posterior density (HPD) interval].
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