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Correlation coefficients are often compared to investigate data across multiple research
fields, as they allow investigators to determine different degrees of correlation to
independent variables. Even with adequate sample size, such differences may be
minor but still scientifically relevant. To date, although much effort has gone into
developing methods for estimating differences across correlation coefficients, adequate
tools for variable sample sizes and correlational strengths have yet to be tested. The
present study evaluated four different methods for detecting the difference between
two correlations and tested the adequacy of each method using simulations with
multiple data structures. The methods tested were Cohen’s q, Fisher’s method, linear
mixed-effects models (LMEM), and an ad hoc developed procedure that integrates
bootstrap and effect size estimation. Correlation strengths and sample size was varied
across a wide range of simulations to test the power of the methods to reject the null
hypothesis (i.e., the two correlations are equal). Results showed that Fisher’s method
and the LMEM failed to reject the null hypothesis even in the presence of relevant
differences between correlations and that Cohen’s method was not sensitive to the
data structure. Bootstrap followed by effect size estimation resulted in a fair, unbiased
compromise for estimating quantitative differences between statistical associations and
producing outputs that could be easily compared across studies. This unbiased method
is easily implementable in MatLab through the bootes function, which was made
available online by the author at MathWorks.
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INTRODUCTION

Comparing statistics is a frequent point of contention among researchers. The need to compare
correlations is common and requires a specific assay to determine whether a continuous variable,
often called covariate, has a different degree of correlation between two sets of data. Examples of
fields in need of such an assay include cognitive psychology (e.g., the correlation between the degree
of task automation and behavioral performance in extroverted vs. introverted individuals), social
psychology (e.g., the correlation between social exclusion and job satisfaction in men vs. women),
and cognitive neuroscience (e.g., the correlation between brain activity and behavioral performance
under negative vs. positive emotional stimulation). Calculated differences may be minor, even with
the recommended sample size, but can still be scientifically relevant (Ellis, 2010). Furthermore,
modern science is gradually moving away from p-centric data interpretation toward effect-size-
oriented approaches (Kelley and Preacher, 2012; Sullivan and Feinn, 2012). Thus, reporting only

Frontiers in Psychology | www.frontiersin.org 1 May 2022 | Volume 13 | Article 860213

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.860213
http://creativecommons.org/licenses/by/4.0/
mailto:simone.diplinio@unich.it
https://doi.org/10.3389/fpsyg.2022.860213
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.860213&domain=pdf&date_stamp=2022-05-26
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.860213/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-860213 May 20, 2022 Time: 14:0 # 2

Di Plinio Testing Correlation Across Experimental Conditions

r- and p-values and binarizing result interpretations as either
significant or non-significant, depending on an (eventually
corrected) threshold of p < 0.05, has become outdated (Nichols
et al., 2017; Ioannidis, 2019).

The existence of a statistical association cannot be relied upon
to evaluate whether the strength of the relation between two
variables will always be the same. In a within-group design,
the correlation coefficients between the outcome (DV) and the
covariate (IV) may be decreased in a specific experimental
condition B than in another condition A. Alternatively, in a
between-group design, the treatment group may show a weaker
correlation between the outcome and the covariate than in the
control group, or vice versa. These context-dependent or group-
dependent effects on the extent of the correlation between two
variables should be investigated using the most suited methods so
that scientists from different disciplines can assess the most fitting
comparison between the two correlations. Of note, given that null
hypotheses are always false when evaluated with large datasets
(Cohen, 1990), and that both small samples and large samples
can convey useful information (Lindquist et al., 2012; Friston,
2013), the effect of a correlational change should be investigated
not only with various correlation values, but also various sample
sizes. However, even though much effort has been invested into
developing methodologies that can estimate differences across
correlation coefficients, studies investigating this problem using
a comprehensive approach and variable sample sizes have yet
to be published.

Several strategies have been developed to estimate differences
between correlations. The simplest method was proposed by
Cohen (1988) and estimated an effect size as the difference
between two Fisher-transformed correlations. Fisher’s method
(Fisher, 1921) also accounts for sample size and calculates the
probability that two correlations will differ given their strength
and the number of samples in the two groups. Whereas Cohen’s
and Fisher’s methods rely exclusively on r-values, ignoring the
initial data structure, analysis of covariance (ANCOVA) and
linear mixed-effects models (LMEM) retain this information.
ANCOVA and LMEMs have been widely adopted for analyzing
data in cognitive neuroscience experiments, wherein the
parameters observed are affected by multiple factors (Buckner
et al., 2008; Garrett et al., 2010; Zilles and Amunts, 2013).

A bootstrap approach followed by calculation of the effect
size may also be used to detect changes in correlations between
neurophysiological parameters and behavioral performance
across experimental conditions (Di Plinio et al., 2018). This
method allowed testing the hypothesis that the association
between functional connectivity across brain regions and
behavioral performance (Hampson et al., 2010) was weakened
by negative emotional stimulation. This approach (bootstrap and
effect size estimation) is particularly advantageous since it is less
impaired by violating normality assumptions (Liu and Popmey,
2020). Finally, structural equation modeling has also been
proposed for testing independent or dependent correlational
hypotheses (Cheung and Chan, 2004). This method is grounded
in confirmatory factor analysis and is useful when data includes
both dependent and independent measures. However, this
approach may be ill-suited to small sample sizes and is more

appropriate for meta-analytic designs (Cheung and Chan, 2005;
Cheung, 2014).

This paper examines four different approaches to evaluate
their power to detect an effect. The term effect in this study
refers to “a change in the correlation between two conditions
or two groups.” Although p-values are undergoing a theoretical
revision by the scientific community, they still provide a
universally recognized statistic (Goodman, 2019; Greenland,
2019). As such, both p-values and effect estimates are reported
for each method. The methods examined in this study are
Cohen’s q, Fisher’s method, LMEM, and bootstrap with effect
size estimation. A series of simulations were implemented to
test the four methods in an environment wherein correlational
strength and sample size vary from one cycle to the next. Method
performances are then discussed.

MATERIALS AND METHODS

Simulation Parameters
In the simulations used in the present study, values of the first
correlation coefficient, r1, occurred in the interval [−0.5, 0.5] in
steps of 0.01. For each value of r1, the second correlation value
r2 occurred in the interval [(r1−0.5) (r1 + 0.5)] in steps of 0.01.
For each cycle, N samples were simulated for each condition. As
such, N will be the number of samples considered. N varied from
10 to 180, in steps of 2. As our focus was on the comparison
of repeated measures (within-subject design without missing
data), the number of samples for each condition was set to be
equal; that is, N = n1 = n2. Correlation strengths and sample
sizes were chosen in accordance with cognitive psychology- and
neuroscience-like scenarios, but results can be extended to other
research fields such as medicine and social psychology. Data were
processed using MATLAB 9.2 (The Math Works Inc., Natick,
MA). Statistics obtained for each method were averaged across
values of r1 and zero-centered. Each plot shows the average
statistics (e.g., p-value, effect size) with respect to increasing
values of r2 and N, and across values of r1.

For LMEM and bootstrap models, sample data and covariate
values were randomly generated and normally distributed, using
the MatLab function randn. This led to the creation of two
distributions for the dependent variable (DV), namely X1 and X2,
with a mean µ1 = µ2 = 0 and a standard deviation σ1 = σ2 = 1.
Independent variable (IV) and N covariate values were simulated
for each condition and computed to yield the desired value of
correlation with the DV. The covariates γ1 and γ2 were obtained
as follows:

γi = σγ

(
ri ∗ χi +

√
1− r2

i ∗ ψi

)
+ µγ (1)

where µγ and σγ are the desired mean and standard deviation
of the covariate (with µγ = 0 and σγ = 1), respectively, while
ψ is a pseudo-random set of N normally distributed values.
This procedure was based on the Cholesky decomposition,
which is commonly used in Monte-Carlo simulations of
multiple correlated variables (Press et al., 1992). To note,
since experimental psychology studies the relationship between
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variables in a sample, the method used is particularly appropriate
for the case. In fact, it generates sample-level correlated data, and
not population-level correlated data which would be an odd and
non-realistic choice for simulations.

Methods for Assessing Correlation
Differences
Cohen’s q
Cohen proposed a simple method for interpreting the difference
between two correlations (Cohen, 1988). Initially, to reduce
skewness (asymmetry derived from the definition of ri in the
interval [−1, 1]), r-values were transformed to z values via the
Fisher procedure:

zi = (0.5) log
(

1+ ri

1− ri

)
(2)

Then, the absolute value of the difference between the two
z-values was computed, such that q = |z1-z2|. The value q is
the estimate of the effect size. The following intervals were
proposed by Cohen to interpret these values: q < 0.1, no effect;
0.1 ≤ q < 0.3, small effect; 0.3 ≤ q < 0.5, medium effect; q ≥ 0.5,
large effect. Since no p-value is associated with Cohen’s method,
the only statistic reported is the effect size q.

Fisher’s Method
Fisher’s method (Fisher, 1921) is used to calculate the probability
of two correlations being different, given the differences between
r-values and the size of the two samples. The null hypothesis
is that the correlation between X1 and γ1 will be the same as
the correlation between X2 and γ2 for sample sizes n1 and n2.
Correlation values r1 and r2 are converted to z-values as described
in Equation 2. The test statistic t is then calculated:

t =
(z1 − z2)

√
1/ (n1 − 3)+ 1/ (n2 − 3)

(3)

Finally, using the cumulative distribution function of t in a
standard distribution with mean µt = 0 and standard deviation
σt = 1, the p-value is calculated to assess whether the null
hypothesis can be trusted or not. Statistics reported for Fisher’s
method are the p-value and t-statistic.

Linear Mixed-Effects Model
Linear mixed-effect models (LMEM) were applied in the form
[DV ∼ IV∗condition + (1| subject)] and thus included a fixed
effect (the experimental condition), a continuous effect (the
covariate IV), and a random intercept at the subject level (1|
subject) to account for inter-individual variability. This type of
model is applied frequently in psychology and neuroscience. At
each cycle, a model was fitted using the MatLab function fitlme
and the p-value and β statistics for the interaction between the
experimental condition and the covariate were extracted.

Among applicable generalized linear models, the choice of
the LMEM over, say, ANCOVA is due to the former’s increased
flexibility and sensitivity (Schneider et al., 2015; Brysbaert and
Stevens, 2018). Of note, as the aim of the present work is to
investigate the power to predict an effect, corrections for multiple

comparisons were unnecessary. Furthermore, since within-
subject variability at the interaction level (subject: covariate)
was not simulated, the introduction of random slopes was not
necessary for the purposes of the study.

Bootstrap Method and Effect Size Estimation
The bootstrap method is a resampling technique often used to
estimate confidence intervals and allows one to approximate
the sampling distribution of a statistic (Efron and Tibshirani,
1986). In this study, we used a univariate, bias-corrected,
accelerated bootstrap with replacement (Efron, 1987) to sample
the correlation value ri. A sampling distribution was obtained
by resampling the original data k times and obtaining k
samples with sizes equal to the starting sample (Nk = N); that
is, k is the number of bootstrap cycles. A similar sampling
approach has been described for correlations (see Olkin and Finn,
1990, 1995); however, the method presented here implements
a bias-corrected bootstrap procedure that can accommodate
small sample sizes and outliers and includes an effect size
estimation.

Each cycle was bootstrapped by estimating the correlation
between the DV and covariate for each condition. Individually
bootstrapping each correlation allows the estimation of the
bootstrapped effect size for each condition, which may be
useful for descriptive purposes. After k bootstrap cycles, two
distributions of correlations were obtained for each condition
and transformed into z-values. Each distribution possessed an
associated mean and standard deviation (µz1, σz1; µz2, σz2).
These distributions were then used for analyses. For each cycle
(i.e., for each pair of r2 and N-values), the difference between the
two z-distributions was represented as indicated in Equations 4
and 5, with the effect size estimated using Cohen’s d (Lipsey and
Wilson, 2001; Ellis, 2010):

ES12 = d =
µz1 − µz2

σpooled
(4)

where

σpooled =

√
(n1 − 1) σ2

z1 + (n2 − 1) σ2
z2

n1 + n2 − 2
(5)

A Z-test was performed comparing the distribution obtained
by subtracting the two bootstrapped correlation distributions
against a zero-centered distribution, to prevent biases caused by
large sample sizes in estimating a p-value. Effect sizes (ES) can
also be interpreted in terms of the percentage of non-overlap of
the first group’s scores with those of the second group (Cohen,
1988). For example, ESs of 0.0, 0.8, and 1.7 indicate that the
distribution of scores for the first group overlapped with the
distribution of scores for the second group with 0, 47.45, and
75.4% of non-overlap, respectively.

Extension to Non-normal and Real Data
To generalize findings, the four methods were also applied on
non-normally distributed data generated by taking the absolute
values of normally distributed data, thus producing right-skewed
(positively skewed) distributions. For consistency, the procedure
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FIGURE 1 | Results of the generalized simulations using the four methods. For all the subfigures, the horizontal axis represents the sample size, while the vertical
axis represents values of r2 compared to r1. The third dimension (heat) represents the effect size or the p-value of each method (A) Results of the simulations using
Cohen’s q. The effect sizes are averaged across values of r1. Black horizontal lines are used to separate the different levels of effect: small (blue), medium (cyan),
large (green). (B,C) Results of the simulations using Fisher’s method. Statistics are averaged across values of r1. T-statistics are reported on the left panel, p-values
on the right panel. Dashed and dotted lines represent thresholds of p < 0.05 and p < 0.01, respectively. (D,E) Results of the simulations using mixed-effect models
(LMEM). Statistics are averaged across values of r1. β values for the interaction condition: covariate divided by their standard errors (SE) are reported on the left
panel, corresponding p-values are reported on the right panel. (F,G) Results of the simulations using bootstrap (Boot + ES). Statistics are averaged across values of
r1. Effect sizes (Cohens’ d) are reported on the left panel, corresponding p-values are reported on the right panel.
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adopted for the analyses of non-normally distributed data was the
same as the one reported above.

Additionally, the four methods were also applied on
behavioral data from the Human Connectome Project (HCP)
database.1 More specifically, the same four methods described
above were applied on behavioral data from 100 unrelated
subjects which performed a language task (Binder et al., 2011).
The task consists of two runs interleaving four blocks of a
story condition and four blocks of a math condition. The story
blocks present participants with brief auditory stories followed
by a two-alternatives choice question in which participants are
questioned about the topic of the story. The math task is adaptive
with the aim of maintaining a similar level of difficulty and
engagement across participants. The individual reaction time in
the two conditions of the language task (within-subject levels:
story, math) was used as the first variable. The second variable
for correlation was taken from the battery of behavioral and
individual difference measures and consisted of the age-adjusted
score of processing speed as measured using the NIH Toolbox.
This test measures the speed of cognitive processing of visually
presented pairs of stimuli (Gershon et al., 2010). These measures
were selected for the correlational analyses as they bring reliable
and stable measurements on the population (Carlozzi et al., 2015;
Wilson et al., 2016). Since the total sample size was N = 100, a
Monte Carlo procedure was employed selecting randomly subsets
of participants (from 10 to 100, with intervals of 10). Subgroups
associated with each sample size ([10 20 30 40 50 60 70 80 90 100])
were analyzed 100 times, each time varying the randomly chosen
subset of subjects.

RESULTS

Results of the simulations are reported in Figure 1. In these
plots, the x- and y-axes represent sample size and correlation
difference, respectively, between r1 and r2. Values are averaged
across different levels of r1 tested.

Figure 1A shows the results of Cohen’s q method, which
returns an estimate of the effect (q) independent from the
sample size N, reflecting only the difference between correlations.
Empirically, small, medium, and large effects are defined based
upon the magnitude of q. The interpretation of the result needs
to be contextualized, however; a large difference between two
correlations in a small sample (N < 10) is not systematically
trustworthy. Conversely, a small effect might still be an important
one (Rosnow and Rosenthal, 1989).

Figures 1B,C show p-values and t-statistics obtained using
Fisher’s method. The test did not return significant values
for relatively small sample sizes, even those with large
differences between r1 and r2 (1r = 0.4). However, for
larger samples (N = 40), this method failed to reject the
null hypothesis as indicated by 1r = 0.15. In the formula
used for the t-statistic, sample size increases cause the test
statistics to increase logarithmically, with the p-values showing
a logarithmic decrease.

1balsa.wustl.edu

The mixed model analysis (LMEM) results are reported in
Figures 1D,E. Like ANCOVA, mixed models are likely to fail to
reject the null hypothesis even in the presence of a large difference
between r1 and r2, as it interprets this difference as not being
significant. The failure to reject the null hypothesis happens even
with adequate sample sizes, such as an N of 40, by neuroscience
standards. However, an advantage of LMEMs is that the means
and standard deviations of the original data are retained. Results
depend upon how the data points are distributed, and graphs tend
to be more scattered than those described in previous paragraphs.

The p-value and effect size d obtained with bootstrapping
simulations are reported in Figures 1F,G. Like in previous
methods, N and r2 vary while r1 is fixed. The number (k)
of random samplings was set to 200 (k = 200). Equivalent
results were obtained for pilot simulations with k = 500 and
k = 1,000; however, as these simulations included a reduced
number of cycles for computational purposes, their results are not
included here. As for Cohen’s method, the bootstrap approach
provides an effect size estimation but not a p-value. Moreover,
the procedure is sensitive to variability in the data, as indicated
by the smoothness of the colors.

A post hoc comparison among p-values gathered using Fisher,
LMEM, and bootstrap methods is reported in Figure 2. The
bootstrap method was relatively unaffected by the sample size,
failing to reject more frequently the null hypothesis only with
small samples (e.g., N < 20). Conversely, Fisher and LMEM failed
to reject the null hypothesis even with significant differences
between correlations, whereas the inverse bias was observed
with large samples.

Since it may be pointed out that the results described until now
may be based on averages across values of r1, an example with a
specific value of r1 (r1 = 0.30) is illustrated in Figure 3. On the
one hand, these results confirm the observations made until this
point: Cohen’s method ignores sample size; Cohen’s and Fisher’s
methods do not account for variability in the data structure;
Fisher’s method and LMEM tend to fail to reject the null

FIGURE 2 | Comparison among Fisher (in blue), LMEM (in red), and bootstrap
(in green) p-values. Thresholds of p = 0.05 (dashed lines) and p = 0.01 (dotted
lines) are represented for each method. Only the lower half of the values are
reported here for visual clarity.
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FIGURE 3 | Results of the simulations using the four methods, with the first value of correlation fixed to r1 = 0.30. The axes, color scheme, and significance lines are
the same as used in Figure 1. (A) Cohen’s method. (B,C) Fisher’s method. (D,E) LMEM. (F,G) Bootstrap followed by effect size estimation.

Frontiers in Psychology | www.frontiersin.org 6 May 2022 | Volume 13 | Article 860213

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-860213 May 20, 2022 Time: 14:0 # 7

Di Plinio Testing Correlation Across Experimental Conditions

hypothesis even with significant differences in the correlational
strength. However, the presence of overestimated effect sizes (see
for example some points with N < 20 in Figure 3F for LMEM)
shows that the variability in the data structure may endanger the
estimation of fixed-effects statistics in mixed-models (Faraway,
2006), probably falling on Simpson’s paradoxes (Good and Mittal,
1987). The bootstrap procedure still accounted for variability in
the data, but these paradoxical cases were not observed. This
eventually happens because the bootstrap procedure limits the
pitfalls of classical inferences methods (Killeen, 2005).

Results from the analysis of non-normally distributed
data show overlapping results and are reported in
Supplementary Material.

Finally, results from the analysis of real data confirm a
different power of the four methods in detecting a reliable
effect. Although the predictable effect of the processing speed on
the readiness to respond to math problems, only the bootstrap
procedure followed by the effect size estimation allowed to
reject the null hypothesis, showing that the reaction time is
negatively associated with processing speed only in the math
condition of the language task (Table 1). Additionally, with this
method it is observable a linear increase of the effect size with
the sample size, which is a desirable propriety of a statistical
method for studying interindividual variability in psychometric
and neuroscientific experiments.

DISCUSSION

The present study compared vintage and modern statistical
methods used to evaluate differences across correlations in the
fields of psychology, medicine, and related disciplines.

A direct comparison between correlation coefficients as
provided by Cohen’s method can be helpful, given that the
calculation only requires the two correlation values (Cohen,
1988). However, Cohen’s method estimates the effect magnitude
irrespectively of sample size. Conversely, the effect estimated

TABLE 1 | Results from the correlational analyses of the real dataset including a
task-performance variable (reaction time during language-story and
language-math task conditions) and a cognitive “baseline” variable (processing
speed as assessed using the NIH Toolbox).

Cohen Fisher LMEM Boot + ES

N q t-stat p β p d p

10 0.33 0.42 0.59 4.63 0.47 0.97 0.065

20 0.29 0.80 0.48 6.54 0.39 1.37 0.103

30 0.23 0.83 0.46 5.52 0.36 1.38 0.094

40 0.23 0.99 0.38 5.93 0.29 1.59 0.052

50 0.23 1.11 0.31 5.81 0.22 1.81 0.024

60 0.24 1.26 0.25 5.96 0.16 2.00 0.009

70 0.23 1.31 0.22 5.80 0.14 2.08 0.009

80 0.24 1.46 0.16 6.06 0.09 2.31 0.002

90 0.23 1.48 0.15 5.79 0.08 2.34 0.002

100 0.22 1.56 0.12 5.81 0.06 2.45 <0.001

Bold values indicate significant effects (p < 0.05).

by Fisher’s method increases with increasing sample size.
Although these two methods can be useful when the original
data structure is unavailable, neither Fisher’s nor Cohen’s
method consider potential variability in the data. The effects
estimated with these methods should be carefully contextualized
and interpreted.

It has been suggested that LMEMs may generate p-values that
are too small, possibly overestimating the importance of a given
effect (Faraway, 2006). The primary purpose of the LMEM is
to use data from a continuous variable to estimate differences
between levels of a fixed factor, including repeated-measures
or longitudinal scenarios (Robinson, 1991). Given the results
presented here, LMEM (and other generalized linear models, like
the ANCOVA) may be useful for explorative purposes. Still, they
may not be the best choice if the aim is to test the difference
between the two correlations. The presence of overestimated
effect sizes for LMEM suggested possible miscalculation on fixed-
effects coefficients in mixed-models (Good and Mittal, 1987;
Faraway, 2006).

The bootstrap procedure followed by a test to determine effect
size accurately estimated the difference between the strength of
the two correlations. Key features of this method are that it
considers the sample size and the variability of the initial data,
returns a descriptive measure of the difference between the two
correlations, and provides a p-value not biased by small or large
sample sizes and not affected by the pitfalls of classical inferences
methods (Killeen, 2005).

Although Fisher, LMEM, and bootstrap methods returned
a p-value, which is traditionally used to assess the presence
or absence of an effect, the debate about how and even if
these statistics should be used persists (Goodman, 2019). Due
to logistical constraints, certain seminal cognitive neuroimaging
studies dealt with relatively small samples (Lindquist et al.,
2012; Friston, 2013). Such sample sizes may not be enough to
detect significant differences using linear regression (LMEM).
Recently, p-values have been shown to be misleading measures
of the strength of the evidence against the null hypothesis
(Berger and Sellke, 1987; Hupé, 2015); also, they do not
directly provide an index of effect magnitude (Sullivan and
Feinn, 2012). The bootstrap approach provided a descriptive
effect size close to the effect estimated by mixed models. The
efficiency of the bootstrap approach in this study is in line
with the trend toward p-independent assays in psychology
(Ellis, 2010; Kelley and Preacher, 2012; Tabachnick and Fidell,
2012; Nichols et al., 2017). Furthermore, implementing a z-test
provided an unbiased, universally used null-hypothesis statistic
that may still be useful for p-generation researchers (Greenland,
2019; Ioannidis, 2019). Bootstrapping correlations have been
discussed extensively in the literature, and researchers have
noted that monotonic, transformation invariant procedures like
the bootstrap are ill-suited to estimating confidence intervals
or testing a null hypothesis (Lunneborg, 1985; Efron and
Tibshirani, 1986; Rasmussen, 1987; Efron, 1988; Strube, 1988;
Olkin and Finn, 1995). However, the procedure presented here
and compared with other methods represents a slightly new
approach that combines bootstrap with effect size estimation and
null-hypothesis testing.
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Importantly, the application to real data confirmed the
usefulness of the bootstrap approach. In fact, the Monte-Carlo
procedure revealed that the bootstrap followed by the effect
size estimation was the only method able to reject the null
hypothesis across many sample sizes. Through this method, that
the cognitive trait of processing speed significantly predicted
reaction time during the “math” condition but not during the
“story” condition of a language task. Furthermore, only with
the bootstrap method followed by the effect size estimation the
strength of the effect regularly increased with increasing sample
sizes, reflecting the accumulation of evidence with increasing
levels of information.

CONCLUSION

The present study evaluated the efficacy of four different methods
for investigating differences in correlations across experimental
conditions. Bootstrapping followed by effect size estimation was
the most successful, providing a statistic that accounted for
both inter-individual and sample size variability in comparing
correlation coefficients between experimental conditions. This
method is easily implementable in MatLab through the bootes
function made available online by the author at MathWorks.

Although these findings have implications for researchers
interested in comparing the magnitude of correlations between
different experimental conditions, this study has a significant
limitation that must be acknowledged. In fact, the bootstrap
procedure presented here works well for within-subject analyses
and may be applied without complications to between-subjects
paradigms but is not yet applicable to mixed experimental
designs which include both between- and within-subject
factors. Future studies should evaluate these and other

methods in such alternative situations to uncover other easily
implemented, bias-free tools for researchers in psychology,
neuroscience, and medicine.
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