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How are abstract concepts grounded in perceptual experiences for shaping

human conceptual knowledge? Recent studies on abstract concepts

emphasizing the role of language have argued that abstract concepts are

grounded indirectly in perceptual experiences and language (or words)

functions as a bridge between abstract concepts and perceptual experiences.

However, this “indirect grounding” view remains largely speculative and has

hardly been supported directly by empirical evidence. In this paper, therefore,

we test the indirect grounding view by means of multimodal distributional

semantics, in which the meaning of a word (i.e., a concept) is represented as

the combination of textual and visual vectors. The newly devised multimodal

distributional semantic model incorporates the indirect grounding view by

computing the visual vector of an abstract word through the visual vectors

of concrete words semantically related to that abstract word. An evaluation

experiment is conducted in which conceptual representation is predicted

from multimodal vectors using a multilayer feed-forward neural network.

The analysis of prediction performance demonstrates that the indirect

grounding model achieves significantly better performance in predicting

human conceptual representation of abstract words than other models that

mimic competing views on abstract concepts, especially than the direct

grounding model in which the visual vectors of abstract words are computed

directly from the images of abstract concepts. This result lends some

plausibility to the indirect grounding view as a cognitive mechanism of

grounding abstract concepts.

KEYWORDS

abstract concepts, indirect grounding, embodied cognition,multimodal distributional

semantic model, conceptual representation, symbol grounding problem

1. Introduction

1.1. Abstract concepts and embodied cognition

Since Harnad (1990) pointed out the symbol grounding problem, embodied

approaches to cognition have emerged as promising solutions of how symbols (or

words) acquire their meanings. Embodied cognition theories argue that concepts

or word meanings are grounded in our perceptual or sensorimotor experiences.
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For example, Barsalou’s (1999) theory of perceptual symbol

systems states that concepts (and word meanings as well)

are inherently modal, perceptual symbols grounded in the

real world. Perceptual symbols refer to neural representations,

or activation patterns of sensorimotor regions of the brain

elicited during direct perceptual experiences (e.g., seeing,

touching, and playing with dogs for the concept of dog). Once

these representations are encoded in the brain by repeated

experiencing, they can be reactivated, that is, experiences are

mentally simulated when words are encountered even in the

absence of direct experience. Embodied cognition theories have

been empirically supported by a considerable number of studies

(e.g., Glenberg and Kaschak, 2002; Kaschak et al., 2005; Pecher

and Zwaan, 2005; Barsalou, 2008; Pulvermüller, 2013; Scorolli,

2014; Barsalou, 2016; Coello and Fisher, 2016; Fisher and Coello,

2016).

However, abstract concepts pose a serious challenge to the

embodied theory of cognition. Because abstract concepts such

as love and justice do not have clearly perceivable referents, it

is difficult to see how representations grounded in perceptual

experiences can capture the content of abstract concepts.

The empirical studies on embodied cognition have previously

focused primarily on concrete concepts, such as dog and kick,

which directly refer to perceivable objects or physical motions.

Recently, however, the focus of concepts research has recently

shifted from the embodied nature of concrete concepts to the

complex nature of abstract concepts (Bolognesi and Steen, 2018;

Borghi et al., 2018).

Some embodied theories claim a general mechanism of

grounding common to both concrete and abstract concepts.

Barsalou (1999, 2003) advocates that abstract concepts are

represented in the same perceptual symbol systems. Perceptual

symbols for abstract concepts are acquired from sensorimotor

and introspective experiences in specific situations and abstract

words elicit mental simulations of those situations. For example,

people visualize and emotionalize two people kissing when

seeing the word “love” and the court when seeing the word

“justice.” A recent view of situated simulation is more radical;

Barsalou et al. (2018) proposed that the distinction between

concrete and abstract concepts is no longer useful and should

be abandoned because all concepts can be explained within

the situated simulation view. The situated simulation view is

supported by a number of empirical studies. Barsalou and

Wiemer-Hastings (2005) and Wiemer-Hastings and Xu (2005)

found using a property generation task that, when participants

generated properties for abstract concepts, they were likely

to describe social and introspective aspects of the situations,

whereas for concrete concepts they tended to describe properties

of entities in the situations. McRae et al. (2018) demonstrated

that pictures of specific situations facilitated lexical decisions to

abstract words relevant to the picture primes, and conversely

abstract words also facilitated processing of pictures depicting

the relevant situations. These empirical findings may suggest

that the situated simulation view is plausible and at least partially

resolves the problem of how abstract concepts are grounded in

our perceptual or sensorimotor experiences.

The situated simulation view, however, is not essentially

sufficient to explain abstract concepts. Imagine that you have

to explain abstract concepts using only visual images or videos

without language. For example, to explain what is love, people

may show a picture of two people kissing and hugging, a

picture of wedding ceremony, and/or a picture of specific

dating situations. These pictures can convey some conceptual

knowledge about love, and more elaborate visual images such

as films can convey greater knowledge. We feel nevertheless

that only seeing them lacks something to fully understand the

concept of love. This difficulty becomes more serious when

more abstract concepts (e.g., justice and democracy) have to

be explained; they are more difficult to explain using only

visual images. This simple thought experiment suggests that

situated simulation is somewhat limited as a thorough theory

of abstract concepts. Another limitation is that the situated

simulation view seems not to provide a clear explanation of

how abstract concepts are linked to the relevant situations in

acquiring those concepts. It is much less likely that people

think of abstract concepts (e.g., democracy), or see or hear

abstract words that refer to those concepts, at the same

time as experiencing the situations associated with those

concepts (e.g., casting a vote in a polling station), in contrast

to concrete concepts (e.g., dog), which are often mentioned

verbally in the situations including their referents. Bergelson

and Swingley (2013) actually demonstrated through a video-

corpus analysis of mother–infant interaction that mothers used

abstract words less often in the presence of their referent

events than they used concrete words in the presence of their

referent objects.

These limitations of the situated simulation view can be

largely overcome by taking into account language not only

as a source of conceptual knowledge but also as an effective

means of grounding abstract concepts in the real world. It has

been widely accepted that language is much more important

for representing abstract concepts (e.g., Borghi et al., 2017;

Dove, 2018). Neuroimaging studies have demonstrated that

processing of abstract concepts elicits greater activation of the

left-dominant Perisylvian language network (including the left

inferior frontal gyrus and the left superior temporal cortex)

as compared to processing of concrete concepts (e.g., Binder

et al., 2009; Wang et al., 2010). Recent embodied theories of

abstract concepts have therefore emphasized the role of language

in forming and processing abstract concepts or words (Borghi

et al., 2017; Bolognesi and Steen, 2018). One of the important

questions to be addressed by these theories is how language

and embodied experience contribute to shaping our conceptual

knowledge of abstract concepts and meaning representation of

abstract words (e.g., Bolognesi and Steen, 2018). This question is

what we address in this paper.
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1.2. Hybrid theory integrating symbolic
and embodied cognition

The dual coding theory (Paivio, 1971, 1986) is an early

influential theory that integrates symbolic and embodied

cognition. The main claim of this theory is that concepts

are represented in two separate systems, that is, a verbal

system for linguistic information and a visual system for

mentally visual images. Furthermore, the dual coding theory

argues that concrete words activate both the verbal and visual

systems, but abstract words activate only the verbal system. This

argument is consistent with the concreteness effect, whereby

concrete words have processing and mnemonic advantages over

abstract words. By contrast, it implies that abstract words are

represented primarily by linguistic information, and it is not

clear whether and how the visual system contributes to the

representation of abstract words. To explain the concreteness

effect, Schwanenflugel et al. (1988) and Schwanenflugel (1991)

also proposed the context availability theory. According to

this theory, concrete words are strongly associated with a few

contexts, whereas abstract words are weakly associated with

many contexts. Therefore, the context availability theory can

explain the concreteness effect because abstract words require

more effort to activate their contexts. Although contexts in this

theory can be both linguistic or embodied, this theory is not

devoted to the differences and relations between linguistic and

embodied contexts or representations.

Recent hybrid theories, which are collectively referred to

as “multiple representation theories” (Borghi et al., 2017),

are more committed to how language processing interacts

with embodied cognition. The multiple representation theory

proposed first is Language And Situated Simulation (LASS)

theory (Barsalou et al., 2008). The LASS theory focuses on the

temporal interplay between language processing and situated

simulation during conceptual processing. According to the

LASS theory, when a word is perceived, both linguistic and

simulation systems become active initially, but the linguistic

system becomes engaged immediately to categorize the word.

For the tasks requiring only shallow comprehension (e.g.,

lexical decision task), language processing would suffice. When

deeper conceptual processing (e.g., property generation task)

is required, the simulation system is activated later after the

activation of the linguistic system peaks. However, the LASS

theory is not aimed at explaining how abstract concepts are

represented. It claims that both concrete and abstract concepts

activate a mixture of linguistic and embodied information, and

which information is dominant is determined depending on

the task1, not the concept. The situated simulation view still

holds in this framework, and thus the LASS theory also suffers

1 As explained in section 3, the task used in the experiment of this

study is to predict a featural representation of concepts comprising

attributes and their salience. This task can be regarded as a kind of deeper

from the limitations of the situated simulation view described in

section 1.1.

A more influential theory for the multiple representation

views of abstract concepts is the “Words As social Tools” (WAT)

theory (Borghi et al., 2013; Borghi and Binkofski, 2014; Borghi

et al., 2019). The WAT theory claims that abstract concepts

depend more on language than concrete concepts, but the role

of language is not limited to word association. It emphasizes

the importance of language (or words) as tools to perform

social actions, and argues that the situated simulation (i.e., re-

enactment) of social experience through language is necessary

for representing and acquiring abstract concepts. The WAT

theory is supported by a number of empirical findings on

language acquisition and brain organization (see, Borghi et al.,

2017, 2019), but it does not clearly explain the mechanism of

how language shapes the meaning representation of abstract

concepts. Words not only are tools for direct social experiencing

of language-related actions and events, but also function as a

bridge to direct perceptual and sensorimotor experience, which

is the main tenet of the indirect grounding view described in the

next section.

1.3. Indirect grounding view

The hybrid views mentioned above assume that language

provides a separate source of conceptual knowledge independent

of embodied experience or the use of language is itself a

constituent of embodied experience in which abstract concepts

are grounded. Unlike the hybrid views, some recent studies

have been devoted specifically to how language is used to relate

abstract concepts to embodied experience.

The symbol interdependency hypothesis proposed by

Louwerse (2011, 2018) argues for the role of language as a

shortcut to the perceptual or embodied system. According to the

symbol interdependency hypothesis, language comprehension

is symbolic through interdependencies of amodal linguistic

symbols, while it is indirectly embodied through the references

linguistic symbols make to perceptual representations. Hence,

“language has evolved to become a communicative short-cut

for language users and encodes relations in the world, including

embodied relations (Louwerse, 2011, p. 279).” Dove (2014) also

argues that language provides an important means of extending

our cognitive capabilities and encoding abstract concepts by

enabling access to an embodied representational system that

exists independently of language. Thill et al. (2014) suggest a

similar view for robotic models of language grounding. Their

“division of labor” approach assumes two layers of conceptual

processing; a perceptual layer that associates basic, concrete

concepts with perceptual features and a relational (i.e., linguistic)

conceptual processing such as a property generation task that requires

both linguistic and simulation (i.e., embodied) systems.
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layer that grounds more complex and abstract concepts in

relation to basic concepts. The relational layer can be formed

by the interdependency of linguistic symbols obtained through

distributional learning. Lupyan and Lewis’s (2019) “words-as-

cues” view is consistent with these views; they argue that

language provides a cue to meaning that can augment semantic

knowledge derived from perceptual experiences or construct

semantic knowledge.

In fact, the same line of thought has been suggested

earlier in the context of word learning or language acquisition.

Howell et al. (2005) proposed a mechanism of “propagation of

grounding” in which an abstract word inherits some meaning

from the concrete words to which it is related. In their words,

“the grounded meaning propagates up through the syntactic

links of the co-occurrence meaning network, from the simplest

early words to the most abstract (Howell et al., 2005, p.

260).” Gleitman et al. (2005) explained how “hard words” are

acquired along the same line. In the early stage of lexical

acquisition, the meaning of concrete words is acquired directly

from perceptual information via word-to-world pairing. In the

later stage, the meaning of hard words, which is not easily

accessible through perception, is acquired by a structure-to-

world mapping procedure that combines linguistic observations

with co-occurring perceptual experience.

The basic idea underlying all these views is that abstract

concepts or the meaning of abstract words are grounded in

sensorimotor or perceptual experiences, but the grounding is

indirect, rather than direct in the case of concrete concepts.

Language not only provides a means to understand and

represent abstract concepts (and the meaning of abstract words

as well) through statistical regularities in linguistic surface

structure, but also functions as a mediator between abstract

concepts and perceptual experiences for a deeper understanding

of abstract concepts in the absence of direct experiences with the

words referring to the abstract concepts. For example, people

can understand the concept of love by associating the word

“love” with “kiss” (and many other relevant mediator words) via

linguistic interdependency andmentally simulating the situation

of kissing, even though they have never encountered the word

“love” directly in the situation of kissing. In this paper, we

collectively refer to these views as indirect grounding views.

Although the indirect grounding view may be able to

provide a promising solution for the symbol grounding problem

of abstract concepts, it remains largely speculative and has hardly

been supported directly by empirical evidence. To empirically

justify the symbol interdependency hypothesis, Louwerse and

Jeuniaux (2010) demonstrated that the symbolic factor (i.e.,

frequency of word pairs) predicted error rates and response

time in both semantic and iconicity judgments, whereas the

embodied factor (i.e., iconic configuration) predicted error

rates and response time in iconicity judgment. Malhi and

Buchanan (2018) recently extended Louwerse and Jeuniaux’s

(2010) findings by using both concrete and abstract words as

stimuli and found that, for both concrete and abstract words, the

symbolic factor dominated in semantic judgment and embodied

factor dominated in iconicity judgment. Although these findings

support the general claim that language comprehension is both

embodied and symbolic, which can be predicted by the indirect

grounding view and even by some of the hybrid views, they do

not provide direct evidence for indirect grounding of abstract

words.

Recently, Günther et al. (2020) provided more direct

evidence for the indirect grounding view using an experimental

paradigm (e.g., Zwaan and Yaxley, 2003) in which target words

are faster to process when their perceptually embodied meaning

(e.g., spatial location) is congruent with perceptual experiences

that participants have in the experiment. They applied this

paradigm to new concepts for which participants had no direct

perceptual experience, but which they learned from language

alone referring to vertical (i.e., up or down) concepts. The result

was that, after learning new concepts via language, participants

were faster at responding to sentences describing those concepts

when their implied vertical position matched the direction of

their handmovement for responding. This finding indicates that

novel (unknown) concepts, even though not grounded directly,

can be grounded indirectly by establishing a connection with

directly grounded concepts via language network. In this paper,

we test further the validity of the indirect grounding view for

existing abstract concepts, in particular the role of language in

the grounded representation of abstract concepts, using another

methodology, that is, by means of multimodal distributional

semantics described next.

1.4. Multimodal distributional semantics

Distributional semantics is an effective computational

approach to constructing word meaning representations (i.e.,

word vectors) from the distributional statistics of words in

large collections of text (Turney and Pantel, 2010; Lenci,

2018; Pilehvar and Camacho-Collados, 2020). Distributional

semantics has been widely used in natural language processing

(NLP) as meaning representations for neural networks or deep

learning (Goldberg, 2017) and in cognitive science as a cognitive

modeling method (Jones et al., 2015; Kumar, 2021). In cognitive

research on concepts, in particular on embodied vs. symbolic

processing, distributional semantics is regarded as a de facto

standard language model (de Vega et al., 2008; Bolognesi and

Steen, 2018).

Distributional semantics has been criticized as

psychologically implausible because it is based only on

linguistic (i.e., symbolic) information and thus suffers from the

symbol grounding problem (de Vega et al., 2008; Baroni, 2016).

Although it is controversial whether distributional semantics

cannot essentially capture human semantic or conceptual

knowledge, it is undoubtedly unable to represent the meaning
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of some kinds of words, in particular concrete words, just as

they are represented in human semantic memory.

An earlier approach to this problem is to integrate feature-

based information, which is often produced by humans

in property generation tasks, with distributional semantics

(Andrews et al., 2009; Johns and Jones, 2012; Silberer

and Lapata, 2012; Hill and Korhonen, 2014). For example,

Andrews et al. (2009) used perceptual features collected as

featural norm to ground a language-based topic model on

perceptual experience, and demonstrated that the integrated

model outperformed the language-based topic model. However,

the grounding ability of these feature-integrated models is

not sufficient for modeling embodied cognition. Perceptual

features produced by humans are limited to what can be

conveyed verbally, and they are often only salient and distinctive.

Hence, implicit perceptual features characterizing a concept

cannot be taken into account in the models (Bruni et al.,

2014). Additionally, the number of concepts (or words) used

in experiments with human-generated properties is relatively

small.

A more promising and common approach is to

directly integrate non-verbal information with (text-based)

distributional semantics. Multimodal distributional semantics

has been proposed for this purpose (for a review, see Baroni,

2016). In multimodal distributional semantics, linguistic or

textual information is integrated with perceptual information

computed directly from non-linguistic inputs such as visual

(Bruni et al., 2014; Kiela et al., 2014; Silberer et al., 2017),

auditory (Kiela and Clark, 2015), or olfactory (Kiela et al., 2015)

ones. Furthermore, another type of approach has been proposed

which utilizes visual information without directly computing

visual vectors from images. Bolognesi’s (2016, 2017) Flickr R©

Distributional Tagspace uses the co-occurrence statistics

between user-generated tags that appear in the same image

to generate word vectors. In this paper, we use multimodal

distributional semantics to model the hybrid view of conceptual

representation.

Multimodal distributional semantic models generally

compute and utilize perceptual vectors in the same way

for all words; they do not take account of the difference

between concrete and abstract words in terms of how concepts

are grounded in perceptual information, which is claimed

by the indirect grounding view. Furthermore, it has been

empirically demonstrated that a simple addition of perceptual

information is beneficial only for concrete concepts (Bruni

et al., 2014; Kiela et al., 2014). Therefore, in section 2, we devise

a new multimodal distributional semantic model for indirect

grounding by incorporating the indirect grounding view into

an algorithm for constructing multimodal word vectors. In

the devised model, the perceptual vector of an abstract word

is computed from the perceptual representations of concrete

words that are semantically related to (or associated with) that

abstract word.

It must be noted that technically word vectors in

(both unimodal and multimodal) distributional semantics are

regarded as representing the meaning (or semantics) of words.

In this paper, however, we consider the meaning of words

and concepts (or the conceptual knowledge) as interchangeable,

as is usually assumed in the cognitive science literature (e.g.,

Vigliocco and Vinson, 2007; Jackendoff, 2019). Although we do

not intend to argue that concepts and word meanings are the

same, it is much difficult or impossible to distinguish between

concepts and word meanings in most of the cases; empirical

studies on embodied cognition have used words for the tasks on

conceptual representation in human adults (Borghi et al., 2017).

In what follows, therefore, we assume that distributional word

vectors also represent the concept referred to by a word, and that

multimodal distributional semantics can be applied to modeling

embodied conceptual processing.

1.5. Aim of this study

The aim of the present study is to test the indirect

grounding view of abstract concepts by using computational

modeling based on multimodal distributional semantics. For

this purpose, we compare the indirect grounding view and other

competing views mentioned above, the basic tenets of which

are summarized in Table 1. By examining which of these views

can predict the performance difference among distributional

semantic models that mimic these views (and other baseline

models), we attempt to test the validity of the indirect grounding

view. The performance of distributional semantic models is

evaluated in terms of the degree to which human conceptual

representation can be predicted by the models, using Utsumi’s

(2020) experimental framework for analyzing and evaluating

distributional semantic vectors. In the evaluation experiment,

we focus on visual images as a source of perceptual (i.e.,

non-verbal) information, as used in many other studies on

multimodal distributional semantics.

In the rest of this paper, after describing in detail a new

multimodal semantic model for simulating indirect grounding

in section 2, we explain themethod of our evaluation experiment

in section 3. We then report the results of the evaluation

experiment in section 4 and discuss the implications and

limitations of the findings in section 5.

2. Distributional semantic model for
indirect grounding

We devise a new model to incorporate the indirect

grounding view into multimodal distributional semantics.

According to the indirect grounding view arguing that

grounding of abstract concepts is mediated by language,

different methods are used for computing visually grounded
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TABLE 1 Summary of conceptual representation theories.

Theory Basic tenets Processing

difference

between

abstract and

concrete

concepts

Situated simulation view

(e.g., Barsalou, 1999;

Barsalou et al., 2018)

• Concepts are grounded in

perceptual experiences via

mental simulation.

• Language information is not

necessary for understanding

concepts.

No

Dual coding theory

(Paivio, 1971, 1986)

• Concrete concepts are both

linguistic and grounded in

perceptual experiences.

• Abstract concepts are only

linguistic.

Yes

Hybrid view (e.g.,

Barsalou et al., 2008;

Borghi et al., 2019)

• Concepts are both linguistic and

grounded in perceptual

experiences.

• The mechanism of grounding

does not differ between concrete

and abstract concepts; both

concepts are grounded directly.

No

Indirect grounding view

(e.g., Howell et al., 2005;

Louwerse, 2011)

• Concepts are both linguistic and

grounded in perceptual

experiences.

• Abstract concepts are grounded

indirectly via language, whereas

concrete concepts are grounded

directly.

Yes

vectors depending on whether words are concrete or abstract.

For a concrete word, its visually grounded vector is computed

directly from the visual images tagged with that word, as shown

in Figure 1A. For example, starting from the blind and not

knowledgeable assumption that “love” is a concrete word, the

visually grounded vector of “love” is computed directly from

the images tagged with “love” using deep neural networks

(DNNs). In this case, the visually grounded vector Eg(love)

is identical to the directly computed visual vector Ev(love),

as generally assumed by multimodal distributional semantic

models that take no account of the difference between concrete

and abstract concepts. By contrast, the visually grounded vector

of an abstract word is computed from the visual images of

concrete words semantically associated with the abstract word,

that is, semantic neighbors of the abstract word, assuming that

semantic neighbors are good mediator words. As shown in

Figure 1B where the word “love” is supposed to be abstract,

its visually grounded vector Eg(love) is not computed directly

from the images of “love,” but computed indirectly using the

direct visual vectors, e.g., Ev(kiss), Ev(mother), Ev(wedding), derived

from the images tagged with semantic neighbors (e.g., “kiss,”

“mother,” and “wedding”). This computation is regarded as an

implementation of indirect grounding for abstract concepts.

Formally, we define a multimodal distributional semantic

model for indirect grounding as follows. We assume that the

vocabulary V is divided into a set of concrete words VC and a

set of abstract words VA. Each word wi ∈ V has a textual vector

Et(wi) ∈ DSMT trained from a text corpus and a direct visual

vector Ev(wi) ∈ DSMV computed directly from images for the

word wi. We build an indirect grounding model DSMI in which

a word is represented by a pair [Et(wi), Eg(wi)] of a textual vector

Et(wi) ∈ DSMT and visually grounded vector Eg(wi) ∈ DSMG.

The visually grounded vector Eg(wi) is defined as follows:

Eg(wi) =





Ev(wi) (for a concrete word wi ∈ VC)∑
wj∈SNk(wi)

Ev(wj)

k
(for an abstract word wi ∈ VA)

(1)

where SNk(wi) ⊂ VC is a set of k semantic neighbors of wi,

that is, k concrete words most semantically related to wi. The

visually grounded vector for an abstract word is thus obtained

by averaging k direct visual vectors of semantic neighbors.

Semantic neighbors of abstract words are determined using

word similarity in the text-based distributional semantic model

DSMT . This implies that linguistic interdependency for indirect

grounding is modeled by (text-based) distributional semantics.

In the devised model, semantic neighbors SNk(wi) ⊂ VC of

an abstract word wi are determined by first selecting N(> k)

nearest neighbors of wi from the whole vocabulary V and then

selecting k nearest concrete words from the set of N neighbors.

Nearest neighbors are computed using cosine similarity in the

textualmodelDSMT . The reason for limitingN neighbors before

selecting k concrete words is that some highly abstract words

(e.g., “truth,” “wisdom”) may not have semantically related

concrete words, and in this case it is more appropriate not

to consider a visual representation. Hence, when no semantic

neighbors are selected [i.e., SNk(wi) = ∅], no visual vector is

considered and only the textual vector is used for representing

the abstract word wi in DSMI .

3. Materials and methods

3.1. Experimental design and predictions

To evaluate the representational ability of a given

distributional semantic model, we examined how accurately

the model can predict human conceptual representation

using Utsumi’s (2020) experimental framework for analyzing

and evaluating distributional semantic models. As human

conceptual representation, we used a brain-based semantic
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FIGURE 1

Two methods to compute the visual vector in the multimodal distributional semantic model for indirect grounding. (A) Direct grounding. (B)

Indirect grounding.

representation provided by Binder et al. (2016), which is

described in detail in section 3.2. In the evaluation experiment,

a function from the bimodal (or unimodal) vector of a

given word wi (section 3.3) to the target human conceptual

representation Ey(wi) (section 3.2) was trained using the feed-

forward neural network shown in Figure 2. The conceptual

representation of untrained words was predicted by the trained

neural network. Prediction performance was evaluated by

comparing the estimated conceptual representation with the

target representation. The details of training and test procedure

is described in section 3.4.

To test whether the indirect grounding view is more

plausible than other views on abstract concepts listed in Table 1,

we conducted the evaluation experiment described above using

the following distributional semantic models, that is, four

models that correspond to each of the four views in Table 1 and

two additional baselines.

• Indirect grounding model DSMI = {[Et(wi), Eg(wi)] | Et(wi) ∈

DSMT , Eg(wi) ∈ DSMG,wi ∈ V}: A bimodal model for the

indirect grounding view described in section 2.

• Hybrid model DSMH = {[Et(wi), Ev(wi)] | Et(wi) ∈

DSMT , Ev(wi) ∈ DSMV ,wi ∈ V}: A standard bimodal

model in which all visual vectors are computed directly

from images for a word wi. This model is assumed to

simulate the hybrid view.

• Dual coding model DSMD = {[Et(wi), Ev(wi)] | Et(wi) ∈

DSMT , Ev(wi) ∈ DSMV ,wi ∈ VC} ∪ {Et(wi) | Et(wi) ∈

DSMT ,wi ∈ VA}: A partially bimodal model in which

a pair of textual and direct visual vectors is used for

representing a concrete word, whereas only a textual vector

FIGURE 2

The neural network used for predicting Binder et al.’s (2016)

conceptual representation Ey(wi) of a word wi from textual

and/or visual vectors in the evaluation experiment. The visual

vector used as input is either Eg(wi) (for the indirect grounding

and indirect visual models) or Ev(wi) (for the hybrid, dual-coding,

and visual models).

is used for an abstract word. When abstract words are

given in the training and test procedure, the visual layers

in Figure 2 are not either trained or used. This model

corresponds to the dual coding theory.

• Visual model DSMV = {Ev(wi) |wi ∈ V}: A unimodal

model in which only direct visual vectors are used for
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TABLE 2 Predictions of evaluation performance by conceptual

representation theories.

Best (highest performance)

model predicted by each theory

Theory Abstract

concepts

Concrete concepts

Situated simulation view

(e.g., Barsalou, 1999;

Barsalou et al., 2018)

Visual Visual

Dual coding theory

(Paivio, 1971, 1986)

Dual coding, textual Dual coding, hybrid,

indirect grounding

Hybrid view (e.g.,

Barsalou et al., 2008;

Borghi et al., 2019)

Hybrid Dual coding, hybrid,

indirect grounding

Indirect grounding view

(e.g., Howell et al., 2005;

Louwerse, 2011)

Indirect grounding Dual coding, hybrid,

indirect grounding

representing words. Hence the textual layers in Figure 2 are

not used in the training and test procedure. This model

corresponds to the situated simulation view.

• Textual model DSMT = {Et(wi) |wi ∈ V}: A

unimodal baseline model in which only textual vectors

are used for representing words. Hence the visual

layers in Figure 2 are not used in the training and

test procedure.

• Indirect visual model DSMG = {Eg(wi) |wi ∈ V}: A

unimodal baseline model in which only indirect visual

vectors (defined in Equation 1) are used for representing

words. The textual layers in Figure 2 are ignored in the

training and test procedure.

By comparing the prediction performance of the indirect

grounding model with those of other models, we test the validity

of indirect grounding as a plausible mechanism for embodied

representation of abstract concepts. Different views of abstract

concepts summarized in Table 1 make different predictions

about the performance of the six models, as shown in Table 2.

Basically, each of the four views predicts that its corresponding

model would outperform other models. For abstract concepts,

the dual coding theory predicts that the textual model also

achieves the best performance because it argues that abstract

concepts are represented only by linguistic information. For

concrete concepts, the indirect grounding, hybrid, and dual

coding views do not differ and thus make the same prediction

that the indirect grounding, hybrid, and dual coding models

do not significantly differ in performance and outperform the

remaining models.

TABLE 3 Example of words included in Binder et al.’s (2016) dataset,

which are selected mainly from abstract words.

POS Category Word examples

Noun Abstract construct analogy, irony, truth, verb, worth

Cognitive entity belief, hope, knowledge, sympathy, wit

Emotion gratitude, joy, love, shame, woe

Social event advice, deceit, matinee, snub, tribute

Time period day, era, evening, semester, summer

Verb Locative action approach, deliver, go, leave, walk

Social action arrest, celebrate, help, play, write

Adjective Visual property black, dark, new, red, shiny

Emotional property angry, dangerous, happy, lonely,

peaceful

3.2. Human conceptual representation

As a target human conceptual representation Ey(wi), we used

Binder et al.’s (2016) brain-inspired featural representation2.

They provided 65-dimensional real-valued vectors of 535

words, some of which are listed in Table 3. These words

comprise 434 nouns, 62 verbs, and 39 adjectives and are

classified into 47 categories that reflect grammatical classes and

semantic classes. Note that, for the reason explained later in

section 3.3.3. two nouns were excluded from the experimental

materials and thus the remaining 533 words were used in the

evaluation experiment.

The dimensions of the vectors correspond to

neurobiologically plausible attributes whose neural correlates

have been well described. Table 4 lists all 65 attributes in 14

domains used in Binder et al.’s (2016) vectors. Binder et al.

(2016) selected these attributes according to two fundamental

principles; they correspond to distinguishable neural processors

that can be identified by an extensive body of evidence from

brain imaging and neurological studies, and they can contribute

to concept acquisition and composition. Each value of the

conceptual vectors represents the degree of salience of the

corresponding attribute for the target word. Binder et al. (2016)

collected these values using Amazon Mechanical Turk. The

participants of the experiment were given a single word and

questions such as “To what degree do you think of this thing as

a characteristic or defining color (for the attribute Color)” with

some examples, and asked to rate the degree on a 7-point scale

ranging from 0 to 6. Collected ratings were averaged for each

word and attribute after data screening, and these mean ratings

were used in conceptual vectors.

2 Binder et al.’s (2016) data is available at http://www.neuro.mcw.edu/

semanticrepresentations.html.
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TABLE 4 Sixty-five attributes used in Binder et al.’s (2016) conceptual

representation.

Domain Attribute

Vision Vision, bright, dark, color, pattern, large, small, motion,

biomotion, fast, slow, shape, complexity, face, body

Somatic Touch, temperature, texture, weight, pain

Audition Audition, loud, low, high, sound, music, speech

Gustation Taste

Olfaction Smell

Motor Head, upper-limb, lower-limb, practice

Spatial Landmark, path, scene, near, toward, away, number

Temporal Time, duration, long, short

Causal Caused, consequential

Social Social, human, communication, self

cognition Cognition

Emotion Benefit, harm, pleasant, unpleasant, happy, sad, angry,

disgusted, fearful, surprised

Drive Drive, needs

Attention Attention, arousal

3.3. Distributional semantic model

3.3.1. Textual vector

Textual vectors Et(wi) ∈ DSMT were trained on the Corpus

of Contemporary American English (COCA), which included

0.56G word tokens. Words that occurred less than 30 times in

the corpus were ignored, resulting in the training vocabulary of

108,230 words. As a distributional semantic model for training

textual vectors, we used skip-gram with negative sampling

(SGNS), which is one of two algorithms in word2vec model

(Mikolov et al., 2013). In SGNS, a feed-forward neural network

with one hidden layer of d units is trained to predict co-

occurring words of an input word (i.e., w words appeared on

either side of the input word in the corpus), and d-dimensional

activation vectors in the hidden layer of the trained network

are used as textual vectors. We set the vector dimension

d = 300 and the window size w = 10. The choice of

corpus, distributional semantic model, and parameter values

was determined considering the result of the similar experiment

(Utsumi, 2020).

3.3.2. Visual vector

To compute direct visual vectors Ev(wi) ∈ DSMV , we

collected 20 images using Flickr image retrieval for each of the

words in the vocabulary. The image retrieval was performed

using the API flickr.photos.search with the argument

sort=relevance and the top 20 most relevant images were

downloaded for each word. Note that these relevant images

are often tagged with other words, but we did not use the

information of these tags.

To compute the feature vector of each downloaded image,

we utilized the ResNet152-hybrid1365 model (Zhou et al.,

2018)3. This model is the Residual Network (ResNet), which is

a recent high-performance version of the deep convolutional

neural networks, trained on both ImageNet1000 dataset for

object recognition and Places365-standard dataset for scene

recognition. Each image was entered into thismodel and a 2,048-

dimensional activation vector was extracted from the last hidden

layer. The activations in the last hidden layer are deemed to

be appropriate for a visual vector in distributional semantics,

because they are generally assumed to represent visually intrinsic

features of a concept. Finally, the visual vector Ev(wi) was

computed as the centroid (i.e., average) of the activation vectors

of 20 images.

3.3.3. Indirect visual vector

To compute indirect visual vectors Eg(wi) ∈ DSMG, we

must determine how to split the whole vocabulary V into

concrete words VC and abstract words VA. For this purpose,

we used Brysbaert et al.’s (2014) concreteness ratings for 39,354

English words including 37,058 single words and 2,896 two-

word expressions. These words were rated on a 5-point scale

ranging from 1 (abstract) to 5 (concrete) and the collected

ratings were averaged per each word. In the instructions given

to raters, Brysbaert et al. (2014) stressed that the assessment of

word concreteness would be based on perceptual experiences

involving all senses and motor responses. Specifically, the

following instruction was used:

Some words refer to things or actions in reality, which

you can experience directly through one of the five senses.

We call these words concrete words. Other words refer to

meanings that cannot be experienced directly but which we

know because the meanings can be defined by other words.

These are abstract words. (Brysbaert et al., 2014, p. 906)

This definition of concrete words as experience-based and

abstract words as language-based is consistent with our view of

abstract concepts, and thus the use of their concreteness ratings

is appropriate for the indirect grounding model4.

3 The ResNet152-hybrid1365 model is publicly available at https://

github.com/CSAILVision/places365.

4 Furthermore, although Brysbaert et al. (2014) instructed that word

concreteness would be judged according to experiences involving all five

senses, the analysis on the obtained concreteness ratings revealed that

participants largely focused on visual and haptic experiences. This result

further justifies the appropriateness of their data for using to determine

abstract words for our model focusing only on visual experience.
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For the vocabulary V in the indirect grounding model,

we chose 28,437 words from Brysbaert et al.’s (2014) word

concreteness dataset that were also included in the training

vocabulary of COCA corpus and associated with at least 20

images. As a result, two words “ire” and “oration” in Binder

et al.’s (2016) dataset were not included in the chosen vocabulary

because they are not contained in Brysbaert et al.’s (2014)

dataset. Hence, these two words were not used in the entire

experiment.

Each word in the vocabulary V was judged as abstract if

its concreteness rating was less than a given threshold θc, and

otherwise as concrete. We performed the same experiment with

different thresholds ranging from 1.25 to 5.0 with a step size of

0.1. In section 4, we report the overall result with a representative

threshold θc = 3.0 at which any words whose concreteness

rating is toward the language-based side of the continuum are

classified as abstract. Additionally, we use the threshold θc = 4.0,

at which words are treated as abstract unless they are rated as

highly experience-based. Note that 116 and 214 out of 533 words

in Binder et al.’s (2016) dataset (14,305 and 21,471 out of 28,437

words in the whole vocabulary V), respectively, were judged as

abstract when θc = 3.0 and θc = 4.0.

After concrete words VC and abstract words VA are

determined, indirect visual vectors Eg(wi) are computed

according to Equation (1). When a word wi is concrete (i.e.,

wi ∈ VC), its direct visual vector Ev(wi) defined in section 3.3.2 is

used as a visual vector Eg(wi). When a word wi is abstract (i.e.,

wi ∈ VA), its semantic neighbors are determined using the

textual vectors in section 3.3.1 as follows. First, N(> k) nearest

neighbors of wi are selected from the whole vocabulary V by

computing cosine similarity between t(wi) and t(wj) for all

words wj ∈ V(j 6= i) and selecting words with top N highest

cosine. Then, k nearest (i.e., highest cosine) concrete words

are selected from the set of N neighbors. Finally, the direct

visual vectors Ev(wj) of k nearest neighbors are averaged and the

resulting vector is used as Eg(wi) for the abstract word wi.

3.4. Training and prediction

To train the mapping (i.e., prediction function) from

bimodal (or unimodal) word vectors to Binder et al.’s (2016)

conceptual representation, we used a feed-forward neural

network shown in Figure 2. The activation function and the

number of units are shown in each of the layers denoted by

solid rectangles. The training was performed by minimizing the

mean squared error (MSE), and gradient descent with Adamwas

used as an optimizationmethod. The learning rate for Adamwas

5 We did not use θc = 1.1 because the minimum concreteness rating in

Binder et al.’s (2016) dataset was 1.19 (for the word “belief”) and no words

were judged as abstract when θc = 1.1.

fixed at 0.001. The weights (and biases) were initialized by the

normalized initialization heuristic (Glorot and Bengio, 2010).

As an overall framework for evaluation (i.e., the procedure

for training and prediction), we used a “leave-one-cluster-out”

cross-validation procedure (Utsumi, 2020). This procedure is

a variant of n-fold cross-validation in which semantic clusters

for all words are used instead of randomly and equally

partitioned groups. The reason for using leave-one-cluster-out

cross-validation instead of n-fold cross-validation (and other

methods with random sampling) is that words in Binder et al.’s

(2016) dataset are not equally distributed in the semantic

space. Some groups of words are semantically rich and they

are very close to one another, whereas some other groups of

words have only a small number of semantically less similar

words. If we apply n-fold cross-validation to this dataset,

semantically rich words with many close neighbors are likely

to be better predicted independent of the representation ability

of distributional semantic models, because their neighbors have

more chance of being included in the training set.

To obtain word clusters for this procedure, we used Utsumi’s

(2020) method in which all 533 words were classified into 20

clusters using the k-means algorithm. Given textual vectors, we

repeated k-means clustering 100 times and selected the best

clustering result according to the Dunn index, which is a metric

for evaluating clustering quality. Furthermore, to ensure the

generality of the experimental results, we repeated this clustering

procedure 10 times, and as a result, 10 different sets of 20 clusters

were generated.

In the leave-one-cluster-out cross-validation procedure, for

each cluster, the neural network in Figure 2 (i.e., prediction

function) is trained using all words in the other clusters, and

the conceptual vectors of words in the target cluster were

predicted using the trained neural network. By repeating this

procedure using each word cluster as a target, we obtained

estimated conceptual vectors Êy(wi) for all 533 words. Prediction

performance was measured by Pearson’s correlation between the

estimated vector Êy(wi) and the original vector Ey(wi). Spearman’s

rank correlation ρ and MSE were also used as secondary

measures. For each set of 20 clusters, this experimental run

was carried out three times under the same condition (i.e.,

hyperparameters), and the result of the run with the highest

mean correlation across all words was retained. Finally, the

results obtained using 10 sets of clusters were averaged and used

for the analysis reported in section 4.

Hyperparameters other than the concreteness threshold

were determined using a grid search. First, we determined the

number of epochs for training from hybrid, dual coding, visual,

and textual models. Using the leave-one-cluster-out cross-

validation, we computed MSE across all words with the number

of epochs ranging from 1 to 50. The lowest MSE was obtained at

19 epochs for the hybrid model, 17 epochs for the dual coding

and textual models, and 10 epochs for the visual model. For

the indirect grounding model, two parameters N and k for
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computing semantic neighbors were optimized together with the

number of epochs using grid search of N = 100, 200, 300 and

k = 1, · · · , 10. In this grid search, we used the concreteness

threshold θc = 4.0. Mean squared error was computed over all

words and the lowest MSE was obtained at N = 300, k = 10,

and 20 epochs. For the indirect visual model, we determined the

number of epochs using indirect visual vectors at N = 300 and

k = 10, and as a result, 16 epochs achieved the lowest MSE.

These hyperparameters were used in all experimental runs for

evaluation.

4. Results

4.1. Performance di�erence among
models

Table 5 lists mean correlations between the original

conceptual vector and the vectors estimated by the indirect

groundingmodel and othermodels. Figure 3 shows the variation

in correlation coefficients over abstract, concrete, and all words.

Note that in this section we report the results of Pearson’s

correlation when used as performance measure, but we also

analyzed the performance with two additional measures (i.e.,

Spearman’s rank correlation and MSE). Because these results

do not significantly differ from those of Pearson’s correlation,

the detailed results of the additional analysis are provided in

Appendix S1 of the Supplementary material.

For abstract words, the indirect grounding model DSMI

achieved the highest mean correlation in both concreteness

thresholds. The Friedman test conducted on abstract words

revealed a significant difference between word correlations of

six models, χ2(5,N = 116) = 280.20, p < 0.001 for θc =

3.0 and χ2(5,N = 214) = 583.23, p < 0.001 for θc =

4.0. Multiple pairwise comparisons using the Wilcoxon signed-

rank test with Ryan’s procedure (p < 0.05) showed that the

correlation of the indirect grounding model was significantly

higher than those of all other models at θc = 3.0 and than

those of other four models except the dual coding model at

θc = 4.0. For other pairwise differences, only the difference

between the dual coding and hybrid models was not significant

for either thresholds. This result is consistent with the prediction

of the indirect grounding view in Table 2. Additionally, the result

that the indirect visual model DSMG predicted the conceptual

representation better than the simple visual model DSMV also

indicates the effectiveness of computing visual vectors using

semantic neighbors. These results clearly support the indirect

grounding view of abstract concepts.

Although it is not the main concern of this paper whose

focus lies in abstract concepts, the Friedman test conducted

on correlations of concrete words also indicated a significant

difference among six models, χ2(5,N = 417) = 1181.66,

p< 0.001 for θc = 3.0 and χ2(5,N = 319) = 895.97, p< 0.001

for θc = 4.0. The highest mean correlation was achieved by

the hybrid model for both concreteness thresholds, but multiple

pairwise comparison revealed that pairwise differences among

the hybrid, indirect grounding, and textual models were not

significant. For θc = 4.0, the difference between the dual coding

and textual models and between the dual coding and indirect

grounding models also did not reach the significance level. All

the other pairwise differences were significant. The absence of

significant difference among the indirect grounding, hybrid, and

dual coding models is a predictable result, as shown in Table 2.

What is somewhat surprising is that bimodal models for abstract

concepts (i.e., the indirect grounding and hybrid models) did

not achieve significantly higher performance than the textual

(i.e., unimodal) model, given that a number of studies on

multimodal distributional semantics have shown the superiority

over text-based unimodal models for concrete words (e.g., Bruni

et al., 2014; Baroni, 2016). This result is not consistent with the

prediction of Table 2 made by the indirect grounding, hybrid,

and dual coding views.

One possible reason would be that the textual layer may

cover most of the information needed to predict the target

conceptual representation of concrete words; the textual layer

compresses 300-dimensional input textual vectors to 50% (=

150/300) of their original dimension, but the visual layer

compresses 2,048-dimensional input visual vectors to a much

lower percent, 7.3% (= 150/2, 048). To test this possibility, we

conducted an additional experiment with the same experimental

procedure by decreasing the dimension dT of the textual

(hidden) layer. The detailed result of this additional experiment

is provided in Appendix S2 of the Supplementary material. The

result is supportive of this possibility; when the dimension dT
was 30 (whose compression rate 10.0% is nearly equal to that

of the visual layer) or lower, the bimodal models (i.e., indirect

grounding and hybrid models) achieved significantly higher

correlations than the unimodal textual model. Note also that

decreasing the dimension dT of the textual layer did not affect

the result of abstract words; the same result of performance

differences were obtained regardless of dT . From these results,

it follows that the visual layer actually contributes to model

performance in an expected way and our bimodal distributional

semantic model achieves a result fully consistent with the

prediction of the indirect grounding view when the impact of

the textual and visual layers is equalized.

In addition, the difference among six models was also

significant for all words, χ2(5,N = 533) = 1438.50, p < 0.001

for θc = 3.0 and χ2(5,N = 533) = 1444.01, p < 0.001

for θc = 4.0. The difference between the indirect grounding

and hybrid models at θc = 3.0 and the differences among the

indirect grounding, hybrid, and dual coding models at θc = 4.0

were not significant, but all the other pairwise comparisons were

significant.

Summarizing, the obtained results are most consistent

with the predictions of the indirect grounding view shown in
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TABLE 5 Mean correlations for the indirect grounding model and other models.

θc = 3.0 θc = 4.0

Model Abstract Concrete All Abstract Concrete All

Bimodal

Indirect grounding (DSMI) 0.772 0.742 0.749 0.731 0.761 0.749

Hybrid (DSMH) 0.764 0.744 0.748 0.724 0.764 0.748

Dual coding (DSMD) 0.762 0.734 0.740 0.729 0.756 0.745

Unimodal

Visual (DSMV ) 0.536 0.475 0.488 0.480 0.494 0.488

Textual (DSMT ) 0.755 0.740 0.744 0.716 0.762 0.744

Indirect visual (DSMG) 0.626 0.490 0.520 0.529 0.513 0.519

Boldfaced numbers indicate the highest correlations (i.e., the best performance) among the models.

FIGURE 3

Boxplots of word correlations for the indirect grounding model and other models.

Table 2. It is therefore concluded that the indirect grounding

view is plausible as a conceptual representation theory of

abstract concepts.

4.2. E�ect of the concreteness threshold

To test whether the superiority of the indirect grounding

model for abstract concepts reported in the last section holds

for other concreteness thresholds, we conducted the same

experiment at different thresholds θc ranging from 1.5 to 5.0 with

a step size of 0.1. Figure 4 shows mean correlations over abstract

words for the indirect grounding, hybrid, and dual coding

models. Color bars shown below the graph denote whether

pairwise differences were statistically significant by multiple

pairwise comparison (p<0.05).

The indirect grounding model yielded a higher correlation

than other two models when the concreteness threshold was
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FIGURE 4

Mean correlations over abstract words for the indirect

grounding, hybrid, and dual coding models as a function of the

concreteness threshold θc. Pairwise di�erences significant at

p<0.05 are indicated by color bars below the graph.

between 1.5 and 4.5, although at some lower threshold the

correlation of the indirect grounding model was slightly lower

than that of the dual coding model. Specifically, the correlation

of the indirect grounding model was significantly higher than

that of the hybrid model between θc = 2.3 and 4.4, and than

that of the dual coding model between θc = 2.8 and 3.9.

This confirms the finding reported in section 4.1 and indicates

that the superiority of the indirect grounding model was not

accidentally observed in some concreteness thresholds. At θc =

4.6 or higher, the mean correlation of the indirect grounding

model was lower than the hybrid model. In these cases, highly

concrete words were selected as abstract and their visual vectors

were computed via semantic neighbors, even though it is

appropriate that they are grounded directly through their own

visual images. This “less plausible” grounding may generate a

harmful effect on the prediction performance of the indirect

grounding model. This behavior of the model is also consistent

with the indirect grounding view.

4.3. Relation between word concreteness
and improvement by indirect grounding

In this section, we examine whether the performance

improvement of the indirect grounding model compared to the

hybrid and dual coding models depends on word concreteness.

To quantify the degree of improvement, we considered

the difference of correlation computed by subtracting the

correlation coefficient of a baseline model from the correlation

coefficient of the indirect grounding model.

We computed a correlation between the difference of

correlation and word concreteness. The difference of correlation

was not correlated with word concreteness when the hybrid

model is a baseline, r = −0.104 (θc = 3.0) and r = 0.075

(θc = 4.0). In the case of the dual coding model used as a

baseline, the difference of correlation was not correlated with

word concreteness for θc = 4.0, r = 0.071, but they were

weakly correlated for the threshold θc = 3.0, r = 0.222

(p < 0.05). These results indicate that there was generally no

monotonic relationship between the degree of improvement

and word concreteness, but appending indirect visual vectors to

textual vectors may be somewhat more effective for less abstract

concepts.

To examine more closely the relation between performance

improvement and word concreteness, we also computed the

mean difference of correlation per each of the intervals into

which the entire range of concreteness values was equally

divided, whose results are shown in Figure 5. Overall, the

indirect grounding model improved the prediction performance

regardless of word concreteness, but two concreteness

thresholds showed different patterns of improvement. For

θc = 3.0, the indirect grounding model improved the

performance for highly abstract words (i.e., words with

concreteness rating is less than 1.75) against both competing

models. This result suggests that the indirect grounding model

is effective in representing purely abstract words. Furthermore,

only when comparing with the dual coding model, the degree of

improvement was higher for less abstract words (i.e., the ones

within the range of 2.50 ≤ concreteness rating < 3.00) than for

more abstract words. This may suggest that these words, which

may be difficult to judge concreteness or have both concrete and

abstract senses, benefit from adding visual information whether

directly or indirectly.

For θc = 4.0, however, the performance of highly abstract

words (whose concreteness rating was less than 2.0) were not

improved and the difference of correlation peaked at higher

concreteness range [3.50, 3.75]. These different results for highly

abstract words between both concreteness thresholds can be

attributed primarily to the difference of semantic neighbors,

because θc determines a word pool (i.e., a set of concrete

words) from which semantic neighbors are chosen. Hence the

effectiveness of indirect grounding depends on not only the

concreteness of a word to be grounded, but also the choice of

semantic neighbors for that word.

4.4. Word-level analysis on the impact of
indirect grounding

Abstract (and concrete) concepts have been considered

as a unitary whole, but recent research has argued that

abstract concepts should be treated as a heterogeneous category

including various different types of abstract concepts (Ghio et al.,

2016; Troche et al., 2017; Borghi et al., 2018; Villani et al., 2019).

Therefore, to examine the types of abstract concepts for which

indirect grounding, in particular, visually indirect grounding, is

effective, we analyzed the degree of improvement in terms of

semantic categories of abstract words.

Frontiers in Psychology 13 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.906181
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Utsumi 10.3389/fpsyg.2022.906181

FIGURE 5

Mean di�erence of correlation diff (r) between the indirect grounding model and two competing models per each of the equally divided intervals

of concreteness. The heatmap depicts the mean correlation of hybrid, dual coding, and indirect grounding models. Numbers in parentheses

denote the number of words n within an interval. Red and blue graphs, respectively, denote the degree of improvement against the hybrid

model and the dual coding model. (A) θc = 3.0. (B) θc = 4.0.

Figure 6 shows how the degree of improvement is related

to semantic categories for abstract words with concreteness

rating less than 4.0 (i.e., θc = 4.0). We used semantic

categories provided by Binder et al. (2016) to classify abstract

words. They classified all 535 words into 47 categories that

reflect semantic and grammatical classes. Among them, we

selected 17 categories for analysis that included four or more

abstract words. In addition, these 17 categories were grouped

according to the following four clusters revealed by Villani et al.

(2019): physical, spatio-temporal, and quantitative (Physical and

Spatio-temporal) concepts, self and sociality (Social) concepts,

philosophical/spiritual (Philosophical andMental) concepts, and

emotional/inner states (Emotional) concepts.

As shown in Figure 6, Social and Physical and Spatio-

temporal clusters are likely to show higher improvement than

Philosophical and Mental and Emotional clusters. In particular,

body action, locative action, sound, and time period categories

in Physical and Spatio-temporal cluster achieved relatively

higher improvement by the indirect grounding model. The

high improvement of physical and spatio-temporal concepts

is consistent with the indirect grounding view, because these

abstract concepts are likely to be associated (via language) with

specific visual images. For example, the concept evening easily

evokes visual experiences associated with the concepts of dinner

and sunset. In the experiment of this paper, “night,” “dinner,”

“supper,” “dusk,” “dawn,” “sundown,” “twilight,” “candlelight,”

“sunset,” and “sunrise” were selected as semantic neighbors of

the word “evening,” and the indirect visual vectors computed

from these images improved the baselines as shown in Figure 7.

The relatively high improvement of social categories can be

explained along the same line. A number of social concepts are

associated with perceptually grounded concepts. For example,

the verb play can be captured by relevant concepts such as

game, soccer and football (objects to be played) and sandlot

(place to play), which were selected as semantic neighbors.

Meanwhile, some other social concepts (e.g., business and

joke) are more complex and difficult to capture by grounded

concrete concepts.

By contrast, emotional categories were not improved by

the indirect grounding model. Emotional information is highly

likely to be encoded in textual vectors (e.g., Recchia and

Louwerse, 2015; Utsumi, 2020), and thus indirect grounding

may not be necessary for emotional concepts. A more plausible

explanation would be that emotional concepts are directly

grounded in emotional experiences, and thus relatively less

dependent on indirect grounding in perceptual (i.e., visual)

experiences. The lesser degree of improvement for the cluster

of Philosophical and Mental is not surprising. These abstract

concepts are generally thought of as “highly disembodied”

concepts (Dove, 2016), which are divorced from experiential (at
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FIGURE 6

Mean di�erence of correlation diff (r) between the indirect grounding model and two baseline models averaged per semantic category for

abstract words (θc = 4.0). The heatmap depicts the mean correlation of hybrid, textual, and indirect grounding models. Numbers in parentheses

denote the number of abstract words contained in semantic categories. Red and blue graphs, respectively, denote the degree of improvement

against the hybrid model and the textual model.

least visual) grounding regardless of whether the grounding is

direct or indirect.

Figure 7 shows the change of correlation coefficient in terms

of concreteness threshold for some abstract words. The result

of all abstract words with concreteness rating less than 4.0 is

provided in Appendix S3 of the Supplementary material. The

important point to note is the difference of correlation between

non-shaded and shaded areas. Correlation plotted in the red

shaded area (i.e., the region right of the dashed vertical line)

shows the prediction performance of the indirect grounding

model when a word is regarded as abstract and thus indirect

visual vectors are used, whereas correlation in the non-shaded

area shows the performance when that word is regarded as

concrete and direct visual vectors are used. Hence, the indirect

grounding model is found to be effective for words whose

correlations in the shaded area are higher than those in the

non-shaded area. A typical pattern in this effective case is that

correlations in the shaded area are higher than those in the

non-shaded area as well as higher than those of textual and

hybrid models (e.g., “evening,” “leave,” “play”). This pattern is

also marked by the decrease of correlation at higher thresholds

(i.e., θc ≥ 4.5), because good mediator words for an abstract

word are erroneously judged as abstract and thus no longer

selected as semantic neighbors at higher thresholds. By contrast,

some words (e.g., “angry,” “business,” “truth”) show a different

pattern that correlation does not largely differ between the

shaded and non-shaded area, which indicates no performance

improvement by the indirect grounding model. For some other

words (e.g., “fix”), correlation decreases in the shaded area; this

pattern indicates that the indirect grounding model is harmful

to predicting conceptual representation.

5. Discussion

5.1. Contribution to the research on
abstract concepts

The present study makes an original contribution to

research on abstract concepts. As mentioned in section 1, very
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FIGURE 7

Correlation coe�cient of the indirect grounding model DSMI for some individual abstract concepts as a function of concreteness threshold θc.

The plot at θc = 1.0 denotes the correlation of the hybrid (i.e., direct grounding) model DSMH (because DSMI with θc = 1.0 is identical to DSMH).

The blue horizontal line is drawn at the correlation coe�cient of the textual model DSMT . The dashed vertical line denotes the word

concreteness, and thus the line chart in the red shaded area represents the correlation obtained using indirect visual vectors.

few empirical studies have demonstrated direct evidence in

favor of the indirect grounding view, although a number of

studies have empirically shown that both symbolic/linguistic and

perceptual/embodied representations are required for shaping

and processing abstract concepts. Given the current lack of

direct evidence, the present study provides empirical support

specific to the role of language posited by the indirect grounding

view. The higher prediction performance of the indirect

groundingmodel compared to the hybrid (i.e., direct grounding)

model suggests that a mere combination of symbolic and

perceptual representation (e.g., Barsalou et al., 2008) is less

adequate for explaining abstract concepts (or at least those that

can be grounded in visual experiences); abstract concepts are

more likely to be indirectly grounded through their linguistic

relations to the concepts directly grounded in the world. In other

words, language functions as a bridge between abstract concepts

and perceptual experiences.

The plausibility of indirect grounding is also supported by

the result of comparing two visual models. Even when textual

vectors were not used for prediction, the indirect visual model

outperformed the simple visual model, as reported in section 4.1.

This implies that the use of visual vectors derived from concrete

words strongly associated with an abstract word stands on its

own merit.
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Furthermore, the superiority of the indirect grounding

model over two unimodal models (i.e., textual and visual

models) and the dual coding model suggests that abstract

concepts are both linguistic and grounded in perceptual

experience. This result is consistent with the recent empirical

findings (Louwerse and Jeuniaux, 2010; Malhi and Buchanan,

2018) and thus lends further support to the hybrid views of

abstract concepts (Louwerse, 2011; Dove, 2016; Borghi et al.,

2019).

5.2. Related work on computational
approaches to indirect grounding

Some existing studies have proposed a computational model

for semantic processing that is based on similar views to

indirect grounding. Howell et al. (2005) attempted to simulate

the mechanism of propagation of grounding (mentioned in

section 1.3) using a simple recurrent network. The network was

trained to predict, from the current input word, both what

the next word would be and the featural (i.e., sensorimotor)

representation of the current word. They demonstrated that

the network trained with featural representation achieved

better performance in next word prediction than the network

trained without featural representation, and argued that this

result supports the propagation of grounding. However, their

model does not directly simulate the process in which the

sensorimotor features of concrete concepts are propagated to

abstract concepts. Hoffman et al. (2018) proposed a more

sophisticated neural network model that assimilates a very

similar idea to indirect grounding; “Knowledge of abstract

words is acquired through (a) their patterns of co-occurrence

with other words and (b) acquired embodiment, whereby they

become indirectly associated with the perceptual features of co-

occurring concrete words (Hoffman et al., 2018, p. 293).” Their

model is based on a hub-and-spoke architecture in which the

information of an input word, its sensorimotor properties and

past states (as context) is integrated into a hidden “hub” layer.

They trained the model to predict the next word in a word

sequence and showed that the trained model could represent

the semantic knowledge of concrete and abstract words in a

hub layer and accounted for behavioral patterns consistent with

normal and impaired semantic cognition. However, they did not

quantitatively test whether indirect grounding is more plausible

than other competing views, such as one that abstract concepts

are also grounded directly in sensorimotor experience.

These previous studies differ from the present study in

some important respects. First of all, they use, as perceptual

or sensorimotor representation, only verbally expressed featural

information, which is essentially symbolic and discrete. Second,

they do not directly test the plausibility of indirect grounding

for representing abstract concepts; their proposed models are

not compared with other competing models to be considered.

Furthermore, their studies are limited in their coverage of

the vocabulary of words and features; only a relatively small

set of words and features are used in the experiments. The

training corpus is also small in size and generated artificially. By

contrast, the present study directly uses non-verbal (i.e., visual)

information as perceptual representation and quantitatively tests

the indirect grounding view by comparing other competing

models including the direct grounding model. The vocabulary

and corpus used in the experiment of the present study are

relatively large.

To the best of our knowledge, no prior studies on

multimodal distributional semantics or other computational

models using non-verbal information have tested indirect

grounding of abstract concepts (or words), but a noteworthy

observation was reported. Lazaridou et al. (2015) proposed

a multimodal skip-gram model by extending the objective

function of the original skip-gram (Mikolov et al., 2013)

so as to take into account visual similarity computed using

visual vectors. Using the trained multimodal word vectors,

they showed that some abstract words had nearest neighbors

in the trained multimodal space whose visual images depict

relevant concrete situations (e.g., the nearest neighbor picture

of the word “theory” depicts a bookshelf with many books),

although the nearest neighbors of many other abstract words

were not visually relevant. The extended skip-gram model does

not directly simulate the process of indirect grounding, but

this result suggests that the multimodal skip-gram may be a

useful model for exploring the grounding mechanism of abstract

concepts.

5.3. Limitation of this study and future
direction

Our distributional semantics-based approach to embodied

cognition of abstract concepts has its limitations. One

important limitation is that the method for modeling perceptual

experiences used in this paper does not deal with perceptual

information other than visual one. Although people are

supposed to acquire a large percentage of information from

visual perception, conceptual knowledge is also grounded

in other types of perceptual experiences, such as auditory,

somatosensory, gustatory, and olfactory ones, as well as from

emotional and social experiences (e.g., Borghi et al., 2017).

Our finding in favor of indirect grounding is thus confined

to visual grounding; the detailed analysis based on semantic

categories reported in section 4.4 revealed that abstract concepts

in only some categories (i.e., Social and Physical and Spatio-

temporal categories) benefit from visually indirect grounding.

Future research is required to investigate whether and how other

types of abstract concepts are grounded directly or indirectly.
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A more noteworthy limitation is that the DNN by which

visual vectors are computed may diverge from human visual

perception. The progress of deep learning technique has

demonstrated that DNNs surpass human-level performance on

some specific image classification tasks (Zhang et al., 2021)

and it has been shown that their internal representations

match coarsely with the brain (Cichy et al., 2016; Serre, 2019).

By contrast, recent studies have also revealed that DNNs

show behavioral deviations from human visual perception, for

example, in terms of the sensitivity to global shape (Baker

et al., 2018) and the visual representational structure in the

human brain (Xu and Vaziri-Pashkam, 2021). Jacob et al. (2021)

demonstrated that some phenomena (e.g., surface invariance,

sensitivity to 3D shape) seen in human visual perception were

not observed in ResNet-152, which is used for extracting visual

vectors in this study, as well as in other DNNs. These deviations

suggest that DNNs and its visual vectors are limited as a

cognitive model of visual grounding. Given these potential

limitations, we must be cautious about interpreting the obtained

results, in particular the lower performance of the visual model

DSMV as evidence against the situated simulation view.

Our choice of text-based distributional semantic model (i.e.,

SGNS) by which textual vectors are computed is unlikely to

greatly affect the obtained results, given the current technical

possibilities. Utsumi (2020) compared three distributional

semantic models, that is, SGNS, GloVe (Pennington et al.,

2014), and PPMI+SVD (Bullinaria and Levy, 2007), in terms

of performance in predicting Binder et al.’s (2016) conceptual

representation only from textual vectors. He demonstrated

that SGNS achieved the highest prediction performance, and

more importantly, the relative performance differences among

words and attributes were quite similar among three models.

Chersoni et al. (2021) extended this result by comparing a

wider variety of textual models using the same prediction task.

These models include BERT (Devlin et al., 2018), which is a

deep neural model for contextual embeddings that achieves

state-of-the-art performance in many NLP tasks. They reported

that BERT did not show any significant differences from the

distributional semantic models analyzed by Utsumi (2020), and

word and attribute correlation of BERT is equivalent to that of

SGNS. These results imply that the obtained findings in this

paper have certain generality with respect to textual models.

Obviously, however, it does not mean that current language

models sufficiently capture semantic (or conceptual) knowledge

people can acquire from language (for a review, see Rogers

et al., 2020; Lake and Murphy, 2021). If a psychologically more

plausible language model is developed in the future, it would be

interesting to explore whether the indirect grounding model still

yields the same result.

The present study also suffers from methodological

limitations. Binder et al.’s (2016) dataset used as a target

conceptual representation for the evaluation experiment is the

most comprehensive and fine-grained featural representation

publicly available at present, but yet not sufficient to capture

the richness of human conceptual knowledge. For example,

concepts (particularly abstract concepts) generally involve the

knowledge of binary and multiary relations among concepts and

higher-order relations that cannot be expressed by feature-based

representation. Hence the obtained result does not reflect the

representational ability of relational knowledge. Furthermore,

the training procedure for predicting Binder et al.’s (2016)

representation poses an additional concern about whether it

can precisely capture processing differences among competing

models. This concern is particularly salient for the dual coding

model. According to its definition in section 3.1, the dual coding

model should approximate the performance of the textual model

for abstract words and that of the hybrid model for concrete

words. However, the result of section 3.1 (Appendix S2) diverged

from these expectations; the dual coding model outperformed

the textual model in predicting abstract words and showed

lower performance for concrete words than the hybrid model.

This discrepancy between expectations and performance may

be caused by simultaneous training of concrete and abstract

words. Specifically, network parameters (i.e., weights and biases)

between the output layer (i.e., the bottom layer of Figure 2) and

the hidden layer just above reflect the visual information of

concrete words, even when visual vectors are not given. Because

of this, prediction of an abstract word may indirectly reflect

visual information of concrete concepts whose textual vectors

are similar to that of the abstract word, and thus the dual

coding model would perform better than the textual model. For

concrete words, the dual coding model does not benefit from

visual information for abstract words and this may cause lower

performance of the dual coding model than the hybrid model.

Although this discrepancy does not affect the findings on the

superiority of the indirect grounding model, more valid training

procedures should be pursued.

The use of concreteness rating may be controversial

because of its limitations. Most concreteness ratings including

Brysbaert et al.’s (2014) are collected by presenting words

in isolation, thereby including an ambiguity in judgment

for polysemous words (e.g., Reijnierse et al., 2019). This is

particularly problematic for words with both concrete and

abstract senses, which tend to be rated around the middle of

the scale. In other words, words with low concreteness ratings

are likely to be unambiguous and regarded as definitely abstract.

The analysis reported in section 4.3 showed that the indirect

grounding model improved the performance for words with low

concreteness raging (when appropriate semantic neighbors were

given), thus suggesting that our finding in favor of the indirect

grounding view does not severely affected by this problem of

concreteness rating.

Despite the positive result, there is another problem with

the use of concreteness rating that must be addressed in future

work. Recent studies on abstract concepts have argued that

abstract concepts are not a unitary whole and should be treated

as a heterogeneous category including various different types

of abstract concepts (Troche et al., 2017; Borghi et al., 2018;

Frontiers in Psychology 18 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.906181
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Utsumi 10.3389/fpsyg.2022.906181

Villani et al., 2019). This argument implies that concreteness

rating is not sufficient for determining words (or concepts) to

be grounded indirectly. As reported in section 4.4, the impact

of indirect grounding differs among various types of abstract

concepts. Exploring this issue may provide an interesting avenue

for future investigation.

The choice of semantic neighbors as mediator concepts,

whose visual vectors define the indirectly grounded

representation of abstract words, is an important process

of the indirect grounding model. Appropriate mediator

concepts need to have perceivable referents that also have

perceptually clear-cut boundaries. For example, basic-level

concepts such as desk and chair have specific referents that are

characterized by perceptual features such as shapes, and thus

they become good mediators. Superordinate concepts such

as furniture also have perceivable referents but are difficult to

distinguish from other concepts by perceptual features, and thus

they are less likely to be good mediators. Highly underspecified

concepts such as artifact no longer function as mediators

because they are very generic and their defining features are

not based on perceptual or other bodily experiences. However,

our simple method of generating a pool of candidate words

from which semantic neighbors are chosen has a potential

problem in that words with higher concreteness rating do not

necessarily have such specific referents. For example, the word

“furniture” has a higher concreteness rating of 4.89 than “desk”

(4.87) and “chair” (4.58), and the word “artifact” also has a very

high rating of 4.50 in Brysbaert et al.’s (2014) dataset. Recently

Bolognesi et al. (2020) empirically examined the same line of

argument and demonstrated that categorical specificity should

be considered as a distinct dimension from concreteness to

characterize concepts. Categorical specificity is therefore an

important property for choosing appropriate mediator words,

although an appropriate level of specificity depends on the

concept to be indirectly grounded.

Some other methods for determining mediator words can

be considered to refine the indirect grounding model. Age-of-

acquisition ratings (Kuperman et al., 2012) may be used to

limit the vocabulary of candidate words for semantic neighbors,

because basic words learned at the early stage of lexical

acquisition are represented primarily perceptually, while other

words learned at the later stage are acquired through the

knowledge of basic words (Gleitman et al., 2005; Thill et al.,

2014). A more promising approach is to use minimal grounding

sets (Vincent-Lamarre et al., 2016) as a candidate set of semantic

neighbors. A minimal grounding set is the smallest set of words

(i.e., a subset of a vocabulary) from which all the other words

in a vocabulary can be defined. Vincent-Lamarre et al. (2016)

proposed a method for computing the minimal grounding sets

from dictionary definitions. Although the minimal grounding

set is not uniquely determined, it can be a theoretically more

motivated pool of potential mediator words than a set of

concrete words simply selected based on concreteness rating

or other human-rating-based measures. Image tags may also

be a useful source of information for mediator words because

tag co-occurrence statistics reflect visually motivated semantic

knowledge. For example, words that are similar to a target

abstract word in Flickr distributional tagspace (Bolognesi, 2017)

are expected to be good mediators.

6. Conclusion

To test the indirect grounding view, we devised a new

multimodal distributional semantic model in which a visual

vector of an abstract word (i.e., embodied representation of

perceptual experiences) is computed from the visual images

of concrete words semantically related to the abstract word.

Through the evaluation experiment, we have demonstrated that

the indirect grounding model outperformed the hybrid (i.e.,

direct grounding) model, the dual coding model, and unimodal

models. Despite the limitations described above, this finding

lends some plausibility to the indirect grounding view and the

present study is regarded as a first step toward empirically

exploring the grounding mechanism of abstract concepts. For

future work, we would like to explore a further mechanism of

what and how linguistic processes come into play for grounding

abstract concepts, together with to test indirect grounding via

language using psychological experiments.
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