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Pursuing a precise, focused train of thought requires cognitive effort. Even more effort is

necessary when more alternatives need to be considered or when the imagined situation

becomes more complex. Cognitive resources available to us limit the cognitive effort we

can spend. In line with previous work, an information-theoretic, Bayesian brain approach

to cognitive effort is pursued: to solve tasks in our environment, our brain needs to

invest information, that is, negative entropy, to impose structure, or focus, away from

a uniform structure or other task-incompatible, latent structures. To get a more complete

formalization of cognitive effort, a resourceful event-predictive inference model (REPI) is

introduced, which offers computational and algorithmic explanations about the latent

structure of our generative models, the active inference dynamics that unfold within, and

the cognitive effort required to steer the dynamics—to, for example, purposefully process

sensory signals, decide on responses, and invoke their execution. REPI suggests that we

invest cognitive resources to infer preparatory priors, activate responses, and anticipate

action consequences. Due to our limited resources, though, the inference dynamics

are prone to task-irrelevant distractions. For example, the task-irrelevant side of the

imperative stimulus causes the Simon effect and, due to similar reasons, we fail to

optimally switch between tasks. An actual model implementation simulates such task

interactions and offers first estimates of the involved cognitive effort. The approach may

be further studied and promises to offer deeper explanations about why we get quickly

exhausted from multitasking, how we are influenced by irrelevant stimulus modalities,

why we exhibit magnitude interference, and, during social interactions, why we often fail

to take the perspective of others into account.

Keywords: grounded cognition, cognitive resources, cognitive effort, predictive coding, active inference, event-

predictive cognition

1. INTRODUCTION

Our cognitive abilities are limited.We are forgetful in so many ways, lazy, and often stuck with sub-
optimal task solutions. Dual- or even multi-tasking is often extremely effortful and error-prone,
unless one of the tasks can be done fully automatically. Why can’t we do it? The answer is that
our “cognitive resources” are limited, restricting the “cognitive effort” we can spend on the current
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tasks at hand. Some of us may be satisfied with such an answer.
Clearly though, neither “cognitive” nor “resources” nor “effort”
are really well-defined. This article attempts to scrutinize what
“cognitive resources” and “cognitive effort” are.

Recent insights from cognitive science imply that our minds’
thoughts—and thus our minds’ mental content—while being
awake, do not only cover the present itself, but also the past
and future to varying extents (Buckner and Carroll, 2007; Butz
et al., 2019, 2021; Stawarczyk et al., 2021). Meanwhile, these
thoughts are structured in the form of event-predictive encodings
(Rao and Ballard, 1999; Hommel et al., 2001; Zacks and Tversky,
2001; Zacks et al., 2007; Frings et al., 2020), giving rise to event-
predictive cognition (EPCog, cf. Franklin et al., 2020; Zacks, 2020;
Baldwin and Kosie, 2021; Butz et al., 2021; Kuperberg, 2021).
EPCog essentially suggests that we hold thoughts about events,
event progressions, and characteristics of the scenes within which
these events unfold. When considering a particular event, we
tend to temporally bind event-characterizing encodings of the
entities, the interaction dynamics, and typical starting and ending
conditions into an event-predictive attractor.

Meanwhile, we actively explore these events and progressions
thereof by means of active inference (ActInf, cf. Friston, 2009;
Friston et al., 2018), which formalizes (i) short-term state- and
event-inference (inferring what is going on), (ii) goal-directed
planning, reasoning, and behavioral control (inferring what
to do), as well as (iii) longer-term, retrospective behavioral
optimization and model learning (inferring useful memory
structures). Derived from the free energy principle (Friston,
2009), ActInf, as a process theory, essentially formalizes the
brain’s effort to minimize the conjoint effort of brain and body to
survive, that is, to maintain an inner, bodily-grounded balance,
akin to a highly complex autopoietic system (Maturana and
Varela, 1980; Butz, 2008; Friston et al., 2015b, 2018). In typical
psychological paradigms, this effort may be closely related to a
simple cost-benefit analysis to find solutions to particular tasks
with minimum effort (Wang et al., 2021).

Given EPCog encodings, ActInf formalizes how these
predictive encodings are dynamically activated and bound
together. Current activation densities essentially encode the
considered events and event progressions within partially defined
scenes (Butz, 2016; Schrodt et al., 2017; Gumbsch et al., 2021a;
Stegemann-Philipps and Butz, 2021; Achimova et al., 2022). As
a result, ActInf offers a quantitative formalism to model the
goal-oriented direction of attention, the dynamic maintenance
of active working memory content, dynamic reasoning and
decision making, and a purposeful selection, activation, and
control of behavior (Gumbsch et al., 2021a,b). Conjoint with
event-predictive cognition, ActInf flexibly binds components
into Event-Gestalten, integrates them into scenes, projects them
into potential futures, and controls their dynamic interactions in
a goal-directed, homeostasis-oriented manner.

In accordance with these theories, cognitive effort may be
formalized by means of a Resourceful Event-Predictive Inference
(REPI) model. REPI is closely related to previous approaches
that have equated cognitive effort with the information needed
to change prior into posterior densities, given some source
of information (Ortega and Braun, 2013; Genewein et al.,

2015; Zenon et al., 2019). Beyond these previous approaches,
though, REPI integrates event-predictive encoding structures
into the formalism and offers an actual implementation of
the inference dynamics. We thus can simulate several basic
findings—such as the Simon effect and task switching costs—
and offer suggestions for imminent model expansions. Moreover,
we can measure the cognitive, task-oriented effort explicitly
while the dynamics unfold. Dynamic processing in REPI is also
similar to previous dynamic processing models, which did not
explicitly relate the simualted processing dynamics to cognitive
effort. For example, Steyvers et al. (2019) simulate dynamic
task and response side densities. The model yields the basic
task switching effect. Moreover, it can simulate training effects
by increasing an adaption rate. Apart from the relation to
cognitive effort, we simulate cognitive processing dynamics in
the full processing pipeline, including stimulus and stimulus-bias
estimation densities.

The remainder of this work details how this cognitive effort
may be well-approximated by a mixture of computational-
algorithmic processes, which control our thoughts. Thereby,
the nature of the structures co-determines the resources
needed to execute a particular task: the more compressed and
readily available particular task-relevant structures are, the less
cognitive resources will be required. In this paper, first more
detailed background is provided on related work and on the
main motivation for proposing REPI. Next, REPI is detailed
on a computational level (Marr, 1982) and an algorithmic
implementation is introduced. The system implementation
generates behavioral results that yield the SIMON effect and task
switching behavior. Other well-known psychological phenomena
may be explained with REPI, including the STROOP, SNARC,
and crossmodal interaction effects as well as cognitive limitations
in social interactions. A final discussion concludes the work.

2. INFORMATION AS EFFORT

The perspective that our mind and body somewhat invest
information to survive dates rather far back. From the very
general perspective of thermodynamics and quantummechanics,
Schroedinger (1944) already proposed that life itself may be
characterized as the active intake of negative entropy, thus
counteracting disintegration. Only over the last decade, however,
several researchers have started formalizing how exactly our
brains may invest information as a resource to elicit self-
motivated, goal-directed decisions and behavior (Ortega and
Braun, 2013; Genewein et al., 2015; Zenon et al., 2019).

2.1. Computational Information Processing
Effort
The perspective that planning, reasoning, decision making,
and control requires information processing resources can be
partially motivated by, but it can also partially explain, the
concept of bounded rationality (Bratman, 1987; Friston et al.,
2013; Lieder and Griffiths, 2020). Bounded rationality essentially
emphasizes that limited cognitive capacities prevent us from
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thinking problems fully through, deeming our decisions sub-
optimal (Simon, 1955). To save resources, we employ heuristics
and often act habitually rather than in a deliberate, goal-directed
manner, which leads to typical errors in our reasoning and
decision making (Kahneman, 2003; Gigerenzer and Gaissmaier,
2011). Thus, sub-optimal behavior is caused by our limited
information processing resources, which struggle to process
more complex tasks optimally due to their higher demand of
information processing resources.

Ortega and Braun (2013) proposed a free energy-based
formalization of bounded rational decision making that is
directly derived from thermodynamics. Decision making
requires to steer distributions away from a prior distribution
toward a decision-peaked distribution. Changing the distribution
requires information processing resources (e.g., to solve a task),
while its investment is rectified by the corresponding expected
utility gain (e.g., actually solving the task). Genewein et al.
(2015) enhanced this model by enabling it to selectively recruit
(provided) hierarchical encodings to further minimize cognitive
effort. For example, the group of food items or dangerous
animals is recruited, subsuming the entities that match with a
respective interaction class, leading to a more efficient decision
making process.

Focusing only on the cost of cognition—implicitly assuming
that the effort will be worth the while and thus maximum
available effort will be spent—(Zenon et al., 2019) formalize an
optimization model that consists of three summands: the mutual
information I between (i) the expected and actually perceived
state of the environment, (ii) the expected prior (preparatory)
response and actual posterior response, given the actually
perceived state, and (iii) the assumed context T dependent
stimulus-response mapping vs. the actual posterior response.
The formalism thus assumes independency between stimulus
processing effort, task-dependent response effort, and context-
dependent response effort. The authors then illustratively address
inferences in the Strop task and also discuss the consequences in
task switching and multitasking, which we will follow up upon
below.

REPI enhances themodel of Zenon et al. (2019) and Genewein
et al. (2015) in that it assumes an inner, event-predictive,
generativemodel, which contains distributed predictive encoding
densities. In line with Ortega and Braun (2013) and Zenon et al.
(2019), REPI equates cognitive effort with the focused activation
of current mental content away from both residual, previous task
priors and latent, habitual priors. The mental content, however,
is made more explicit and the active inference dynamics as well
as the involved effort is simulated as a process model.

2.2. Neuro-Physiological Basis
While this paper does not address the question how cognitive
effort is actually spent in the brain from a neuro-physiological
perspective, it may generally be assumed that evolution has
designed our brains to generate flexible and highly adaptive
behavior—including socially-interactive behavior—in a very
resource-effective manner. Accordingly, neuro-physiological
evidence is accumulating that synchronized and coordinated
neural firing is indeed effortful. It appears that processing

resources are dominantly determined by the effort to generate
and transmit signals via biochemical dynamics and neural spikes
(Laughlin, 2001; Sengupta et al., 2010). Accordingly, energy is
required for themaintenance of a wakeful state, in which neurons
communicate with each other across cortical and sub-cortical
areas by selective, rhythmic synchronization and coordination
(Engel et al., 2001; Bastos et al., 2015; Fries, 2015; Daume et al.,
2017; Misselhorn et al., 2019).

These and related insights are in agreement with the
perspective that cognitive effort is needed to counter uncertainty,
which, in neuro-physiological terms, is closely related to
focusing the mind by means of precise, coordinated neural and
biochemical activities (Daume et al., 2017; Misselhorn et al.,
2019). Most recent research has even linked such resource
constraints to predictive coding theory, showing that resource-
efficient encodings are predictive and develop in recurrent neural
networks naturally, when the goal is to solve a particular tasks
resource-efficiently (Ali et al., 2021).

In sum, it may be said that the current’s mind focus
with its neuro-physiological activities essentially constitutes
current mental content, Thereby, the maintenance of a stronger
processing focus and dynamic refocusing is effortful. In order to
make the mental content more explicit on a computational and
algorithmic level, though, the active inference principle conjoint
with event-predictive cognition offer suggestions.

3. INFERENCE AND INFORMATION
PROCESSING

To maximize adaptivity and flexibility, computational resources
need to be directed toward those considerations that are, or may
soon or suddenly become, behaviorally relevant (Butz et al., 2003;
Butz, 2008; Butz and Pezzulo, 2008; Pezzulo et al., 2008). Various
research strands have put forward that planning and reasoning
may be viewed as inference processes, essentially subsuming
model-free and model-based reinforcement learning, visual
perception, and even social cognition (Rao and Ballard, 1999;
Botvinick et al., 2009; Friston, 2009; Botvinick and Toussaint,
2012; Baker et al., 2017).

The involved perception, planning, and motor control
mechanisms can be formalized by means of the active inference
(ActInf) principle. Additionally, though, inference requires
information processing resources, which is again intrinsically
linked to ActInf.

3.1. Active Inference
ActInf essentially highlights that our brain predicts the future
given its past experiences, even including its genetically-gathered
experiences (Hohwy, 2013; Friston et al., 2015a; Clark, 2016).
Importantly, though, our brain does not predict the future—or
generate models of our environment—for its own sake. Rather,
it does so for optimizing the generation of (highly adaptive)
behavior, which is elicited to maintain and foster both internal
homeostasis and model consistency (Friston et al., 2015b). As a
result, the developing predictive encodings, which constitute our
individual latent beliefs about the world, serve a self-motivated
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purpose. Together, our individual ActInf processes, which unfold
within our individual predictive encoding structures, generate
our individual current state of mind.

In relation to behavioral psychology, ActInf offers a
formalization of the ideomotor principle: initial evolutionary-
determined, reactive behavior becomes associated with its effects.
Later, behavior is elicited by the desire to generate the associated
effects again under different but related circumstances, leading to
further learning (Hoffmann, 1993, 2003; Stock and Stock, 2004;
Butz and Kutter, 2017). ActInf thus formalizes how internal
generative structures inevitably reflect the (hidden) outside
reality—or at least those components of reality that tend to affect
the well-being and mere existence of the living being in question
(Friston, 2009; Butz and Kutter, 2017).

The ActInf formalization subsumes three distinct, highly
interactive inference processes:

1. Fast, prospective ActInf, which infers behavior from
projections into the future, aiming at minimizing expected
free energy, which quantifies both expected uncertainty as
well as homeostasis.

2. Fast, retrospective inference to adapt current model activities
to the gathered (attended-to) sensory information and the
hidden causes, which (as the brain’s generative model believes)
seem to explain away the sensory information (including, for
example, the behavior of others, physical objects, etc.).

3. Much slower, longer-term, consolidating inference, which
refines, modifies, and extends the brain’s generative model
itself, that is, its internal predictive encoding structures.
Due to the free energy formalization, the process will focus
learning on those experienced aspects, episodes, events, and
components thereof that appear relevant to decrease (future)
free energy.

In the REPImodel, we focus on simulating the first two processes,
providing presumably learned predictive encoding structures as
the available generative model.

Since the reminder of this work focuses on the inference
of behavior and involved effort, a formalization of prospective
ActInf will be useful. To do so, it is necessary to specify the to-
be-minimized free energy (Friston et al., 2015b, 2018; Gumbsch
et al., 2021a). Given a particular policy π , which generates actions
a in the light of the current belief state bt and system needs
nt considering a particular, possibly adaptive, temporal horizon
τ = {t, t + 1, t + 2, ..., t + T} with depth T, the anticipated free
energy when pursuing policy π can be written as:

F̂E(π , τ , bt , nt) =KL
[
Q

(
oτ | bt ,π

)
|| P

(
oτ | bt , nt

)]

︸ ︷︷ ︸
predicted divergence from desired states

+ EQ(bτ |bt ,π)
[
H

[
P
(
oτ | bτ

)] ]

︸ ︷︷ ︸
predicted uncertainty

, (1)

where prior densities are denoted by P while expected posterior
densities are denoted by Q. The KL divergence is calculated
as the expected divergence of posterior observation densities,
when following policy π starting from belief state bt , from

the prior desired observation densities P
(
oτ | bt , nt

)
over the

temporal horizon τ . Meanwhile, predicted uncertainty quantifies
the entropy H over expected future observations dependent on
expected policy-dependent future belief states EQ(bτ |bt ,π), when
following policy π starting from belief state bt .

Driven by the purpose to minimize free energy, and thus to
maintain internal structure, Equation (1) essentially quantifies a
payoff, which may be equated with the decrease in free energy
compared to the possible development of free energy given
inactivity.

3.2. Information Processing Cost
Meanwhile, though, invoking activities and focus will come at
a cost, which has been equated with the change from a prior to
a posterior distribution in terms of KL divergences (Ortega and
Braun, 2013; Genewein et al., 2015; Zenon et al., 2019):

C(P,Q) = KL
[
Q(x|e)||P(x)

]
, (2)

which quantifies the investment cost of changing a prior
probability density over some representational generally
continuous space x ∈ R into a posterior distribution over this
space given a source of evidence e.

When furthermore assuming a density E over these
evidences—be they sensory information about body or
environment or also internal model expectations or motor
activity—a more accurate cost estimate takes the weighted
mean over the possible evidences, yielding a form of mutual
information:

C(P,Q,E) =
∑

e∈E

p(e)KL
[
Q(x|e)||P(x)

]
= IQ(E, P). (3)

According to this equation, the cognitive effort to direct behavior
and thoughts toward desired states and away from expected
observational uncertainty (cf. Equation 1) can be equated
with the mutual information IQ between the state-informative
evidence density E, which we here assume to be discrete for
simplicity reasons, and state estimation prior P(x), given the
conditional model Q, which maps evidence onto posterior
state estimations.

The system then ideally finds the optimal behavioral policy π∗

that minimizes anticipated cognitive costs, that is, information
investment costs, and anticipated free energy. When the gain
in free energy minimization is larger than the cognitive costs,
the effort is worth its while. Effort costs and utility gains thus
need to be well-balanced. Accordingly, a weighting factor has
been introduced as a Lagrangian multiplier that factors the
optimization cost into the expected utility gain (Ortega and
Braun, 2013), allowing an adaption in how much cognitive
investment is currently worth the while. This factor may
essentially be related to the current cognitive resources available
to an agent, which is related to inner homeostasis and thus
intrinsically part of Equation 1. In the future, the fixed horizon
in Equation 1 may thus be subsumed by a dynamic horizon
that may optimally take planning costs and available resources
into account (cf. Gumbsch et al. 2021a for a similar proposal).
For now, a simplifying alternative to balancing the two aspects
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lies in focusing on solving one particular task and assuming
that maximal available cognitive effort is spent on solving it at
any current point in time. In this way, cognitive costs dominate
behavioral and cognitive processing and decision making: the
larger the needed density changes to process a task, the slower
the behavioral decision making.

To summarize: there is compelling evidence that our brain is
developing generative predictive model(s) by means of ActInf.
Concurrently, the developing models enable ActInf to focus
our computational resources on anticipated needs. Combined
with information processing cost considerations, ActInf thus
controls how computational resources are invested, considering
the future in the light of the present, the current needs, and
our so-far gained behavioral and model-predictive knowledge.
It continuously adapts the currently active internal models
in the light of the accumulating evidence, develops these
models further over time, and determines current attentional
dynamics, reasoning, decision making, and behavioral control by
attempting to minimize expected free energy (Equation 1).

The biggest criticism on ActInf and the information cost
formalization from the cognitive science side lies in the testability
and falsifiability of the involved formalism. This is particularly
the case because the involved generative model is not specified.
Indeed, ActInf may play out not only during ontogenetic
development and the hear-and-now, but even on evolutionary
time-scales, creating particularly well-suited bodily properties
(such as our hands), developmental pathways (such as our
brains’ modular structure), and consequent inductive learning
biases (Pfeifer and Bongard, 2006; Butz and Kutter, 2017)—
all influencing generative model development. We thus now
scrutinize likely properties of the developing generative model.

4. EVENT-PREDICTIVE STRUCTURES

EPCog emphasizes that event-predictive encodings are
particularly prominent in our brain, as suggested from various
disciplinary and interdisciplinary perspectives (Butz et al., 2021).
Coming from the developmental psychology side, for example,
Dare Baldwin and Jessica Kosie emphasize that events are
inferred from our sensorimotor experiences:

“Events–the experiences we think we are having and recall
having had—are constructed; they are not what actually occurs.
What occurs is ongoing dynamic, multidimensional, sensory flow,
which is somehow transformed via psychological processes into
structured, describable, memorable units of experience.” (p.79,
Baldwin and Kosie, 2021)

In relation to ActInf, we appear to learn to construct progressively
more abstract event-predictive structures in a self-motivated
manner. Over time, we even learn to express some of these
structures via language. From an evolutionary, cognitive effort-
oriented perspective, it may be said that over the course of
our lifetime our brain attempts to minimize its cognitive effort
to life a “successful” life (ultimately from an evolutionary
perspective Darwin 1859; Dawkins 1976). To succeed in our

challenging social and cultural cooperative and competitive
world, it appears that evolution has given our brains the
tendency, or inductive learning bias, to compress our experiences
into abstract, conceptual, symbolizable structures (Deacon, 1997;
Butz and Kutter, 2017).

In behavioral psychological research, event-files have been
characterized as behavioral units that commonly encode
actions with their consequences, allowing the triggering of
actions by their anticipated effects (Hommel et al., 2001). In
more observation-oriented event segmentation studies, strong
commonalities have been identified in segmenting movies into
event units at various levels of granularity (Zacks and Tversky,
2001; Zacks et al., 2007). Meanwhile, memory research has shown
that events are memorized as units of experience, while event
boundaries characterize predictably unpredictable decisions, for
example, of what a person is going to do next after having finished
a particular (sub-)task (Baldwin and Kosie, 2021; Kuperberg,
2021). On the language level, events constitute a critical structural
component not only in research on grammar and semantics,
but also in studies on metaphors and analogies (Lakoff and
Johnson, 1980; Gentner and Markman, 1998; Pietroski, 2000;
Gehrke and McNally, 2019; Ünal et al., 2021). Encompassing
cognitive theories have also used the event concept extensively,
such as the theory of conceptual spaces and the geometry of
meaning (Gärdenfors, 2000, 2014).

Recent more explicit theories on EPCog have proposed that
events consist of multiple, event-characterizing components
(Butz, 2016; Butz et al., 2021):

• actions as well as other forces, which dynamically influence the
event dynamics;

• entities involved in the event including their roles (e.g., agent,
recipient, tool) and other critical properties (e.g., agentiveness,
material properties);

• spatiotemporal relations and dynamics between the involved
entities while the event unfolds;

• when agents are involved, intentions that trigger
particular behavior.

These components need to be flexibly bound into current
events, which are then characterized and constituted by their
components and their interactions. The required binding process
appears to be biochemically effortful, as it requires the selective
synchronization of various brain areas, effectively binding the
involved components and spatiotemporal dynamics into event
structures (Engel et al., 2001; Buckner and Carroll, 2007; Fries,
2015; Daume et al., 2017; Misselhorn et al., 2019; Frings et al.,
2020; Stawarczyk et al., 2021).

Events can be closely related to scripts in traditional cognitive
science. Moreover, research on schema structures is closely
related. In these cases, though, mostly linear, well-ordered,
and often fully symbolic structures were assumed. Events
seem to be more flexible than this, as recently highlighted
from various research perspectives (Elman and McRae, 2019;
Baldwin and Kosie, 2021; Butz et al., 2021; Kuperberg, 2021;
McRae et al., 2021). That is, the dynamic construction and
activation of events can unfold in highly varying manners.
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On the one hand, it is stimulated bottom-up by the outside
environment while inferring the currently activated internal
generative model. On the other hand, it is controlled top-
down, driven by current and anticipated, task-oriented, bodily,
motivational, and emotional needs. The dynamic and selective
activations, driven by the ActInf principle, essentially correspond
to the dynamic consideration of the following conceptual
questions: Which behaviorally relevant entities are present and
which events dynamically unfold in the outside environment?
Which behavioral and other counterfactual alternatives should
be considered? Which dynamical interaction consequences may
be relevant?

To be able to encode more complex event and event
progressions, scene embeddings offer additional support. The
ActInf of critical scene-characterizing properties, in which
currently considered events are embedded, may constitute a
hallmark of our imagination. We all know this rather well when
reading a fiction book. If the book is good and we are in the
right mind set, our imagination creates (abstract) scenes and
fills-in unmentioned aspects with most plausible components—
augmenting the stories with deeper gist, background, intentions,
and emotions. There is evidence that network activity dynamics
unfold within a default network, which appears to both maintain
an actual event-specific thought and coordinate switching
dynamics between thoughts (Buckner and Carroll, 2007; Buckner
et al., 2008; Stawarczyk et al., 2021). The REPI model, which
we introduced in the following section, essentially mimics such
dynamics on an admittedly still rather simple level.

5. RESOURCEFUL EVENT-PREDICTIVE
INFERENCE

REPI integrates formalizations of cognitive effort and ActInf
with the EPCog perspective. That is, REPI assumes that event-
predictive ActInf strives to continuously maintain and infer
the currently deemed relevant event-predictive encodings about,
and interactions with, the outside environment. Moreover,
ActInf controls anticipatory and reflective event dynamics as
well as switches between events while accounting for the
involved cognitive effort.Meanwhile, ActInf will tend tomaintain
multiple, possibly competitive, event hypotheses in parallel, for
example, when facing a complex problem with a yet unknown
problem solution or when pursuing task switching.

REPI equates cognitive effort with the effort to dynamically
activate precise event-predictive encodings via active
inference, including retrospective, prospective, alternative,
and counterfactual encodings. The effort essentially lies in
adapting internal activities and choosing behavioral activities
for the minimization of both task-respective divergence and
observational uncertainty. Meanwhile, theories of event-
predictive cognition suggest that the involved activities are
constituted by interactive, event predictive codes, which predict
not only the unfolding stimulus dynamics but also each
others’ dynamics.

Because the adaptation processes fundamentally depend on
the current availability of (event-) predictive encodings, a

particular task will be solved the easier the more task-concrete
encoding are available. Vice versa, the more unusual a particular
task is, that is, the more incompatible required task responses
are to the so-far learned predictive encodings, the harder it
will be to inhibit the learned encodings and to activate current
task-relevant components.

5.1. Preparation and Processing
Information Effort
Considering the effort of focusing densities in relation to EPCog,
it will be effortful to selectively activate precise event-predictions,
or foci, away from previous foci as well as from uncertainty and
general lethargy. That is, cognitive resources are needed both
to activate new foci, to deactivate previous ones, and to invoke
structure away from uncertainty, that is, away from a uniform
distribution (maximal entropy).

Because the ease of activating particular densities will depend
on the (i.e., learned) predictive encoding structures available, the
more unusual a particular event is, the more effortful it will be to
encode it. Similarly, the more unusual, unexpected, or counter-
intuitive the binding of individual event components is, the more
effortful the binding will be. Meanwhile, inhibiting competing
events as well as considering multiple alternative events will be
effortful. Even more effortful will be the successive activation or
parallel maintenance of mutually inhibitory encodings, such as
when a stimulus needs to be mapped first onto the right response
side and then onto the left response side, due to a task switch.

Since considered events may be integrated into scenes, the
complexity of and the prior knowledge about a considered scene
will also play crucial roles. First, the ActInf of particular scene
aspects and un-mentioned but event-relevant components for
the production of coherent mental content will be effortful. The
more common and well-known an encoded scene, the fewer
cognitive resources will be needed to activate its compressed
scene-characteristic event structures. The activation of scene-
unusual, or even scene-contradictory, attributes will be resource-
demanding, because their activation will be inhibited by the
scene code. When alternative scenes need to be considered, their
compatibility or logical temporal progression will influence the
effort to maintain them in parallel.

For example, the entities and interactions necessary to prepare
a cup of tea can be effectively encoded because we know all
involved entities and interactions well. Its encoding is even less
demanding, once we have developed an even more integrative
event-predictive schema, which predicts the involved sub-events,
entities and conditional event progressions a priori, for example,
when considering “preparing a cup of tea” (Kuperberg, 2021).
Similarly, much less cognitive effort is necessary when succeeding
in processing a multitude of stimuli in an integrative, Gestalt-
oriented manner—as is the case when, for example, recognizing a
human figure walking in a point-light motion display (Johansson,
1973; Pavlova, 2012; Sadeghi et al., 2021).

In sum, the preparation and processing of actual events and
event progressions within scenes can be assumed to be the more
resource demanding:

1. the more individual entities are involved,
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2. the more distinct their current spatial relations and dynamics
are,

3. the more distinct their properties are,
4. the less typical or well-known the respective components and

interactions are,
5. the more distinct (non-)agentive roles are involved, and
6. the fewer precise prior event-predictive encodings are

available for activating the content.

The activation of a particular event will also depend on previous
content activations: the more the current event differs from
the previous one, the more effortful the switch. Moreover, the
fewer this particular event switch has been experienced in the
past, the more resource-demanding it will be, because it is
less expectable.

5.2. Cognitive Effort When Processing
(Successive) Tasks
When facing a concrete task, various components of cognitive
effort are involved. During task preparation, suitable event-
predictive task-specific priors away from previous posteriors,
latent habitual priors, and uniform entropy need to be
activated. These include priors on the expected, relevant
sensory stimulus information, the expected mappings—or,
more generally speaking, computations—needed to transform
the stimulus into an appropriate response, as well as priors
over potential responses. When processing a task-informative
stimulus these priors will be adapted further. For example,
in a priming task the prime may bias response tendencies.
Similarly, when the stimulus informs about likely upcoming
actual imperative stimuli or the upcoming task, stimulus priors,
stimulus-response mapping priors, and response priors will be
focused further.

When processing the task-imperative stimulus then, super-
threshold activities need to be reached while inhibiting
incompatible priors in perception, in competing task sets, and in
the action choices. This principle is closely related to dynamic
neural field theory (Schoener, 2020), where sub-threshold
activities in an activation field correspond to preparatory, but
also latent and residual, priors. When preparation is maximally
effective, expected and fully prepared stimuli will be processed
fastest and with least effort, and they will yield smallest response
errors. Meanwhile, when a response is overly prepared, it may
be executed prematurely, or incorrectly when the imperative
stimulus does not conform to the expected stimulus. This has
been, for example, studied in detail in go-nogo tasks.

In the following section, concrete examples of such encodings
are provided and REPI is implemented as a dynamic processing
model. Model simulations yield the Simon Effect and Task
Switching costs. More detailed model evaluations are needed
to further verify or falsify the ability of the architecture to
model more intricate task switching observations. We end
with a discussion that sketches-out the potential of REPI to
model other psychological experiments and typical observable
behavioral effects.

6. MODELING PSYCHOLOGICAL
OBSERVATIONS

The combination of EPCog with ActInf makes rather
direct predictions about task-specific cognitive effort and
consequent behavioral phenomena. In particular, it has
immediate implications for all behavioral paradigms where
multiple, including latent, stimulus-response options need
to be considered and selectively activated. According to the
theoretical considerations, each task setup will lead to the
activation of a particular, event-predictive state of mind. ActInf
will attempt to focus the available cognitive resources on the
task at hand, while prior, latent activities (such as habitual
stimulus-response mappings) will maintain a base-level activity
of general knowledge and behavioral response structures.

In relation to expected free energy (Equation 1), the
preparation to solve a particular task may be equated with
desired future observations P

(
oτ | bt , nt

)
, which essentially

quantifies the focus on the current task set. Observations here
can also include motor responses and their consequences, thus
triggering response-effect compatibilities (Elsner and Hommel,
2001; Kunde, 2003). Moreover, they can include the pre-
activation of particular, internal stimulus-response mappings as
well as the inhibition of inappropriate ones. The higher the
uncertainty in this future-concerning observation density, the
more difficult it will be to trigger a task-appropriate action.

Meanwhile, the second summand in Equation (1) will
maintain a general alertness, aiming at decreasing general
uncertainty about the environment. This component may thus
lead to the generation of task-irrelevant, epistemic actions,
but also to the prior activation of latent stimulus-response
mappings, which have proven to be useful to decrease
uncertainty—such as reacting to a particular stimulus with an
orientation reflex.

6.1. REPI Model Implementation
In order to explain the mentioned psychological behavioral
phenomena not only qualitatively but quantitatively, we now
introduce an actual algorithmic implementation of the REPI
model. In this implementation, we focus on modeling standard
tasks that elicit the Simon effect as well as task switching
costs. Figure 1 shows a sketch of the task-oriented REPI model
implementation, where sensory information flows into the
model from the left, task-informative information from the top,
response tendencies are sent toward the right, while anticipated
response consequences are sent back to the left.

In all these tasks, we assume a dynamic perceptual space O,
where at a point in time t prior densities are given by P(Ot) and
posteriors by Q(Ot). Similarly, we denote the relevant task space
by 9 , with priors P(9t) and posteriors Q(9t). As an additional
latent observational bias space, we model B. Moreover, we model
response side dynamics in S and the actual response dynamics
inR.

During a trial, these densities are dynamically adapted toward
particular target values. In each iterative update step, all densities
are adapted from priors to posteriors, which constitute the priors
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FIGURE 1 | The concrete REPI model implementation is able to mimic Simon and task switching effects. It consists of five main dynamics processing modules (slim

rectangles), which simulate inferences of observation densities O, observation bias densities B, task set densities 9, response side densities S, and actual response

densities R. The wide rectangles in the center correspond to task-specific mappings from stimuli to task-respective response sides. Form- and color-response

matrices map the stimulus densities onto left/right responses mixing the output relative to the form and color task activity values of the task density, while the latent

response matrix adds the stimulus bias density influence weighted by the latent task activity. A response threshold determines when the response is actually triggered.

Activities are only passed into the response density R upon stimulus onset. To improve comprehensibility, a particular task switching scenario is shown exemplarily,

where the two tasks correspond to a form and a color task and the stimuli include black and white stars and circles, which map to either a left or right response,

dependent on the task.

in the next time step. The update is computed as follows:

Q(Xt) ∝ P(Xt)+ αǫtG(Xt), (4)

where α denotes a rate factor, ǫt the currently available cognitive
resources per time step (e.g., per second), X ∈ {O,B,9 ,S ,R}

denotes the density that is adapted, andG(Xt) denotes the current
targeted density, that is, the ideal goal state REPI strives for via
active inference. In the simulations below we set the simulation
speed to 10 ms per iteration and thus α = 0.01, while we set the
resource strength to ǫ = 6.

When focusing on one particular task, the task density P(9)
will strive to adapt toward a fully focused density, which would,
for example, correspond to (9|ψt = 1) = [1, 0, . . . , 0] in the case
of a discrete one-hot encoding when focusing on the first task.
While preparing for a particular task, or a set of tasks, the task
densities will adapt to the average mixture of each possible task.
Finally, to model a latent readiness to process stimuli habitually,
a general latent readiness may be modeled with an offset factor
λ, such that, for example, a maximal readiness for processing two
equally probable tasks would correspond to:

G(9|ψt ∈ {1, 2}) =
[
(1− λ)/2, (1− λ)/2, 0, . . . , 0, λ

]
, (5)

where we assume additional dormant tasks in the middle with
zero activity.

The observational density, which focuses on processing
the imperative stimulus, will generate task-particular, top-
down, goal-directed stimulus expectation densities G(Ot|P(9t))
dependent on the current task density Q(9) during the stimulus
preparatory phase. Once the stimulus is presented, though,
processing will switch to bottom-up evidence accumulation
by setting G(Ot|ot) to, for example, a one-hot encoding of
the discrete stimulus signal. While information fusion options
may be included here, at the moment the implementation sets
G(Ot) either to the top-down or the bottom-up observational
goal, dependent on the current stimulus availability. Meanwhile,
potential stimulus biases may be processed within the bias
space B, where no stimulus side bias corresponds to G(Bt) =

[0.5, 0.5]. The response side density is continuously updated
task- and observation-estimate dependently. That is, G(St) is
set to P(S|Q(Ot),Q(9t)), where the respective task sets are
implemented by means of task-respective mapping matrices,
which map individual objects to task-corresponding response
sides. Finally, once a stimulus has been perceived, the actual
response density is adapted away from a uniform response
density toward the current processing side density, that is, G(Rt)
is set to Q(St). The actual response is then triggered once a
particular response threshold θr , which we typically set to 0.9,
is reached.

Assuming, as specified above, that the full focus will lie
on solving tasks during an experiment appropriately, the costs
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FIGURE 2 | In the Simon effect, the response dynamics are influenced by the side of the stimulus, besides the actual stimulus identity. The dynamics clearly show

how REPI gets ready for the task once the fixation cross is shown (vertical solid bars). Once the imperative stimulus is shown (vertical dotted bars), response inference

is activated and evidence for either response side accumulates. The response is triggered when a particular response threshold (set to 0.9) is reached (vertical

dashed bars).

for solving a particular trial may then be quantified by the
dynamically unfolding mutual information between current
response tendencies and desired response tendencies given the
beliefs in the current task and the current stimulus situation,
that is:

C(task) = C
(
P(St), P(9t), P(Ot)

)

=
∑

ψ∈9t ,o∈Ot

p(ψ)p(o)KL
(
Q(St|ψ , o)||P(St)

)

=
∑

ψ∈9t ,o∈Ot

p(ψ)p(o)KL
(
G(St)||P(St)

)

= I(P(9t ,Ot);P(St)). (6)

In the future, several advancements in this cost computation
and the distribution of cognitive resources are imaginable. These
include (i) the computation and integration of costs based on
mutual information in the other spaces, including the task
and observational spaces, (ii) the adaptive, non-uniform, active-
inference-driven distribution of computational resources over
the considered density spaces, that is, adapting ǫt in Equation (4).

6.2. Modeling of the Simon Effect
The Simon effect characterizes the effect that participants
respond to a stimulus faster with their ipsilateral than with
their contralateral effector even when the position of the
stimulus presentation is irrelevant for the actual task (Erlhagen

and Schöner, 2002; Cho and Proctor, 2010). From the event-
predictive ActInf perspective, paradigms that study the Simon
effect essentially study the presence of latent, spatial stimulus-
response mappings and their latent activity strength relative to
the task-specific activities, participants attempt to focus on. The
latent response mapping corresponds to an ipsilateral response
to lateral stimuli, such as by an overt eye saccade, by a covert
direction of attention, or by an actual manual interaction—where
in the last case handedness plays an additional important role.
For example, we respond to a visual stimulus by looking at it,
by touching it (e.g., a power switch), avoiding it (e.g., an insect),
or actively pursuing interactions with it (e.g., when washing
our hands or grasping a mug). As a result, ipsilateral, stimulus-
response mappings, which are predictive by nature, are latently
active in our minds, facilitating many everyday interactions. In a
particular experiment that elicits the Simon effect, though, these
latent mappings get in the way and are hard to fully inhibit.

To model the dynamics and estimate the relative effort to
solve individual trials, we ran REPI on a simulation of a typical
Simon effect-eliciting task. We assumed that the task was to
respond to the form of an object, ignoring its color as well as its
location on the screen. Objects were simulated to be presented
either centrally to the right or to the left of the center. The trial
started with the presentation of a fixation cross, followed by the
imperative stimulus 500 ms afterwards. The inter trial interval
was set to 100 ms.

In our REPI implementation, we used the general setup shown
in Figure 1 focusing on the form task and leaving the latent
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activity active between a value of 0.1 and 0.2, dependent on if the
fixation cross or the imperative stimulus are shown or not yet,
respectively. Task cue and stimulus goal signals are set to 0.9 and
0.97, respectively assuming a latent task activity of 0.1 and a slim
chance to perceive one of the other objects with a probability of
0.03, respectively1.

Figure 2 shows the unfolding dynamics of the simulation
over the first ten trials. Moreover, the dynamics of the costs,
which focuses on solving the task quickly and correctly, are
plotted. Figure 3 shows the simulated reaction times as well
as the resource investment determined over the time from the
imperative stimulus until the response was triggered. The results
clearly show the Simon effect: a stimulus that appears on the right
or left is responded to faster with the compatible response side,
while a stimulus in the center does not exhibit this influence.
Moreover, response repetition benefits are visible, when the
response side needs to be switched. The cost measurement C

(cf. Equation 1) confirms that faster responses go hand-in-hand
with smaller cognitive effort. Future work may also model the
STROOP effect with similar principles. Here, an open question is
whether modifications of the task priors will be enough to model
the dominance of the word reading response in all its detail.

6.3. Modeling Task Switching
The task switching literature is full of additional insights
on how quickly event-predictive encodings can be selectively
engaged, disengaged, and inhibited. When comparing blocks
with single and multiple tasks, parallel task processing costs
as well as switching costs are assessed. These are needed to
pre-activate the task-specific stimulus encodings and stimulus-
response mappings as well as to switch between the distinct,
task-specific encodings and mappings.

In contrast, mixed task blocks reveal the flexibility of the
cognitive processes involved when switching between tasks
(Kiesel et al., 2010; Koch et al., 2018; Frings et al., 2020). Task
switching costs—that is, worse performance (typically measured
in response times and response errors) when performing a
different task in a subsequent trial vs. the same task—reveal that
it is difficult to fully erase the task set that was relevant in the
previous trial from memory. The robustness of this finding is
stunning: it can be found in blocks with predictable task switches,
cued switches, intermittent instructions, and even when task
selection is mostly voluntary (Kiesel et al., 2010).

6.3.1. Model Results
To model the dynamics and estimate the relative effort to solve
individual trials, we adapted the simulation and evaluated REPI
in a typical task-switching experiment. We simulated mixed task
blocks, where first a cue informed about the task of the trial. After
a cue-stimulus interval (set to 100 ms if not stated differently
below) the imperative stimulus appeared. After the reaction was
executed by REPI, the response to cue interval, which we also set
to 100 ms in the reported results, commenced.We leave the other

1The Simon effect model implementation is available online as an interactive
shiny app: https://cognitivemodeling.shinyapps.io/shinysimoneffectsimulation/. It
allows explorations of critical model parameters, random trial order dynamics, and
resulting, condition-dependent reaction time values.

settings identical to the Simon effect simulation, except for that
all stimuli were simulated to be presented centrally yielding no
latent response bias. A task switch occurred with a 50% chance2.

Figure 4 shows the unfolding dynamics of the simulation for
the first 10 trials. In contrast to the Simon task, we can now
observe only indirect stimulus bias density dynamics, which stem
from the response side activities. Moreover, we can observe how
task switches delay decisionmaking, as do response side switches.

Figure 5 shows simulated reaction times as well as the
resource investment (cf. Equation 6). The results reveal the
typical Task Switching effect as well as its decline when the
response to the other task is compatible vs. when it is not.
They also show that the task switching costs clearly decline
with a longer cue-stimulus interval (Monsell, 2003; Altmann and
Gray, 2008; Kiesel et al., 2010). Moreover, response repetition
benefits are observed, which are particularly strong when the
same object is presented. In comparison to the costs reported
in the Simon effect simulation, it may come as a surprise that
the costs for individual trials area actually slightly smaller on
average. This may be the case because the costs currently only
focus on the mutual information residing in the response side
space. When the stimulus activities are directly set to the current
value instead of dynamically adapted, the switching costs to not
reverse when in the previous trial the other response side had
to be chosen. This effect should be studied in further detail.
When the stimulus is assumed to be processed instantly, in
which case REPI acts very similar to the one in Steyvers et al.
(2019), intricate interactions of the current trial situation with
the previous response side disappear. Future research should
further elaborate on the validity of these additional interactions.
The put-forward REPI model would expect these influences,
although their influences may not be as pronounced as the ones
in the presented results. In fact, an instant perceptual processing
essentially corresponds to very large update steps (i.e., large
values of ǫt for the perceptual updates only; cf. Equation 4). Thus,
REPI essentially subsumes the model in Steyvers et al. (2019),
but, additionally, puts forward the relation to active inference,
to event-predictive cognition, as well as to the involvement of
cognitive effort and cognitive resources.

6.3.2. Task Switching and Multitasking Literature

Relations
The typical task switch results are thus explained by REPI with
its implementation of the event-predictive ActInf perspective.
Each task requires the activation of a particular task set, which
will be encoded by corresponding event-predictive encodings,
that is, the prior activation of particular stimulus-response
mappings. A response is then selected based on a sufficient
activity threshold, which mimics accumulator or drift models
(Ratcliff, 1978; Lewandowski, 2007) and is also related to dynamic
neural field approaches (Schoener, 2020). Longer reaction times
thus are generated when response alternatives still have larger

2The task switching model implementation is available online as an interactive
shiny app: https://cognitivemodeling.shinyapps.io/shinytaskswitchingsimulation/,
which allows further explorations of additional effects of the model parameters and
the simulation setup.
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FIGURE 3 | In the Simon effect, the reaction times clearly depend on the stimulus bias, favoring ipsilateral responses. Besides the mean reaction times, the values

report standard error, the number of condition-respective trials, and mean cognitive effort costs C (task) integrated over the time from the stimulus onset until

the response.

FIGURE 4 | In the task switching simulation, the response dynamics are indirectly influenced by the previous task as well as by the previous response. Once a

response is executed, response side and action densities are set back to uniform.

prior activities from previous trials. Moreover, the activity of the
same response in the previous trial yields response delays in the
case of a task switch, because a now incorrect stimulus-response
mapping is still co-activated.

Meanwhile, an independent congruency effect can be
observed, which yields faster responses when the stimuli
afford the same response in the case of either current task.

Interestingly, the latter is much less dependent on preparation
time. Both effects can be explained by the failure to fully
suppress previous task activities, thus affecting response time.
If it was possible to remove or normalize over the effects of
the particular pairs of tasks, response time activities may be
understood in even better manners. Generally, though, REPI
simulates how competing task structures may elicit congruent or
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FIGURE 5 | Results of task switching simulations averaged over twenty experiments for the full REPI model with all dynamics simulating a cue-stimulus interval of

100 ms (top row). When this interval is enhanced to 500 ms (middle row), the task switching effect decreases, as is well-known from results in the task-switching

literature. When the stimulus density is set directly to the actual stimulus value, the predicted response distributions undergo fewer dynamical interactions (bottom

row). The basic REPI simulation without further parameter optimization yields reaction times that depend on whether a task switch occurred (cf. “either” column in the

left block). Additionally, a strong previous response side benefit is generated, yielding faster responses for the same response side. Moreover, the compatibility of the

response to the other task in a trial plays an important role (center vs. right block of reaction times). When the stimulus is assumed to be processed instantly (bottom

row), the expected reversal of the task-switching effect in the case of the other previous response side disappears. Besides the mean reaction times, the numbers

report standard error, the number of condition-respective trials, and mean cognitive effort costs C (task) integrated over the time from the stimulus onset until

the response.

incongruent stimulus-responsemappings, causing the observable
congruency effects.

In task-switching research, two-stage processing models have
been developed, where the task selection and the actual response
selection are analyzed separately (cf. Kiesel et al., 2010). Task
selection corresponds to the effort to focus on one particular

task while inhibiting all latent, incompatible mappings; that is,
the adaption of prior task-set activities. This corresponds to the
precision of the prior activation of desired observations, that is,
sensory-to-motormappings, in Equation (1), as well as additional
latent activities (cf. Figure 4). Response selection then depends
on the actual trial-specific stimulus as well as on the prior
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task set activities and competing activations. That is, response
selection depends on both, the certainty which task should
actually be performed and the certainty which response needs to
be issued.

Moreover, given the imperative stimulus, the anticipation of
the action consequences may include posterior self-evaluation
attempts to maximize task-conform behavior (minimizing the
KL divergence in Equation 1) while minimizing surprising
consequences (minimizing expected entropy in Equation 1).
These components are not included, yet, except after the actual
response has been made. As a potential result, an imperative
stimulus that is compatible with the other task but would require
the opposite response in the other task will be particularly
effortful to process, because the residual previous task activity
leads to the prediction of an incorrect behavior, which needs to
be avoided. Overall, larger uncertainties on both, although highly
interactive, processing stages will thus yield response delays and
larger errors.

Meanwhile, the refractory period to a full disengagement
from the previous task will vary dependent on the complexity
of the switch between tasks. Accordingly, preparation is faster
the easier the switch. On the one hand side, switch training may
facilitate switching between the involved, task-set characterizing
predictive encodings. On the other hand, overlaps between the
required perceptual stimulus processes and the relevant stimulus-
response mappings will determine switching demands. If there is
no overlap, switching will be rather easy. The higher the overlap,
though, and the stronger the need to inhibit previously activated
stimulus-response mappings, the higher the cognitive effort will
be. When the task sets mutually inhibit each other, the switch of
the task sets will be particularly effortful. This is the case because
an even stronger change in the precision encoding is needed
when the tasks overlap but demand incompatible responses.
Task switching results have even shown that asymmetric tasks
yield larger switch costs for switches to the easier task compared
to switches to the harder task, suggesting that disengaging
from inhibitions is more effortful than engaging into previously
inhibited tasks (Kiesel et al., 2010). Further implementations of
REPI may explore according effects.

7. FURTHER MODELING POTENTIAL

In the previous section we have successfully modeled the
Simon effect and task switching behavior, the results of which
generally conform to the literature and have correctly revealed
larger task effort when an irrelevant stimulus bias interferes,
when a task switch had to be processed, when the response
side needed to be changed, and when the other task requires
an incompatible response. We furthermore have discussed
additional open questions andmodeling challenges. Here, several
other paradigms and behavioral psychological phenomena are
addressed and discussed, which may be modeled with REPI
in the near future, revealing possible further potential as well
as potential limitations of the put-forward event-predictive
inference approach.

7.1. Theory of Magnitude
The theory of magnitude (ATOM) (Walsh, 2003) suggests that
space, time, and quantity are encoded by a common magnitude
system. From the event-predictive inference perspective, the
common encoding of magnitudes makes a lot of sense: in the
real world, magnitudes are closely related across modalities.
For example, a louder crashing noise is created by a stronger
force or by a larger object or by taking a longer fall onto
the ground. Similarly, numerously more objects will send more
visual signals, will be heavier in sum, will take longer to swipe
away, and will be more effortful to create, compared to fewer
objects of the same type. Thus, over development, it seems highly
likely that predictive encodings form that cross-correlate various
magnitudes with each other, setting the stage for the discovery
of ATOM.

One closely related, particularly well-studied paradigm
addresses the SNARC effect: spatial-numerical associations of
response codes. In this case, numbers have been shown to be
spatially-distributed on a magnitude axis, leading from left to
right in societies with left-to-right scripts, presumably because
the reading and writing direction guides from the past into
the future, determining a latent temporal axis in our minds.
Given a particular task set then, particular sets of numbers will
be pre-activated in our minds, leading to the SNARC effect:
even if the number magnitude does not matter for the response
itself (e.g., deciding between even and odd), smaller/larger
numbers are responded to faster with a left/right response (Wood
et al., 2008). This fact, however, depends on the numbers that
are currently mentally active in working memory as well as
their spatial grounding. Accordingly, a working memory-based
account of the SNARC effect has been proposed (Abrahamse
et al., 2016), which highlights the importance of currently active
mappings between space and numbers. For example, imagining
numbers on a clock face grounds the numbers seven to 11 left
of the numbers one to five, while this grounding is reversed
when imagining the number on a ruler (Baechtold et al.,
1998).

From the event-predictive inference perspective, these prior
spatial-numerical activations correspond to current predictive
encoding activities, which temporarily and latently associate
numbers with space. As a result, and in close correlation with
the Simon effect, investigations concerning the SNARC effect,
and various related effects concerning number processing (van
Dijck and Fias, 2011; Lohmann et al., 2018; Cipora et al.,
2020), essentially investigate the strength of latent and temporary
associations between space and numbers as well as the activation
of particular spatial axes, dependent on the task at hand. Further,
much more detailed, modeling efforts by means of REPI may
shed further light on the concrete encodings involved and their
processing dynamics in the respective ATOM-related paradigms
and particular experimental setups.

7.2. Crossmodal Concruencies
As a final example for behavioral psychological
experiments, results from studies on crossmodal congruency
may be explained in a similar manner. Related to
the SNARC effect and the theory of magnitude, in
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crossmodal congruency paradigms typically irrelevant
distractor stimuli in a somewhat irrelevant modality
systematically interfere with stimulus processing in the
response-relevant modality.

One prominent approach was originally motivated by single
cell recording results in monkeys. Individual neurons were
shown to encode peripersonal spaces, responding to stimuli
touching or appearing close by a particular part of the hand
or face (Fogassi et al., 1996; Maravita et al., 2003). From an
event-predictive inference perspective, again this comes as no
surprise. As discussed above, cross-modal associations occur very
frequently in our world. Thus, latent predictive encodings can be
expected to develop that associate these respective stimuli cross-
modally as well as across respective frames of reference. In fact,
the rubber hand illusion (Botvinick and Cohen, 1998) as well
as the disappearing hand trick (Newport and Gilpin, 2011) fall
in the same category, in which case the brain attempts to infer
a consistent explanation for the multisensory or sensorimotor
signals the participants focus on, leading to an adaption of
internal body state estimations (Ehrenfeld and Butz, 2013; Butz
et al., 2014). During a typical crossmodal congruency task, on the
other hand, irrelevant stimuli close to response-relevant tactile
stimuli will interfere with according responses (Spence et al.,
2004), indicating that visual stimuli are mapped onto tactile
perceptions a priori, because the two modalities typically offer
compatible signals in the real world.

Interestingly, the more recently investigated anticipatory
cross-modal congruency effect (Brozzoli et al., 2010; Belardinelli
et al., 2018; Lohmann et al., 2019) shows that peripersonal
space around the hand is projected onto a planned grasp even
before the actual action execution commences. These results
essentially indicate that event-predictive inference anticipates
action results, pre-activating particular goal constellations and
according multisensory mappings. Interestingly, as would be
expected from the event-predictive ActInf perspective, when
uncertainty is high while approaching the object, the focus should
lie on controlling the actual armmovement, thus temporarily not
yielding a significant anticipatory crossmodal-congruency effect
(Lohmann et al., 2019). A first variational implementation of the
effect can be found elsewhere (Weigert et al., 2021).

Earlier studies on simpler action-effect compatibilites also
fall into the same category: the effect of an action and the
latent or temporarily activated compatibility with the action
code itself, can lead to anticipatory cross-modal interactions
(Elsner and Hommel, 2001; Kunde, 2003). On the dynamic event
encoding level, studies on rotations have shown yet again related
predictive encoding interactions: the processing of a rotating
tactile stimulus on the palm, for example, interferes with the
active rotation of a visual stimulus in a dual task paradigm
(Lohmann et al., 2017). Earlier, visual perception was shown
to be biased by the rotating tactile stimulus (Butz et al., 2010),
indicating shared temporal dynamic encodings across modalities.
We believe that REPI may indeed be used to model all of these
effects—although open questions include the stimulus design
choices, the actual involved predictive encodings, as well as the
exact means to process the anticipated horizon and its effect on
actual stimulus processing dynamics.

7.3. Social Interactions With Other Agents
In our social realities, we experience scenes, and events within,
often with a multitude of entities and other agents involved.
These other agents have their ownminds. Thus, to foster effective
and adaptive interactions between these agents, it is beneficial to
know something about the others’ minds, that is, to develop a
theory of mind (ToM) (Frith and Frith, 2005). When engaging in
social interactions, then, ActInf may consider the ToM of others,
including their perception of one’s own mind and particularly
one’s own personality. Accordingly, building up scenes with a
multitude of interaction-critical agents becomes effortful and can
be strenuous. The more diverse agents (colleagues, friends, co-
workers, team-members etc.) one is willing and able to consider,
the more effort will be needed. Their parallel activation without
between-agent interference (in one’s mind), is per se strenuous
because it is impossible to maintain too many distinct predictive
densities simultaneously—particularly seeing that each set of
events about another agent contains recursive agent events.

This recursiveness with respect to social interactions enables
us to pursue rational social reasoning, as formulated in the
rational speech act model (Frank and Goodman, 2012; Goodman
and Frank, 2016). On the other hand, it also requires much more
computational resources, as others need to be co-processed in
one’s own mind. Accordingly, a rather large corpus of studies
suggests that our brains, particularly when acting under time
pressure, have a very hard time to consider the perspective
of others, failing to avoid, for example, undesired ambiguous
situations during conversations (Ferreira andDell, 2000; Ferreira,
2008). Due to the highly resource-demanding challenge to
maintain the perspective of an interaction partner besides
ones own perspective, we often sidestep this perspective taking
problem by simply assuming that others have the same state
of knowledge as we do. Nonetheless, when retrospectively
interpreting ones own utterance and the observed actual
behavioral response of the current conversation partner(s), we
are able to inversely infer aspects of their motivations, intentions,
and state of knowledge (Baker et al., 2017; Liu and Spelke, 2017;
Achimova et al., 2022), enabling us to learn about others.

In sum, social interactions will require additional cognitive
resources because effective and adaptive social interactions with
particular others will need to activate our ToM about the other.
Moreover, the more complex that social interaction and the more
unusual the other(s); the more effortful the ActInf-based control
of these interactions will be. It remains an open challenge to shed
further light on the involved processes and resource demands by
means of socially-extended REPI-like models.

8. CONCLUSIONS

This paper has put forward that cognitive effort unfolds in
our brain on multiple levels of abstraction, within scenes,
and event-respectively. During wakefulness, our state of mind
essentially elaborates on the accumulating evidence about
the outside environment, binding and integrating them into
currently active, behavioral-relevant, generative models about—
and possible interactions with—the environment. Meanwhile, we
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selectively probe the future to minimize anticipated uncertainty
and deviations from expected internal homeostasis. Moreover,
we consolidate our accumulated, event-oriented experiences
into our episodic memory and, over time, into procedural and
associative memory structures. All these aspects are effortful,
because they require the selective, precise, coordinated activation
of event-predictive encodings, the co-activation of alternatives,
and selective consolidations.

The proposal is generally compatible with The Binding and
Retrieval in Action Control (BRAC) proposal (Frings et al.,
2020), which offers explanations for task switching and related
tasks. BRAC suggests two main cognitive processes: stimulus-
response-effect combinations are bound into event files for
task preparation and execution. Meanwhile, related event files
are retrieved from previous trials. Viewed from the introduced
resourceful event-precictive inference perspective REPI, event
files are constituted by sets of predictive encodings (Butz,
2016), which predict sensory perceptions, sensory-to-motor
mappings, actual motor responses, and consequences thereof.
Retrieval from previous trials corresponds to residual as well
as latent, habitual predictive encoding activities. Beyond BRAC,
though, the proposed ActInf-induced effort perspective offers a
computational formalism how binding and retrieval are elicited.
Moreover, it suggests that cognitive effort can be equated with
changes in the event-predictive densities that focus our minds
onto particular tasks while inhibiting previous activities as well
as latent, habitual activities.

The put-forward resourceful event-predictive inferencemodel
REPI also offers a computational explanation why particularly
multitasking and task-switching is cognitively effortful and
strenuous. This is the case because the maintenance of
multiple event schemata, that is, the maintenance of a more
complex, multi-task-specific, predictive encoding density is
more effortful. This is particularly the case, when multiple,
independent alternatives need to be maintained and, even more
so, when the alternatives need to activate mutually inhibitory
predictive encodings. On top of that, it is not only the
maintenance of complex densities, but also the fast switching
between task-respective response mapping alternatives—be they
explanations, counterfactual reasoning considerations, or simple
task mappings. Such switches require the temporary stronger,
selective activation of task-specific densities, while inhibiting
those from the other concurrent tasks, whereby ActInf pushes
toward accomplishing the switches back-and forth between them.

The REPI implementations of tasks that elicit the Simon effect
as well as of task switching experiments underline the potential
of the theoretical perspective and ask for further research efforts.
REPI has essentially shown how computational resources may
be distributed by means of ActInf within the developing, latent
event-predictive structures. However, for now the effort was

distributed equally over all modules, that is, ǫt in Equation (4)
was constant and had the same value in all modules. Additionally,
neither sequential expectation effects nor fatigue have been
modeled, yet. Equation (4) allows for such adaptations and
could certainly be modified further by modeling task-oriented
focus following the general active inference principle. A related
challenge lies in identifying and in learning the actual event-
predictive structures that are maximally useful to improve task
performance. Moreover, the neural mechanisms that enable
the selective activation and maintenance of multiple present,
past, future, and social considerations should be scrutinized
further. As a final result, the put-forward event-predictive ActInf-
induced perspective on cognitive effort may not only be able to
explain and algorithmically model a multitude of results from
psychological studies, but may also offer design and training
suggestions to facilitate our interactions with our increasingly
complex, diverse, social, digitalized world.
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