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Adapting gross motor movement to match the tempo of auditory rhythmic stimulation
(sensorimotor synchronisation; SMS) is a complex skill with a long developmental
trajectory. Drumming tasks have previously been employed with infants and young
children to measure the emergence of rhythmic entrainment, and may provide a tool
for identification of those with atypical rhythm perception and production. Here we
describe a new protocol for measuring infant rhythmic movement that can be employed
at scale. In the current study, 50 two-year-olds drummed along with the audiovisual
presentation of four steady rhythms, using videos of isochronous drumming at 400,
500, 600, and 700 ms IOI, and provided their spontaneous motor tempo (SMT) by
drumming in silence. Toddlers’ drumming is observed from video recordings made
in participants’ own homes, obtained via the Lookit platform for online infant studies.
We use OpenPose deep-learning model to generate wireframe estimates of hand and
body location for each video. The vertical displacement of the hand was extracted,
and the power and frequency of infants’ rhythmic entrainment quantified using Fast
Fourier Transforms. We find evidence for age-appropriate tempo-flexibility in our sample.
Our results demonstrate the feasibility of a fully digital approach to measuring rhythmic
entrainment from within the participant’s home, from early in development.

Keywords: sensorimotor synchronisation, infancy, development, machine learning, OpenPose, Lookit, automated
movement analysis

INTRODUCTION

Rhythmic timing underlies a broad set of human behaviours, including music and dance. Critically,
the emerging ability to produce an internally generated rhythm (spontaneous motor tempo;
SMT), and adapt one’s movement to match an external stimulus (sensorimotor synchronisation;
SMS), is related to success in language acquisition. Poor SMS is related to language difficulties
in typically developing pre-schoolers (Carr et al., 2014; Politimou et al., 2019; Rios-Lopez et al.,
2019), and across language disorders, including dyslexia (Thomson and Goswami, 2008; Lee et al.,
2015; Persici et al., 2019), developmental language disorder (DLD; Corriveau and Goswami, 2009;
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Cumming et al., 2015), and speech impediments (Olander
et al., 2010; Falk et al., 2015). Sensorimotor synchronisation is
suggested as a useful tool for identifying those who may struggle
with language, which is suitable from infancy and through the
lifespan (Ladányi et al., 2020).

Since Fraisse (1982), laboratory measures of SMT in adulthood
are often measured via tapping paradigms, where discreet
intervals are produced by the vertical displacement of the index
finger onto a keypad or equivalent surface. Whilst in adulthood
the self-produced rate of tapping is stable within-subjects over
short periods of time (Vanneste et al., 2001), across the lifespan
SMT is known to change, with children’s tapping significantly
faster than adult’s (McAuley et al., 2006). Adult SMT is in the
range of 630 ms inter-onset-interval (IOI; McAuley et al., 2006).
In very early childhood, SMT measured via tapping has been
demonstrated as fast as 400–450 ms (IOI; Bobin-Bègue and
Provasi, 2008). Whilst tapping dominates the SMT literature,
and adult SMS studies, across early childhood, this difficult fine-
motor task is not always the most appropriate. Particularly in
determining infant ability to synchronize with external stimuli,
different research groups have used a variety of tasks to facilitate
synchrony within populations with poor fine motor skills.

Seminal studies into infant movement to music have simply
allowed infants to move freely to auditory stimuli (Zentner and
Eerola, 2010; Fujii et al., 2014). However, such scenarios do
not provide auditory/haptic feedback equivalent to the tapping
measures used in adulthood. Other infant paradigms used small
hand-held instruments such as bells (Rocha and Mareschal,
2017). The closest experimental paradigm to tapping involves
whole-hand drumming. From 5 months-of-age, infants can
produce their own SMT via drumming (Rocha et al., 2021b) with
the tempo and regularity of their drumming increasing over the
first 2 years of life. Whilst infants cannot reliably synchronise
their movements to music, a longitudinal investigation of infant
drumming to nursery rhymes of different tempi suggests that by
11-months-of-age infants are beginning to shift away from their
SMT to better match the rate of the song (Rocha et al., 2021a).
Studies of toddlers evidence good tempo adaptation in older
infants, when drumming along with a human and non-human
partner (Kirschner and Tomasello, 2009; Yu and Myowa, 2021).
In contrast to whole-body free movement analysis, constraints
imposed in a drumming task allow more direct comparison
of SMS over age, with a common effector and motion as is
commonly used in adult tapping studies. As drumming can be
used across contexts, with minimal apparatus and instruction,
and from 5-months-of-age with no upper limit, we suggest that
this could be a candidate marker of SMS that could be used at
scale to detect early individual differences. Whilst there is a strong
movement toward identification of risk of language disorders
using neural markers, e.g., (Attaheri et al., 2022) an accessible
behavioural assessment of rhythmic skill would have multiple
practical advantages in identifying children at risk.

In the current study we test the feasibility of measuring SMS
in the child’s own home, using asynchronous data collection
methods, and largely automated data processing. If viable, such a
technique will allow for large scale data collection. Our approach
is focussed on creating an open source tool to evaluate rhythm

in developing populations using a task that is low cost, easy to
administer, and easy to adapt for research and clinical needs.
Here we describe the implementation of our paradigm on a group
of 2-year-olds, a notoriously difficult age to test, and document
the successes and failures of our approach. We first ask whether
we can detect the rate of drumming from home-video footage.
We then characterise toddler Spontaneous Motor Tempo, and
ask whether toddlers of this age show signs of successful SMS
at a group level.

MATERIALS AND METHODS

Participants
The initial sample included 68 infants who completed the online
drumming task. These include 39 female, 28 male and one
gender not specified. Their mean age was 816.2 ± 94.1 days.
A further 24 participants (12 female) were excluded because they
did not complete the task (22) or withdrew (2). Participants
were recruited through the Lookit website and via the
experimenters’ research networks. Ethical approval for the study
was obtained from Psychology Ethics Committee at Goldsmiths,
University of London.

Design
The study used a mixed design with all participants completing
the same set of six video recorded trials, with counterbalanced
order of target inter-stimulus intervals. The first and sixth trials
were to designed measure spontaneous motor tempo. The middle
four trials each demonstrated drumming at a different interonset
interval (IOI) ranging from 400 to 700 ms in steps of 100 ms,
chosen to capture the possible range of SMT over childhood. In
order one these were presented in the sequence (400, 600, 500,
and 700), and in order two (700, 500, 600, and 400; See Figure 1).

Materials
The demographic and video data were collected on the Lookit
online child lab website (Scott and Schulz, 2017). The Lookit
website1 managed the sign up of participants and collection of
demographic details (date of birth, sex, race, geographic location,
number of children in the family, languages, parent education
level, household income, number of children’s books at home).
It presented informed consent and data-sharing agreements for
caregivers. During the data collection phase Lookit presented the
stimulus and reward videos, created by the experimenters. For
both Spontaneous Motor Tempo trials, the same 20-s-long silent
video was used. It displayed written prompts “Can you drum
for me?,” “What sound does it make when you drum?,” for the
caregiver to read aloud to the infant. In the experimental trials,
20 s videos showed a woman’s hand tapping out a steady beat on
a flat surface at an interval of 400, 500, 600, or 700 ms. All the
materials are available online at https://github.com/InfantLab/
little-drummers.

1https://lookit.mit.edu
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FIGURE 1 | Schematic of the data collection trials. Using the Lookit platform, children saw six short videos and their responses were video recorded. First and last
trial lasted 20 s and captured infants own spontaneous drumming. Trials 2–5 each demonstrated drumming at four different tempos (an inter-stimulus intervals of
400, 500, 600, or 700 ms per beat).

Procedure
Data collection took place in participants own homes with
caregivers following online instructions to run the experiment
using their own personal computers. Prior to the study, caregivers
created an account on the Lookit website and provided basic
demographic details. At a time of their choosing they recorded
verbal consent to their participation and followed instructions to
position their child in view of their webcam. They were asked
not to have the child on their lap and make sure that child’s
hands were visible in the shot, though compliance with these
instructions could not be ensured. The camera view was shown
on screen to help with positioning.

When child and caregiver were in position the six trials
began. The trials progressed automatically but caregivers could
pause the study by pressing the spacebar. If a trial was
paused, it could be restarted or the caregiver could choose
to end the study early if the child became too fussy. To
capture children’s spontaneous motor tempo, the first and last
trial provided no tempo information but showed onscreen
prompts for the caregiver to encourage drumming. Parents
were instructed not to demonstrate drumming themselves. The
experiment software randomly assigned participants to one of
two order conditions which determined the sequence of Trials
2–5. In each of these trials a 20 s long video of a woman’s
hand drumming on table was presented. The videos were
accompanied by an onscreen caption “Adults, in this video
please say ‘Can you drum along’?”. Each trial was followed
by a 5 s “reward” video. Following data collection, caregivers
were asked to confirm their child’s date of birth and specify a
level of data sharing (Public, Scientific, and Private). Finally, a
debrief explained the experiment and thanked them for their
participation. A video walkthrough of the experiment can be
found online at https://github.com/InfantLab/little-drummers#
experiment-walkthrough.

Data Analysis
Our novel approach to coding infant rhythmic behaviour uses
the OpenPose software for markerless motion tracking (Cao
et al., 2021). OpenPose is a deep learning model that has

been trained to identify multiple human figures in images and
video that is widely used in research settings (e.g., Fujiwara
and Yokomitsu, 2021; Kim et al., 2021; Zeng and Chen,
2021). When presented with a video it analyses each frame
independently, labelling all people present. For each identified
person, it can tag up to 25 key points on the body (depending
on visibility) and has an optional hand-model that identifies
up to 21 key points per hand. Each identified marker is
given as x and y coordinates within the frame (see Figure 2).
OpenPose also has the ability to label face markers but this was
not used in the current project. OpenPose is an open source
project that is free to use in non-commercial applications (For
further information, see https://github.com/CMU-Perceptual-
Computing-Lab/openpose).

Using the keypoint data generated by OpenPose, the vertical
displacement of hand can then be extracted and the power and
frequency of infants rhythmic entrainment can be measured
using Fast Fourier Transforms (see Figure 3). However, to make
use of the raw data generated by OpenPose, a substantial amount
of additional data processing is required. In this section, we
briefly walk-through the steps involved in data transformation,
cleaning and analysis.

All analysis was performed in Python using the Jupyter
notebooks interface which creates an annotated analysis script,
allowing for direct reproduction of all analysis steps. A general
toolkit for performing these steps and a short tutorial are freely
available (open source) at https://github.com/InfantLab/VASC.
The specific versions of libraries, scripts and their output for
this dataset are found at https://github.com/InfantLab/little-
drummers.

Step 1: Motion Capture Video Conversion
Lookit provides video for each individual trial as a separate file
with a unique identifier per child and condition. We downloaded
all videos for all children and all conditions. The Step 1 script
then passed each video to OpenPose. It processes videos frame-
by-frame outputting a single structured data file per frame (JSON
format), containing all key point information (screen X- and Y-
coordinates and a percentage confidence score per key point).
OpenPose processed all 402 videos in our dataset, producing
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FIGURE 2 | A toddler filmed drumming at home using the Lookit platform. Parents supervise the study following instructions on laptop screen. Wireframe overlay
created using OpenPose (Cao et al., 2021).

FIGURE 3 | (A) The graph shows the vertical movement of the toddler’s right hand using averaged OpenPose data over their second spontaneous motor tempo
trial, which contained three bursts of drumming. (B) The graph shows the power spectrum derived using fast fourier transform of the data, revealing a spontaneous
motor frequency of 2.22 Hz.

approximately 250,000 JSON files. Next the script parsed the
outputted JSON to extract and combine all data into a single
multi-dimensional NumPy array. We save this in a compressed
format to pass to Step 2.

Step 2: Data Cleaning and Collation
The OpenPose software has limitations so a considerable amount
of data cleaning is required. For each video the experimenters had
to manual check the data generated by OpenPose and make sure
it correctly identified the drumming infant. The biggest problem
is that OpenPose operates on a per frame basis and so can have
inconsistent labelling between frames. For example, it may label
infant and caregiver as person 0 and person 1 in one frame but
as person 1 and person 0 in the next. Additionally, there may
be additional people who temporarily enter the field of view or
OpenPose can include false negatives (failure to label person) and
false positives (labelling background scenery as a “ghost” person).
The step 2 script provides visual inspection tools for manual

corrections. It allows the experimenter to see plots of the average
locations of the figures in the video across the whole time-series.
Mislabelling shows up as large jumps and cross-overs in the plots.
The user can select the affected frame and relabel the data and
remove erroneous false positives. To speed up this process a set
of simple automatic algorithms to relabel the figures consistently
were created. These operate by comparing each frame to the
one previous and matching the figure labels by location or by
figure size. More details can be found in the online tutorial.
The output of this process is a multidimensional time-series of
consistently labelled body and hand points for each infant in
each trial. We saved these as multi-index Pandas dataframes to
pass to Step 3b.

Step 3a: Manual Tagging of Drumming Trials
To identify videos without drumming, experimenters watched
all videos and manually coded infant behaviour. For each trial
we recorded whether the infants hands were visible, whether
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they drummed with either left hand, right hand or both, and
whether there was any interference from the caregiver. Trials
were retained for analysis if infants took at least four consecutive
strikes (<2,000 ms between hits) of the surface in front of them,
and discarded if an adult moved the infants’ hand themselves.
18 infants demonstrated no drumming, from the remaining
50 participant drumming was seen in a total of 208 trials
(Mean = 4.16 per infant). These were labelled in a spreadsheet
that was read by Step 3b.

Step 3b: Extracting Rhythmic Hand Data With Fast
Fourier Transforms
For each trial we first linearly interpolated any missing data in
the time series of marker points. Across the 208 trails selected
in Step 3a, this affected less than 1% of the data. Then we found
the average location of left and right hands by creating weighted
sums of the hand and wrist X- and Y-coordinates. We use this
derived y-coordinate as a measure of the vertical movement of the
drumming hand over time. Next, we subtracted the mean vertical
displacement in a given trial from each of the time-series to give
a measure of movement. This data was then transformed into a
power spectrum using the discrete Fourier transform routines in
SciPy (Virtanen et al., 2020). To filter out larger, non-rhythmical
movements we cut off the power spectrum below 1 Hz. The
maximum power was found and the corresponding frequency
saved as the tempo for that trial for each hand. The infants “best”
hand (i.e., with an FFT with the highest power) is used in further
analyses. See Figures 3A,B for example of vertical movement and
corresponding power spectrum.

RESULTS

A total of 68 infants completed the experiment. Of these,
18 demonstrated no visible drumming and are excluded from
further analysis. This included 14 who were partially off-camera,
and a further four who presented no drumming in any trial.
The remaining 50 infants provided drumming data in 208
different trials averaging 1.12 SMT trials each and 3.04 drumming
trials across the different conditions. For each trial, drumming
frequency was recorded for subsequent analysis.

Rate of Drumming
The median IOI of infant drumming in silence (SMT) trial 1 was
608 ms, decreasing to 491 ms at trial 6. Infant drumming during
stimulation appears to show some tempo flexibility (i.e., slower
drumming to longer IOIs), see Table 1 and Figure 4.

In order to test whether infants were indeed drumming at
different rates across the different IOI trial types, a linear mixed
effects model with a random slope on participant was conducted
in RStudio Team (2020.09.01), RStudio (2021.09.01) (RStudio
Team, 2020), with the specification “rate of drumming ∼ trial
type + (1| participant)”. The slowest, 700 ms condition was
taken as the basecase. An ANOVA using Satterthwaite’s method
reveals a highly significant main effect of trial IOI (F = 3.573,
p = 0.004). Full results are shown in Table 2. Post-hoc tests show

TABLE 1 | Inter-onset-interval (IOI) of infant drumming derived from FFT.

Target IOI (ms) N Mean SD Median SE

700 38 712.208 204.097 695.797 33.109

600 38 649.802 182.196 596.068 29.556

500 41 599.066 190.883 523.657 29.811

400 35 599.418 192.16 549.679 32.481

SMT1 30 640.453 189.621 607.89 34.62

SMT2 26 531.843 152.001 491.127 29.81

N reflects number of infants that drummed in each trial.

FIGURE 4 | Figure shows violin plots and jittered raw data of the rate of infant
drumming in each experimental condition. The Mean is signified by a bold line,
and the 95% CI is shaded. Whilst infant drumming does not directly
correspond to the rate of presentation, infants appear to be adapting their rate
of drumming to be slower in the slow trials (600 and 700 ms IOI).

that all tempi except 600 ms and SMT1 elicited significantly faster
drumming than in the 700 ms trial.

Tempo Mismatch
In order to quantify how accurately infants were tempo-matching
during the different tempo trials, we calculated a tempo mismatch
score as the rate of infant drumming minus the target IOI.
Positive mismatch values therefore reflect infants drumming
slower than the target IOI, and negative values reflect faster than
target drumming. Tempo mismatch is plotted in Figure 5A.

For further analysis, the absolute (i.e., non-signed) tempo
mismatch is taken as the dependent variable, see Figure 5B.
Descriptive statistics are shown in Table 3. The mismatch
between infant drumming and the target IOI was approximately
150–200 ms, across the four target tempi.

If infants are not tempo-matching, we would expect to
see higher “accuracy,” or lower tempo-mismatch, in the trials
with a target tempo closer to their SMT. To test for this
pattern a further linear mixed model with a random slope
on participant was conducted, with the specification “tempo
mismatch ∼ trial IOI + (1| participant)”. Data provided in the
SMT conditions were not included, as there was no target for
infants to match. We do not find a main effect of trial IOI
(F = 1.605, p = 0.192) nor any post hoc differences, suggesting
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TABLE 2 | Table of coefficients for linear mixed effect models.

Rate of drumming Tempo mismatch

Predictors Estimates CI p Estimates CI p

(Intercept) 713.88 654.31 to 773.45 <0.001 175.84 132.17 to 219.50 <0.001

600 ms −63.87 −141.97 to 14.23 0.108 −24.98 −84.19 to 34.23 0.406

500 ms −114.42 −190.52 to −38.31 0.003 −19.26 −77.13 to 38.61 0.512

400 ms −110.05 −190.17 to −29.94 0.007 35.73 −24.94 to 96.40 0.246

SMT 1 −72.96 −156.93 to 11.00 0.088

SMT 2 −168.01 −255.25 to −80.78 <0.001

Random effects

σ2 29,036.09 16,769.25

τ00 6,176.53 Participant 1,850.26 Participant

ICC 0.18 0.10

N 50 Participant 49 Participant

Observations 208 152

Marginal R2/Conditional R2 0.068/0.232 0.028/0.125

Bold values indicate significant values at p < 0.05.

FIGURE 5 | Panel (A) depicts the tempo mismatch of infant drumming (IOI of drumming – Target IOI). Positive numbers reflect drumming slower than target, and
negative numbers reflect drumming faster than target. Values close to zero reflect accurate drumming. Panel (B) depicts the absolute (non-signed) tempo mismatch.
The Mean is signified by a bold line, and the 95% CI is shaded.

that infants performed similarly across conditions (all p n.s., see
Table 2).

Finally, as infant SMT in trial SMT1 was slower than predicted
for this age group, manual video coding was used to determine if
SMT was related to the number of hits performed in each trial.
Descriptive statistics for all trials are presented in Table 4.

Infants were indeed seemingly less engaged in the SMT trials
(where there was no drumming video to follow), reflected in both
a lower N of infants participating in these trials, and a lower
number of hits by those who did participate in SMT1. Notably,
after the presentation of drumming videos, in SMT2, infants who
did participate were drumming to a similar extent as during the
test trials. It is therefore possible that the slower than expected
SMT for this age group recorded in SMT1 is the product of
infants not producing a reliable estimate due to insufficient data.
If this were the case, we might expect that infants who drummed

more in this trial would have a faster SMT. However, SMT1 is
not significantly correlated with the number of hits produced,
with evidence for the null hypothesis of no relationship between
number of hits and rate of drumming [r(28) = 0.024, p = 0.899,
BF10 = 0.229].

DISCUSSION

Here we demonstrate the feasibility of using online measurement
of infant drumming as an index of infant rhythmic skill.
Infants in our sample showed age-appropriate tempo-flexibility,
drumming faster to faster tempi and slower to slower tempi.
Infants showed evidence of adjusting their rate of drumming
away from their intrinsic rate of movement, or Spontaneous
Motor Tempo (SMT). However, infants were not close to adult
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TABLE 3 | Tempo mismatch of infant drumming at each target IOI.

Target IOI (ms) N Mean SD Median SE

700 38 176.558 98.963 165.026 16.054

600 38 151.344 110.538 153.469 17.932

500 41 157.076 145.624 109.394 22.743

400 35 210.369 179.738 149.679 30.381

TABLE 4 | Number of drum hits made by infants in each trial type.

Target IOI (ms) N Mean SD Median Minimum Maximum

400 38 23.171 12.215 22.000 4 45

500 38 25.525 13.263 24.500 6 53

600 41 22.816 13.096 24.000 4 51

700 35 18.395 10.709 16.000 4 49

SMT1 30 16.800 7.284 17.000 4 35

SMT2 26 23.500 13.064 20.000 6 51

levels of tempo-matching (in the range of tens of milliseconds),
showing an average mismatch of greater than 100 ms. This
level of tempo-matching is in line with prior observations of
18-month-olds (Rocha and Mareschal, 2017). Previously, 24-
month-olds have been shown to synchronise their drumming, but
only when interacting with a live, social partner (see Kirschner
and Tomasello, 2009; Yu and Myowa, 2021). Whilst our stimuli
involved a video recording of a human hand drumming, it
was not an overtly “social” signal. Nonetheless, our results
show that it is possible to gain a behavioural index of infant
sensorimotor synchronisation using a low-cost and accessible
open-source platform.

Methodologically this work has multiple strengths. Firstly,
by leveraging the Lookit platform, we were able to collect high
resolution behavioural data with good ecological validity from a
notoriously challenging age group, with minimal experimenter
oversight. Because data were collected at home, infants were in
a highly familiar setting and caregivers could run the study at
time of their choosing. Parents could even abandon an attempt
and try at a later time. Secondly, despite the variability of
testing circumstances, we were able to get good compliance
with instructions and engagement with the task. For example,
in several cases older siblings were present but data could
be screened for interference and distraction. Finally, the data
processing pipeline provided objective measures of movement
and rhythmicity with a relatively small amount of manual coding.

Our study demonstrates that markerless motion capture data
with infants can be collected in a home with no specialist
equipment. The data quality was sufficient for us to extract
measures of infant motor tempo with automated Fourier
transforms. This is a promising proof of concept, particularly
given that the OpenPose model was trained primarily with adult
data (Cao et al., 2021). The best infants participants produced
data comparable to adult pilot participants (see “Supplementary
Material”). It is important to observe that for infants with little
or no drumming the Fourier method will not automatically
extract a drumming frequency due to lower frequency noise. If
additional manual coding was used to tag periods of drumming

then more accurate tempo scores could be extracted. Future work
will develop this functionality. Further, the trial lengths were
purposefully short (20-s), in order to minimise attrition from the
study in this unique testing scenario where the experimenter is
not present, but this may not have allowed enough time for all
infants to provide data. The toddlers mostly tolerated the length
very well, and increasing the trial length to 1-min may allow more
time for the infants to “warm up” to the drumming and produce
enough data for analysis.

One general limitation of this approach to motion capture
is that data is only two-dimensional, in the plane of the
camera (X and Y coordinates). OpenPose does have the
capability to combine data from multiple cameras to reconstruct
three-dimensional poses and movement (Nakano et al., 2020).
However, this only works in highly optimised conditions with
a single participant in view, making it unsuitable for our web-
based, parent supervised paradigm. However, the design of data
processing workflow allows us to substitute alternative, improved
pose estimation algorithms. See Wang et al. (2021) for a review of
recent advances.

Future iterations of this paradigm can benefit from clearer
instructions to both the caregiver and infant. Of the 68 infants
recruited for the study, 18 did not provide drumming data in
any of the experimental conditions. Further, the SMT exhibited
in the first trial (SMT1) was slower than we would have predicted,
and indeed slower than the SMT produced in SMT2, which was
recorded at the end of the experiment. The caregivers were asked
to prompt the infant “Can you drum for me?”, “Can you show
me how you drum?”, but it is possible this was not sufficient
for some infants to understand the task. Some parents reported
that their child was unfamiliar with the word “drum,” while
other infants simply responded “No!”. The original design did
not include a video example, in an effort to not bias the infants’
SMT. However, a possible solution would be to include a video
montage where two or more infants are drumming side-by-side,
giving a clear demonstration of the action expected (repeated
whole hand hits), whilst not giving a strong timing signal, adding
clarity and motivation to participate. Further, if infants do not
produce drumming during SMT1, it could be possible for the
parent to replay the demonstration video, and the child attempt
the trial again. This would better enable the collection of a
representative SMT.

The largest source of missing data was poor camera angles
that meant the infant hand could not be tracked (N = 14).
Lookit is optimised for desktop/laptop computers (i.e., not tablets
or mobile phones), and anecdotally, the angle of webcams is
normally optimised for centring the adult face. The infant hand is
considerably lower in the camera’s field. Prior to commencing the
study, the caregiver was shown a preview of their camera angle
and asked to check that their infant was in shot. However, as
the infant was not yet drumming at this point, it may not have
been obvious as to whether the area that would be drummed
upon was in view. Future iterations can preview the view of the
webcam between each experimental trial, such that the caregiver
can adapt their angle as needed. However, care must be taken
not to make the task instruction too complex or demanding for
caregivers to follow.
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A further limitation of remote asynchronous testing that
we did not foresee was that not all children were sat at a
table that provided good auditory and haptic feedback from the
children’s drumming. Subtle differences in the surface infants
were drumming on could potentially affect their ability to
adapt their behaviour to the auditory stimuli we asked them to
synchronise with. Future iterations could therefore also ask the
parent and child to “sound check” their drumming to ensure they
are getting auditory feedback when they hit the table. Further, if
infants are recruited for a study outside of Lookit (e.g., where they
are already participating in a lab based session), the paradigm
could also be used either within the lab, or at home with a
standardised surface (e.g., drum), provided by the research team,
to ameliorate these differences.

The study provides promising basis for further exploration
of other domains. Firstly, rhythmic movements of the whole
body could be examined, allowing investigation of dancing
and entrainment to music. OpenPose has been used in this
context in laboratory studies with adults (Zeng and Chen, 2021).
Our work demonstrates that this could be feasibly done with
relatively large samples of young children. Even more promising
would be to investigate synchrony between individuals, especially
in the context of bonding and responsive caregiving where
current human coding measures are labour intensive and lack
standardization and predictive validity (Lotzin et al., 2015).
Automated solutions have been a goal of social signal processing
for a long time (Chetouani et al., 2017) and movement data has
emerged as a promising signal (Egmose et al., 2017; López Pérez
et al., 2017). However, progress has been slow and most methods
are not suitable for field data (Chu et al., 2015). Therefore, we are
currently adapting our methods for use in this context.

In summary, here we provide a successful proof-of-concept
that we can extract the rate and accuracy of infant drumming
from home video, using largely automated and fully open-
source procedures. In an initial study of 2-year-old toddlers, we
find evidence for tempo-flexibility, but not synchronisation, in
response to an isochronous external beat presented at different
tempi. The overarching goal of the current work was to develop
a tool that is suitable to assess rhythmic movement in very
young children, which can be employed at scale, and potentially
even identify children at risk of neurodevelopmental disorders,
including speech and language difficulties. Such longitudinal
assessments, that are appropriate over developmental time,
are key to understanding the mechanistic profiles of rhythm
impairments across a broad range of neurodevelopmental
disorders (Lense et al., 2021). Now that the feasibility of this
online approach has been demonstrated, future work can refine
the procedure, and further develop this promising tool for deeper
insights into infant behaviour.
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