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The serotonin transporter (5-HTT) plays an important role in regulating 

serotonergic transmission via removal of serotonin (5-HT) from synaptic clefts. 

Alterations in 5-HTT expression and subsequent 5-HT transmission have been 

found to be associated with changes in behaviour, such as fearfulness or activity, 

in humans and other vertebrates. In humans, alterations in 5-HTT expression 

have been suggested to be able to lead to better learning performance, with 

more fearful persons being better at learning. Similar effects of the variation 

in the 5-HTT on fearfulness have been found in chickens, and in this study, 

we investigated effects on learning. Therefore, we tested 52 adult laying hens, 

differing in their functional 5-HTT genotype (W/W, W/D and D/D) in an operant 

learning paradigm in three different phases (initial learning, reversal learning 

and extinction) and in a tonic immobility test for fearfulness. We found that 

the 5-HTT polymorphism affects the initial learning performance of laying 

hens, with homogeneous wild-type (W/W) hens being the slowest learners, 

and the most fearful birds. W/W hens, showed significantly more choices to 

solve the initial learning task (LME, p = 0.031) and had the highest latencies in a 

tonic immobility test (p = 0.039), indicating the highest fearfulness. Our results 

provide interesting first insights into the role of 5-HTT in chickens and its 

sensitive interaction with the environment. We further suggest that the 5-HTT 

gene can be an interesting target gene for future breeding strategies as well as 

for further experimental studies.
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Introduction

Serotonin (5-hydroxytryptamine, 5-HT) is an important 
hormone in the body as well as a key regulatory neurotransmitter 
in the brains of vertebrates (Lesch et al., 1996). The transmission 
of neural serotonin from the pre-to the postsynapse is controlled 
through a reuptake of 5-HT from the synaptic clefts by the 
serotonin transporter (5-HTT, abbreviation for the 5-HT 
transporter). Thus, serotonin transporters are crucially involved 
in the neural serotonin regulatory system. In humans, a 
polymorphism of the 5-HTT gene is associated with functional 
consequences in the emotional system (Lesch et  al., 1996). 
Humans with an S-allele, i.e. a short allele, in comparison to the 
individuals with an L-allele, i.e. long allele, have a lower 5-HTT 
expression as a result of decreased 5-HTT gene promoter 
efficiency. This change contributes to behavioural modifications, 
such as increased anxiousness-like traits or the prevalence of the 
occurrence of depression (Lesch et al., 1996; Canli and Lesch, 
2007). Similar patterns are also found in other mammalian 
species, such as monkeys (Lesch et  al., 1997) and rodents 
(Brigman et al., 2010).

These effects of polymorphisms in the 5-HTT gene on 
behaviour have led the focus to similar effects in other mammals. 
The domestic chicken possesses a functional polymorphism in the 
5-HTT gene (Phi-van et al., 2014), with a wild-type allele (W) and 
a deletion allele (D). In the deletion allele, four bases are deleted 
(5′-AATT-3′), and a single base (A → T) is exchanged (Phi-van 
et al., 2014) in comparison to the wild-type allele. Interestingly, the 
W allele of domestic chickens functionally resembles the human 
S allele in terms of lowered 5-HTT expression and increased fear-
like behaviours (Phi-van et al., 2014; Krause et al., 2017; Phi Van 
et al., 2018). In line with this behaviour, the D-allele of domestic 
chickens shows 5-HTT and behavioural pattern expression 
comparable to the human L-allele. Domestic chickens with 
D-alleles, in comparison to homozygous W-allele chickens, show 
increased body mass and abdominal fat deposition (Phi-van et al., 
2014; Kjaer and Phi van, 2016; Krause et al., 2017), increased feed 
uptake during ontogeny (Kjaer and Phi van, 2016), increased 
locomotor activity (Phi-van et al., 2014; Krause et al., 2019), and 
a lower level of fearfulness (Krause et  al., 2017, 2019) but no 
differences in social-related behaviours (Krause et al., 2019).

One aspect, linked to the polymorphism at the 5-HTT gene 
in humans, has not yet been studied in domestic chickens. In 
humans, 5-HTT polymorphisms are thought to be  linked to 
cognitive performance, such as learning (Lesch et al., 1997). The 
S-allele human carriers tend to show increased attention towards 
biological conditioned stimuli and hence might perform better in 
learning (Homberg and Lesch, 2011). This assumption is 
supported by other studies showing that humans carrying S-alleles 
perform better in decision-making and learning than homozygote 
L-allele carriers (Roiser et al., 2007; Strobel et al., 2007; Madsen 
et al., 2011; Karabeg et al., 2013). In line with these findings, mice 
and monkeys demonstrated a higher flexibility in learning when 
carrying shorter alleles in various reversal learning tasks using 

visual or auditorial cues (Brigman et al., 2010; Jedema et al., 2010; 
Harris et al., 2012). However, in rats, such differences were not 
revealed (Karabeg et al., 2013). Based on the strong indications of 
a role of 5-HTT polymorphisms in cognitive performance in 
mammalian species, we aimed to address the question of whether 
the domestic chicken polymorphism in the 5-HTT gene also has 
a functional impact on cognitive performance.

Complex forms of learning are in general quite well 
documented in domestic chickens (Krause et al., 2006; Marino, 
2017; Dudde et al., 2018; Garnham and Løvlie, 2018). Thus, 
we aimed to characterise the cognitive abilities of domestic 
chickens with three different 5-HTT genotypes, homozygous 
wild-type W/W, homozygous deletion D/D and heterozygous 
genotype W/D, and to validate their differences in fearfulness 
using a tonic immobility test (Krause et al., 2019). To study 
their cognitive performance, we used an established automated 
operant learning paradigm for domestic chickens (Dudde 
et  al., 2018), which included initial associative learning, 
followed by reversal learning and finally an extinction phase. 
In accordance with mammalian studies and the convergence of 
the human S-allele with the domestic chicken W-allele, 
we assume that domestic chickens with a homozygous wild-
type allele W/W would perform better in the cognitive task and 
be more fearful compared to the homozygous deletion D/D 
birds, while heterozygous chickens should perform in the 
intermediate range.

Materials and methods

Animals and housing

Adult domestic hens (Gallus gallus forma domestica) with 
polymorphisms in the flanking region of the 5-HTT gene were 
used (Phi-van et al., 2014). The D-allele is characterised by the 
deletion of four nucleotides (5′-AATT-3′) and a nearby single 
nucleotide substitution (A → T) compared to the wild-type allele 
W (Phi-van et al., 2014; Phi Van et al., 2018). From these two 
alleles, three 5-HTT genotypes appeared: homozygous wild-type 
W/W, homozygous deletion-type D/D and heterozygous 
W/D. The hens with the three 5-HTT genotypes were obtained 
through a controlled breeding regime using W/W and D/D 
parents from the laboratory stock, returning to the genetic 
Lohmann Brown (Phi-van et al., 2014; Kjaer and Phivan, 2016; 
Krause et al., 2017; Phi Van et al., 2018). Briefly, 20 cockerels of 
each genotype were randomly intercrossed with 20 hens of the 
same genotype and with 10 hens of the other genotype. The hens 
of that breeding were marked with numbered wing tags and raised 
in identical littered pens until the experiments. For the 
experiment, we used 52 hens, 15 hens of the W/W, 19 hens of the 
W/D and 18 hens of the D/D alleles that had an age of 1.5 years at 
the start of the tests. The three genotypes of the hens are not linked 
to their phenotypic appearance, which enabled us to conduct all 
data collection blind with respect to the genotype of the animal. 

https://doi.org/10.3389/fpsyg.2022.901022
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Dudde et al. 10.3389/fpsyg.2022.901022

Frontiers in Psychology 03 frontiersin.org

The genotypes were revealed after completion of data collection 
for the analysis.

Approximately 12 weeks before the behavioural tests started, 
hens were randomly allocated to two identical compartments that 
were next to the room used for the behaviour test, all in the same 
stable. These litter floor compartments (each a size of 11 m2) were 
equipped with perches, a box filled with sand for dustbathing, pick 
blocks and a group nest. The birds had ad libitum access to 
standard commercial food (15.5% crude protein, 5.2% crude fat, 
3.4% crude fibre, and 12.8% crude ash; the three main ingredients 
were 35.7% wheat, 18.4% maize, and 17.3% soy) and to water. 
Light was provided for 14 h per day. To habituate the hens to the 
experimenters and the food reward of the test, the chickens were 
additionally fed wheat grains once a day by the experimenters.

Learning experiment setup

The experimental setup and the procedures of the learning 
experiment were similar to the experimental setup and the 
procedures described in Dudde et al. (2018). The procedures are 
briefly described in the following. Hens were trained and tested 
in different phases: (a) habituation, (b) screen training that 
consisted of three stages, and (c) the cognitive test phase that 
consisted of three learning stages: (i) initial associative learning, 
(ii) reversal learning, and (iii) extinction (see Table 1). The hens 
were tested during these phases in one out of four identical 
custom-built test boxes, which were located in a room adjacent 
to the home compartments of the hens. The test boxes (width, 
depth, height: 55 cm × 46.5 cm × 66 cm) with a touchscreen 
(height × wide: 19 cm × 25 cm), a speaker and a food reward-
delivery system (foldable food trough (height × wide × depth: 
1.5 cm × 4 cm × 8 cm)) are described in detail in Dudde et al. 
(2018). An in-house developed C++ software (Microsoft Visual 
Studio, 2010, Microsoft, Redmond, WA, United States; code can 
be provided upon request) controlled the complete electronic 
setup of the test box, such as light, sound, reward delivery, 
touchscreen and monitor. For additional observation of the 
hens, a video camera was installed at one side of each test box. 
During the experiments, the hens were not able to see each 
other from inside the boxes. For habituation, training and 
learning phases, hens were individually taken from their home 
compartments and gently placed into the test boxes. They were 
rewarded with wheat grains to which they had been familiarised 
in advance. At no time in the experiment were hens’ food 
restricted prior to testing. The experience of success with only 
positive rewards was established in a previous study (Dudde 
et al., 2018). The time in the test box was increased during the 
habituation stage (see Table 1). The hens remained in the test 
box for a session that lasted up to a maximum of 20 min. 
However, if a hen made quicker decisions, she could decrease 
the time in the test box in that respective session, as each hen 
had to make 20 decisions per session (for details see Dudde 
et al. (2018)) or alternatively, the time in the test box ended after 

20 min. If a hen did not finish one of the training phases (see 
details below) or one of the three learning phases within 20 
daily sessions, the testing ended, and she was thus excluded 
from the further experiments (Dudde et  al., 2018). To 
successfully solve each training phase, initial learning and 
reversal learning, hens needed 80% correct decisions out of at 
least ten decisions (Dudde et al., 2018). This learning criterion 
differs from the 50% chance level and is in accordance with 
other learning studies (Garner et al., 2006; Brust et al., 2014; 
Dudde et al., 2018). To successfully finish the extinction, hens 
needed to demonstrate no responses in 70% of at least ten trials 
(Dudde et al., 2018).

Habituation and training phases

During the habituation phase, hens were individually 
habituated in five consecutive sessions, with increasing time in the 
box from 5 to 20 min (Table 1). Thereafter, the training phase 
started, and hens were familiarised with pecks on a dot on the 
touch screen to receive a food reward (Table 1). During training, 
hens were asked to go through three training phases as described 
in detail in Dudde et  al. (2018). Once a hen had successfully 
finished the training, she was tested in the initial associative 
learning phase.

Testing in three learning phases

The cognitive testing consisted of three phases: (i) initial 
associative learning, (ii) reversal learning, and (iii) 
extinction phase.

 i.) Initial associative learning phase
For the initial associative learning, the hens needed to learn to 

differentiate between two simultaneously shown coloured bars, 
red and green, independent of the orientation of the bars (for 
details, see Dudde et al., 2018). Which colour was rewarded was 
alternatingly changed between subjects. To avoid side preferences, 
the presentation side of the rewarded bar was randomised on both 
sides within sessions (de Haas et al., 2017a,b). Pecking one of the 
bars was recorded as an active decision and as correct when the 
bar pecked was the rewarded bar and as incorrect when the bar 
packed was the unrewarded bar. Pecking the rest of the screen 
outside the bars, i.e. the black screen, was not recorded as a 
decision. If a hen made a correct decision, she received wheat 
grains for 5 s before the next trial appeared. Thereafter, a black 
screen was shown for 20 s (intercomponent time) before the two 
coloured bars reappeared with a randomised position and 
orientation. If a hen made a wrong decision, no reward was 
provided, and a black screen appeared for 5 s, followed again by 
20 s of intercomponent time. Then, the previously shown bars 
appeared at the same position again. Hens solved the initial 
learning phase when they made 80% correct decisions of at least 
ten decisions within a session.
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 ii.) Reversal learning phase
During reversal learning, the initially unrewarded colour was 

rewarded, and the initially rewarded colour was unrewarded. 
Everything else remained identical to the process described in the 
initial learning phase (Dudde et al., 2018). The reversal learning 
was successfully finished after 80% correct decisions of at least ten 
decisions within a session.

 iii.) Extinction phase
In the extinction phase, none of the two bars were rewarded, 

and the extinction learning criterion was reached when a hen did 
not respond to any of the two symbols on the screen in 70% of a 
least ten trials within a session. If a hen did not peck, the symbols 
vanished after 20 s, followed by an intercomponent time of 20 s. If 
a hen pecked on one of the symbols on the touchscreen, the black 
screen appeared for an intercomponent time of 20 s (see as well 
Dudde et al., 2018, for details).

Stimuli used in the training and cognitive 
phases

During the training phase, we used as stimulus a grey circle 
(diameter: 2 cm, colour in red-green-blue (RGB) values: R = 224, 
G = 224, B = 224) that was shown on the touch screen. During the 
cognitive testing, we used a green bar (high × length: 10 mm × 
40 mm, colour in RGB values: R = 20, G = 184, B = 29) and a red 
bar (high × length: 10 mm × 40 mm, colour in RGB values: 
R = 237, G = 28, B = 36) as stimuli, which were presented on a black 
screen and were all suited for the visual physiology of the hens 
(Osorio et  al., 1999). These stimuli had already been used 
successfully in former experiments (Dudde et  al., 2018). The 
screens were thin-film transistor (TFT) screens 12.1″ with super 
video graphics array (SVGA) 600 * 800 with an infrared (IR) 
frame for touch detection (IR Touch-kit 121.-A301, Citron 
GmbH, Augsburg, Germany).

Fear-related measures estimated by the 
tonic immobility test

We further measured a fear-related trait in advance using the 
tonic immobility paradigm to understand potential genotype-
related links between fear-related behaviours (Krause et al., 2017, 
2019) and cognitive performance. Therefore, all individuals were 
individually tested in a tonic immobility (TI) test approximately 
8 weeks prior to the learning test. The TI is a robust measure for 
fearfulness in chickens (Gallup et al., 1971; Jones, 1986). A longer 
latency to rise reflects a higher level of fear (Gallup et al., 1971; 
Jones, 1986). The test was conducted as described earlier (Krause 
et al., 2019): briefly, hens were individually tested in an adjacent 
room using a V-shaped cradle. Birds were put on their backs into 
the cradle, and once they remained immobile for 10 s, the latency 
to rise was measured (maximal 600 s). Birds that did not remain 
immobile within three attempts were recorded with 0 s, which was T
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only the case for a single bird (from the D/D genotype). 
Immediately after testing, birds were released into their respective 
home compartments.

Statistical analysis

To analyse the participation success of the hens from the 
different genotypes, we first compared the proportion of hens that 
met the criterion for each phase of the screen training (three 
phases) and cognitive tasks (three phases). Thus, hens solving all 
tasks successfully achieved 6 phases in total. These numbers were 
tested for survival curve differences using the Gehan-Wilcox test.

Thereafter, we compared the learning performance of the hens 
with respect to their 5-HTT genotype. We analysed the sum of 
active decisions they needed to fulfil the learning criteria of each 
level. Active decisions were counted as the number of correct and 
wrong decisions, whereby inactive trials with no decisions were 
not counted, in line with Dudde et al. (2018). The respective data 
processing was performed using a custom-written MATLAB 
script (Matlab and Statistics Toolbox Release, 2017). The residuals 
of the average number of active decisions per learning phase were 
tested for normal distribution with Shapiro–Wilk tests and 
homogeneity of variances with Levene’s test. We  analysed the 
respective data for each learning level with a linear mixed effects 
(LME) model. The active decisions at the respective level were 
analysed in linear mixed effects models with the explanatory 
factor 5-HTT genotype (3-level factor: W/W, W/D, D/D) and 
housing compartment as a random factor. For significant linear 
models, we calculated post-hoc pairwise t-test comparisons for 
genotypes. Body weight was analysed using an LME model as 
described above. In addition, body weights were correlated to the 
active choice from the three different learning levels to examine 
whether there was a linkage using Pearson correlations. Latencies 
from the tonic immobility test were not normally distributed even 
after transformation and thus analysed with the nonparametric 
Kruskal–Wallis test with regard to the 5-HTT genotype, as a 
pairwise post-hoc unpaired Wilcoxon test was used. Furthermore, 
tonic immobility test latencies were correlated with the active 
choice from the three different learning levels to examine whether 
there was a linkage using Spearman correlations.

All analyses were calculated with R 4.0.3 (R Core Team, 2019), 
the package nlme (Pinheiro et  al., 2007) car (Fox, 2019) and 
survival (Therneau, 2020).

The raw data of the study are available from Dudde 
et al. (2022).

Ethical note

Animals were visually controlled daily for health status. The 
study was in accordance with the German Laws and has been 
approved by the respective regional authority, the Lower Saxony 
State Office for Consumer Protection and Food Safety (LaVes) (# 

33.19–42,502–04-18/2993). The hens were housed as laying hens 
after the tests had ended, and the eggs were marketed.

Results

Success in participating throughout the 
experiment

The proportion of hens successfully participating in the 
experiment differed between the three 5-HTT genotypes. In 
particular, hens from the W/W genotype failed to achieve the 
learning criteria of the different learning levels throughout the 
experiment compared to hens from the D/D and W/D genotypes 
(Gehan-Wilcox test, Chi2 = 8.6, df = 2, p = 0.01, see Figure 1).

Cognitive performance

(i.) Initial learning
The initial learning performance was significantly affected by 

the 5-HTT genotype of the hens (LME: factor genotype: 
F2,20 = 4.14, p = 0.031, Figure 2). The post-hoc pairwise comparison 
revealed that W/W differed significantly from W/D and D/D 
(both p < 0.02), whereas D/D and W/D did not differ from each 
other (p = 0.73). W/W hens needed more active decisions to reach 
the learning criteria compared to the other genotypes. Three WW 
hens, 12 W/D hens and 9 D/D hens were tested in initial learning.

 ii.) Reversal learning and extinction

FIGURE 1

Proportion of hens that successfully passed the learning tasks of 
each level according to their genetic origin. In particular, hens 
from the W/W genotype failed to achieve the learning criteria of 
the different learning levels compared to hens from the D/D and 
W/D genotypes (Gehan-Wilcox test, Chi2 = 7.5, df = 2 p = 0.02). In 
the phases, the following number of hens took part in the 
respective phase: W/W (phase 1–6: 15,3,3,3,1,1); W/D 
(19,13,12,12,11,10); D/D (18,10,10,9,8,7).
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In reversal learning, hens from all three 5-HTT genotypes did 
not differ in the number of active decisions needed to reach the 
respective learning criteria (LME: factor genotype, F2,16 = 1.46, 
p = 0.26, Figure  3A). Additionally, in the extinction, 5-HTT 
genotypes did not show differences in the number of active 
choices (LME: factor genotype, F2,14 = 0.48, p = 0.63, Figure 3B). 
There were 1 W/W, 11 D/W and 8 D/D hens tested in the reversal 
tests and one less of each W/D and D/D in the extinction, 
according to the learning criteria.

Body weight

The body weight of the hens from the three 5-HTT genotypes 
differed significantly from each other (LME: factor genotype, 
F2,48 = 4.60, p = 0.015; Figure 4). Pairwise post-hoc tests revealed 
that W/W differed from W/D and D/D (both p < 0.038), but D/D 

and W/D did not differ from each other (p = 0.65). On an 
individual level, body weight was not correlated with any of the 
three numbers of active choices from the cognitive performance 
(Pearson correlations, all three r < −0.16, all three p > 0.26).

Fear-related measures estimated by the 
tonic immobility test

The latency in the tonic immobility test differed between the 
hens of the three 5-HTT genotypes (Kruskal-Wallis test, X2 = 6.48, 
df = 2, p = 0.039; Figure  5). Post-hoc comparisons between the 
three 5-HTT genotypes showed that WW differed from DD 
(p = 0.018), while all other comparisons were not different (both 
p > 0.12). On an individual level, tonic immobility latency was not 
correlated with any of the three numbers of active choices from 
the cognitive performance (Spearman correlations, all three 
r < 0.25, all three p > 0.24).

Discussion

Hens with the 5-HTT genotypes W/D and D/D performed 
significantly better in the initial learning phase than hens with the 
W/W genotype. The D/D and W/D hens not only performed 
better in the learning phase but also participated in all three 
cognitive phases at a higher rate than the W/W hens and were also 
less fearful in a tonic immobility test than the W/W hens.

This result on cognitive performance is in contrast to our 
initial assumption that was derived from humans and other 
mammalian studies (Homberg and Lesch, 2011); however, the 
result is in line with our expectation with regard to fearfulness 
(Krause et al., 2019). W/W hens were the most fearful, participated 
less in the learning task and had worse results in this task. This 
functional effect of the 5-HTT genotype is interesting. The effect 

FIGURE 2

Mean number of active choices required in the initial learning  
[± standard error (SE)]. W/W hens needed more active decisions 
to reach the learning criteria compared to the other genotypes. 
The number in the bars indicates the number of hens that 
participated in the initial learning.

A B

FIGURE 3

Mean number (± SE) of active choices required: (A) reversal learning, as well as (B) extinction learning, with no significant differences found 
between the three genotypes. The number in the bars indicates the number of hens that participated in the initial learning.
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may have been caused by several factors, which we discuss in 
the following.

One of the main factors affecting learning performance in this 
experiment can be the diverging fearfulness of the hens. The hens 
with the W/W genotype are more fearful than the other types 
(Krause et al., 2017, 2019), as shown in the tonic immobility test, 
where longer latencies to rise indicate a higher level of fearfulness 
(Gallup et al., 1971; Jones, 1986). This is an interesting difference 
from humans, where the genotype resembling the chicken W allele 
is the S allele, which is also linked to more fearful responses but is 
assumed to show more thoughtfulness towards learning tasks 
(Homberg and Lesch, 2011). In our experiment, an assumption for 
worse learning of D/D hens could be associated with the potentially 
stressful learning situation in the Skinner box, separated from the 
conspecifics, hence paying more attention to the environment but 
not to the actual learning task. Future studies should therefore also 
address the question of whether D/D and W/W hens differ in their 

coping style, e.g., reactive or proactive (Koolhaas et al., 1999, 2010), 
as such is also known to affect learning speed (Guillette et al., 2015). 
However, in contrast to humans, learning performance is not 
positively linked to fearfulness, but it might be that fear hinders 
chickens from training and learning. This idea also supports the 
finding that the participation success in training and testing over 
all experimental phases was significantly different between the 
genotypes and lowest in W/W hens, either reflecting their 
fearfulness or alternatively cognitive limitations.

Whether hens with the W/W genotype might be better at 
learning in a fear-free context might be  considered in future 
studies. However, intrinsic fear cannot be compensated for by a 
fear-reducing environmental situation.

A further potential factor, which might theoretically have 
affected the learning performance of the hens in our study, is the 
different motivations for the food reward used in our test (Dudde 
et al., 2018). Previous studies, as well as this study, have shown 
that hens possessing the D/D genotype are heavier and feed more 
during certain juvenile stages in comparison to W/W hens (Kjaer 
and Phi van, 2016). Therefore, even adult D/D hens might have a 
higher food motivation in certain contexts and hence have a 
higher motivation to participate in the learning task. We cannot 
fully exclude effects caused by food motivation in this study 
design, although all hens were not food deprived prior to the 
study. Nevertheless, it could be  interesting to design future 
experiments that use other than food rewards in cognitive tasks, 
e.g. social rewards, to avoid potential bias of food motivation.

Significant differences in cognitive performance were only 
detected in the initial learning, while during reversal, learning was 
solved by hens from all three 5-HTT genotypes similarly well. This 
finding has to be taken with a certain caution, as in the reversal 
and extinction phase, only a single hen from the W/W genotype 
participated in testing. Thus, whether the performance of the 
individuals from the three genotypes differs in these two phases 
cannot be robustly evaluated and may be further examined in 
future studies. Nevertheless, it is of great general interest that, 
although in the opposite direction as expected from mammalian 
studies, polymorphisms in the 5-HTT gene affect the initial 
learning of domestic chickens.

The results of the tonic immobility test show that W/W hens 
had the longest latencies to rise and thus the highest levels of 
fearfulness (Gallup et al., 1971; Jones, 1986). In addition to their 
help to potentially understand why W/W hens participated less 
and poorly in the learning test, the result itself is a nice replication 
of the findings of earlier studies (Krause et  al., 2019). On the 
genotype group level, tonic immobility latencies were high in 
W/W hens as the number of active choices needed in the learning 
phases; however, no significant correlation between both 
parameters was found. Thus, there does not seem to be a strong 
association between the level of fearfulness and cognitive 
performance in individuals. No such correlation was found for 
body masses and cognitive performance; however, genotype-level 
differences in body masses replicate earlier studies (e.g. Phi-van 
et al., 2014; Krause et al., 2017, 2019).

FIGURE 4

Mean body (±SE) mass in grams from the hens of the three 
5-HTT genotypes, with the W/W being significantly lighter than 
the other two. The number in the bars indicates the number of 
hens that were measured.

FIGURE 5

Median time in the tonic immobility test required by the hens of 
the three genotypes to rise up. W/W hens needed longer than 
the hens from the other genotypes. The number in the boxes 
indicates the number of hens that were measured.
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From an applied animal science perspective, the 
polymorphism at the serotonin transporter gene is an interesting 
candidate for future commercial breeding strategies. Selecting for 
the deletion D-allele may lead not only to heavier hens but also 
to more robust and thus less fearful hens, which might 
be important for the mental welfare of the hens. However, thus 
far, the abundance of the D allele in commercial breeds 
investigated is quite low, e.g., approximately 7.5% in a brown layer 
strain (Krause et al., 2019).

Taken together, we found that polymorphisms in the serotonin 
transporter gene 5-HTT significantly affected the training and 
initial learning performance of laying hens. Genotypes related to 
less fearfulness perform better in the initial associative learning 
task, showing the impact of the 5-HTT polymorphism on 
cognitive performance in domestic chickens.
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