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As a branch of statistical latent variable modeling, multidimensional item response theory
(MIRT) plays an important role in psychometrics. Multidimensional graded response
model (MGRM) is a key model for the development of multidimensional computerized
adaptive testing (MCAT) with graded-response data and multiple traits. This paper
explores how to automatically identify the item-trait patterns of replenished items
based on the MGRM in MCAT. The problem is solved by developing an exploratory
pattern recognition method for graded-response items based on the least absolute
shrinkage and selection operator (LASSO), which is named LPRM-GR and facilitates
the subsequent parameter estimation of replenished items and helps maintaining
the effectiveness of item replenishment in MCAT. In conjunction with the proposed
approach, the regular BIC and weighted BIC are applied, respectively, to select
the optimal item-trait patterns. Simulation for evaluating the LPRM-GR in pattern
recognition accuracy of replenished items and the corresponding item estimation
accuracy is conducted under multiple conditions across different numbers with respect
to dimensionality, response-category numbers, latent trait correlation, stopping rules,
and item selection criteria. Results show that the proposed method with the two types
of BIC both have good performance in pattern recognition for item replenishment in the
two- to four-dimensional MCAT with the MGRM, for which the weighted BIC is generally
superior to the regular BIC. The proposed method has relatively high accuracy and
efficiency in identifying the patterns of graded-response items, and has the advantages
of easy implementation and practical feasibility.

Keywords: multidimensional graded response model, multidimensional computerized adaptive testing,
replenished items, item-trait pattern recognition, LASSO, weighted BIC

INTRODUCTION

With the rapid development of modern assessment theory and computer technology, computerized
adaptive testing (CAT; e.g., Wainer, 2000) has become a hot issue during the past several decades.
The purpose of CAT is to understand the potential characteristics of examinees as accurately as
possible. Constructing the optimal test for each examinee requires modern assessment theory
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such as item response theory (IRT) and well-established latent
variable models (e.g., Embretson and Reise, 2000; Reckase, 2009;
Bartholomew et al., 2011). In psychometrics, a wide variety of
psychological scales are designed to measure multiple latent traits
within the framework of multidimensional item response theory
(MIRT). Since the IRT-based CAT has received a lot of attention
from psychometricians, the proposed method in this paper is
developed within the framework of the MIRT-based CAT, which
is briefly referred to as multidimensional CAT (MCAT) for
simplicity. A non-negligible aspect of multidimensional items
fitted by MIRT models is the corresponding relationship between
the items and multiple traits measured by the overall scale, which
can be simply named item-trait patterns (Sun and Ye, 2019).
Specifically, item-trait pattern represents the appropriate set of
the latent traits that are closely associated with an item. For
instance, if a scale measures K traits, the true item-trait pattern
of the jth item can be formulated as a vector: Qj = (qj1,..., qjK)T .
If the kth trait is measured by the item, qjk = 1; else, qjk = 0 (k= 1,
. . ., K). Misspecification of the item-trait patterns of the new or
replenished items fitted by MIRT models may lead to serious
lack-of-fit and faulty assessment.

Item replenishment is an essential part of MCAT in view of test
security and reliability. In fact, the MCAT developed on MIRT
models has attracted growing attention in psychometrics. An
important component of MCAT is the quality of the item pool
of MCAT, the statistical perspective of which is greatly affected by
the calibration of item parameters. As pointed out by Wainer and
and Mislevy (1990), CAT is usually administered to examinees
at frequent time intervals, some operational items in the item
pool may become obsolete or overexposed over time, and the
frequently used items should be replaced by replenished items
considering the following reasons such as the item exposure
control, safety, fairness, and reliability of the test. Also, for the
MCAT, it is often encountered that some operational items in
the item pool will no longer be applicable due to the similar
reasons as above, so the item pool needs updating in a timely
manner. Item-trait pattern and parameter estimate jointly convey
the core statistical information of a multidimensional replenished
item, and the identification of the item-trait pattern undoubtedly
affects estimation accuracy and application of the item. For
the multidimensional paper-and-pencil test, a latent variable
selection method for the MIRT models via the least absolute
shrinkage and selection operator (LASSO) is proposed by Sun
et al. (2016). The research assumed the latent traits were entirely
unknown and formulated the item-trait pattern recognition
problem as the latent variable selection. For replenished items
of MCAT, although domain experts can design which latent
traits are measured by the overall MCAT, the patterns in the
pool are difficult to know precisely and efficiently. Moreover, the
parameter scaling consistency among all items should be ensured.
Therefore, manually identifying the patterns of replenished items
may face the problem of not only the heavy workload but also
the risk of inconsistent scaling of item parameters. For the above-
mentioned reasons, one topic of item pool replenishment for
the MCAT is the timely and accurate identification of item-trait
patterns for replenished items (Sun and Ye, 2019). The specific
dimensions measured by an item can be briefly represented as

the item-trait pattern, which reflects the goodness-of-fit for the
item based on the designed MIRT model and closely relates
to the estimation accuracy of latent traits. The misspecification
of item-trait patterns may lead to serious lack-of-fit and faulty
assessment (e.g., Reckase, 2009; Sun et al., 2016; Sun and Ye,
2019). For the MCAT based on MIRT models, it is therefore
appropriate to conduct the study on identifying the patterns for
replenished items.

A variety of models have been proposed in the MIRT
framework. Compensatory and non-compensatory models
are seen as two major types of parametric MIRT models.
The most commonly used compensatory MIRT models in
MCAT are multidimensional two parameter logistic model
(M2PLM; McKinley and Reckase, 1982), multidimensional
three parameter logistic model (Reckase and McKinley, 1991),
multidimensional partial credit model (Kelderman and Rijkes,
1994), multidimensional graded response model (MGRM;
Muraki and Carlson, 1995). For the compensatory MIRT model,
M2PLM, Sun and Ye (2019) propose a pattern recognition
method based on LASSO to detect the optimal item-trait patterns
of the replenished items. The method is named LPRM, which is
applicable to the MCAT with dichotomous items and has been
shown to make the precise and effective detection of item-trait
patterns for replenished items in the multidimensional item
pool. The LPRM utilizes the online feature of the MCAT to
successfully achieve the goal of automatic scaling for replenished
and operational items in the item pool, so that the interpretability
of replenished items in terms of goodness-of-fit can be improved.
In addition, the method for dichotomous items is well viable
because it is sufficiently compatible and adaptable to the
conventional design of the MCAT. Consequently, the LPRM is
well-suited for dichotomous items with M2PLM, which can save
time cost compared to manual identification.

The research scenario of LPRM can be expanded, such as
establishing a pattern recognition framework for the MCAT
with polytomous items. Note that for the multidimensional
graded-response data, the MGRM is an essential compensatory
MIRT model for the paper-and-pencil test or the MCAT (e.g.,
Jiang et al., 2016; Depaoli et al., 2018; Tu et al., 2018; Wang
et al., 2018a, Wang et al., 2019; Nouri et al., 2021), so it is
necessary to extend the item-trait pattern recognition idea for
the items with dichotomous responses to those with graded
responses. Moreover, the LPRM was developed directly based on
the M2PLM. With the aim of solving the pattern recognition
problem for the MCAT based on the MGRM, although the
general idea of the LPRM can be similarly used, it is still
necessary to detail how to extend the specific approach for
the model such as designing the MCAT scenarios, constructing
the corresponding L1-regularized optimization and deriving the
algorithm, and exploring how to choose the optimal patterns
for replenished items. Based on these considerations, this paper
highlights the pattern recognition for the replenished items with
graded responses and proposes the LPRM-GR for it.

The rest of this paper is organized as follows. Section
“Methodology” gives a brief introduction to the research
background in several aspects: two compensatory MIRT models,
the LASSO and the pattern recognition idea for dichotomous
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items as well as the LPRM; then the section introduces the
LPRM-GR in detail for illustrating how to detect the optimal
item-trait patterns of replenished items based on the MGRM in
MCAT. Section “Simulation” evaluates the performance of the
proposed method in pattern recognition by simulation. Section
“Conclusion and discussion” summarizes the conclusion and
makes the further discussion of the study.

METHODOLOGY

Two Compensatory Multidimensional
Item Response Theory Models
Multidimensional Two-Parameter Logistic Model
One widely used compensatory MIRT model for dichotomous
items is the M2PLM. Sun and Ye (2019) investigate the efficacy of
the M2PLM based on the LASSO for detecting item-trait patterns
of the replenished items in MCAT, and showed that the LASSO
significantly contributes to the detection of optimal patterns of
replenished items in MCAT. For a dichotomous-response test,
the M2PLM is here briefly introduced: assume that the abilities
of examinees follow a normal distribution. The probability of an
examinee with abilities θ correctly answering the jth item defined
by the M2PLM (e.g., Reckase, 2009) is

P(Uj = 1|θ) =
1

1+ exp[−(aT
j θ+ bj)]

, (1)

where Uj is a binary random variable for the response of the
examinee to the jth item. The discrimination parameters of the
jth item are denoted as the vector: aj. The intercept parameter of
the jth item is denoted as bj.

Multidimensional Graded Response Model
For a polytomous-response test, MGRM is one of the most
popular MIRT models discussed by psychometricians in the past
decades. As a polytomous extension of M2PLM, MGRM can
appropriately analyze and score ordered categorical data, such as
in a Likert-type rating scale (e.g., Jiang et al., 2016). Assume that
N examinees are taking a multidimensional test with J graded-
response items measuring K latent traits of interest. According
to the logistic-form of the MGRM, the probability of the ith
examinee to the jth item receiving a score of m or above is
defined as

P∗ijm(θi) = P∗(Yij ≥ m|θi) =
1

1+ exp[−
∑K

k=1 ajk(θik − djm)]

(m = 0, 1, ..., M.) (2)

where Y ij refers to the score taking an integer from 0
to M; {ajk} (k = 1, . . ., K) and {djm} (m = 0, . . .,
M) are discrimination parameters and boundary parameters,
respectively. By denoting bjm = (−

∑K
k=1 ajk)djm (i.e., the

intercept parameter for j and m), aj = (aj1, ..., ajK)T and θi =

(θi1, ..., θiK)T (i = 1, . . ., N), Equation (2) is rewritten as
P∗ijm(θi) =

1
1+exp[−(aT

j θi+bjm)]
. Note that the constraints should be

satisfied: P∗ij0(θi) = 1, P∗ij(M+1)(θi) = 0, and +∞ = bj0 > . . . >

bjM = −∞. With the definition of boundary function, the
probability of the ith examinee receiving the score of m to the
jth item is expressed as

Pijm(θi) = P(Yij = m|θi) = P∗ijm(θi)− P∗ij(m+1)(θi). (3)

Note that MGRM is a compensatory item factor model,
so here gives a brief discussion about the identifiability of
the discrimination parameters of the MGRM. If the ability
parameters are unknown, the MMLE/EM algorithm (e.g., Cai,
2013) is commonly used to estimate item parameters under the
condition of some or all patterns are well-known. For example,
Jiang et al. (2016) and Wang et al. (2018a) both assumed
that the simple structures of the overall items are satisfied for
estimating the item parameters for graded-response items via
the EM algorithm: for each item, only one element of the a
vector was non-zero, and every dimension was represented by
an equal number of items. Following the usual confirmatory
factor analysis, other reasonable structures for the overall items
based on the MGRM can also be specified before estimation.
However, if both the ability parameters and most of the item-
trait patterns are unknown, constraints need to be imposed on
the discrimination parameters to guarantee their identifiability,
which follows the usual exploratory factor analysis. The ways
of giving constraints for the discrimination parameters can be
various, the basic idea for which is pre-specifying the patterns
of a few items so that it is possible for the other items to
obtain reasonable results in terms of estimating discrimination
parameters via the EM algorithm. For instance, one approach is
to select K items that can measure all the K latent traits, and then
pre-specify their item-trait patterns. More detailed discussion
can be found in Béguin and Glas (2001), and Sun et al. (2016).
If the abilities of the MGRM are known, it is not necessary
to impose any constraint on the discrimination parameters or
pre-specify any item-trait pattern for the identification of the
discrimination parameters.

Least Absolute Shrinkage and Selection
Operator-Based Pattern Recognition for
Dichotomous Items
The most widely used approaches of statistical variable selection
in regression analysis before the 1990s are forward selection,
backward elimination, stepwise selection, and ridge regression
(e.g., Hoerl and Kennard, 2000). Ridge regression is also known
as the regression based on L2 regularization. By introducing the
L2 regularization term to the optimization problem of coefficient
estimation, ridge regression produces shrinkage of the size of
the regression coefficients to mitigate the estimation problem
due to multicollinearity in linear regression. Ridge regression
improves prediction accuracy more efficiently than the previous
variable selection approaches, especially for the linear models
suffering a large number of covariates and multicollinearity
problems. The LASSO optimization is one of the members of
the penalized least squares, the idea of which can be extended
naturally to likelihood-based models (e.g., Tibshirani, 1996; Fan
and Li, 2001). The LASSO penalty corresponds to a Laplace
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prior, which expects many coefficients to be close to zero,
and a small subset to be larger and non-zero, so the LASSO
tends to pick relatively simple combination structure from the
alternative predictors (Tibshirani, 1996; Friedman et al., 2007).
Specifically, the LASSO is usually labeled as the L1-constrained
fitting or the L1 regularization for regression models. The
optimizations based on the ridge regression and the LASSO
can both consider the complexity of the regression models. In
contrast to ridge regression, the LASSO can furtherly improve
model interpretability by minimizing the sum of squared errors
with a bound on the sum of the absolute values of the regression
coefficients, which tends to produce some coefficients directly
to be zero (Tibshirani, 1996). To be brief, the LASSO is a
regression method that involves penalizing the absolute size of
the regression coefficients and is considered as one of the most
popular methods for variable selection in multivariate regression
analysis. Two essential features of the LASSO are the shrinkage
and selection of regression variables.

For MIRT models, the problems of variable selection based
on the LASSO have ever been discussed in the research of
latent variable selection (Sun et al., 2016). For the pattern
recognition problem for replenished items in MCAT based on
the M2PLM, the LPRM based on the LASSO is proposed by
Sun and Ye (2019). Penalized regression methods can also
be taken into consideration for analyzing the data of large-
scale surveys with missing categorical predictors, which inspires
a new perspective for the effective and feasible treatment of
missing data in the field of large-scale testing (e.g., Yoo, 2018;
Yoo and Rho, 2020, 2021).

The LPRM generally collects the information in terms
of examinees’ ability estimates and responses to replenished
items via the MCAT to prepare for the item-trait pattern
recognition, uses the LASSO to obtain alternative patterns
of replenished items, and finally applies the regular Bayesian
information criterion (BIC) to select the optimal patterns from
the alternatives. Details of the roles played by the MCAT and the
LASSO in LPRM can be understood by reviewing the three steps
of the LPRM. The first step is to operate the MCAT measuring
K latent traits of interest with N examinees. A certain number
of operational items are selected from all the operational items
by the given item selection method in MCAT. A fixed number
of replenished items are specified among all the replenished
items in the item pool. The appropriate number of administered
replenished items can be designed to make sure that the length
of the MCAT is workable for examinees. For instance, if the
number of replenished items is J1, N examinees can be divided
into 5 groups and every J1/5 replenished items are answered by
each group. Note that the replenished items are also assumed
to be consistent with the operational ones so that the examinees
share the same test motivation for the two item types. All answers
are recorded and scored, which aims to get valuable information
in terms of both examinees’ ability estimates and the responses
to replenished items. Secondly, the LASSO or L1-regularized
optimization for the jth replenished item is formulated in
Equation (4), which can be considered the essential part of the
second step of the LPRM. Because θi and aj in Equation (2) play
the role of covariates and coefficients, respectively, the sparsity

of aj indicates the item-trait patterns. That is, if âjk > 0, then
qjk = 1; else qjk = 0.

min
bj,aj1,...,ajK

{
−l
(
bj, aj1, . . . , ajK;Yj, 2

)
+ λ

K∑
k=1

∣∣ajk
∣∣} . (4)

Here continuing the notations in Equation (1), the abilities
in MCAT are denoted by 2 = (θik)N×K . In Equation (4):
l
(
bj, aj1, . . . , ajK;Yj, 2

)
is the log-likelihood based on the

observed data, Yj, and the latent variables, 2. Note that
for the LPRM, 2 can be substituted by ability estimates.
The L1-norm of discrimination parameters for the jth item
is denoted as

∑K
k=1

∣∣ajk
∣∣. The tuning parameter (also named

regularization parameter), λ, mainly controls the sparsity of the
discrimination parameters. A group of non-negative values of
λ is given to produce adequate alternative patterns according
to the discrimination parameters, which are obtained by
the corresponding L1-regularized optimizations for alternative
values of λ. Coordinate descent algorithm can be used to solve the
optimizations (e.g., Friedman et al., 2010). Thirdly, the regular
BIC is applied to choose the optimal item-trait patterns of
replenished items from the alternative ones that are obtained in
the second step.

Primary findings of the LPRM that may enlighten the study of
this paper are summarized as follows. Firstly, for the replenished
items in the MCAT item pool based on M2PLM, the correct
specification rates for which patterns detected by the LPRM
are above 80% and almost above 90% in the simulation of
Sun and Ye (2019). Because the true abilities are unknown in
practice, the LPRM can generally get comparatively sufficient
ability information from ability estimates and select good
patterns for replenished items. Secondly, the item parameters
of the replenished items are estimated based on the patterns
identified by the LPRM with the aim of investigating how the
recognition accuracy of the patterns influences the estimation
accuracy of item parameters, the finding for which is that
the former affect the latter positively. Thirdly, the operational
items with high discrimination can help the LPRM yield
comparatively good performance in identifying patterns and
getting the estimates of discrimination parameters. Fourthly,
in practice, there is a trade-off for the LPRM to choose
which of the variable-length MCAT and the fixed-length MCAT
should be used, and the possible factors include the sizes of
discrimination parameters, computing efficiency of the two
stopping rules and other practical considerations about test safety
and item exposure.

Least Absolute Shrinkage and Selection
Operator-Based Pattern Recognition for
Graded-Response Items
In this section, we propose the framework of the LASSO-
based pattern recognition method for the item pool with graded
response items in the MCAT. The proposed method is named
LPRM-GR, the aim of which is to effectively give an appropriate
polytomous extension of the LPRM: specially developed for the
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MCAT constructed based on the MGRM. The detailed steps of
the proposed method in this paper are illustrated as follows.

Step 1. Consider a situation that K latent traits of interest are
measured by an MCAT item pool, which includes fixed numbers
of operational and replenished items. When an MCAT with N
examinees is organized, appropriate numbers of operational and
replenished items can be designed in the test for balancing the
goal of individual measurement and collection of responses to
replenished items. For instance, the numbers of two types of
items in the item pool are J0 and J1, respectively. At the same
time, assume that it has been ensured that the examinees have the
same motivation for both types of items in the test. Note that the
test length here should also take into account a combination of
considering different types of stopping rules and avoiding fatigue
effects. Note that the design for the LPRM-GR here is similar to
the first step of the LPRM.

Step 2. For all the replenished items in the item pool of the
MCAT, a range of non-negative values of the tuning parameter
for the LASSO, λ1, ...,λW , should be given for providing various
shrinkage effects for discrimination parameters of the MGRM.
Specifically, the L1-regularized optimization constructed for the
jth item with a given λw is defined as

min
bj1,...,bj(M−1),aj1,...,ajK

{−l(bj1, ..., bj(M−1), aj1, ..., ajK , Yj, 2̂)

+ λw

K∑
k=1

|ajk|}, (5)

where the true abilities are denoted as 2 = (θik)N×K, and
their estimates accordingly as 2̂. Yj = (Y1j, ..., YNj)

T is the
vector of responses to the jth item for all examinees, and
therefore −l(bj1, ..., bj(M−1), aj1, ..., ajK , Yj, 2̂) represents the
log-likelihood of Yj and 2̂ for the MGRM. The L1-norm penalty
of aj for the jth item is expressed as

∑K
k=1 |ajk|. Generally, larger

tuning parameter tends to cause more sparse discrimination
parameters, so λw directly influences the shrinkage effect of
âj. The convexity of the L1-norm penalized negative log-
likelihood function in Equation (5) can be easily proven by
convex function properties (e.g., Boyd and Vandenberghe, 2004;
Nocedal and Wright, 2006; Hastie et al., 2015), so the coordinate
descent algorithm (Friedman et al., 2007, 2010) can be used
to solve the optimization. Specifically, set the relatively small
value of λ for which the entire vector aj is equal to zeros.
The estimated abilities,2̂, and observed response data, Yj,
are inputted; the solution with respect to item parameters,
(bj1, ..., bj(M−1), aj1, ...ajK), to the LASSO optimization for the
MGRM based on the setting of λ is updated coordinate
by coordinate, the details for which are illustrated in the
Appendix section. Thus, the solutions to the optimizations with
a decreasing sequence of λ can be obtained respectively. That
is, for W values of the tuning parameter, the discrimination
parameter estimates, â (1)

j , . . ., â (W)
j , can be obtained via the

algorithm and the alternative item-trait patterns of the jth item
is accordingly obtained. Denote the true item-trait pattern for j
as Qj = (qj1, . . ., qjK)T , and qjk = 1 represents the kth ability
is measured by that item, while qjk = 0 represents the opposite

case. Denote Q̂(w)
j = (q̂(w)

j1 , ..., q̂(w)
jK ) as the estimated item-trait

pattern of Equation (5). If âjk > 0, then qjk = 1; else qjk = 0.
The optimal item-trait pattern is denoted by Q∗j = (q∗j1, ..., q∗jK).
For this research, because necessary ability estimates can be
obtained based on the operational items in MCAT, so the
patterns of replenished items for the MGRM can be directly
estimated (identified) via optimizations of the LPRM-GR without
factor rotation.

Step 3. Apply an appropriate selection index to choose
the optimal item-trait patterns for the replenished items from
the alternative patterns. As discussed in Sun and Ye (2019), the
goodness-of-fit for the M2PLM to the data can be appropriately
measured by the regular BIC and it is implemented for finding the
optimal patterns from the alternatives, for which the decision rule
is minimizing the alternatives in terms of BIC. In this research,
the regular BIC for the replenished items with a given λ can be
defined as

BIC = −2
J1∑

j=1

N∑
i=1

log(l̂ij)+ np log(N), (6)

where np represents the number of item parameters obtained by
the result of the LASSO optimization such as that in Equation
(5); N represents the number of examinees and l̂ij calculates
the log-likelihood based on the ith examinee’s ability estimate.
The decision rule is to minimize the regular BIC based on a
combination of alternative patterns with different λ values.

Note that for the LRPM-GR, it could also be tried to adjust the
regular BIC as the weighted BIC in order to furtherly improve the
precision of pattern selection from the ones in the above steps.
There have been a few studies highlighting the effects of response
distribution in parameter estimation and pattern selection (e.g.,
King and Zeng, 2001; Hu and Zidek, 2002, 2011). Hu and
Zidek (2002) addressed the challenges of imbalanced classes
of the population problem in maximum likelihood estimation.
They show that the unbalanced distribution of responses did
influence the parameter estimation accuracy and pointed out
that appropriate weights enable researchers to represent the
degree to which the information from the populations should
be used in fitting the likelihood. Furthermore, Hu and Zidek
(2002) believe that the best choice of the weights will depend
on the context, and the weighted likelihood with data-dependent
weights can be referred to as adaptive weighted likelihood. Thus,
the weighted BIC for a given λ is here constructed in manners
of adaptive weighted likelihood to assist in improving the effects
of the response distribution (or the observed information of the
examinee populations) in the pattern selection process:

BĨC = −2
J1∑

j=1

N∑
i=1

νij log(l̂ij)+ np log(N), (7)

where the weights {νij} are based on the score of the examinee as
well as the corresponding frequency with which examinees scored
at the same response level: νij = ηj,Yij . That is, if Yij = m(m = 0,

. . ., M), then νij = ηjm, where ηjm =
∑N

i=1
I(Yij=m)

N .
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So the weighted BIC modifies the log-likelihood by weighting
the likelihood based on the above frequencies. The characteristic
of the specific form of the weighted BIC here is that the weights
are easier to obtain and less computationally intensive. Similar
to Hu and Zidek (2002)’s point for the weighted BIC, the
practical meaning of the weights in the weighted BIC here can be
understood as enabling the contribution of observed responses
to the likelihood of the criterion to be enhanced; that is, the
likelihood could be emphasized by means of giving the degree
of the information from the examinee populations. Based on
the above considerations, the regular BIC and weighted BIC
were, respectively, applied in the simulation section to choose
the optimal item-trait patterns from the alternatives for all the
replenished items.

The shrinkage effect of the LASSO leads to controllable bias to
the item parameter estimation. The estimated item parameters
obtained from the L1-regularized optimizations should not be
directly used to calculate the likelihood in the regular BIC or
weighted BIC. Thus, the calibration of item parameters for all the
replenished items should be re-estimated based on the alternative
patterns from the optimizations with different λ values, which
is similar to the treatment for the simplified relaxed LASSO
(Meinshausen, 2007; Hastie et al., 2017). The response data
can be refitted by the MGRM based on each of the alternative
patterns via the algorithm of path-wise coordinate descent, the
corresponding optimization for which is simply the estimation
based on likelihood without involving the L1-norm penalty. The
decision rule is to minimize the regular BIC or weighted BIC
based on alternative patterns with different λ values.

SIMULATION

Studies 1, 2, 3 corresponding to the two-, three-, and four-
dimensional MCAT item pools were conducted to evaluate the
performance of the LPRM-GR for detecting the optimal item-
trait patterns. In each study, there were 16 conditions considered,
which were across different latent trait correlation (i.e., 6),
response categories for the graded-response data (i.e., M+1), test
lengths, and item selection criteria. Specifically, independent and
correlated latent traits were designed, respectively, for generating
response data based on the MGRM. Two types of response
categories were considered for the MGRM: M+1 = 3 and
4. The fixed-length and variable-length stopping rules were
designed, respectively, for the MCAT. Two types of item selection
criteria were considered for the MCAT procedure of the LPRM-
GR: Bayesian D-optimality and Bayesian A-optimality (e.g.,
Berger and Veerkamp, 1994; van der Linden, 1999; Mulder
and van der Linden, 2009). Besides, the regular BIC and
weighted BIC were applied by the LPRM-GR, respectively, to
choose the optimal item-trait patterns from the alternatives for
replenished items. For each condition in the simulation study,
50 replications were conducted. The computational codes were
written in the R software.

Item Pool and Data Design
Item Pool Generation
For each of the three studies, discrimination parameters
({ajk}) were randomly sampled from the uniform distribution,

U(0.7, 1.5); boundary parameters ({djm}) were drawn from
U[ − 2, 2] and each was uniformly distributed along with an
equidistant interval within this range for each item (e.g., Jiang
et al., 2016). Specifically, boundary parameters for M+1 = 3
were randomly sampled from U[−2,−0.67], U[−0.67, 0.67],
and U[0.67, 2], respectively. Boundary parameters for M+1 = 4
were randomly sampled from U[−2,−1], U[−1, 0], U[0, 1], and
U[1, 2], respectively.

In Study 1, each two-dimensional item pool had J0 = 900
operational items, of which 300 items measured the first
trait, another 300 items measured the second trait, and the
remaining 300 items measured both the two traits, so 3 types
of patterns were designed for the study. Each item pool of
Study 1 had J1 = 30 replenished items, of which 10 items
measured the first trait, another 10 items measured the second
trait, and the rest measured both the two traits. Similarly,
since three latent traits were measured by each item pool of
Study 2, there were seven types of patterns designed. Each
item pool of the study consisted of J0 = 910 operational
items and J1 = 35 replenished items, of which every 130
operational items and every five replenished items corresponded
to one of the seven types of patterns. In Study 3, each four-
dimensional item pool had J0 = 900 operational items and
J1 = 30 replenished items, of which every 60 operational items
and every two replenished items had one of the 15 types
of patterns.

Response Data Generation
For all of the three studies, the true abilities of N = 4,000
examinees are randomly sampled from two multivariate
normal distributions with N(0, 6i), (i = 1, 2), respectively.
For the two-dimensional study, covariance matrices were

61 =

(
1 0
0 1

)
and 62 =

(
1 0.3

0.3 1

)
; for the three-dimensional

study, those were 61 =

 1 0 0
0 1 0
0 0 1

 and 62 =

 1 0.2 0.3
0.2 1 0.5
0.3 0.5 1

; for

the four-dimensional study, those were 61 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and

62 =


1 0.2 0.4 0.5

0.2 1 0.3 0.5
0.4 0.3 1 0.7
0.5 0.5 0.7 1

. The responses of the examinees were

generated from the MGRM based on the true values of the
parameters given above.

Multidimensional Computerized
Adaptive Testing Procedure in LPRM-GR
The MCAT procedure with the MGRM required by the LPRM-
GR was simulated by the R package: mirtCAT (Chalmers, 2016).
The estimation of examinees’ abilities based on the MGRM was
obtained by the maximum a posterior (MAP), which is generally
proven by numerous previous research to provide more accurate
results than the method of expected a posterior. As introduced
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by Steps 1 and 2 of the LPRM-GR, the ability estimates from
Step 1 were directly exploited for the subsequent L1-regularized
optimization in Step 2.

Item Selection Criterion
Item selection is one of the key components of CAT, and
frequently used item selection approaches are constructed based
on Fisher Information or Kullback-Leibler Information (e.g.,
Wang and Chang, 2011; Wang et al., 2011; Wang et al., 2013;
Tu et al., 2018). For MCAT, the item selection strategy based
on Fisher information is frequently used. In this paper, the
operational items were selected from the item pool by Bayesian
D-optimality and Bayesian A-optimality, respectively. Bayesian
A-optimality selects the jth item from the remaining items in the
item pool by minimizing the traces of the inverse to the sum of
the Fisher information matrices and a prior covariance matrix,
which is formulated as

arg min{trace[ISj−1(θ̂
j−1

)+ Iij(θ̂
j−1

)+8−1
]
−1
}, (8)

where ISj−1(θ̂
j−1

) and Iij(θ̂
j−1

) represent the information matrices

based on θ̂
j−1

for the j-1 administered items and candidate
item ij, respectively. The prior covariance matrix for abilities
is denoted as 8. Bayesian D-optimality selects the jth item
from the remaining items in the item pool by maximizing the
determinants of the sum of the Fisher information matrices and
a prior covariance matrix for abilities:

arg max{det[ISj−1(θ̂
j−1

)+ Iij(θ̂
j−1

)+8−1
]}. (9)

Stopping Rules
The goal of a fixed-length stopping rule is to terminate the
CAT with a predetermined length. However, it is shown that
the fixed-length rule may produce less accurate results for the
examinees with quite different abilities from the average difficulty
level of the item pool (e.g., Wang et al., 2013). Compared
with the fixed-length rule, the variable-length rule (e.g., Boyd
et al., 2010) such as the standard error (SE) rule (e.g., Weiss
and Kingsbury, 1984; Yao, 2013) can provide approximately
equal precision for all examinees regardless of their different
abilities. The SE rule simply controls that the standard error
of the precision of each examinee’s ability estimate does not
exceed a predetermined threshold. The SE rule is simple to
implement as well as previous studies have also shown its good
performance (e.g., Yao, 2013). Thus, the above two types of
stopping rules were used in this study, respectively. The first
was the fixed-length rule: the MCAT in the simulation was
stopped at Z0 = 50 operational items for each examinee. The
second was the SE rule with a maximum 100-length constraint,
which aims to jointly consider approximate similar measurement
precision as well as appropriate test length for the MCAT because
using the SE rule alone could produce a too long test for
a few examinees with quite low or high abilities (e.g., Wang
et al., 2018b); specifically, the MCAT is terminated once a pre-
specified estimated standard error, 0.3, along with 100-length
was reached.

Assignment of Replenished Items
All the replenished items were divided into five groups and
assigned furtherly to each group. Z1 = 6 replenished items were
assigned to each group for the two-dimensional study while
Z1 = 7 for the three-dimensional study. Note that assigned
replenished items contained all possible patterns. For the four-
dimensional study, each group was assigned Z1 = 6 replenished
items, which corresponded to six different patterns, respectively.
The examinees were equally divided into five groups either and
answered assigned replenished items. Thus, n = 800 examinees
were assigned to answer different replenished items.

Specification of Tuning Parameter
As is known, the sparsity of patterns for the LASSO can be
affected by λ, so its alternative values should be given in a
relatively large range to ensure the adequacy of the alternative
item-trait patterns; whereas too many alternative values may
produce similar patterns instead of diverse ones and cause
unnecessary computing load. Therefore, dozens of equidistant
cut-off points of λ are set between 0 and 120 for Step 2 of the
proposed method after careful trials in simulation.

Evaluation Criteria
Correct Specification Rate
To evaluate the precision effects of the LPRM-GR on pattern
recognition, one intuitive index is the correct specification rate
of replenished items:

CSR =
1

J1 × K

J1∑
j=1

K∑
k=1

I(q∗jk = qjk), (10)

where Qj = (qj1, ..., qjK)T is the true pattern of the jth
replenished item, and Q̂j = (q∗j1, ..., q∗jK)T is the identified pattern
by the LPRM-GR. As above, each element of Qj takes 1 or 0,
indicating the corresponding trait is or is not measured by the
jth item. The identity function is denoted by I. Note that CSR
falls in [0, 1], and the larger value of CSR means the higher
recognition accuracy.

Ability Estimation Accuracy
The absolute mean error (AME) and root mean square error
(RMSE) are calculated as follows to evaluate the ability estimation
accuracy of the examinees in the MCAT procedure:

AME(θ) =

∑N
i=1
∑K

k=1 |θ̂ik − θik|

N × K
, (11)

RMSE(θ) =

√∑N
i=1
∑K

k=1(θ̂ik − θik)2

N × K
, (12)

where θ̂ik is the estimated ability on the kth dimension of
the ith examinee, and θik is the true ability for that. Smaller
values of the two indices correspond to the higher estimation
accuracy of abilities.
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Item Parameter Estimation Accuracy
Similar to the evaluation indices in ability vectors, the AME
is applied to measure the estimation of item parameters of
replenished item parameters, which is calculated based on
the patterns identified by the LPRM-GR with the estimated
abilities and the true abilities, individually. The two indices
of item parameters of replenished items with MGRM are
computed as

AME(a) =

∑J1
j=1
∑K

k=1 |âjk − ajk|

J1 × K
, (13)

AME(b) =

∑J1
j=1
∑M−1

m=1 |b̂jm − bjm|

J1 × (M − 1)
. (14)

Smaller values of the two indices correspond to the higher
estimation accuracy of item parameters.

Result of Study 1
Pattern Recognition Accuracy of Replenished Items
in Study 1
Table 1 lists the CSR values of the optimal patterns of
replenished items under multiple conditions based on two types
of BIC in the two-dimensional item pool. Note that the table
contains the CSRs for the LPRM-GR with the estimated abilities
and true abilities, and those with true abilities can be used
as benchmarks.

As shown in Table 1, the CSR values with estimated abilities
were generally close or even equal to their benchmarks. The
LPRM-GR with estimated abilities achieved quite high CSR
results, which reached even 100% for the conditions with the
weighted BIC. Thus, focusing on the two types of BIC, it
showed that the CSRs obtained from the LPRM-GR with the
weighted BIC had better performance than those with the
regular BIC.

Furthermore, Table 1 showed that for the two types of
response categories, the CSR values with independent-ability
conditions were equal to or slightly higher than those for

correlated-ability conditions. It also indicated that Bayesian
A-Optimality and Bayesian D-Optimality performed closely
and had quite high CSR values. Comparing the pattern
recognition accuracy of the LPRM-GR between the two types
of test lengths, it was found that the CSRs are close for
most conditions; the CSRs for the variable-length conditions
especially with correlated abilities and selected with the regular
BIC were slightly better than those for the fixed-length
test conditions.

Ability Parameter Estimation Comparison in
Multidimensional Computerized Adaptive Testing of
Study 1
To investigate the effects of ability estimation in pattern
recognition, the parameter estimation accuracy was given
in Table 2. As expected, the AME and RMSE results
of ability estimation for the variable-length test showed a
significant improvement in estimation accuracy over the fixed-
length test. It also shows that AME and RMSE values for
Bayesian A-Optimality were generally lower than those for
Bayesian D-Optimality. Although the AME and RMSE values
of correlated abilities were slightly lower than those for
independent abilities, the CSR values presented in Table 1
indicated that the pattern recognition accuracy for the correlated
abilities was slightly lower than independent ones for the
regular BIC.

Item Parameter Estimation Accuracy of Replenished
Items in Study 1
To furtherly measure the impact of detected patterns on the
recovery of replenished items and for brevity, AME values
of estimated item parameters under different conditions with
two types of BIC are presented in Tables 3, 4. The two
tables showed that the AME values of estimated discrimination
parameters based on the patterns selected by the weighted
BIC were slightly smaller than those by the regular BIC.
Also, by the comparison of Tables 1, 3, 4, it was found that
the recovery of intercept parameters was not affected by the

TABLE 1 | Correct specification rate of item-trait patterns identified by the LPRM-GR in Study 1.

Condition LPRM-GR with ability estimates LPRM-GR with true abilities

Regular BIC Weighted BIC Regular BIC
(%)

Weighted BIC
(%)

M+1 Latent trait
correlation

Test length
type

Item selection criterion

Bayesian
A-optimality (%)

Bayesian
D-optimality (%)

Bayesian
A-optimality (%)

Bayesian
D-optimality (%)

3 Independent Fixed-length 99.63 99.53 100 100 99.67 100

Variable-length 99.63 99.63 100 100

Correlated Fixed-length 98.33 98.40 100 100 99.60 100

Variable-length 99.13 99.07 100 100

4 Independent Fixed-length 99.73 99.73 100 100 99.60 100

Variable-length 99.63 99.73 100 100

Correlated Fixed-length 98.70 98.73 100 100 99.70 100

Variable-length 99.10 99.10 100 100
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TABLE 2 | Recovery of ability parameters in Study 1.

Condition Item selection criterion

Bayesian A-optimality Bayesian D-optimality

M+1 Latent trait correlation Test length type AME (θ) RMSE (θ) AME (θ) RMSE (θ)

3 Independent Fixed-length 0.3081 0.3865 0.3215 0.4036

Variable-length 0.2464 0.3091 0.2570 0.3226

Correlated Fixed-length 0.2981 0.3741 0.3094 0.3887

Variable-length 0.2414 0.3029 0.2512 0.3152

4 Independent Fixed-length 0.2978 0.3733 0.3066 0.3848

Variable-length 0.2398 0. 3006 0.2440 0.3061

Correlated Fixed-length 0.2875 0.3607 0.2952 0.3703

Variable-length 0.2345 0.2940 0.2384 0.2991

TABLE 3 | Recovery of item parameters based on patterns from the LPRM-GR with ability estimates and regular BIC in Study 1.

Condition LPRM-GR with ability estimates

M+1 Latent trait correlation Test length type Item selection criterion

Bayesian A-optimality Bayesian D-optimality

AME (a) AME (b) AME (a) AME (b)

3 Independent Fixed-length 0.0510 0.0867 0.0516 0.0874

Variable-length 0.0487 0.0830 0.0488 0.0835

Correlated Fixed-length 0.0599 0.0869 0.0609 0.0877

Variable-length 0.0525 0.0835 0.0532 0.0838

4 Independent Fixed-length 0.0477 0.0867 0.0486 0.0871

Variable-length 0.0460 0.0829 0.0461 0.0833

Correlated Fixed-length 0.0556 0.0855 0.0556 0.0855

Variable-length 0.0501 0.0820 0.0503 0.0823

pattern recognition accuracy as sensitively as the discrimination
parameters.

Result of Study 2
Pattern Recognition Accuracy of Replenished Items
in Study 2
In the three-dimensional study, the CSR values for the
LPRM-GR under multiple conditions are listed in Table 5.
It indicated that the results in CSR were very close to
their benchmarks, except for those in the correlated-ability
condition for the regular BIC. Similar to the performance
in pattern recognition accuracy in Study 1, the LPRM-
GR in Study 2 generally produced relatively high CSRs for
the overall conditions with the two types of BIC, and it
especially achieved quite high CSR for the conditions with the
weighted BIC.

In addition, Table 5 indicated that the CSRs for the
conditions with two types of response categories and the
independent abilities were higher than those with the correlated
abilities. Results also showed that for most cases, the tests with
variable-length by either Bayesian A-Optimality or Bayesian
D-Optimality for the LPRM-GR had relatively higher CSR
values than tests with the length of 50 items. The two

types of item selection criteria showed a slight difference
in CSR.

Ability Parameter Estimation Comparison in
Multidimensional Computerized Adaptive Testing of
Study 2
Table 6 listed the AME and RMSE of the estimated abilities.
It showed that the ability parameter estimation accuracy
for Bayesian A-Optimality was slightly better than that for
Bayesian D-Optimality. Also, it was clear that the AME
and RMSE for the correlated-ability conditions were lower
than those for the independent-ability conditions. Table 6
showed that the abilities could be estimated more precisely
for the variable-length MCAT than that for the fixed-
length case.

Item Parameter Estimation Accuracy of Replenished
Items in Study 2
The AME values of the estimated item parameters based on the
patterns selected by two types of BIC, individually, were listed in
Tables 7, 8. It can be inferred from the two tables and Table 5
that the estimation accuracy of intercept parameters was slightly
influenced by the pattern recognition accuracy of replenished
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TABLE 4 | Recovery of item parameters based on patterns from the LPRM-GR with ability estimates and weighted BIC in Study 1.

Condition LPRM-GR with ability estimates

M+1 Latent trait correlation Test length type Item selection criterion

Bayesian A-optimality Bayesian D-optimality

AME (a) AME (b) AME (a) AME (b)

3 Independent Fixed-length 0.0502 0.0867 0.0506 0.0875

Variable-length 0.0479 0.0830 0.0480 0.0836

Correlated Fixed-length 0.0550 0.0870 0.0559 0.0878

Variable-length 0.0502 0.0835 0.0507 0.0837

4 Independent Fixed-length 0.0472 0.0867 0.0481 0.0872

Variable-length 0.0453 0.0829 0.0455 0.0833

Correlated Fixed-length 0.0520 0.0853 0.0530 0.0855

Variable-length 0.0479 0.0820 0.0481 0.0823

TABLE 5 | Correct specification rate of item-trait patterns identified by the LPRM-GR in Study 2.

Condition LPRM-GR with ability estimates LPRM-GR with true abilities

Regular BIC Weighted BIC Regular BIC
(%)

Weighted
BIC (%)

M+1 Latent trait
correlation

Test length
type

Item Selection Criterion

Bayesian
A-optimality (%)

Bayesian
D-optimality (%)

Bayesian
A-optimality (%)

Bayesian
D-optimality (%)

3 Independent Fixed-length 99.62 99.64 99.94 99.94 99.67 100

Variable-length 99.41 99.50 100 100

Correlated Fixed-length 94.34 94.34 99.62 99.52 99.60 100

Variable-length 96.61 96.59 99.85 99.89

4 Independent Fixed-length 99.33 99.28 100 100 99.47 100

Variable-length 99.43 99.37 100 100

Correlated Fixed-length 94.17 94.11 99.28 99.49 99.50 100

Variable-length 96.63 96.50 99.83 99.81

TABLE 6 | Recovery of ability parameters in Study 2.

Condition Item selection criterion

Bayesian A-optimality Bayesian D-optimality

M+1 Latent trait correlation Test length type AME (θ) RMSE (θ) AME (θ) RMSE (θ)

3 Independent Fixed-length 0.4081 0.5122 0.4163 0.5223

Variable-length 0.3334 0.4182 0.3385 0.4251

Correlated Fixed-length 0.3838 0.4815 0.3897 0.4888

Variable-length 0.3204 0.4019 0.3250 0.4078

4 Independent Fixed-length 0.3956 0.5832 0.4012 0.5034

Variable-length 0.3195 0.4005 0.3243 0.4066

Correlated Fixed-length 0.3729 0.4681 0.3782 0.4748

Variable-length 0.3088 0.3874 0.3126 0.3923

items, while the recovery of discrimination parameters was
more sensitive to the pattern recognition accuracy. Besides,
similar to the results of Tables 3, 4, the AMEs of the estimated

discrimination parameters based on the patterns selected by the
LPRM-GR with weighted BIC were smaller than those with
the regular BIC.
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TABLE 7 | Recovery of item parameters based on patterns from the LPRM-GR with ability estimates and regular BIC in Study 2.

Condition LPRM-GR with ability estimates

M+1 Latent trait correlation Test length type Item selection criterion

Bayesian A-optimality Bayesian D-optimality

AME (a) AME (b) AME (a) AME (b)

3 Independent Fixed-length 0.0532 0.1286 0.0536 0.1299

Variable-length 0.0470 0.1121 0.0470 0.1129

Correlated Fixed-length 0.0834 0.1208 0.0856 0.1223

Variable-length 0.0654 0.1089 0.0654 0.1096

4 Independent Fixed-length 0.0515 0.1245 0.0518 0.1254

Variable-length 0.0447 0.1086 0.0450 0.1094

Correlated Fixed-length 0.0807 0.1163 0.0813 0.1169

Variable-length 0.0613 0.1054 0.0623 0.1055

TABLE 8 | Recovery of item parameters based on patterns from the LPRM-GR with ability estimates and weighted BIC in Study 2.

Condition LPRM-GR with ability estimates

M+1 Latent trait correlation Test length type Item selection criterion

Bayesian A-optimality Bayesian D-optimality

AME (a) AME (b) AME (a) AME (b)

3 Independent Fixed-length 0.0527 0.1287 0.0531 0.1300

Variable-length 0.0458 0.1122 0.0460 0.1129

Correlated Fixed-length 0.0635 0.1220 0.0652 0.1235

Variable-length 0.0536 0.1094 0.0538 0.1001

4 Independent Fixed-length 0.0499 0.1246 0.0500 0.1255

Variable-length 0.0435 0.1087 0.0436 0.1095

Correlated Fixed-length 0.0622 0.1174 0.0614 0.1180

Variable-length 0.0506 0.1058 0.0509 0.1059

Result of Study 3
Pattern Recognition Accuracy of Replenished Items
in Study 3
For the four-dimensional item pool, the pattern recognition
performance in CSR for the LPRM-GR is listed in Table 9. It
showed that the CSR values with estimated abilities were close
to their benchmarks in most scenarios. Furthermore, when the
weighted BIC was used to choose the optimal item-trait patterns,
the accuracy of the LPRM-GR was significantly improved, which
is particularly evident for the conditions with correlated abilities.
In general, comparing the results from Tables 1, 5, 9, it can
be observed that the weighted BIC assisted the LPRM-GR in
producing higher recognition accuracy than the regular BIC,
especially for the correlated-ability conditions.

Similar to the results in Tables 1, 5, Table 9 also showed that
the CSRs for the correlated-ability conditions were lower than
those for the independent-ability conditions. In addition, the CSR
values for the variable-length tests were generally higher than
those for the fixed-length tests, which was especially noticeable
for the correlated-ability conditions. In contrast to the results
with similar conditions in Tables 1, 5, the CSRs of the LPRM-GR
were not significantly sensitive to the increase of dimensionality.

Ability Parameter Estimation Comparison in
Multidimensional Computerized Adaptive Testing of
Study 3
The recovery of ability parameters in Study 3 is listed in
Table 10. It was found that the ability estimation accuracy for
Bayesian A-Optimality was slightly better than that for Bayesian
D-Optimality; the AME and RMSE values for the estimated
correlated abilities were better than those for the independent
abilities. Also, the variable-length tests in this study produced
more precise estimates with respect to abilities than the fixed-
length tests.

Item Parameter Estimation Accuracy of Replenished
Items in Study 3
Tables 11, 12 list the AME values of item parameters of
replenished items in study 3, which were estimated based on
the optimal item-trait patterns selected by the LPRM-GR. For
the four-dimensional replenished items, it can be inferred from
Tables 9, 11, 12 that the estimation accuracy of intercept
parameters was less sensitive to the pattern recognition accuracy
than the discrimination parameters. Furthermore, the recovery
of estimated discrimination parameters based on the patterns
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TABLE 9 | Correct specification rate of item-trait patterns identified by the LPRM-GR in Study 3.

Condition LPRM-GR with ability estimates LPRM-GR with true abilities

Regular BIC Weighted BIC Regular BIC
(%)

Weighted
BIC (%)

M+1 Latent trait
correlation

Test length
type

Item selection criterion

Bayesian
A-optimality (%)

Bayesian
D-optimality (%)

Bayesian
A-optimality (%)

Bayesian
D-optimality (%)

3 Independent Fixed-length 99.32 99.48 99.83 99.68 99.35 99.98

Variable-length 99.32 99.38 99.95 99.92

Correlated Fixed-length 87.65 87.05 93.93 93.68 98.57 98.70

Variable-length 90.73 90.35 95.38 95.20

4 Independent Fixed-length 99.20 99.12 99.93 99.90 99.42 100

Variable-length 99.28 99.30 99.97 99.97

Correlated Fixed-length 86.87 87.28 93.13 93.13 98.38 98.70

Variable-length 90.32 89.93 94.58 94.57

TABLE 10 | Recovery of ability parameters in Study 3.

Condition Item selection criterion

Bayesian A-optimality Bayesian D-optimality

M+1 Latent trait correlation Test length type AME (θ) RMSE (θ) AME (θ) RMSE (θ)

3 Independent Fixed-length 0.4650 0.5832 0.4706 0.5903

Variable-length 0.3858 0.4839 0.3888 0.4876

Correlated Fixed-length 0.4189 0.5258 0.4220 0.5298

Variable-length 0.3602 0.4519 0.3627 0.4551

4 Independent Fixed-length 0.4528 0.5679 0.4576 0.5738

Variable-length 0.3719 0.4664 0.3749 0.4020

Correlated Fixed-length 0.4099 0.5144 0.4133 0.5188

Variable-length 0.3494 0.4383 0.3515 0.4409

TABLE 11 | Recovery of item parameters based on patterns from the LPRM-GR with ability estimates and regular BIC in Study 3.

Condition LPRM-GR with ability estimates

M+1 Latent trait correlation Test length type Item selection criterion

Bayesian A-optimality Bayesian D-optimality

AME (a) AME (b) AME (a) AME (b)

3 Independent Fixed-length 0.0630 0.1962 0.0634 0.1981

Variable-length 0.0534 0.1604 0.0532 0.1615

Correlated Fixed-length 0.1401 0.1646 0.1428 0.1654

Variable-length 0.1097 0.1438 0.1113 0.1442

4 Independent Fixed-length 0.0594 0.1917 0.0602 0.1939

Variable-length 0.0486 0.1542 0.0488 0.1550

Correlated Fixed-length 0.1373 0.1544 0.1371 0.1558

Variable-length 0.1057 0.1338 0.1069 0.1339

identified by the LPRM-GR performs better with weighted BIC
than that with the regular BIC, while the recovery of estimated
intercept parameters performs similarly for the LPRM-GR with
the two types of BIC.

Moreover, the comparison of the AMEs among the three
simulation studies illustrated that the discrimination parameter
estimation accuracy was obviously affected by the pattern
recognition accuracy of the LPRM-GR, especially for the
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TABLE 12 | Recovery of item parameters based on patterns from the LPRM-GR with ability estimates and weighted BIC in Study 3.

Condition LPRM-GR with ability estimates

M+1 Latent trait correlation Test length type Item selection criterion

Bayesian A-optimality Bayesian D-optimality

AME (a) AME (b) AME (a) AME (b)

3 Independent Fixed-length 0.0620 0.1970 0.0637 0.1989

Variable-length 0.0522 0.1606 0.0523 0.1618

Correlated Fixed-length 0.1128 0.1679 0.1139 0.1690

Variable-length 0.0908 0.1453 0.0916 0.1458

4 Independent Fixed-length 0.0577 0.1921 0.0585 0.1944

Variable-length 0.0472 0.1544 0.0475 0.1553

Correlated Fixed-length 0.1120 0.1570 0.1131 0.1582

Variable-length 0.0890 0.1351 0.0889 0.1353

conditions with correlated abilities. Results of the three studies
also showed that the AMEs of item parameters based on the
MCAT under the variable-length rule were lower than those for
the fixed-length rule.

CONCLUSION AND DISCUSSION

To manually identify how the replenished items in MCAT
based on MGRM measure the latent traits is not only time-
consuming but also affecting the accuracy and quality of the
MCAT. In contrast, to automatically detect the item-trait patterns
for replenished items with graded responses in the MCAT
item pool can facilitate the item calibration of the items and
benefit for the security of the subsequent diagnostic information
mining and feedback. At the basis of Sun and Ye (2019), but
not limited to, this research proposes a data-driven pattern
recognition method for graded-response items, LPRM-GR, to
find the optimal item-trait patterns of replenished items fitted
by the MGRM in MCAT, which extends the framework of
the LPRM to the case of graded responses for the item pool
replenishment. The LPRM-GR formulates the L1-regularized
optimization and gives the coordinate descent algorithm to solve
it, and investigate the performance of the regular BIC and the
weighted BIC, respectively, for selecting the optimal patterns
of replenished items from the alternatives. Three simulation
studies were conducted to evaluate the LPRM-GR with the
two types of BIC in multiple cases across different numbers of
response categories, ability correlation, stopping rules, and item
selection criteria.

Conclusion
Conclusions can be drawn from the results of three studies in
simulation. In general, if one focuses on the CSR of item-trait
patterns and the AME of estimated item parameters, it can be
found: the LPRM-GR for variable-length scenarios performed
better than that for fixed-length scenarios; the proposed method
for independent cases performed better than that for correlated
cases in terms of ability correlation; the proposed method

with the Bayesian A-optimality in MCAT performed as similar
as that with the Bayesian D-optimality; the proposed method
for the MGRM with three response categories and that with
four response categories had similar results; the higher pattern
recognition accuracy of the LPRM-GR yielded comparatively
higher estimation accuracy of discrimination parameters in
MGRM; the weighted BIC performed better than the regular BIC
for assisting the LPRM-GR in finding the optimal patterns. In
addition, the estimation accuracy of discrimination parameters
in MGRM was higher than that of intercept parameters.

Details of the findings of the three studies are given as
follows. Firstly, the CSRs of the selected optimal patterns for
the LPRM-GR with ability estimates in the MCAT procedure
reached 86.87–100% for the overall cases for the three numbers
of dimensionality. Specifically, the CSRs of the LPRM-GR with
the ability estimates under the overall conditions are above 86%;
for the two- and three-dimensional item pools, the CSRs are
above 98% and 94%. By comparison with the benchmarks, the
CSRs indicate that it is feasible for the LPRM-GR to help the
LASSO optimization procedure by using ability estimates from
the MCAT. Since it is not possible to know examinees’ true
abilities in practice, with the appropriate sample size designed in
simulation, the ability estimates ensure that the LPRM-GR can
detect the optimal item-trait patterns of graded-response items
in relatively satisfactory accuracy and efficiency.

Secondly, a worth-noting result is that the LPRM-GR with
ability estimates and the weighted BIC obtains fairly high
recognition accuracy, for which the CSRs reach over 93% for
the overall cases and even being close to 100% for some cases.
Regarding the overall performance of the LPRM-GR with the
two types of BIC in pattern recognition accuracy and item
parameter recovery, the studies demonstrate that the weighted
BIC can help LPRM-GR improve the recognition accuracy better
than the regular BIC, especially in the conditions for correlated
abilities. The weighted BIC used in simulation has conveniently
calculated weights, which provides a good choice for the practical
application of the LPRM-GR.

Thirdly, taking an insight into the LPRM-GR with the
weighted BIC, it can be found that: for the correlated ability
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conditions, the MCAT with SE rule and the constraint of up
to 100 items in the LPRM-GR produces significantly better
ability estimates, but slightly better CSRs, than the fixed-
length rule (i.e., 50-length). The variable-length rule used by
the LPRM-GR can play the positive part in ability estimation
accuracy, which consequently to some extent benefits pattern
recognition accuracy and discrimination parameter recovery of
the replenished items with graded responses. As a matter of
fact, it can be found that for most simulation cases with the
variable-length rule, the length of MCAT in LPRM-GR is larger
than 50, which could primarily explain the yield of better ability
estimates. Nevertheless, the three studies also show that for the
independent ability conditions, the fixed-length rule used in the
LPRM-GR can provide similar pattern recognition accuracy to
the variable-length rule, although the ability estimation accuracy
for the former is not as good as the latter. In practice, if test
developers cannot ignore the possible low computing efficiency
yielded by the variable-length rule, the fixed-length MCAT can
be a good choice for the application of the LPRM-GR.

Fourthly, for the two types of response categories of MGRM,
the results in three studies suggest that the LPRM-GR can both
get relatively high CSRs under the designed conditions, so by
simulation, the response-category number has a relatively slight
influence on ability estimation accuracy, pattern recognition
accuracy, and item parameter recovery.

Discussion
Advantages of the LPRM-GR are illustrated as follows. As
one of the key parts for properly maintaining the functioning
of the MCAT system, item-trait pattern recognition for item
replenishment of the tests with polytomous responses is
necessary. As the polytomous extension of the LPRM, the
LPRM-GR can solve the recognition problem by detecting the
optimal item-trait patterns of replenished items with graded
responses efficiently and accurately, which appropriately utilizes
the MCAT operation to integrate with the LASSO and BIC
to promote the data-driven pattern recognition. Additionally,
the LPRM-GR addresses the potential meaning of examinees’
item scoring frequencies in developing the weighted BIC
for the further improvement of the effect of selecting the
optimal patterns based on the LASSO. The advantage of the
weighted BIC utilized in the LPRM-GR is well-supported by
the results of the studies, especially for the simulation cases of
correlated abilities.

As pointed out by Sun and Ye (2019), although the online
calibration methods (e.g., Chen and Wang, 2016; Chen et al.,
2017) and the LPRM can utilize the online feature of the
MCAT, they solve different problems. An online calibration
method focuses on estimating item parameters of replenished
items based on well-known patterns, which can be reached by
either a theory-driven or a data-driven method. The LPRM
and LPRM-GR take interest in selecting the optimal pattern
for each replenished item from all the possible alternatives,
i.e., considering statistical goodness-of-fit for items based on
the penalized-likelihood optimization like the L1-regularization.
Similar to the advantages of the LPRM, the MCAT online
function used in Step 1 of the LPRM-GR can automatically

put the item parameters of the replenished items on the same
scale as the operational ones in the item pool, which saves time
and labor costs for the pretest of the replenished items. For
a considerable long period of MCAT operation, the number
of replenished items in the item pool can be relatively large,
the data-driven methods may save the recognition efficiency
to some extent. Moreover, the MCAT designed for the LPRM-
GR does not require an extremely large sample size. Certainly,
if the practical situation permits, an appropriate increase in
the sample size for the proposed method may still expectedly
yield higher pattern recognition accuracy. Too long tests for
the variable-length rule can increase the fatigue effect as well
as time costs, so for the LPRM-GR, which type of stopping
rules should be put into practice needs full consideration of the
tradeoff between pattern recognition accuracy and efficiency for
estimating abilities.

Taking insight into the sample size of the LPRM-GR in
simulation, it can be found that 4,000 examinees are designed
for the graded-response scenario. The purpose of designing 800
examinees for each MCAT of the LPRM-GR is to fully consider
the relatively more item parameters for the MGRM than that
for the M2PLM, so that to investigate how well the LPRM-
GR performs in pattern recognition accuracy in a relatively
large sample size for the MGRM. Simulation results sufficiently
indicate the above sample size can help the LPRM-GR getting
good results in comparison with the benchmarks. Note that the
sample size here is not too large to implement for the LPRM-GR,
so based on the above considerations, the LPRM-GR is expected
to be feasible and have good application value.

Implications and future directions are summarized as follows.
First of all, this research takes observed responses as the role
of the so-called adaptive weighting of the likelihood (e.g., Hu
and Zidek, 2002) in BIC, and found that the weighted BIC
exploited in this paper had even better performance than the
regular BIC. Those weights for the weighted BIC are also easy to
compute. Note that Warm (1989) propose a weighted likelihood
estimator for ability estimation in the three-parameter logistic
model. The idea for defining weights of the weighted likelihood
is technically to measure the amount of information by the
Fisher’s information function with abilities. Similar ideas were
subsequently generalized to compensatory MIRT models (e.g.,
Tseng and Hsu, 2001; Wang, 2015). The idea of measuring the
item information by the statistical variant of Fisher information
matrix can also be found in constructing multidimensional item
selection indices (e.g., Mulder and van der Linden, 2009). Thus,
if thinking about other forms of the weights in the likelihood for
constructing the adaptive weighted BIC, reasonable variants such
as the determinant, trace, or other math quantities composed
of examinees’ Fisher information may be worth experimenting
and discussing in the future. Secondly, it is possible to take
into account other shrinkage methods for selecting appropriate
item-trait patterns of replenished items such as the elastic net
(Zou and Hastie, 2005) and the adaptive LASSO (Zou, 2006)
in conjunction with the proposed approach in future. Future
research can also consider further pattern recognition study for
more test situations or some extended models. For instance,
the proposed method can also be extended for the items fitted
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by other MIRT models, such as the bi-factor models (Gibbons
and Hedeker, 1992; Gibbons et al., 2007; Seo and Weiss, 2015),
the two-tier full-information item factor model (Cai, 2010), and
hierarchical test situations.

In addition, a limitation of the LPRM-GR is that its idea
for pattern recognition constructs on the compensatory MIRT
model with graded responses, so how to extend that to suit
for the non-compensatory MIRT models can be considered in
the future. The current pattern recognition method can also be
extended to design for more variable-length stopping rules (e.g.,
Wang et al., 2013; Wang et al., 2018b) or new item selection
and exposure control methods (e.g., Chen et al., 2020) in MCAT.
As reviewers’ suggestion, researchers can furtherly explore the
practical topics on the MCAT item pool replenishment in
future: what indices should be comprehensively considered for
finding the frequently used operational items; how long items
should be used before item exposure becomes a concern; what
specific factors that test developers should be aware for the
MCAT development.
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APPENDIX

Derivation of solving the L1-regularized optimization in Equation (5) via the coordinate descent algorithm and Fisher’s scoring
iteration is given as follows. For simplicity, new symbols of the ith examinee’s responses to the jth item (i.e., Yij) in Equation (2) are here
redefined as (yij0, ..., yijM), where yijm ∈ {0, 1} and

∑M
m=0 yijm = 1. If Yij = m, then yijm = 1 and yijm̃ = 0 (m̃ 6= m). For simplicity,

the symbol θi is omitted from Pijm(θi) and P∗ijm(θi), which are hereafter denoted as Pijm and P∗ijm. The negative log-likelihood of the
observed data and the known abilities based on the MGRM is

−l(bj, aj, Yj, 2) = −

N∑
i=1

log

( M∏
m=0

P
yijm
ijm

)
= −

N∑
i=1

M∑
m=0

yijm log(Pijm). (15)

Note that for the MGRM, the intercept parameters should be updated are bj1, ..., bj(M−1). By the definition of
1P∗ijm = P∗ijm(1− P∗ijm) and 12P∗ijm = P∗ijm(1− P∗ijm)(1− 2P∗ijm), the first-order derivative of Equation (15) with respect to bjm

(m = 1, ..., M − 1) is represented as gjm = −
∂l(bj,aj,Yj,2)

∂bjm
; after the tth iteration for item parameters, we have

g(t)
jm =

N∑
i=1

 yij(m−1)

P(t)
ij(m−1)

1P∗(t)
ijm −

yijm

P(t)
ijm

1P∗(t)
ijm

. (16)

For the Fisher’s scoring update, the second-order derivative of Equation (15) with respect to bjm (i.e., hjm = −
∂2l(bj,aj,Yj,2)

∂b2
jm

) is

substituted with its expectation, and then

E(h(t)
jm) = −

N∑
i=1

 1

P(t)
ij(m−1)

(1P∗(t)
ijm )2

+12P∗(t)
ijm

+
 1

P(t)
ijm

(1P∗(t)
ijm )2

−12P∗(t)
ijm

. (17)

The Fisher’s scoring update of bjm for the (t+1)th iteration has the form:

b̂(t+1)
jm = b̂(t)

jm −
g(t)

jm

E(h(t)
jm)

. (18)

The first-order derivative of Equation (15) with respect to ajk (k = 1, ..., K) is represented as gjk = −
∂ l(bj,aj,Yj,2)

∂ajk
, and then

g(t)
jk = −

N∑
i=1

M∑
m=0

yijm

P(t)
ijm

[1P∗(t)
ijm −1P∗(t)

ij(m+1)]θik. (19)

The expected second-order derivative of Equation (15) of ajk is expressed as

E(h(t)
jk ) =

N∑
i=1

M∑
m=0

 1

P(t)
ijm

[1P∗(t)
ijm −1P∗(t)

ij(m+1)]
2
− [12P∗(t)

ijm −12P∗(t)
ij(m+1)]

 θ2
ik. (20)

The coordinate-wise update of ajk for the (t+1)th iteration has the form:

â(t+1)
jk = S

â(t)
jk −

g(t)
jk

E(h(t)
jk )

, λ

, (21)

where the soft-thresholding operator (e.g., Friedman et al., 2010) is

S(z, γ) =


z − γ if z > 0 and γ < |z|

z + γ if z < 0 and γ < |z|

0 if γ ≥ |z|

. (22)
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