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The reliability of a test score is discussed from the viewpoint of underestimation of and,

specifically, deflation in estimates or reliability. Many widely used estimators are known

to underestimate reliability. Empirical cases have shown that estimates by widely used

estimators such as alpha, theta, omega, and rho may be deflated by up to 0.60 units

of reliability or even more, with certain types of datasets. The reason for this radical

deflation lies in the item–score correlation (Rit) embedded in the estimators: because

the estimates by Rit are deflated when the number of categories in scales are far from

each other, as is always the case with item and score, the estimates of reliability are

deflated as well. A short-cut method to reach estimates closer to the truemagnitude, new

types of estimators, and deflation-corrected estimators of reliability (DCERs), are studied

in the article. The empirical section is a study on the characteristics of combinations

of DCERs formed by different bases for estimators (alpha, theta, omega, and rho),

different alternative estimators of correlation as the linking factor between item and the

score variable, and different conditions. Based on the simulation, an initial typology of

the families of DCERs is presented: some estimators are better with binary items and

some with polytomous items; some are better with small sample sizes and some with

larger ones.

Keywords: reliability, deflation-corrected reliability, deflation in reliability, coefficient alpha, coefficient theta,

coefficient omega, maximal reliability

INTRODUCTION

From Parallel Test Reliability to Alpha and Maximal Reliability and
Beyond From the Perspective of Underestimation in Estimates

Reliability has often been underestimated by the conventional formula [. . . ]. Many tests are more reliable

than they have been considered to be (Guttman, 1945, p. 260.).

The reliability of a test score generated by a compilation of multiple test items has interested
scholars for more than 100 years. In the early phase of the history of measurement modeling,
the interest shifted from measurement error to reliability, although measurement error may be
a more profound concept than reliability (Gulliksen, 1950). Ever since reliability has become a
central measure used to quantify the amount of a random measurement error that exists in a test
score. These two concepts are closely linked though because the standard error of the measurement
S.E.m = σE = σX

√
1− REL is defined by reliability REL = σ 2

T/σ 2
X = 1− σ 2

E/σ 2
X (e.g., Gulliksen,

1950), where σ 2
T , σ 2

X , and refers to the variances of the observed score variable (X), unobserved
true score (T), and error element (E) familiar from their profound relation in testing theory,
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Metsämuuronen Typology of Deflation-Corrected Estimators of Reliability

X = T + E. Because the true score T is unobservable,
the error element E is also unobservable; therefore, several
measurement models based on parallel, tau-equivalent, and
congeneric partitions of the test or test items (referring to,
e.g., Lord et al., 1968) with different assumptions and multiple
estimators of reliability have been developed over the years.

It is well-known that many estimators of reliability
underestimate population reliability because of the attenuation
caused by errors in measurement modeling and random
errors in the measurement. However, a less-discussed issue
regarding estimates by traditional estimators of reliability is
that the estimates may also be radically deflated because of
artificial systemic errors during the estimation. These concepts
are discussed, for instance, by Chan (2008), Lavrakas (2008),
Gadermann et al. (2012), Revelle and Condon (2018), and
Metsämuuronen (2022a,c,f). Deflation and its correction are
the main foci in this article. Some historical turning points
and traditional estimators of reliability are discussed from the
viewpoint of underestimation in reliability to lead the focus from
traditional estimators to the deflation-corrected estimators of
reliability discussed in the latter part of the article.

From Brown and Spearman to the Greatest
Lower Bound of Reliability
First traces of reliability lead us to Brown (1910) and Spearman
(1910), who suggested a way to correct attenuation in the
product-moment correlation coefficient (PMC; Bravais, 1844;
Pearson, 1896 onward). Pearson (1903) had already noticed
that when only a portion of the range of a variable’s values is
actualized in the sample, this leads to inaccuracy in the estimates
of correlation; the estimates are attenuated. This phenomenon is
often discussed as range restriction or restriction of range (refer
to the literature, e.g., Sackett and Yang, 2000; Sackett et al., 2007;
Schmidt et al., 2008; Schmidt and Hunter, 2015). Pearson (1903)
and Spearman (1904) were the first to offer solutions to the
problem. Later, a coefficient of reliability, the Brown–Spearman
prediction formula of reliability based on strictly parallel tests
[ρBS; refer to Cho and Chun (2018) for the history and rationale
of the rectified order of innovators], was famously developed
to correct the inaccuracy in correlation first by Brown in his
unpublished doctoral thesis [before 1910 although referred to in
Brown (1910) and later in Spearman (1910). ρBS is based on a
correlation between the strictly parallel partitions g and h of a
test. Parallelism implies that the true scores (taus) and variances
of a test-taker are assumed to be equal in the sub-tests [Tg = Th,
σ 2
g = σ 2

h
; refer to Gulliksen (1950)].

A more useful early innovation based on two partitions, g
and h, was offered by Rulon (1939) after being consulted by
Flanagan (see the history in Cho and Chun, 2018) based on tau-
equivalent partitions: although the lengths of partitions g and h
should be equal, they need not be strictly parallel; that is, although
the true values of a test-taker are assumed to be (essentially)
equal, the variances in the partitions need not be equal (Tg = Th,
σ 2
g 6= σ 2

h
). The form of the Flanagan–Rulon prediction formula

(ρFR) appears to be the same as ρBS, or the form of ρBS can be
expressed in the form of ρFR(refer to Lord et al., 1968), but the

less strict assumptions led to a useful application in the form
of the coefficient alpha that will be discussed later. Later, both
ρBS and ρFRwere shown by Guttman (1945) to underestimate
population reliability.

Guttman (1945) was the first to show the technical or
mechanical basis for underestimation in reliability. All of his six
coefficients of reliability (λ1 − λ6) were shown to underestimate
the true population reliability. Of these, λ3 and λ4 appear to be
important from the general viewpoint, with λ4 being a general
case of ρBS and ρFRand λ3 being equal to the coefficient alpha
that will be discussed later. λ4 was shown to underestimate
reliability “no matter how the test is split” (Guttman, 1945, p.
260, emphasis original); hence, both ρBS and ρFRunderestimate
the population reliability. The same also applies to an estimator
called the greatest lower bound of reliability (ρGLB) based on λ4
suggested already by Guttman (1945) and studied later, among
others, by Jackson and Agunwamba (1977), Woodhouse and
Jackson (1977), and Ten Berge et al. (from Ten Berge and
Zegers, 1978 onward; Revelle, 2015; refer also to e.g., Moltner and
Revelle, 2015; Trizano-Hermosilla and Alvarado, 2016). Also,
McDonald’s hierarchical omega (ρωH; McDonald, 1999) and
Revelle’s β (Revelle, 1979; refer also to Zinbarg et al., 2005; Revelle
and Zinbarg, 2009) is based on the idea of the lowest lower
bound of reliability (ρLLB) belonging to this family [refer to the
comparison of estimators based on different types of partition in
Revelle (2021) and simulation in Edwards et al. (2021)]. While all
the estimators ρBS, ρFR, and ρGLB underestimate the population
reliability (ρpopulation), estimators in the framework of ρLLB give
obvious underestimations. From the underestimation viewpoint,
their relationship is then as follows:

ρLLB < ρFR ≤ ρBS ≤ ρGLB < ρpopulation. (1)

From Prediction Formulae to Coefficient
Alpha
Even before the Flanagan–Rulon formula, Kuder and Richardson
(1937) had generalized the idea initiated by Brown and Spearman
to a form where each test item in a compilation was taken either
as a parallel partition (leading to the coefficient known as KR21,
ρKR21) or a non-parallel although tau-equivalent (or “essentially”
tau-equivalent, refer Novick and Lewis, 1967) partition of the test
(KR20, ρKR20). The latter appeared to be more useful in practical
testing settings, and it is still in wide use with binary items as one
of the lower bounds of reliability.

While KR20 was derived for binary items, the formula was
soon generalized to also allow polytomous items (the first usage
seems to be in Jackson and Ferguson, 1941; refer to Cho and
Chun, 2018), and it was later named coefficient alpha (ρα) by
Cronbach (1951). Cronbach showed that the estimate by ρα is the
mean of all split-half partitions (Cronbach, 1951; refer to other
interpretations in Cortina, 1993). Warrens (2015) reminds us,
though, that this holds only (a) when the partitions include the
same number of items, which implies that (b) there are an even
number of items on the test to form split-halves with an equal
number of items, and (c) when the Flanagan–Rulon formula
instead of the Brown–Spearman formula is used.
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Because ρKR20, ρKR21, and ρα are special cases of Guttman’s
λ3, they all underestimate the population reliability. Errors
in measurement modeling1 and attenuation have been
approximated to cause an underestimation of the magnitude of
around 1–11% (see Raykov, 1997a; Graham, 2006; Green and
Yang, 2009a; Trizano-Hermosilla and Alvarado, 2016). However,
it is generally accepted that when all items are (essentially)
tau-equivalent, the phenomenon is unidimensional, and the
item-wise errors do not correlate; these estimators would reflect
the true reliability (refer to Novick and Lewis, 1967; refer to
discussion in, e.g., Cheng et al., 2012; Raykov and Marcoulides,
2017). Unfortunately, this seems to be true only when it comes
to attenuation in the estimates; this is not true for deflation,
because the calculation process itself includes a technical or
mechanical error that causes deflation in the estimates. The
root cause of deflation in ρα is the deflation in item–score
correlation (ρiX , Rit) embedded in the estimators of reliability;
item–score correlation is shown to be severely deflated in
settings related to measurement modeling where the scales of
the variables deviate radically from each other [refer to algebraic
reasons in Metsämuuronen (2016, 2017) and simulations in
Metsämuuronen (2020a,b, 2021a, 2022b)]. This element is visible
in the form of ρα provided in Lord et al. (1968):

ρα = k

k− 1















1−

k
∑

i = 1
σ 2
i

(

k
∑

i = 1
σiρiX

)2















, (2)

where k is the number of items in the compilation and σ 2
i

refers to the variance of item gi. Because of thisρiX , the estimates
of reliability by coefficient alpha may be deflated to the extent
of 0.6 units (refer to examples of this magnitude in, e.g.,
Zumbo et al., 2007; Gadermann et al., 2012; Metsämuuronen
and Ukkola, 2019; Metsämuuronen, 2022a,c). Then, from the
underestimation viewpoint, the relationship of these estimators
is as follows:

ρKR20 ≤ ρKR21 = ρα << ρpopulation. (3)

Despite the known characteristic to underestimate reliability,
ρα is the most used estimator of reliability in real-life test
settings (refer to literature in, e.g., Hoekstra et al., 2019), most
probably because of its computational simplicity and obvious

1An anonymous reviewer raised the challenge of simplified dimensionality (as part

of the error in measurement modeling) as possibly having a profound effect on

the underestimation of reliability; if the multidimensionality in the measurement

instrument would be considered, the reliability would be profoundly higher (refer

to, e.g., McNeish, 2017). From the deflation viewpoint, however, the effect of

dimensionality may be less profound, although more studies would enrich the

discussion. Namely, even if the multidimensionality would be considered but the

items are of extreme difficulty levels in a dimension (as is usual in the achievement

testing), the fact remains that the deflation in factor loadings and item score

correlations is way more radical than the advance we get from dimensionality.

The deflation in factor loadings and item score correlations is discussed in section

“PMC as the root cause for the deflation in reliability.

conservative nature (e.g., Metsämuuronen, 2017). Because of its
wide popularity, alpha has been said to be themost often wrongly
understood statistic (refer to discussion in, e.g., Sijtsma, 2009; Cho
and Kim, 2015; Hoekstra et al., 2019). Therefore, many scholars
are ready to remove ρα from use (refer to the discussion in, e.g.,
Sijtsma, 2009; Yang and Green, 2011; Dunn et al., 2013; Trizano-
Hermosilla and Alvarado, 2016; McNeish, 2017). However, the
issue is still far from settled. Among others, Bentler (2009), Falk
and Savalei (2011), Raykov et al. (2014), Metsämuuronen (2017),
Raykov and Marcoulides (2017), seem to share stand that when
its assumptions are understood and met, ρα may be a useful
simple tool for assessing (one of) the lower bound(s) of reliability
of the score in real-life testing settings. Maybe what is more
problematic in the use of ραis that many scholars who use ρα may
not be able to name any other coefficient of reliability that they
can use instead. In an empirical study by Hoekstra et al. (2019),
23% of the researchers who published their results in selected
renowned journals fell in this group.

From Alpha to Theta, Omega, and Maximal
Reliability
The least restricted family of measurement models is based on
congeneric partitions of the test. In these models, the true values
of the same test-taker need not be identical in the partitions,
which means that the assumption of equally long partitions
and the same scale in the test items is not required. Also, the
weights of items or partitions need not be equal, which allows
formultidimensionality in the phenomenon, or themeasurement
errors, and they need not be independent of each other, too.

Many coefficients of reliability have been developed for these
settings. For two congeneric partitions, as counterparts for ρBS

and ρFR, we have estimators by Angoff and Feldt (ρAF; Angoff,
1953; Feldt, 1975), Horst (ρH; Horst, 1951), and Raju (ρβ; Raju,
1977). Because the formulae of ρAF and ρβ include the same

estimate of population variance as in ρα: σ 2
X =

(

k
∑

i = 1
σiρiX

)2

,

these estimators also tend to give deflated estimates, because the
estimate of the item–score correlation byρiX is deflated. Based on
Warrens (2016), the proportional tendency of these estimators is
as follows: if the partitions are equally long, the magnitude of the
estimates gets the relationship

ρFR = ρβ ≤ ρSB = ρH ≤ ρAF << ρpopulation, (4)

that is, if the condition optimal for ρAF is fulfilled, other
estimators tend to underestimate reliability, and all estimators
may produce deflated estimates where the magnitude of the
deflation depends on several characteristics such as the difficulty
levels of the items. If the variances of the partitions are equal, then

ρFR = ρSB = ρAF ≤ ρH = ρβ << ρpopulation, (5)

that is, if the condition optimal for ρH and ρβ is fulfilled,
other estimators tend to underestimate reliability, and all may be
radically deflated.
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As counterparts to ρα for the case in which the scales in
items differ from each other, we have two main estimators. For
raw scores, we have the Gilmer–Feldt coefficient (ρGF; Gilmer
and Feldt, 1983), also known as the Feldt–Raju coefficient (e.g.,
Feldt and Brennan, 1989) or the Feldt–Gilmer coefficient (e.g.,
Kim and Feldt, 2010). Instead of number items (refer to eq. 2),
ρGF uses the proportional weight of the items as a calibrating
factor in estimation. The estimates by ρα tend to be mildly
lower than those by ρGF. However, the formula of ρGF uses the

same estimate of population variance σ 2
X =

(

k
∑

i = 1
σiρiX

)2

as ρα

leading to deflated estimates.
Another alternative for ραis to standardize the items and score

by principal component analysis (Guttman, 1941), which leads to
coefficient theta [ρTH; Kaiser and Caffrey (1965), based on Lord,
1958], also known as Armor’s theta (Armor, 1973). While ρα uses
raw scores and observed values in items, ρTH uses standardized
items and scores, which has an advantage over ρα: the principal
component score is one of the “optimal linear combinations”
of the score discussed over the years by, chronologically, e.g.,
Thompson (1940), Guttman (1941), Stouffer (1950), Lord (1958),
and Bentler (1968). Zumbo et al. (2007), Gadermann et al.
(2012), and Metsämuuronen (2022a,c) have brought ρTH into
discussions again: Zumbo and colleagues because of a new type of
estimator called ordinal theta and Metsämuuronen as one of the
bases for deflation-corrected estimators of reliability discussed
later.

Coefficient theta can be expressed as:

ρTH = k

k− 1











1− 1

k
∑

i = 1
λ2i θ











, (6)

where λiθ is the principal component loadings of the principal
component of a one-latent variable model (or of the first
principal component), that is, correlations between items and
the score variable. It is known that ρTH maximizes ρα (Greene
and Carmines, 1980). This can be partly explained by a more
effective formula and partly by a more optimally constructed
score variable (raw score vs. principal component score).
Empirical findings indicate that ρTH also tends to be conservative
(Metsämuuronen, 2022a,f); that is, it seems to underestimate the
population reliability although less than the alpha and omega
do; the latter will be discussed later. From the viewpoint of
underestimation, the relationship of these estimators is then:

ρα ≤ ρGF < ρTH < ρpopulation. (7)

In the recent decades, much effort has been gone to explore
different aspects of estimators of reliability within the framework
of factor models or, more generally, within the latent variable
modeling (of the models, refer to, e.g., McDonald, 1985, 1999;
Raykov and Marcoulides, 2010). Two of the most discussed

estimators are coefficient omega total (ρω; later, just omega),
based on the studies of Heise and Bohrnstedt (1970) and
McDonald (1970, 1999), and coefficient rho ormaximal reliability
(ρMAX; for instance, Raykov, 1997b, 2004), also known as
Raykov’s rho (refer to, e.g., Cleff, 2019) and Hancock’s H
(Hancock and Mueller, 2001), based on the conceptualization of
“optimal linear combination” discussed above, and later unified
by Li et al. (1996) and Li (1997). The two estimators are based on
conventions related to factor analysis and factor loadings (λiθ).
An ancestor of this family is ρTH, which is based on the principal
component analysis discussed above.

Coefficient omega can be expressed as follows:

ρω =

(

k
∑

i = 1
λi θ

)2

(

k
∑

i = 1
λi θ

)2

+
k
∑

i = 1

(

1− λ2i θ

)

, (8)

and rho as:

ρMAX = 1

1+ 1
k
∑

i = 1
(λ2i θ /(1−λ2i θ ) )

, (9)

where λiθ refers to factor loadings by maximum likelihood
estimation of a one-latent variable model, although models with
multiple dimensions are also in use. The measurement model
related to these estimators will be discussed later.

In the theoretical case where all item weights are equal, ρTH,
ρω, and ρMAX are equal to ρα. From this viewpoint, it may
be correct to conclude that ρTH, ρω, and ρMAX are general
forms of ρα (refer to, e.g., Hayes and Coutts, 2020). Otherwise,
the magnitude of the estimates by ρα is smaller than by ρTH

(Greene and Carmines, 1980), and themagnitude of the estimates
by ρω is smaller than by ρMAX (e.g., Cheng et al., 2012).
Hence, it seems that both ρα and ρω tend to underestimate
reliability. A possible confounding phenomenon is that the
estimates of reliability by ρMAX tend to be overestimated with
finite or small sample sizes (refer to Aquirre-Urreta et al., 2019;
Metsämuuronen, 2022a,c,f). This is caused by the fact that even
if only one item has loading λi≈ 1, the element λ2i /

(

1− λ2i

)

in eq. (9) becomes unstable and gives, most probably, a value
too high compared to the population. This may happen easily
with small sample sizes because they are prone to produce
deterministic or near-deterministic patterns of the item–score
relationship (see discussion in Metsämuuronen, 2022c,f). From
the viewpoint of underestimation, in practical settings excluding
the theoretical case of identical factor loadings, the relationship
of these estimators is then:

ρα < ρω < ρTH < ρMAX < ρpopulation (< ρMAX) . (10)

In real-life settings, the difference between the estimates by ρα ,
ρTH , ρω, and ρMAX may be subtle. For example, in a simulation
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with 1,440 real-life datasets (Metsämuuronen, 2022f), the average
magnitude of the lowest estimates by ρα was 0.024 units of
reliability (2.9%) lower than the highest estimates by ρMAX .
Similarly, the average estimate byρω was 0.021 units (2.4 %)
lower than by ρMAX and 0.017 units (1.9 %) lower than by ρTH .
Notably, though, the difference between ρα and ρMAX seems to
be the wider the smaller the sample size is. In the simulation
(Metsämuuronen, 2022f), with a sample size of n = 25, the
average difference between ρα and ρMAX was 0.056 units of
reliability (6.4 %), and with n= 200, the difference was just 0.008
units of reliability (0.92 %).

From Alpha, Theta, Omega, and Rho to
Deflation-Corrected Reliability
While ρα is known to underestimate reliability, it seems that
ρTH, ρω, and ρMAX also tend to give obvious underestimates
with certain kinds of datasets, typically with tests of extreme
difficulty levels or with incremental difficulty levels including
both very easy and very difficult test items. This is a reasonable
conclusion from the known character of PMC embedded in
the traditional estimators of reliability in the form of Rit and
λi to underestimate the true correlation when the scales of
two variables are far from each other as is typical with an
item and the score variable (e.g., Metsämuuronen, 2022a,c,f;
refer later to Figure 1). Recall the relationship between PMC
= ρgX = Rit and the principal component loading (in ρTH)
and factor loading (in ρω and ρMAX): the loading λi is,
essentially, a correlation between an item and a score variable
(e.g., Cramer and Howitt, 2004; Yang, 2010).

Knowing that PMC is always deflated in cases where scales
in the variables are not equal, as is always the case between an
item and the score variable, all the estimators mentioned above
are deflated, sometimes radically. Empirical findings show that
the estimates by ρα , ρTH , ρω, and ρMAXmay be deflated by 0.4–
0.6 units of reliability or 46–71% as discussed above (refer to
examples in, e.g., Zumbo et al., 2007; Gadermann et al., 2012;
Metsämuuronen and Ukkola, 2019; Metsämuuronen, 2022a,c,f).
Metsämuuronen (2022a) notes that deflation of this size is
remarkable and needs to be studied because it is no more caused
by an error in the measurement modeling such as violations in
tau-equivalency, unidimensionality, or uncorrelated errors as is
traditionally suggested (refer to above). From this point of view,
the deflation of 0.4–0.6 units of reliability must be explained
directly by some mechanical reasons, and this raises the issue of
underestimation in reliability to a new level.

Metsämuuronen (e.g., 2022a; 2022b; 2022f) has used the
concept of “mechanical error in the estimates of correlation”
(MEC) to understand deflation. The obvious and grave deflation
in traditional estimators of reliability has motivated the
development of and studies on new types of estimators of
reliability calledMEC-corrected estimators of reliability (MCERs;
Metsämuuronen, 2022a,f) and attenuation-corrected estimators
of reliability (ACERs, Metsämuuronen, 2022c), which are both
called deflation-corrected estimators of reliability (DCERs;
Metsämuuronen, 2022a,f). In MCERs, the embedded Rit and
λi are replaced by totally different estimators of correlation,

while in ACERs, Rit and λi are replaced by attenuation-corrected
estimators of correlation. The logic for and forms of these
estimators are discussed in Metsämuuronen (2022a), and these
will be briefly discussed later. Notably, the ordinal alpha and
ordinal theta by Zumbo et al. (2007; refer also to Gadermann
et al., 2012) may be included as part of the extended family of
DCERs, as, instead of changing the item–score correlation itself,
the inter-item matrices of PMCs are replaced by matrices of
polychoric correlation coefficients.

From the attenuation and deflation viewpoint, in general, the
relationship of these estimators is

ρα < ρω < ρTH < ρMAX << ρDCER < ρpopulation. (11)

Notably, though, certain DCERs based on rho may be prone
to overestimating the population reliability with small sample
sizes, because rho itself tends to overestimate reliability with
small sample sizes (refer to Aquirre-Urreta et al., 2019), while
other DCERs based on alpha, theta, and omega, as being
more conservative, may be prone to underestimation (see
Metsämuuronen, 2022f). This area is largely unstudied, and the
current study intends to shed some light on this issue.

Except for the more established coefficient by Zumbo et al.
(2007), studies concerning estimators from the family of DCERs
are either at a very initial stage (e.g., Metsämuuronen, 2016,
2018), or they give some examples only of the new possibilities
(Metsämuuronen, 2020a,b, 2021a,b, 2022b), or they are based
on small example datasets and are fragmentary (refer to
Metsämuuronen, 2022a,c,f). The simulations byMetsämuuronen
(2022c,f) included a limited comparison of the behavior of some
DCERs in comparison with the traditional counterparts using
1,440 estimates based on real-life datasets. This study is intended
to give more systematic information on these new estimators by
comparing their characteristics under different conditions.

Research Questions
Different families of DCERs can be classified by estimators used
as the base (e.g., ρα , ρTH ,ρω, and ρMAX , discussed above), by the
score variables (e.g., θX , θPC, θFA, θIRT , and θNon−Linear , discussed
below), and by the weighting factors between the item and the
score variable (e.g., RPC, RREG, G, D, G2, D2, RAC, and EAC,
discussed below). Combinations are, therefore, many. Systematic
studies on the behavior of different combinations would, first,
enrich our knowledge of the entire phenomenon and, second,
help us to typologize the estimators: which estimators would suit
which conditions.

The aim of this study is, first, to compare the characteristics
of different DCERs and to form a typology of the estimators:
under which conditions which coefficient would be the best
option? Second, which combinations of the base and weight
factor tend to produce under- or overestimates of reliability in
real-life testing settings? In the empirical section, the traditional
estimators, alpha, theta, omega, and rho, are used as benchmarks
and estimated using their traditional score variables (θX , θPC, and
θFA), while DCERs are restricted to the raw score (θX).
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Before the empirical section, some elementary conceptual
points are discussed briefly to make the notation of DCERs
understandable. First, the main reason for deflation in reliability,
PMC imbedded in the traditional estimators of reliability, is
discussed. Second, the traditional model without the elements
related to deflation and a general model including these elements
are discussed. Finally, different theoretical bases for DCERs
related to the forms of ρα , ρTH ,ρω, and ρMAX are briefly discussed
(for more details, refer to, e.g., Metsämuuronen, 2022a,c).

CONCEPTUAL AND OPERATIONAL BASES
FOR DCERS

PMC as the Root Cause of Deflation in
Reliability
The reason for technical and mechanical deflation in reliability
is that traditional estimators of reliability embed PMC in the
form of Rit and λi. PMC is known to be seriously affected
by many sources of mechanical error when the scales of two
variables are far from each other as is always the case with
item and score. In simulations (Metsämuuronen, 2021a, 2022b),
seven sources of MEC caused cumulative negative bias in PMC.
The sources include extreme item difficulty, a small number
of categories in the item, large number of tied cases in the
score, and a normally distributed score instead of uniformly
distributed. Then, as an example, if the test items are few (leading
to a score with a narrow scale with a high number of tied
cases), they have an extreme level of difficulty and a binary
scale, and the score is normally distributed, we would expect to
have radically more deflated item-total correlations leading to
radically deflated estimates of reliability, than if the test items are
many, they have an average difficulty level, their scale is wide
if not continuous, and the score is evenly distributed without
tied cases. Notably, this has obvious relevance to the estimates of
reliability: If the score does not include tied cases, i.e., because
of being continuous or the number of test-takers is small, we
expect less deflation in reliability compared with the case that
we have a normally distributed or skewed score. However, the
effect of skewness in distribution is far less notable than the effect
of item difficulty (refer to Metsämuuronen, 2022b, Appendix 1
in Supplementary Material; also, refer later to footnote 4). The
issue of the effect of the item distribution is further discussed by
Olvera Astivia et al. (2020) and the effect of the scale distribution
by Foster (2021) and Xiao and Hau (2022).

Several alternatives for Rit and λi are studied from
the viewpoint of technical or mechanical errors in the
estimates. To some extent, the MEC-affected behavior is known
for such traditional estimators of correlation as polychoric
correlation coefficient (RPC; Pearson, 1900, 1913; refer to
simulations in Metsämuuronen, 2020a,b, 2021a, 2022b), biserial
(RBS) and polyserial correlation (RPS) coefficients (Pearson,
1909; see Metsämuuronen, 2020a), r-bireg and r-polyreg
correlation (RREG; Livingston and Dorans, 2004; Moses,
2017; refer to Metsämuuronen, 2022b), item–rest correlation
(Rir; Henrysson, 1963; refer to Metsämuuronen, 2018, 2021a),
lambda and tau (Goodman and Kruskal, 1954; refer to

Metsämuuronen, 2020a), coefficient eta (Pearson, 1903, 1905;
refer to Metsämuuronen, 2020a, 2022d), delta (D; Somers, 1962;
refer to Metsämuuronen, 2020a,b, 2021a,b, 2022b), gamma (G;
Goodman and Kruskal, 1954; refer to Metsämuuronen, 2021a,b,
2022b), and tau-a and tau-b (Kendall, 1938, 1948; refer to
Metsämuuronen, 2021b, 2022b). Also, some new estimators
are developed and studied from this perspective: generalized
discrimination index (GDI, Metsämuuronen, 2020c; also refer
to the visualization in Metsämuuronen, 2022e) based on Kelley’s
discrimination index (Kelley, 1939), dimension-corrected D
(D2; Metsämuuronen, 2020b, 2021a; refer to simulations in
Metsämuuronen, 2021a, 2022b), dimension-corrected G (G2;
Metsämuuronen, 2021a; refer to simulations in Metsämuuronen,
2021a, 2022b), attenuation-corrected Rit (RAC; Metsämuuronen,
2022c,d; refer to simulation in Metsämuuronen, 2022b), and
attenuation-corrected eta (EAC; Metsämuuronen, 2022d; refer to
a simulation in 2022b).

Of the coefficients of correlation, RPC and RREG reflect a
correlation between unobservable theoretical constructs, which
may be problematic from the testing theory viewpoint (refer
to the critique by Chalmers, 2017); we do not have access to
these theoretical constructs. From this viewpoint, such estimators
of correlation as G and D reflect an association between two
observed constructs; in the settings of measurement modeling,
and they strictly indicate the proportion of logically ordered test-
takers in a test item after they are ordered by the score (refer
to Metsämuuronen, 2021b). For example, if D is 0.7, 85% of
the observations are logically ordered in the ascending order
in the item after they are ordered by the score (p = 0.5 ×
0.70 + 0.5 = 0.85; refer to Metsämuuronen, 2021b). Because of
their conservative nature, with polytomous items having more
than three categories, Metsämuuronen (2021a) suggests using
G and D with binary items and with polytomous items having
less than four categories. Dimension-corrected G and D (G2

and D2) with semi-trigonometric nature can be used for binary
and polytomous items, and in a binary case, G = G2 and D
= D2. Of the attenuation-corrected estimators of correlation
(RAC and EAC), RAC is more conservative than EAC. This follows
strictly from the behavior of Rit and coefficient eta: except for
the binary case, where Rit and eta give identical estimates, the
estimates by EAC tend to be higher than those by RAC (refer to
Metsämuuronen, 2022d).

The phenomenon of mechanical error in the estimators
of correlation is easy to illustrate using two identical (latent)
variables with an obvious perfect (latent) correlation (R = 1).
Let us take the vector of n = 1,000 normally distributed cases
and double it. Of these identical variables with (obvious) perfect
correlation, one (item g to be) is divided into four categories
[0–3; df (g) = 3] with difficulty level p(g) = 0.2 and the other
(score X) is divided into 61 categories [0–60; df (X) = 60] with
an average difficulty level of p(X) = 0.5. The difference between
the latent correlation and the observed correlation indicates
strictly the magnitude of MEC in the estimates (Figure 1).
Notably, the estimates by such known estimators of the item–
score correlation as tau-b, Rir, Rit, eta, and Spearman rank-
order correlation cannot reach the latent perfect correlation
but, instead, include a remarkable magnitude of deflation (>
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FIGURE 1 | The magnitude of a mechanical error on the estimates of correlation (MEC) by selected estimators of correlation. Tau-b = Kendall tau-b; Rir = Henrysson

item–rest correlation ( = PMC), Rit = item–total correlation (= PMC); eta = coefficient eta (X dependent), RS = Spearman rank-order correlation (= PMC), D =
Somers delta (X-dependent); D2 = dimension-corrected D; RPC = polychoric correlation; RREG = r-polyreg correlation; G = Goodman-Kruskal gamma; G2 =
dimension-corrected G, RAC = attenuation-corrected Rit, EAC = attenuation-corrected eta.

0.1 units of correlation) caused by technical and mechanical
errors in the estimates. On the contrary, such estimators as
RPC, RREG, G, G2, RAC, and EAC are found MEC-free in several
conditions (Metsämuuronen, 2022b), and in D and D2, the
magnitude of MEC may be nominal depending on the number
of tied pairs in the items and score as well as widths of
the scales in the items and score (refer to Metsämuuronen,
2021a).

General Measurement Model Without MEC
Assume a general, simplified, one-latent variable measurement
model combining the observed values of an item gi (xi), a latent
variable (θ), and a weight factor, wi,that links θ with xi:

xi = wi θ + ei, (12)

(e.g., Metsämuuronen, 2022a,c) generalized from the traditional
model (e.g., McDonald, 1999; Cheng et al., 2012). In the general
model, the theoretical, unobservable θ may be manifested as a
varying type of relevantly formed compilation of items including
a raw score (θX), a principal component score (θPC), a factor score
(θFA), a theta score formed by the item response theory (IRT)
or Rasch modeling (θIRT), or various non-linear combinations of
the items (θNon−Linear). In the general model, the weight factor
wi is a coefficient of correlation in some form that also includes
principal components and factor loadings (λi). In all cases,−1 ≤
wi ≤ +1.

From the coefficient of correlation viewpoint, such estimators
as RPC, RREG, G, D, G2, D2, RAC, and EAC have been found
to be notably better options than PMC (Metsämuuronen,
2022b) as discussed above. In a comparison of eleven
sources of MEC, the rough order of the magnitude of

MEC (ewi θ _MEC; “MEC” in Figure 1) was ePMCiθ_MEC >>

eDiθ_MEC >eD2iθ_MEC >>eRREGiθ_MEC >eRPCiθ_MEC ≈ eGiθ_MEC

≈ eG2iθ_MEC ≈ eRACiθ_MEC ≈ eEACiθ_MEC ≈ 0 (Metsämuuronen,
2022b). That is, of the better behaving estimators above, on the
one hand, D is the most conservative option followed by D2,

because both are affected by the number of tied cases in the
score variable (refer to Metsämuuronen, 2020b, 2021b). G and
D tend to give obvious underestimates with polytomous items
with more than 3–4 categories in the scale, so, G2 and D2 are
suggested to be used with polytomous items instead of G and
D (Metsämuuronen, 2021a). On the other hand, using G and
D gives quite interesting benchmarking interpretations for the
estimates of reliability. Because G and D strictly indicate the
proportion of the logically ordered test-takers in a test item
after they are ordered by the score (p = 0.5 × G + 0.5
and p = 0.5 × D + 0.5; refer to Metsämuuronen, 2021b),
when D = 0.8, 90% of the test takers’ item responses are in
a logical order after the test-takers are ordered by the score.
Then, an estimator of reliability using G or D reflects the
proportion of logically ordered test-takers in the entire set of
test items.

Notably, the estimates by eta and Rit are identical
with binary items; hence, RAC and EAC are identical
in binary settings (Metsämuuronen, 2022d). Also, in
real-life settings, the sample estimates by RAC and EAC
tend to mildly overestimate the populations of RAC and
EAC with polytomous items (Metsämuuronen, 2022c,d).
This is caused by the fact that a large population rarely
includes deterministic patterns between two variables.
Hence, the magnitude of the population values of RAC
and EAC tend to be somewhat lower than those by
sample estimates.
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FIGURE 2 | Measurement models without and with elements of MEC. (A) Traditional measurement model. (B) Measurement model including elements of MEC.

All generally used estimators of correlation give an identical
estimate of the correlation for original variables (gi and θ) and
standardized forms of the variables [std(gi) and std(θ)]. Hence,
without loss of generality, to lead to a simple form of the
estimators of reliability, let us assume that both item (gi) and the
manifestation of the latent variable (θ) are standardized, that is,
xi, θ ˜N (0, 1). Then, the item-wise error variance ψ 2

i is:

ψ2
i = 1− w2

i . (13)

From eq. (11), the sum of items is:

k
∑

i = 1

xi =
k
∑

i = 1

wi θ +
k
∑

i = 1

ei, (14)

where the error variance related to the compilation of the items is:

σ 2
E =

k
∑

i = 1

ψ2
i =

k
∑

i = 1

(

1− w2
i

)

, (15)

which can be used in estimating the reliability of the score. If θ

is manifested as raw score and wi as Rit, eq. (15) could be used
in calculating alpha (Eq. 2), although the practicalities lead to the
use of different operationalization of the measurement model. If
θ is manifested as a principal component score variable and wi
as principal component loadings, the model in eq. (15) leads to
theta (eq. 6). If θ is manifested as a factor score variable and wi
as factor loadings, the model in eq. (15) leads to omega and rho
(eqs. 8 and 9, respectively).

General Measurement Model Including
Elements Related to MEC
The traditional measurement model related to the estimators
of reliability assumes that Rit and factor/principal component
loadings are deflation-free. This is a too optimistic assumption,
as illustrated in Figure 1. Knowing that a certain part of the
measurement error is strictly technical or mechanical but that
its magnitude could be reduced, Metsämuuronen (2022a,c)
suggested reconceptualizing the classic relationship of X = T +
Eas:

X = T + (ERandom + EMEC) , (16)

where the element EMEC related to deflation is visible.
Consequently, we can reconceptualize the measurement model
in eq. (12) as:

xi = wi × θ +
(

ei_Random + ewi θ _MEC

)

, (17)

where the element ewi θ_MEC refers to the fact that the magnitude
of the mechanical error depends on the characteristics of the
weighting factor w, item i, and score variable θ. In visual forms,
the traditional and the MEC-including measurement models are
illustrated in Figures 2A,B (Metsämuuronen, 2022a). Notably, in
Figure 2, the magnitude of the error in both models is equal, but
in Figure 2B, the elements related to MEC are visible.

If we select a weight factor wi such that the magnitude of the
mechanical error is as small as possible, the magnitude of the
error component related to deflation may be near zero, that is,
ewi θ _MEC ≈ 0. This would lead to an MEC-corrected (MECC)
measurement model where the measurement error would be as
near the MEC-free condition as possible, that is:

xi = wi_MECC ×θ +
(

ei_Random + ewiθ _MEC

)

≈ wi_MECC × θ + ei_Random
. (18)

The measurement model with a near-MEC-free weight factor
such as RPC, RREG, G, D, G2, D2, RAC, and EAC, is illustrated in
Figure 3.

This conceptualization leads to item-wise MEC-corrected
error variance (ψ2

i_MECC):

σ 2
E_MECC =ψ2

i_MECC = 1− w2
i_MECC, (19)

where ei_MECC˜N
(

0,ψ2
i_MECC

)

andψ2
i_MECC = 1−w2

i_MECC. Then,
after MEC-correction, eq. (15) can be written as:

k
∑

i = 1

xi =
k
∑

i = 1

wi_MECC × θ +
k
∑

i = 1

ei_Random, (20)

and the MEC-corrected error variance of the test score can be
written as:

k
∑

i = 1

ψ2
i_MECC =

k
∑

i = 1

(

1− w2
i_MECC

)

, (21)
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FIGURE 3 | MEC-corrected one-latent variable measurement model.

This conceptualization leads to short-cuts to estimate deflation-
corrected reliability. These estimators are divided into two
families as discussed above: on the one hand, Rit is replaced
by a different coefficient in MECRs: on the other hand, an
attenuation-corrected estimator of correlation is used in ACERs.
These estimators are short-cuts in the sense that until a sound
theoretical basis for a new way of thinking, defining, and
estimating reliability is developed, these practical options would
lead to a reasonable alternative to deflation-corrected estimates
of reliability.

Theoretical Bases for the
Deflation-Corrected Estimators of
Reliability
The General (theoretical) bases for different families of DCERs
discussed by Metsämuuronen (2022a,c,f) are based on alpha
(eq. 3):

ρα_wi θ = k

k− 1















1−

k
∑

i = 1
σ 2
i

(

k
∑

i = 1
σiwi θ

)2















, (22)

theta (eq. 5):

ρTH_wi θ = k

k− 1











1− 1

k
∑

i = 1
w2
i θ











, (23)

omega (eq. 6):

ρω_wi θ =

(

k
∑

i = 1
wi θ

)2

(

k
∑

i = 1
wi θ

)2

+
k
∑

g = 1

(

1− w2
i θ

)

, (24)

or rho (eq. 7):

ρMAX_wi θ = 1

1+ 1
k
∑

i = 1
(w2

i θ /(1−w2
i θ ) )

, (25)

where the notation wi θ refers to the fact that the magnitude
of the estimate depends on three things: characteristics of the
weight factor (w), the item (i), and the score variable (θ) as a
manifestation of the latent trait as discussed above. Other bases
could also be used. However, using theta, omega, and rho outside
of their traditional context is debatable. Here, it is assumed that
the estimators could be used as independent estimators; this
seems consistent with the general measurement model discussed
above. Alternatively, we may think that the estimates we get
using RPC, RREG, G, D, G2, D2, RAC, or EAC instead of the
traditional λi are outcomes of renewed procedures on principal
component and factor analysis where the factor loadings are, i.e.,
RPC and G2 instead of PMC (cl. ordinal theta by Zumbo et al.,
2007).

The practical characteristics of the estimators are studied in
the empirical section. From a theoretical viewpoint, in hypothetic
extreme datasets with deterministic item discrimination in all
items leading to RPCi =RPCj ≈ Gi =Gj = G2i = G2j = RACi =
RACj = EACi = EACj≡ 1,2 estimators based on rho (eq. 25) could
not be used, because this would require division by zero, which is
not defined. However, DCERs based on theta and omega (eqs. 23
and 24) would lead to perfect reliability (REL= 1):

ρMax
TH_RPCi θ ≈ ρMax

TH_Gi θ = ρMax
TH_RACi θ

= k/
(

k− 1
) (

1− 1/k
)

≡ 1 (26)

and

ρMax
ω_RPCi θ ≈ ρMax

ω_Gi θ = ρMax
ω_RACi θ =

(

k
)2

/

(

(

k
)2 + 0

)

≡ 1.(27)

The maximum value by the estimators based on alpha (eq. 22) is:

ρMax
α_RPCi θ ≈ ρMax

α_Gi θ = ρMax
α_RACi θ

= k

k− 1



1−
k
∑

i = 1

σ 2
i /





k
∑

i = 1

σi





2 

 . (28)

Hence, estimators based on alpha can reach the value ρMax
α_RPCi θ ≈

ρMax
α_Gi θ = ρMax

α_RACi θ = 1 only when all item variances are
equal (σi = σj = σ ), that is, for instance, when the items are
standardized. In the case

ρα_RPCi θ ≈ ρα_Gi θ = ρα_Di θ

= k/
(

k− 1
)

(

1− kσ 2/
(

kσ
)2
)

= k/
(

k− 1
) (

1− 1/k
)

≡ 1 (29)

2Notably, RPC cannot reach a perfect 1. With enhanced procedures of the

estimation by adding a very small number like 10−50 to each element of the

logarithm and when the embedded PMC≈ 1 such as 0.99999999, RPC ≈ 1.
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Notably, in the theoretical case, all the item–score correlations
are equal to 0, and except for those based on omega, none of
the estimators are defined. This is inherited from the original
estimators: those that are not defined when all correlations or
loadings are 0.

METHODOLOGY

Measurement Model and Estimators Used
in the Empirical Section
In the empirical section, the characteristics of different types of
DCERs are compared by varying the characteristics of w and
i in a real-life setting with finite or small sample sizes. The
general measurement model discussed above is applied in the
empirical section. Formulae (22) to (25) are used as bases for
the estimators. The raw score (θX) is used as the manifestation
of θ and RPC, RREG, G, D, G2, D2, RAC, and EAC as weight factors.
The estimators of correlation and their estimation are described
in Appendix 1 in Supplementary Material (refer to details in,
e.g., Metsämuuronen, 2022b). The estimates by the traditional
estimators ρα, ρTH, ρω, and ρMAX (eqs. 3, 6, 8, and 9), with
their traditional original score variables (θX for alpha, θPC for
theta, and θFA withML estimation for omega and rho) and weight
factor (Rit for alpha and λi for theta, omega, and rho), are used
as benchmarks to the DCERs. With only two items with a wide-
scale, principal axis factoring (PAF), instead of ML, is conducted
to estimate the factor loadings.

In the empirical section, the estimators are named based on
eqs. (22) to (25). For example, ρMAX_RPCiX refers to eq. (25)
where the base is the formula of rho (ρMAX), the weight factor
is RPC, and the score variable is the raw score (θX). In the
Figures and Tables, this is expressed as “RhoRPC.” Similarly, the
traditional estimators are referred to as “AlphaRit,” “ThetaPC,”
“OmegaML,” and “RhoML” or by an attribute “traditional” such
as “Alpha traditional.”

The estimators and estimates are also compared from the
viewpoint of their capability of reflecting the population value.
A simple statistic for this is used: the difference between the
sample estimate and the population value (d). When d > 0,
the true correlation is overestimated, and when d < 0, the
sample estimate underestimates the population estimate. In the
Figures and Tables, this difference related to a specific estimator
is referred to as “dRhoRPC” and “dRho traditional”.

Datasets Used and Tests Conducted in the
Study
A real-world dataset of 4,022 nationally represented test-takers of
a mathematics test with 30 binary items (FINEEC, 2018) is used
as the “population”. In the original dataset, ρα = 0.885, ρTH =
0.89, ρω = 0.887, and ρMAX = 0.895; the difficulty levels of the
items ranged 0.24 < p < 0.95, with the average p̄ = 0.63; and
item discrimination ranged 0.332 < Rit < 0.627 with the average
Rit = 0.481.

Ten random samples with n = 25, 50, 100, and 200 test-
takers were picked from the original dataset. These finite samples
imitate different sizes of real-world sample sizes, ranging from

a test for a large student group (n = 200) to classroom testing
(n = 25). In each of the 10 × 4 datasets, 36 tests were produced
by varying the number and difficulty levels of the items and the
length of the scale of the score [df (X) = number of categories in
the scale−1] and the item [df (g) = number of categories in the
scale−1]. The polytomous items were constructed as sums of the
original binary items. Thus, the datasets3 consists of 14,880 partly
related test items from 1,440 partly related tests with a varying
number of test items (k = 2–30, k̄ = 10.33, SD 8.621) and test-
takers (n = 25, 50, 100, and 200), number of categories in the

items [df (g) = 1–14, df (g) = 4.57, SD 3.480], and in the score

[df (X) = 10–27, df (X) = 18.06, SD 3.908], the average difficulty
levels (p̄= 0.50–0.76, ¯̄p= 0.66. SD 0.052), and the lower bound of
reliabilities (ρα = 0.55–0.93, ρ̄

α = 0.850, SD 0.049).

RESULTS

Because previous studies related to DCERs have been
fragmented, this study intends to offer a more systematic
comparison of the estimators with a larger number of estimates.
In doing so, five characteristics of DCERs are studied: their
general tendencies in comparison with traditional estimators,
their capability to reflect the population value, the effect of
the sample size in the estimators, the effect of the number
of categories in the score, and the effect of test difficulty. In
what follows, mainly DCERs based on the form of omega
(“deflation-corrected omega”) are presented in the text, and all
estimators in the comparison are collected in Appendix 2 in
Supplementary Material.

General Tendencies of DCERs
Of the general tendencies of DCERs, three are highlighted.
First, in comparison with the traditional estimators based on
Rit and λi, all DCERs in the simulation give, in general,
higher estimates. This is specifically true with binary datasets
where all DCERs give systematically and consistently almost
the same estimate, which is 0.07–0.09 units higher than the
traditional estimates (Table 1; Figure 4; refer also to Appendix
2 in Supplementary Material). With binary items, all DCERs,
irrespective of the base, suggest that the reliability of the (original)
test would rather be 0.91–0.94 and not 0.85–0.88 as suggested
by the traditional estimators. This higher magnitude of the
estimates is caused by the less-deflated estimates of correlation
with items of extreme difficulty level by the alternative estimators
in comparison with PMC. Although the true reliability of the
original real-life dataset is unknown, the unified voice of DCERs
speaks of the possibility that they reflect the same (latent)
true reliability. Notably, the differences between traditional
estimates and those by DCERs are remarkably smaller than the
ones in examples described by Gadermann et al. (2012) and

3The dataset of individual items (n= 14,880) including several indicators of item–

score association is available in CSV format at http://dx.doi.org/10.13140/RG.

2.2.10530.76482 and in SPSS format at http://dx.doi.org/10.13140/RG.2.2.17594.

72641. The dataset of reliabilities (n = 1,440) is available in CSV format at http://

dx.doi.org/10.13140/RG.2.2.30493.03040 and in SPSS format at http://dx.doi.org/

10.13140/RG.2.2.27971.94241.
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TABLE 1 | Average estimates of reliability and deviance from the population value in simulation.

Traditionalestimators MCER (RPC) MCER (RREG)

Base Alpha Theta Omega Rho Alpha Theta Omega Rho Alpha Theta Omega Rho

Estimatea 0.850 0.858 0.854 0.875 0.891 0.896 0.925 0.935 0.885 0.890 0.920 0.928

Deviationb −0,016 −0,001 −0,012 0,012 −0,009 −0,002 −0,005 0,008 −0,005 0,001 −0,001 0,007

N 1,440 1,440 1,394 1,384 1,440 1,440 1,440 1,418 1,440 1,440 1,440 1,421

MCER (G) MCER (D) MCER (G2)

Base Alpha Theta Omega Rho Alpha Theta Omega Rho Alpha Theta Omega Rho

Estimatea 0.831 0.834 0.893 0.904 0.789 0.796 0.873 0.883 0.905 0.910 0.933 0.942

Deviationb −0,009 −0,005 −0,005 0,009 −0,010 −0,002 −0,005 0,009 −0,009 −0,001 −0,005 0,009

N 1,440 1,440 1,440 1,418 1,440 1,440 1,440 1,426 1,440 1,440 1,440 1,418

MCER (D2) ACER (RAC) ACER (EAC)

Base Alpha Theta Omega Rho Alpha Theta Omega Rho Alpha Theta Omega Rho

Estimatea 0.884 0.890 0.920 0.930 0.891 0.897 0.924 0.934 0.901 0.906 0.930 0.939

Deviationb −0,010 −0,002 −0,005 0,009 −0,007 0,001 −0,003 0,010 −0,006 0,001 −0,002 0,010

N 1,440 1,440 1,440 1,426 1,440 1,440 1,440 1,418 1,440 1,440 1,440 1,418

aAverage estimate.
bAverage deviation between the sample and population estimates.

FIGURE 4 | Average estimates by DCERs based on the form of omega.

Metsämuuronen (2022a,c), and in extreme cases, the difference is
reported to be 0.4–0.6 units of reliability. The smaller difference
is caused by the fact that the datasets used in the simulation
do not include extremely easy or extremely difficult items
or tests.

Second, when the number of categories in the items exceeds
4, G and D tend to give an obvious underestimation of the item–
score association (refer to, e.g., Metsämuuronen, 2021a). Hence,
we obtain notably low estimates of reliability using alpha and
theta as bases for the DCERs with items that have a wide scale
(refer to Figure 4; Appendix 2 in Supplementary Material). In
these cases, using the dimension-corrected estimators G2 and D2

would be better, with binary items G = G2 and D = D2. Using
G2 and D2 as the linking factor with polytomous items seems

to give largely the same magnitude of reliability as given by RPC
and RREG.

Third, using rho as the base may lead to missing estimates,
specifically with small sample sizes. Datasets with the smallest
sample size in the simulation produce a remarkable number of
deterministic patterns (6% of the estimates with n = 25) where
the estimates based on rho are not defined. Then, factually, the
number of estimates is 1,418 (instead of 1,440) for estimators
based on rho (refer to Table 1). Small sample sizes are prone
to produce not only deterministic patterns where rho cannot
be calculated at all but also near-deterministic patterns leading
to (artificially) high estimates. This characteristic seems to be
inherited also to DCERs based on rho: the estimates based
on rho with binary items (0.94–0.96) are suspiciously high in
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FIGURE 5 | Deviance between sample and population estimates by DCERs based on the form of omega.

FIGURE 6 | Deviance between sample and population estimates by a DCER based on omega.

comparison with the estimators based on theta and omega (0.93–
0.94; refer to Appendix 2 in Supplementary Material). This is
related to the note by Aquirre-Urreta et al. (2019) that traditional
rho tends to give overestimates with finite samples.

The Capability of DCERs to Reflect
Population Reliability
Another aspect of the general tendencies is how well sample
estimates reflect population estimates. This is illustrated in
Figure 5 and Appendix 2 in Supplementary Material, and four
points are highlighted here. First, DCERs based on alpha, theta,
and omega are conservative: they tend to produce estimates
where the magnitude is lower than population reliability. In
contrast, DCERs based on rho tend to be liberal: the estimates
tend to overestimate population reliability, especially with binary
items (refer to Appendix 2 in Supplementary Material). Second,
sample estimators using EAC as a linking factor tend to
overestimate population reliability based on EAC. Notably, the

factual estimates of reliability seem not to be overestimated when
EAC is used (refer to Figure 4 above). Third, estimators based
on the form of theta and rho tend to be more stable than those
using alpha and omega, theta in binary settings, and rho with
polytomous settings (except when RAC or EAC are used as the
linking factor; refer to Appendix 2 in Supplementary Material).
In estimators based on theta and rho, the deviance between the
sample and population estimates is generally around 0.001–0.002
units of reliability. With estimators based on alpha and omega,
the deviance is around 0.01–0.02 units of reliability.

Fourth, although the general tendencies show only mild
deviance between sample and population, single estimates in the
sample may be far off the population value. Figure 6 illustrates
howwidely the estimatesmay deviate from the population values,
specifically with small sample sizes. The reason for the wide
deviance with small sample sizes, specifically when using the
traditional omega, is that even one test-taker may have a notable
effect on changing the correlations between the item and score
and, in some cases, even from positive (in the population) to
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FIGURE 7 | Deviance between sample and population estimates in DCERs based on omega.

FIGURE 8 | Average estimates of reliability and deviance from the population by sample size.

negative in the sample (refer to examples in Metsämuuronen,
2022b).

Generally, except with estimators based on alpha, the deviance
between the sample and population estimates seems notably
smaller by DCERs than by traditional estimators (refer to
Figure 7; Appendix 2 in Supplementary Material). Specifically,
this is true with binary items. The traditional theta seems to
give relatively more stable estimates even without correction
for deflation. Notably, the wide range in deviance between the
sample and population estimates with polytomous items when G
or D are used as the linking factor and alpha as the base is caused
by the fact that G and D tend to give obvious underestimation
when the number of categories in item exceeds 3–4.

Effect of Sample Size on DCERs
As a benchmark to DCERs in Figure 9, Figure 8 illustrates
the behavior of the traditional estimators by sample size (refer
to details in Appendix 2 in Supplementary Material). All the
conservative estimators (alpha, theta, and omega) tend to give

estimates that deviate notably from the population value when
the sample size is very small (n = 25). When the sample size
reaches n = 50, the estimates are relatively stable. Theta seems
to be the most stable when it comes to reflecting the population
value. The estimates by rho are higher than others, but it also
tends to overestimate mildly population reliability (up to 0.008
units of reliability) with small sample sizes.

The estimates by DCERs differ notably depending on whether
binary or polytomous items are used. With binary items, all
DCERs give largely the same estimates, while with polytomous
items, DCERs using G and D as the linking factor underestimate
reliability irrespective of the sample size (refer to Figure 9 and
more details in Appendix 2 in Supplementary Material). In both
cases, the estimates are stable when the sample size is n = 50
or higher. All the estimators underestimate population reliability
with a very small sample size (n= 25).

It seems that DCERs give a notable advantage when the
sample size is small. This is true specifically with binary items; the
estimates by DCERs tend to be closer to the population value in
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FIGURE 9 | The behavior of DCERs based on omega by sample size. (A) Base omega by N; binary items. (B) Base omega by N; polytomous items. (C) Deviance by

N; binary items. (D) Deviation by N; polytomous items.

comparison with the traditional estimators. Omega would benefit
the most by changing the linking factor. With polytomous items,
DCERs using EAC as the linking factor tend to overestimate the
population value, although the factual estimates do not exceed
the magnitude of the estimates using G2 as the linking factor.

Traditional alpha, omega, and rho seem to benefit if the
linking factor is changed from PMC to any of the item–score
correlations used for comparison. The estimators using bi- and
polyreg correlation coefficient (RREG) with very small sample
sizes seem to give more stable estimates than other estimators of
correlation, and the estimates based on theta seem to be relatively
stable even with small sample sizes and without changing the
linking factor.

Effect of Number of Categories in the
Score on DCERs
The dataset used in simulation is limited when it comes to
the number of categories in the score variable. Because of the
limitations in the original dataset, only scores with a number
of categories ranging from 11 to 31 [df (X) = 10–30] could

be used. However, it seems that all the estimators give stable
estimates when the number of categories in the score exceeds 20
(Figures 10a,b).

Among the traditional estimators, alpha and omega seem
quite unstable when the scale of the score is narrow [df (X) <

15], and the reliability of the population may be underestimated
by more than 0.1 units (Figure 10b). From this viewpoint, the
estimates by theta are notably closer to the population values
as the reliability is underestimated by less than 0.06 units
with binary items. The estimates by rho tends to overestimate
reliability by up to 0.03 units with scores with a narrow scale,
although the estimates tend to be rather stable with polytomous
items even when the score has a narrow scale.

When it comes to DCERs, in general, those using
a conservative base (alpha, theta, and omega) tend to
underestimate population reliability less than the traditional
estimators, specifically with scores with a narrow scale [df (X)
< 15] and binary items, whereas those based on a liberal base
(rho), tend to less overestimate population reliability than
traditional estimators with short tests (Figure 10b; Appendix
2 in Supplementary Material). Although the DCERs that use
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FIGURE 10 | The behavior of traditional estimators of reliability by the width of the score [df(X)]. The behavior of DCERs by the width of the score [df(X)]. (a) Base

omega; binary items. (b) Base omega; polytomous items.

EAC as the linking factor tend to overestimate reliability with
polytomous items (refer to above), the estimates tend to be
closest to the population value with polytomous items and very
short tests [df(X) < 14].

Effect of Test Difficulty on DCERs
Lastly, the estimators are compared by their behavior for
tests with different difficulty levels. Notably, the dataset used
in the simulation does not allow comparing them with
extremely difficult or extremely easy tests; in such tests, Rit
is the most vulnerable. Still, some comparisons are conducted
although the number of “difficult” (average proportion of
correct answers in the items is p̄< 0.55) and “easy” tests
(p̄> 0.75) is small. Figures 11a,b (refer also to Appendix 2 in
Supplementary Material) illustrate the behavior of omega and
the related DCERs regarding test difficulty, and three points
are highlighted.

First, of the traditional estimators, alpha and omega tend to
be more affected by test difficulty than theta and rho. Alpha
and omega tend to underestimate reliability in both extremes.
Theta seems relatively stable with binary items but is affected by
test difficulty with polytomous items. Rho is stable, although it
seems to overestimate reliability irrespective of test difficulty if
the difficulty level is not extreme.

Second, with binary items, the magnitude of the estimates
by DCERs tends to be notably higher and more stable than by
the traditional estimators irrespective of test difficulty. A specific
advantage of DCERs is with a test of extreme difficulty level
where the traditional estimators tend to give lower values. This
is specifically true with estimators based on alpha and omega; it
seems that the traditional alpha and omega would benefit most
by changing the linking factor.

Third, with polytomous items, using RAC or EAC as a linking
factor seems to produce the most stable estimates irrespective
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FIGURE 11 | The behavior of DCERs by test difficulty (the highest and traditional estimates are highlighted). (a) Base omega; binary items. (b) Base omega;

polytomous items.

of the base used and test difficulty. EAC tends to overestimate
reliability mildly, but the factual estimates tend not to differ from
those where G2 is used. Except for the estimators that use D and
G, the differences between the estimates are small.

CONCLUSIONS, DISCUSSION, AND
RESTRICTIONS

Results in a Nutshell
The starting point of this article was two-fold. First, the
empirical findings indicate that the estimates by the traditional
estimators of reliability such as alpha, theta, omega, and rho
tend to be deflated, and the magnitude of deflation may
be remarkable with certain types of datasets, typically with
tests including items of extreme difficulty level. Second, the
main reason for the deflation in the estimates of reliability
is the mechanical error related to estimates of the item–score
correlation embedded in the widely used traditional estimators
of reliability. The behavior of alternative estimators for Rit
has been studied, and short-cut estimators of reliability that

produce deflation-corrected estimates have been proposed based
on replacing Rit with an alternative, which gives a radically
smaller magnitude of deflation. Some of these alternatives are
RPC, RREG, G, D, G2, D2, RAC, and EAC, which are discussed in
the empirical section.

Different families of DCERs can be classified by the estimator
used as the base, by score variables, and by weighting factors
between item and score variable. Studies concerning DCERs
have been either at a very initial stage, they have offered just
some examples of the new possibility, they have been based on
small datasets and have been fragmentary, or the simulations
have made only a limited comparison of the behavior of some
DCERs with their traditional counterparts. The aim of this
study was to conduct a more systematic comparison of the
behavior of different combinations of these elements and to
typologize estimators that would show which estimator suits
which situations. The simulation used here was based on finite
sample sizes relevant to many real-life testing settings (n ≤
200). Although the simulation conducted and the dataset used
have their restrictions, which will be discussed later, seven main
outcomes may be presented here:
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1) Regardless of the base and linking factor used, DCERs
tend to give higher estimates than traditional estimators.
This is because of higher magnitudes of the item–score
correlations obtained by the alternative estimators than by the
traditional Rit.

2) Not only are their estimates higher, DCERs seems to tend to
produce estimates that are closer to the population value than
the traditional estimators do.

3) Although the true reliability of the original real-life dataset
is unknown, the unified voice of the DCERs, specifically
with binary items, speaks that they reflect the same (latent)
true reliability.

4) A specific advantage of DCERs seems to come from small
sample size, short tests, and test with extreme difficulty
levels and binary items. In these settings, the traditional
conservative estimators (alpha, theta, and omega) may
radically underestimate population reliability.

5) With binary items, all DCERs in the comparison seem to give
almost an identical outcome that is notably higher than that
given by the traditional estimators. The differences between
DCERs are clearer with polytomous items.

6) Of the individual DCERs, those using G and D as the
linking factor tend to be conservative with polytomous
items, specifically if alpha and theta are used as the base.
This is caused by the known characteristic of G and D
to underestimate the item–score association in an obvious
manner when the number of categories in the scale in an
item exceeds 3–4. In these cases, instead of G and D, DCERs
using dimension-correctedG andD (G2 andD2) as the linking
factor give estimates with a magnitude close to the estimates
by other estimators. Estimators using D2 as the linking factor
tend to give more conservative outcomes than G2.

7) DCERs using EAC as the linking factor offer a puzzle: although
the magnitudes of the sample estimates are not higher than
those given by the other DCERs, they tend to overestimate the
population estimates using EAC as the linking factor. This is
specifically true when rho is used as the base with polytomous
items. This uniquely reflects the relationship between the
sample and population EAC. A large population rarely leads
to deterministic or near-deterministic patterns between two
variables; small samples are more prone to these patterns, and
the magnitude of the estimates by EAC in a sample tends to be
higher than in the population.

The characteristics of different combinations of the base and the
linking factor are discussed in the section that follows.

Typology of Selected Deflation-Corrected
Estimators of Reliability
Tables 2a,b summarize the typological characteristics of
different combinations of the bases (alpha, theta, omega,
and rho) and the weight factors (RPC, RREG, G, D, G2, D2,
RAC, and EAC). Notably, all score variables discussed in the
article (θX , θPC, θFA, θIRT , or θNL) are not covered in this
study; the raw score (θX) was used in the simulation (of a
comparison of other score variables; refer to Metsämuuronen,
2022a). The characteristics of the weight factors are

studied elsewhere (e.g., Metsämuuronen, 2020a,b, 2021a,b,
2022b,d).

When it comes to the base of DCERs, the estimators
based on alpha, theta, and omega are conservative; they tend
to produce estimates that are underestimates of population
reliability with small sample sizes. Estimators based on rho
tend to be liberal; they tend to produce estimates that are
overestimates of population reliability with small sample sizes.
Estimators based on theta seem surprisingly stable, more stable
than those by alpha and omega. Estimators based on rho
are specifically vulnerable to deterministic patterns. In these
patterns, estimates by rho cannot be calculated because of the
undefined division by zero. Also, the estimates by rho are
unstable with a near-deterministic pattern even in one item.
These patterns are expected with small sample sizes. Hence,
DCERs based on rho may not be suggested to be used with small
sample sizes.

When it comes to weighting factors, RPC and RREG reflect
a correlation between unobservable, theoretical constructions.
Hence, DECRs using these coefficients as linking factors may
lead to a kind of theoretical reliability that is not related to the
factual score variable (refer to the critique by Chalmers, 2017).
From this viewpoint, estimators based on G and D lead to more
practical interpretations of reliability. That is, because G and,
specifically,D strictly indicate the proportion of logically ordered
test-takers in a test item after they are ordered by the score (refer
to Metsämuuronen, 2021b), the DCERs using G or D reflect the
proportion of logically ordered test-takers in all test items as a
whole. For example, if the averageD of all item–score correlations
in a specific dataset is 0.7, it means that 85% of the test takers,
that is, p = 0.5 × 0.70 + 0.5 = 0.85 (refer to Metsämuuronen,
2021b), are logically ordered in all items as a whole after they are
ordered by the score. Because of their conservative nature with
polytomous items having more than three categories, DCERs
based on G and D are suggested for tests with binary items
and with polytomous items having less than four categories. The
dimension-corrected versions of G and D (G2 and D2) can be
used for binary and polytomous items and in a binary case, G
= G2 and D= D2.

Of the DCERs using attenuation-corrected estimators of
correlation (RAC and EAC) as the linking factor, those using
RAC are more conservative than those using EAC. This follows
strictly from the behavior of RAC and EAC: except for the binary
case where RAC and EAC give identical estimates, the estimates
by EAC tend to be higher than those by RAC (refer to, e.g.,
Metsämuuronen, 2022d). Both seem to be somewhat liberal with
small sample sizes especially with polytomous items, although the
factual estimates do not seem to differ notably from the estimates
by other DCERs. With binary items, ACERs tend to produce
largely the same estimates as MCERs.

Based on the simulation, some initial recommendations
concerning the usability of the DCERs may be summarized as
follows; obviously, more specified simulations are needed, and
these are discussed in the next section.

1) With small sample sizes (n < 200), using estimators based on
rho is not recommendable; all DCERs based on rho as well
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TABLE 2a | Typology of selected deflation-corrected estimators of reliability and their characteristics.

RPC RREG G & D G2 & D2

General characteristics • Reflects latent reliability, not

strictly related to the observed

score nor observed items

• Leads to theoretical

interpretation of reliability

• Based on covariance

• Suitable for binary and

polytomous items

• Not simple to calculate

• Reflects reliability of the

observed score but uses

non-observed items

• Leads to partly theoretical

interpretation of reliability

• Based on regression model

• Suitable for binary and

polytomous items

• Not simple to calculate

• Reflects reliability of observed

score

• Leads to practical

interpretation of reliability

• Based on probability

• D more conservative than G

• Suitable for binary items and

polytomous items with < 3

categories

• Simple to calculate manually

• Reflects reliability of the

observed score but uses

non-observed items

• Leads to practical

interpretation of reliability

• Based on probability

• Liberal nature; D2 more

conservative than G2

• Suitable for binary and

polytomous items

• Simple to calculate manually

Base Alpha • Always underestimates

population reliability
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TABLE 2b | Typology of selected deflation-corrected estimators of reliability and their characteristics; attenuation-corrected estimators.

Attenuation-corrected estimators;Weight wi

RAC EAC

General characteristics • Reflects reliability of the

observed score but uses

non-observed items

• Leads to practical interpretation

of reliability

• Based on probability

• May have a liberal nature

• Tendency for slight

overestimation with

polytomous items

• Safe to use with items with <

4 categories

• Simple to calculate manually

• Reflects reliability of the

observed score but uses

non-observed items

• Leads to practical interpretation

of reliability

• Based on probability

• Very liberal nature

• Tendency for overestimation

with polytomous items

• Safe to use with binary items

• Simple to calculate manually

Base Alpha • Always underestimates

population reliability

• Very conservative in nature

• Gives estimates even with

small sample sizes

• Reaches the perfect reliability

(REL = 1) when wi = 1, and

σi= σj

k
k−1




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k
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σ2
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k
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σiRACi θ
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
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k
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
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k
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σ2
i

(

k
∑

i = 1
σiEACi θ

)2









Theta • Maximizes alpha

• Conservative nature

• Gives estimates even with

small sample sizes

• Reaches the perfect reliability

(REL = 1) when wi = 1

k
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k
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


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Omega • Always higher than alpha

• Least conservative nature

• Gives estimates even with

small sample sizes

• Reaches the perfect reliability

(REL = 1) when wi = 1

(

k
∑
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Rho

(maximal

reliability)

• Maximizes omega

• Liberal nature; may

overestimate reliability with

small sample sizes

• Cannot be calculated if

deterministic patterns even in

one item

• Cannot reach the perfect

reliability (rel < 1)

• Not the best option for

small samples

1
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/
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as the traditional estimators tend to give overestimates with
small sample sizes.

2) With binary items, all DCERs based on the conservative
estimators (alpha, theta, and omega) give more plausible
estimates than the traditional estimators; the difference
is in the interpretation of the linking factor. Using
RPC or RREG leads to “theoretical reliability” as a
benchmark for the traditional one and using G or D
(and G2 or D2) leads to practical interpretation of the
logical order of the test-takers; all these refer to the

discrimination power of the score. Using RAC or EAC
may give an interpretation closer to the original Rit,
that is, attenuation-corrected alpha, theta, omega, or
rho. Notably, with binary items, RAC and EAC produce
identical outcomes.

3) With polytomous items, DCERs using G and D are not
recommended to be used is the number of categories
exceeds 3 (D) or 4 (G), or, if used, the estimates may
be very conservative—the magnitude of the estimates may
be even more deflated than of those by the traditional
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alpha. Specifically, if the number of categories in the score
is small but the sample size is large, D tends to be
affected by the large number of tied cases and tends to
underestimate the correlation, which is also reflected in the
estimates of reliability. With polytomous items, using G2 or
D2 seems to give estimates whose magnitude is closer to
those by RPC or RREG. However, using G2 and EAC may
give a liberal estimate in comparison with RPC, RREG, D2,
and RAC.

4) If alpha and theta are used, where the traditional item–
score correlation is originally used as default, as the
bases for DCERs, attenuation-corrected Rit (RAC) could
be a natural alternative for Rit. Then, the “attenuation
corrected alpha” or “attenuation corrected theta” could
be reported as a benchmark as a side of the traditional
alpha or theta. Using EAC could enhance the outcome by
also allowing non-linearity in the association between
items and score. Obviously, the other alternative
estimators could also be used; then, we could report
“MEC-corrected alpha” or “deflation-corrected alpha” as
a benchmark.

5) If using omega and rho as the bases for DCERs, three
options may be worth considering. First, a renewed process
of producing factor loadings may be considered; for DCERs,
the factor loadings should be some of the alternative
estimators of item–score correlation instead of (essentially)
Rit. Second, another option to estimate the reliability
of the factor score variables would be to estimate just
the factor score variable by traditional factor analysis
to produce an “optimal linear combination” and to use
alternative estimators of item–score correlation in the DCERs
irrespective of factor loadings. Third, in line with the general
approach used in the article, the formulae of omega and
rho could be used in DCERs to estimate the reliability
of various types of score variables irrespective of the
factor analysis. Systematic studies on these options would
be beneficial.

Practical Calculation of DCERs
To give a practical example of calculating the DCERs discussed
in this article, a specific national-level dataset with exceptionally
easy items (n = 7,770) discussed by Metsämuuronen (2022b;
2022f; 2022g; originally in Metsämuuronen and Ukkola, 2019)
and referred to in sections “From prediction formulae to
coefficient alpha” and “From alpha, theta, omega, and rho
to deflation-corrected reliability” is used here as an example.
Originally, the test was a screening test of proficiency in the
language used in the factual test; only test-takers with second
language status were expected to make mistakes in the test items.
Descriptive statistics of the dataset are collected in Table 3a,
principal component and factor loadings for the traditional theta,
omega, and rho in Table 3b, estimates of item–score correlation
by selected estimators of correlation in Table 3c, and derivatives
of the correlations for the traditional and deflation-corrected
coefficients of alpha in Table 3d. Estimates of reliability are
collected in Table 3e.

TABLE 3a | Descriptive statistics of the test items from Metsämuuronen and

Ukkola (2019) (N = 7,770).

Item (g) Range Mean p Std. deviation Variance

g1 0–1 0.96 0.96 0.186 0.0348

g2 0–1 0.98 0.98 0.126 0.0160

g3 0–1 0.99 0.99 0.088 0.0078

g4 0–1 0.91 0.91 0.287 0.0824

g5 0–2 1.78 0.89 0.610 0.3715

g6 0–1 0.98 0.98 0.122 0.0150

g7 0–2 1.97 0.985 0.211 0.0446

g8 0–2 1.98 0.99 0.169 0.0285

SUM 0.6004

Score 3–11 10.57 0.961 0.875 0.7650

TABLE 3b | Principal component and factor loadings.

Principal component Factorloadings and derivatives

loadings and derivatives

Item λPC λ
2
PC λMLE λ

2
MLE 1–λ2

MLE λ
2
MLE/(1–λ

2
MLE)

g1 0.447 0.200 0.276 0.076 0.924 0.082

g2 0.430 0.185 0.260 0.068 0.932 0.073

g3 0.605 0.366 0.471 0.222 0.778 0.285

g4 0.468 0.219 0.291 0.085 0.915 0.093

g5 0.204 0.042 0.111 0.012 0.988 0.012

g6 0.375 0.141 0.213 0.045 0.955 0.048

g7 0.288 0.083 0.160 0.026 0.974 0.026

g8 0.633 0.401 0.512 0.262 0.738 0.355

SUM 1.636 2.294 7.204 0.974

TABLE 3c | Estimators of correlation between the item and raw score.

item Rit RPC RREG D G D2 G2 RAC EAC

g1 0.351 0.677 0.436 0.791 0.857 0.791 0.857 0.551 0.551

g2 0.268 0.618 0.375 0.779 0.846 0.779 0.846 0.489 0.489

g3 0.283 0.696 0.408 0.858 0.911 0.858 0.911 0.603 0.603

g4 0.458 0.736 0.529 0.789 0.834 0.789 0.834 0.603 0.603

g5 0.746 0.931 0.732 0.952 0.979 0.958 0.982 0.921 0.923

g6 0.260 0.602 0.364 0.766 0.831 0.766 0.831 0.477 0.477

g7 0.327 0.702 0.425 0.832 0.897 0.943 0.976 0.568 0.567

g8 0.373 0.760 0.457 0.877 0.924 0.961 0.983 0.680 0.693

For the traditional alpha, theta, omega, and rho, their original
score variable is used: a raw score for alpha, a principal
component (PC) score for theta, and an ML estimate (MLE)
of the factor score for omega and rho. For DCERs, the
raw score is used as the manifestation of the latent variable;
Metsämuuronen (2022f) shows examples of using PC and factor
scores in calculations.
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TABLE 3d | Derivatives of the estimators of correlation between an item and a raw score.

Item VAR(g) Rit × s RPC × s D × s G × s D2 × s G2 × s RAC × s EAC × s

g1 0.035 0.065 0.126 0.147 0.160 0.147 0.160 0.103 0.103

g2 0.016 0.034 0.078 0.098 0.107 0.098 0.107 0.062 0.062

g3 0.008 0.025 0.061 0.076 0.080 0.076 0.080 0.053 0.053

g4 0.082 0.131 0.211 0.226 0.239 0.226 0.239 0.173 0.173

g5 0.372 0.455 0.568 0.580 0.597 0.584 0.598 0.561 0.562

g6 0.015 0.032 0.074 0.094 0.102 0.094 0.102 0.058 0.058

g7 0.045 0.069 0.148 0.176 0.189 0.199 0.206 0.120 0.120

g8 0.028 0.063 0.128 0.148 0.156 0.162 0.166 0.115 0.117

SUM 0.600 0.874 1.395 1.546 1.630 1.587 1.658 1.245 1.248

TABLE 3e | Estimates of reliability.

Traditionalestimator DCERs with alternative weight factors and raw score (θX)

Base Traditionalweight (score) RPC RREG D G D2 G2 RAC EAC

Alfa 0.2450 (θX ) 0.7901 0.4196 0.8556 0.8846 0.8703 0.8934 0.7004 0.7025

Theta 0.4444 (θPC) 0.8686 0.5200 0.9368 0.9610 0.9494 0.9684 0.7779 0.7802

Omega 0.4221 (θMLE) 0.8952 0.6925 0.9473 0.9669 0.9572 0.9729 0.8310 0.8323

Rho 0.4934 (θMLE) 0.9287 0.7353 0.9605 0.9795 0.9757 0.9891 0.9012 0.9031

Using Tables 3a,d and eq. (2), the estimate of reliability

by the traditional alpha is ρ̂α = k
k−1









1−

k
∑

i = 1
σ 2
i

(

k
∑

i = 1
σiρi θ X

)2









=

8
7

(

1− 0.6004
0.8742

)

= 0.245. Correspondingly, using Table 3b

and eqs. (6), (8) and (9), the estimate by theta is

ρ̂TH = k
k−1






1− 1

k
∑

i = 1
λ2i θ PC






= 8

7

(

1− 1
1.636

)

= 0.444, the

estimate by omega is ρ̂ω =

(

k
∑

i = 1
λi θ MLE

)2

(

k
∑

i = 1
λi θ MLE

)2

+
k
∑

i = 1
(1−λ2i θ MLE)

=

2.2942

2.2942+7.204
= 0.422, and the estimate by rho is ρ̂MAX =
1

1+ 1
k
∑

i = 1
(λ2

i θ MLE
/(1−λ2

i θ MLE) )

= 1
1+ 1

0.974

= 0.493.

Similarly, the estimates by DCERs can be calculated using eqs.
(22) to (25) by applying different weight factors.4 If RPC is used
as the weight factor, deflation-corrected alpha, as an example,

gives an estimate of ρ̂α_RPCi θ X = k
k−1









1−

k
∑

i = 1
σ 2
i

(

k
∑

i = 1
σiRPCi θ X

)2









=

4The derivatives of the coefficients of correlation for DCERs based on theta, omega,

and rho are not seen in Tables 3b–d. These are, however, easy to calculate from the

original correlations in Table 3c, in the same manner done in Table 3b. Estimates

by RREG seem notably lower than the other estimates of correlation; in what

follows, these are taken as underestimates.

8
7

(

1− 0.6004
1.3952

)

= 0.790 and, if G is used as the linking factor,

ρ̂α_Gi θ X = k
k−1









1−

k
∑

i = 1
σ 2
i

(

k
∑

i = 1
σiGi θ X

)2









= 8
7

(

1− 0.6004
1.6302

)

=

0.885. In both cases, the message is the same: the estimate by
the traditional alpha is radically deflated; instead of 0.24, the
level of reliability is most probably closer to 0.79–0.85. Deflation-
corrected thetas vary, 0.778–0.968, deflation-corrected omegas
vary, 0.831–0.973, and deflation-corrected rhos vary, 0.901–
0.989. These are notably higher than the deflated traditional
theta (0.444), omega (0.422), and rho (0.493). In these kinds of
datasets with extreme difficulty levels, DCERs may give a notable
advantage in estimating the true reliability.

Known Limitations and Suggestions for
Further Studies
The paradigm of deflation-correction in the estimates of
reliability is still in the early stage. We do not know yet
much about the new types of estimators of reliability. The
simulation conducted in this article has obvious limits: only
small sample sizes were used, the latent reliability was not
controlled as is a norm in Monte Carlo simulations, the
score variables was restricted only to raw score, tests with
more than 30 and less than 10 categories in the score were
missing, and no tests with extreme difficulty level or very
short tests were not included in the simulation. Further
investigation of such settings would be beneficial. Also, by far,
only limited estimators of correlations as alternatives for Rit have
been studied.
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One obvious need of the new paradigm is to create a
sound theoretical base for DCERs. From this viewpoint, DCERs
based on omega and rho may be easier to argue for: the
theoretical base discussed in eqs. (16) to (21) may be used
as a sufficient conceptual or theoretical basis for DCERs.
However, many traditional estimators are strictly based on
variances, observed variance and error variance, leading to
use of the traditional item–score correlation, which leads to
deflation. The alternative estimators discussed in this article
are mainly short-cuts replacing Rit in the process. However,
if we want to create or develop an estimator such as ρBS,
ρFR, ρKR20, and ρα from scratch and to avoid embedding Rit
in the formulae, would the estimator still look like in the
traditional formulae?

Another obvious restriction of the study is that only
estimators from the classical test theory were discussed. A
relevant question is, how applicable the results would be with
estimators of reliability within Generalizability Theory (G-
Theory; chronologically, e.g., Cronbach et al., 1972; Shavelson
et al., 1989; Shavelson and Webb, 1991; Brennan, 2001, 2010;
Vispoel et al., 2018a,b; Clayson et al., 2021), confirmatory factor
analysis (CFA) or structural equation modeling (SEM refer to,
e.g., Raykov and Marcoulides, 2006; Green and Yang, 2009b),
and IRT and Rasch modeling (refer to estimators in e.g., Verhelst
et al., 1995; Holland and Hoskens, 2003; Kim and Feldt, 2010;
Cheng et al., 2012; Kim, 2012; Milanzi et al., 2015)? Except for
the estimators developed for CFA and SEM analysis, in all cases,
the possible deflation in the estimates is not as obvious as with
the classical estimators, because the latter can be expressed using
Rit and principal and factor loadings that are obviously deflated.
Estimators using factor loading (as is a tradition in the basic CFA
and SEM) are most probably prone to severe deflation because
factor loadings are prone to deflation.

In G-Theory, the challenge is that, first, two types of estimators
are used: the generalizability coefficient and the dependability
coefficient; the former is low when interindividual rankings are
inconsistent, and the latter is low whenmeasurements from same
individuals are inconsistent (refer to condensed discussion in
Clayson et al., 2021). Although the former is more comparable
with classical estimators such as coefficient alpha, we do not
know the possible mechanics of deflation in these estimators.
Second, in estimating the reliability within the framework of
G-Theory, variance components are radically more complicated
than when using classical estimators (refer to Brennan, 2001;
Vispoel et al., 2018a; Clayson et al., 2021). Furthermore, Vispoel
et al. (2018a) noted that failing to consider each source of
measurement variance can result in overestimation of reliability.
Hence, systematic theoretical and empirical studies are needed
to confirm the possible sources of deflation in estimates
by G-Theory.

In Rasch and IRT modeling, the estimation of reliability is
often based on such concepts as “person separation” in Rasch
models (Andrich and Douglas, 1977; Andrich, 1982; Wright
and Masters, 1982) or “information function” in wider IRT
models (refer to, e.g., McDonald, 1999; Cheng et al., 2012;
Milanzi et al., 2015). These are not necessarily prone to deflation
in an obvious manner. However, what is known is that the

estimator called Accuracy of Measurement (MAcc) discussed
by Verhelst et al. (1995) with a one-parameter logistic model
tends to be severely affected by the form of distribution of
the score; when the score variable is notably skewed, that is,
when the test is either extremely easy or difficult to the target
population, the estimates may even be far off the range of
reliability (refer to the empirical examples in Metsämuuronen,
2022g).5 If we assume that the estimates may be deflated in the
estimators of reliability within the IRT modeling, two possible
sources would be worth studying: the formulae themselves may
not be effective or the estimates for item discrimination (a-
parameter) often needed in the estimation would be deflated.
With MAcc, it seems obvious that the operationalization of
error variance of the score should be reconsidered (refer to
Metsämuuronen, 2022g). Systematic studies, in this regard,
would be beneficial.

Using score variance as a basis of reliability within the classical
test theory leads easily to item–score correlation, which leads to
deflation. If we want to avoid using variances as the base for
reliability, one option for reconceptualizing reliability discussed
by Metsämuuronen (2022a) is to define “perfect reliability” (REL
= 1) as a condition where the score can discriminate test-
takers in all items in a deterministic manner in the spirit of
Guttman’s scalogram (Guttman, 1950). This is related to the
estimators of reliability within the non-parametric IRT modeling
(NIRT; Mokken, 1971) where the coefficient H by Loevinger
(1948) indicates homogeneity in the dataset and deviance from
the deterministic pattern or so-called “Guttman-homogeneity”
(refer to Molenaar and Sijtsma, 1984). This could lead to
(correctly) detecting perfect reliability by DCERs based on theta
and omega using RPC, G, G2, RAC, and EAC as the linking
factors (see eqs. 22–25). D could be used as the linking factor
in defining restrictions in Monte Carlo simulations: 90% of
logically ordered test-takers in all items, after they are ordered
by the score, lead to omegaD = 0.92 = 0.81 and 80% to
omegaD = 0.82 = 0.64. Other options could be based on
“sufficiency of information” (Smith, 2005), “person separation”
(Andrich andDouglas, 1977; Andrich, 1982;Wright andMasters,
1982; refer also to “Rasch reliability” in Linacre, 1997; Clauser
and Linacre, 1999), the “information function” (refer to, e.g.,
McDonald, 1999; Cheng et al., 2012; Milanzi et al., 2015)
discussed in item response theory (IRT) settings, or “person-
fit” within the paradigm of NIRT (refer to, e.g., Meijer et al.
(1995).

The final note for further studies comes from the fact that the
extended family of DCERs also includes estimators such as the

5In the specific dataset of achievement in the instruction language of a test in

mathematics (n = 7,770) with extremely easy items and radically non-normal

distribution discussed by Metsämuuronen (2022a,c,f) and re-analyzed above, the

estimate by MAcc (Verhelst et al., 1995, pp. 99–100) was obviously out of range

(MAcc = −5.89), while the traditional alpha = 0.245, theta = 0.444, omega =
0.422, and rho = 0.493, although deflated, were within the range of reliability.

In April 2022, this specific dataset was re-analyzed by the teams of Milanzi et al.

(2015) and Cheng et al. (2012) using the estimators they suggested in their articles.

The results will be reported later. In this case, it would also be informative to

apply Foster’s (2021) enhanced KR20 developed for non-normal datasets such as

exponential distributions in the score.
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ordinal alpha and ordinal theta proposed by Zumbo et al. (2007).
Other less known estimators may also be included. Ordinal alpha
and theta are based on changing the inter-itemmatrices of PMCs
by matrices of RPCs instead of changing the linking factor itself. It
is expected that the estimates by ordinal alpha and theta would be
identical with those by the theta RPC and alpha RPC discussed in
this article, because the estimates using the traditional formula of
alpha and an alternative computational form using the matrices
of inter-item correlations are identical. However, it is not known
whether estimates by factor analysis using the matrix of RPCs
would lead to factor loadings that are RPCs. If the estimates are
identical, it would be easy to obtain DCERs based on omega and
rho using traditional procedures simply by changing the inter-
item matrix of Rits to the matrix of RPCs, Gs, or Ds, for instance.
However, if the loadings are still (essentially) Rits, calculated
using the mechanics of PMC, it could be valuable to develop
new procedures for FA/PCA so that the factor loadings needed
in DCERs would be, factually, RPCs, Gs, or Ds, for instance, as
discussed above.
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