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Students who are deaf or hard-of-hearing (DHH) often show significant

di�culties in learning mathematics. Previous studies have reported that

students who are DHH lag several years behind in their mathematical

development compared to hearing students. As possible reasons, limited

learning opportunities due to a lesser incidental exposure to numerical

ideas, delays in language and speech development, and further idiosyncratic

di�culties of students who are DHH are discussed; however, early

mathematical skills and their role in mathematical di�culties of students

who are DHH are not explored su�ciently. In this study, we investigate

whether students who are DHH di�er from hearing students in their ability to

enumerate small sets (1–9)—an ability that is associated with mathematical

di�culties and their emergence. Based on a study with N = 63 who are

DHH and N = 164 hearing students from third to fifth grade attempting 36

tasks, we used eye tracking, the recording of students’ eye movements, to

qualitatively investigate student enumeration processes. To reduce the e�ort

of qualitative analysis of around 8,000 student enumeration processes (227

students x 36 tasks), we used Artificial Intelligence, in particular, a clustering

algorithm, to identify student enumeration processes from the heatmaps

of student gaze distributions. Based on the clustering, we found that gaze

distributions of students who are DHH and students with normal hearing

di�ered significantly on a group level, indicating di�erences in enumeration

processes, with students who are DHH using advantageous processes (e.g.,

enumeration “at a glance”) more often than hearing students. The results

indicate that students who are DHH do not lag behind in small number

enumeration as compared to hearing students but, rather, appear to perform

better than their hearing peers in small number enumeration processes, as well

as when conceptual knowledge about the part-whole relationship is involved.

Our study suggests that the mathematical di�culties of students who are DHH

are not related to di�culties in the small number enumeration, which o�ers

interesting perspectives for further research.
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Introduction

Studies throughout recent decades repeatedly indicate that

students who are deaf or hard-of-hearing (DHH) tend to have

mathematical difficulties, which appear to be severe in many

cases (e.g., Traxler, 2000; Blatto-Vallee et al., 2007; Qi and

Mitchell, 2012; Marschark et al., 2013; Pagliaro, 2015). Even at

preschool age, most students who are DHH show difficulties

in their mathematical development (e.g., Kritzer, 2009; Pagliaro

and Kritzer, 2013), and these difficulties tend to increase through

school age and into adulthood (Bull et al., 2011; Gottardis et al.,

2011).

Students with hearing loss can be referred to as DHH,

depending on their degree of hearing loss or the hearing

threshold (World Health Organization, 2021). A distinction

is made between mild, moderate, moderately severe,

severe, profound, or complete hearing loss (World Health

Organization, 2021). In many cases, both ears are affected.

Hearing loss might lead to difficulties in hearing auditory stimuli

and communicating with others (Spencer andMarschark, 2010).

Moreover, congenital hearing loss has an impact on learning

and social development (Knoors and Marschark, 2014). With

increased early detection and quality of hearing technology

and early intervention, today, many children who were born

congenitally deaf can communicate in spoken language due

to their hearing technology (Spencer and Marschark, 2010).

The increasing importance of bimodal-bilingual education has

led to many children today having the opportunity to acquire

both spoken and sign language from an early age (Marschark

and Knoors, 2012). As a trend, the proportion of students

receiving mainstream education has increased in recent years in

many countries, and, at the same time, sign language remains

an important part of the diverse DHH education (Leigh and

Marschark, 2016; Marschark and Leigh, 2016). Despite this,

school education for students who are DHH widely varies

internationally. Didactical concepts may also differ depending

on hearing status, communication modality, and additional

needs, both in special schools and in mainstream education.

Mathematical abilities of students who are DHH have

received relatively little attention as compared to, for example,

their language and literacy skills, which is possibly related to

“a pervasive belief that mathematics is ‘not as important’ as

language and/or literacy” (Pagliaro and Kritzer, 2013, p. 150)

among practitioners and researchers working with students

who are DHH. Yet, the scarce body of literature on the

mathematical abilities of students who are DHH has consistently

indicated similar trends: That, they, on average, appear to

lag in their mathematical development by several years as

compared to their hearing peers. In the 1960s, 1970s, and 1980s,

different studies suggested that students who are DHH perform

significantly below their same-aged peers with normal hearing

(e.g., Wollman, 1965) and that their mathematical development

is delayed by 2 to 5 years (Hine, 1970; Wood et al., 1983). These

results were validated in studies within the last 30 years, which

confirmed that students who are DHH, despite the improvement

of early diagnostics, support, hearing technology, educational

opportunities, and a greater appreciation of sign language, show

a developmental delay of about 3 to 4 years in their mathematical

abilities at primary and secondary school levels as compared to

their hearing peers (e.g., Heiling, 1995; Frostad, 1996; Traxler,

2000; Qi and Mitchell, 2012; Edwards et al., 2013; Pagliaro,

2015). This discrepancy appears to increase until the age of

16 (Gottardis et al., 2011) and persist even in adulthood (Bull

et al., 2011). Taken together, previous studies indicate that

students who are DHH tend to have mathematical difficulties

that often start as early as preschool age, increase with age,

and persist in adulthood. These difficulties apply to a multitude

of mathematical topics, including counting (e.g., Pagliaro and

Kritzer, 2013), measurement (e.g., Austin, 1975; Pagliaro and

Kritzer, 2013), fractions (e.g., Titus, 1995; Bull, 2008; Mousley

and Kelly, 2018), number line estimation (e.g., Bull et al., 2011;

Bedoya-Ríos and Dorneles, 2021), and word problems (e.g.,

Kelly and Mousley, 2001; Nunes and Moreno, 2002; Hyde et al.,

2003; Ansell and Pagliaro, 2006; Blatto-Vallee et al., 2007).

One of the relative strengths of students who are DHH lies

in the area of geometry (Pagliaro and Kritzer, 2013), which is

presumably related to strong visual and spatial skills, wherein

students who are DHH are assumed to have an advantage (e.g.,

visuospatial working memory, Marschark and Knoors, 2012).

For example, children who are DHH were found to be able

to remember complex figures better than hearing students, yet,

if the figures move and the sequences of movements are then

to be described and classified in temporal order, students who

are DHH show an inferior performance compared to hearing

students (Todman and Seedhouse, 1994;Marschark and Knoors,

2012).

Mathematical delays of students who are DHH appear

to start before schooling. When school begins, there seems

to be a quantitative delay of about 2 years in mathematical

abilities of children who are DHH as compared to hearing

children (Swanwick et al., 2005; Pagliaro and Kritzer, 2013).

Studies by Kritzer (2009) and Pagliaro and Kritzer (2013) have

furthermore indicated that even at preschool age a majority of

children who are DHH showed delays in early mathematics,

for example, in number comparisons, counting by groups, and

word problems (Kritzer, 2009; Pagliaro and Kritzer, 2013).

Leybaert and Van Custem (2002) found in preschoolers that

“deaf children exhibited age-related lags in their knowledge of

the number sequence; they made different errors from those

of hearing children, reflecting the rule-bound nature of sign

language. Remarkably, their performance in object counting and

creating sets of given cardinalities was similar to that of hearing

children” (p. 482). Furthermore, Zarfaty et al. (2004) found that

preschool children who are deaf and using sign language did

not have difficulties in representing and discriminating numbers

and that they performed better in spatial (not temporal) tasks
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than their hearing peers. Yet, it is important to consider that

many studies investigated deaf native sign language users and

their understanding of number concepts. Even though it is

not entirely clear how children who are DHH with hearing

parents use sign language, or how children who are DHH

use spoken language perform, it was found that better sign

language skills of students who are DHH tend to result in

better mathematical performance (e.g., Henner et al., 2021).

Taken together, the results on the mathematics performance of

preschoolers are diverse, indicating that it is not quite easy to say

where the mathematical difficulties of students who are DHH

originate, yet certain delays appear to be present even before the

school age.

What are the reasons for the difficulties in mathematics of

students who are DHH, which appear to start in preschool?

One obvious reason may be a delay in language development,

which affects many children who are DHH (Spencer and

Marschark, 2010). The development of language is closely

linked to the development of mathematical thinking and is

acquired incidentally and intuitively in everyday life (Nunes

and Moreno, 2002). Social activities, such as counting, are

learned and taught through language. In this context, children’s

access to mathematical knowledge is initially informal, without

the content being explicitly labeled as mathematical. For

example, many nursery rhymes contain counting activities,

shape comparisons, or spatial descriptions that are being

automated through frequent singing and, later, make it easier

for children to acquire counting and mathematical problem-

solving skills. Several other factors have been suggested to

explain why students who are DHH lag in their mathematical

development, which can be broadly divided into two categories:

One possible explanation is that the reason lies in fewer

learning opportunities for DHH for students that are related to

limited incidental exposure to numerical ideas, language issues,

and barriers, parents making few references to mathematical

concepts in everyday activities, and quality of education (Titus,

1995; Nunes, 2004; Kritzer, 2008, 2009; Barbosa, 2014); the

other explanation assumes that the problems originate from

students who are DHH themselves, and idiosyncratic difficulties

of students who are DHH in basic numerical processing and

retrieval processes (e.g., for a detailed discussion, see Zarfaty

et al., 2004; Bull et al., 2006; Pagliaro and Kritzer, 2013). In a

review of the literature, Santos and Cordes (2022) found that

in addition to limited or reduced language access, especially in

young children, factors, such as executive functions, specifically,

working memory, may also be decisive for the fact that

students who are DHH may have difficulties in mathematics.

Some previous studies have investigated the basic numerical

processing of students who are DHH, in particular. For example,

Bull et al. (2006) found that university students who are DHH

did not differ from their hearing peers in response times

in small-number enumeration processes, indicating that these

processes appear not to differ for students who are DHH at

the university level. However, the participants in this study

were at a high academic level. It is not yet clear whether

small number enumeration processes of school-age students

who are DHH differ from those of their hearing peers and

whether this may be one of the causes for their mathematical

difficulties, or whether the difficulties, instead, originate from

other factors.

Mathematical difficulties in hearing children are often

associated with issues in basic numerical processing (e.g.,

Butterworth, 2005; Wilson and Dehaene, 2007), and such basic

numerical difficulties tend to cascade to severe difficulties

in a wide range of mathematical abilities (Butterworth,

2005; Geary, 2013). One of such abilities known to predict

mathematical achievement in later school years is a small-

number enumeration, the ability to grasp sets of items and

say how many there are (Starkey and Cooper, 1995). For

children at preschool level and at the beginning of primary

school, it is crucial to learn to enumerate quantities (that

is, to perceive sets of items and say how many there

are) (e.g., Department of Education, 2013). The ability to

enumerate small sets of items involves different processes:

(perceptual) subitizing, counting, and conceptual subitizing, so-

called groupitizing (Gelman and Gallistel, 1986; Schleifer and

Landerl, 2011; Ashkenazi et al., 2013; Starkey and McCandliss,

2014). Subitizingmeans the ability to enumerate small quantities

without counting in a fast and exact way; the process is

perceptual, automatized, and often subconscious (Clements,

1999; Fischer et al., 2008). Humans—even young children—

are usually capable of perceiving quantities of up to four

items through subitizing (Starkey and Cooper, 1980, 1995;

Mandler and Shebo, 1982; Clarke et al., 2006; Schleifer and

Landerl, 2011). Subitizing is a foundation for the development

of the concept of numbers and arithmetic learning (Starkey and

Cooper, 1995). Humans cannot (in most cases) subitize sets

of more than four items; larger numbers of items need to be

perceived serially, for example, through counting or structuring

them in groups (that can again be subitized). Counting is

a process that is socially taught, and it involves conventions

that have been summarized by Gelman and Gallistel (1986)

as counting principles: the one-to-one principle, meaning that

each item is assigned exactly with one number word, the stable-

order-principle, meaning that the order of number words is

predetermined (1, 2, 3, 4, . . . ), the cardinal principle, meaning

that the number word that was said last indicates the cardinality

of the set, the abstraction principle, meaning that different kinds

of objects can be counted, irrespective of their appearance,

and the order-irrelevance principle, meaning that the order, in

which the items are counted, is irrelevant for the cardinality

of the set. Compared to subitizing, counting is a “slower and

more error-prone process of one-to-one mapping between a

set of objects and number words” (Schleifer and Landerl, 2011,

p. 280). In the context of studies addressing enumeration

processes, researchers refer to the counting range when sets of
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five or more items are to be enumerated, and to the subitizing

range for sets of one to four items, even though, of course,

counting processes can also be involved in the enumeration

of sets within the subitizing range (e.g., Schleifer and Landerl,

2011; Ashkenazi et al., 2013; Schindler et al., 2020b). Despite

subitizing and counting processes, in enumeration, processes of

perceiving sets in subsets, dividing sets, and combining subsets

to a set are involved (Clements, 1999). This involves the part-

whole schema (Starkey and McCandliss, 2014), which means

“understanding that quantities can be decomposed into pieces

and reassembled again” (Krajewski and Schneider, 2009, p.

513). The enumeration of sets in subsets (groups) is called

groupitizing (Starkey and McCandliss, 2014) or “conceptual

subitizing” (Clements, 1999) since conceptual processes of the

part-whole relationship are involved. Groupitizing allows sets of

items to be perceived quasi-simultaneously, that is, by subitizing

subsets (Anobile et al., 2020; Wege et al., 2022). Furthermore,

enumeration of small sets can involve the recall of familiar

patterns, such as dice patterns. In this case, researchers talk

about canonical representations (e.g., Ashkenazi et al., 2013).

Such patterns do not necessarily have to be counted, but they

can be recalled if the image of the pattern is familiar, and,

when recognized, the according number can be recalled (e.g.,

Starkey and McCandliss, 2014). In this case, the child does not

need to perceive items serially but can associate the pattern to a

number word (Von Glasersfeld, 1982). In general, the canonical

representations are symmetrical and, thus, allow the use of

patterns or symmetries for number enumeration (Hsin et al.,

2021).

Enumeration of small sets is essential for learning basic

arithmetic and, therefore, crucial to the development of students’

mathematical skills (Starkey and Cooper, 1995). For example,

preschoolers’ mastery of structured sets (e.g., dice patterns) can

predict their arithmetic abilities in grade 1 (Kreilinger et al.,

2021), and their subitizing ability can predict their arithmetic

performance in later school years (Hannula-Sormunen et al.,

2015). Mathematical difficulties (MD)—that is, difficulties in

understanding basic arithmetic concepts (e.g., Scherer et al.,

2016; Moser Opitz et al., 2017)—are associated (among other

factors) with deficits in subitizing that affect enumeration

processes (e.g., Butterworth, 2005; Wilson and Dehaene, 2007).

Previous research on students’ enumeration processes indicates

a “dysfunctional subitizing mechanism” (e.g., Schleifer and

Landerl, 2011, p. 280) for students with MD (Van der Sluis

et al., 2004; Schleifer and Landerl, 2011; Landerl, 2013). Studies

addressing, among other things, the students’ response times

in the enumeration of small sets found that students with

MD (aged 7–17, Fischer et al., 2008; aged 10, Moeller et al.,

2009) were slower than students without MD in the subitizing

range. When examining the enumeration abilities of students

in second to fourth grade, students with MD were found to

have subitizing problems, specifically, steeper response times

slopes (Schleifer and Landerl, 2011; Landerl, 2013). Response

time slopes in the counting range were similar for students

with and without MD (Schleifer and Landerl, 2011). Further,

Van der Sluis et al. (2004) found that fourth to fifth graders

with low mathematical skills needed more time for enumeration

of sets in the subitizing range. Gray and Reeve (2014) found

that weak subitizing profiles of preschoolers were related to

poor arithmetic (addition) skills, providing another indicator

of difficulties in subitizing for children with MD in their

study. Ashkenazi et al. (2013), in a study distinguishing the

arrangement of items (canonical vs. random), found that

students with MD had higher error rates than the control

group when enumerating canonically arranged items, which

increased as the number of items increased. For canonically

arranged item patterns, longer response times in a group of

students with MD—as compared to a control group—were also

found by Schindler et al. (2020b). This suggests that students

with MD benefit less from canonical arrangements of items

(Ashkenazi et al., 2013; Schindler et al., 2020b). Based on

product-related data, such as response times or error rates,

causes of differences between performances of children with and

withoutMD cannot be definitively explained (Van der Sluis et al.,

2004).

However, deficits in subitizing, which may be involved

in the emergence of MD, can be further investigated by

the analysis of eye movements during enumeration processes

(see Mock et al., 2016). To find out whether students

with MD are only slower at subitizing or whether they

rely on qualitatively different enumeration processes, eye-

tracking studies (Moeller et al., 2009; Schindler et al., 2020b)

have proven to provide insights into students’ enumeration

processes. In a case study with students of the same age as

the students in this study, Moeller et al. (2009) investigated

enumeration processes for small sets of 1 to 8 items. They

found differences between children with and without MD, in

that counting processes were observed in both students with

MD. Another ET study (N=20) by Schindler et al. (2020b)

also showed differences in enumeration processes between

students with and without MD. In both the subitizing (2–

4) and the counting (5–9) range, processes of counting all

items were observed more frequently for students with MD

as compared to their peers without MD, who used (quasi-)

simultaneous enumeration more often (Schindler et al., 2020b).

These results were also found for the enumeration of items

in canonical arrangements (2–9). In summary, qualitatively

different processes between students with and without MD

were indicated.

This article intends to contribute to the investigation of

possible roots of mathematical difficulties of students who are

DHH. Specifically, we want to explore if the mathematical

difficulties of students who are DHH go along with deficits

in small-number enumeration. This study aims to investigate

if students who are DHH differ from hearing students in

small-number enumeration processes. We ask the research
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question: “Do DHH students differ from hearing students in small

number enumeration processes?” To investigate enumeration

processes, we conducted a study using eye tracking (ET), the

recording of students’ eye movements, since ET has shown to

be a valuable tool for investigating small number enumeration

processes (Moeller et al., 2009; Schindler et al., 2020b). In a

study with N = 227 students (164 hearing students, 63 students

who were DHH), we analyzed eye movements of approximately

8,000 students’ enumeration processes (227 students x 36 tasks)

and—to reduce the effort of qualitative analysis in a large-scale

study with several thousand items—combined it with Artificial

Intelligence (AI) to identify student enumeration processes from

the heatmaps of student gaze distributions.

With the focus on basic numerical difficulties as a possible

root of MD, this paper addresses an issue that is not only of

concern for researchers and educators in the domain of students

who are DHH and their teaching but beyond: Addressing

enumeration, specifically, counting principles or the part-whole

schema early on is of concern for many students—for students

with mathematical difficulties and students in the domain of

special education (e.g., Krajewski and Schneider, 2009; Hecht

et al., 2011; Schleifer and Landerl, 2011; Garrote et al., 2015).

The diagnostics and support of students with difficulties in these

aspects are of paramount importance since longitudinal studies

indicate that students who enter school with low early-math

skills often do not overcome their deficits during primary school

(e.g., Viesel-Nordmeyer et al., 2019). Our study contributes to

the research body on student enumerations processes and can be

a springboard for further research on students with MD and/or

special educational needs.

Materials and methods

Participants

A total of N = 227 students participated in this study (see

Table 1). The sample consisted of a group of hearing students (n

= 164) and a group of students who are DHH (n = 63). The

hearing group consisted of students in fifth grade at a German

comprehensive school in North Rhine-Westphalia (NRW) aged

9.10 to 12.6 years (mean: 10.9 years, SD: 0.7 years). The group

of students who are DHH consisted of fifth-, fourth-, and third-

grade students between 9.1 and 13.6 years (mean: 11.9 years, SD:

1) from German special schools for students who are DHH in

NRW. The inclusion of students from third and fourth grades

in the DHH group served the purpose of approximating the

mean age of the participants in the two groups. This appeared

to be beneficial, since most of the students who are DHH were

in the same grade level (fifth grade) but in a higher school

year chronologically than the hearing students. Furthermore, it

allowed for a larger sample to be used.

TABLE 1 Participants in the study.

Hearing group

(n = 164)

DHH group

(n = 63)

Participant information

Age: mean (standard deviation) 10.9 (0.7) 11.9 (1.0)

Gender: ngirls (%girls) 72 (43.91) 33 (52.38)

Grade (s): grade (%) Grade 5 (100) Grade 3 (6.35)

Grade 4 (33.33)

Grade 5 (60.32)

Mathematical abilities

HRTMean t-score (standard deviation) 40.37 (9.90) 35.04 (9.90)

Mathematical difficulties: n (%) 69 (42.07) 41 (65.08)

At risk zone: n (%) 36 (21.95) 9 (14.29)

Typically developing: n (%) 59 (35.98) 13 (20.63)

The degree of hearing loss in the group of children who

are DHH varied, including mild (n = 1; 1.6%), moderate (n

= 19; 30.2%), severe (n = 20; 31.7%), and profound (n = 21;

33.3%). Two students had a central auditory processing disorder

(CAPD) (3.2%), and two other children were affected by single-

sided deafness (SSD) (3.2%). Half of the students were fitted

with bilateral hearing aids (32; 50.8%), and about a quarter had

bilateral cochlear implants (CI) (15; 23.8%). Six students had

a bimodal fitting with a hearing aid and a cochlear implant

(9.5%). Three students were fitted with a unilateral cochlear

implant (4.8%) and one had a unilateral hearing aid (1.5%).

One student was fitted with bilateral bone-anchored hearing

aids (BAHA) (1.5%). Five of the students, including the two

with CAPD, were unaided. As for the students’ familial first

language (L1), 30 of the students had German as their first

language, ten students were bilingual with German and another

language (Arabic, Farsi, Italian, Russian, Serbian, Turkish, and

Ukrainian), five had Turkish as first language, three Arabic, three

German Sign Language (DGS), three Kurdish, and each one

Afghan, Greek, Hungarian, Polish, Romanian, Syrian, Tamil,

and Urdu, and one that is not specified. While conducting

our study, we asked the students for their individual preferred

communication modality: 28 of the students preferred spoken

language as a communication modality (44.4%), 30 preferred

sign-supported speech (47.6%), while five students preferred

sign language (7.9%). Sign language, in this case, DGS, is

based on a visual-spatial modality and has its own grammatical

structure and syntax. While sign language is a language of its

own, sign-supported speech only makes use of some of the DGS’

signs to support spoken language while speaking. The diversity

of the participants who are DHH in this study—especially about

prior language experience, communication modality, hearing

status, and hearing care—represents well the heterogeneity often

encountered in special education schools for children who

are DHH in Germany. We chose to include students who
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attended schools for students who are DHH, who each had

a special educational need in hearing, with the commonality

of all children in the sample having a peripheral hearing loss

and, in a few cases, a central auditory processing disorder, and

we refrained from deliberately selecting children that fulfill a

specific language or modality profile.

Before the study, legal guardians were informed about

the aim and the procedures of the study and that students’

participation was voluntary. The participating students were

then informed individually about the content and procedures

of the study; they had the opportunity to ask questions and to

stop the study at their convenience. All students could choose

whatmodality they preferred during the study (spoken language,

sign-supported speech, or sign language). The interviewer, who

conducted the study, was fluent in all three modalities. It

was ensured that all students understood the tasks and felt

comfortable during the study.

Prior to the ET study, a standardized arithmetic test, HRT

(Haffner et al., 2005), was administered. The HRT is widely used

in German-speaking countries to diagnose MD, and it has been

used in previous studies examining small number enumeration

(e.g., Moeller et al., 2009; Schleifer and Landerl, 2011; Schindler

et al., 2019a, 2020b). HRT uses the percentile rank (PR) to

diagnose MD, which provides information on what percentage

of the norm sample performed equally well or worse (Haffner

et al., 2005). If the PR is≤10, the child is considered to haveMD.

Between PR 11 to 25, students are within an “at-risk zone” for

MD. Students with PR>25 are considered typically developing.

In this study, only the first half of the HRT, which focuses

on numbers and arithmetic, was administered to the students

(similar to Schleifer and Landerl, 2011; Landerl, 2013; Schindler

et al., 2019a, 2020b). This arithmetic part alone can be used to

diagnose MD (Haffner et al., 2005). The HRT is standardized

from the end of first grade through the first six weeks of fifth

grade. The sample of students with DHH in this study was tested

toward the end of the school year. To use the HRT for fifth

graders with DHH at the end of the school year, we adjusted the

t-scores following a study by Pitters (2018) that also took place

toward the end of the fifth-grade year. Following the average

increase in t-scores of 5.5 from the beginning of grade 5 to the

end of grade 5 found in Pitters’ study, we decreased the t-scores

of DHH fifth graders by 5.5 to adjust the values with respect to

the standardization at the beginning of fifth grade.

Eye tracking as a research method in
mathematics education

The human eye provides high resolution only in the small

region of the fovea, the fovea centralis (Holmqvist et al., 2011).

This region corresponds to a very small part of our field of

view (only about the size of a thumbnail at arms’ length).

Hence, the eyes need to move, so that the foveal area is

oriented toward those regions in the environment from which

detailed information is needed (Rayner, 1998; Henderson, 2003).

Conversely, following the sequence of movements of the eye

allows insight into visual attention and what cognitive processes

were associated with the need to collect high-resolution visual

information in the observed gaze pattern. Thus, ET, the

recording of eye movements that brings areas of interest into

the foveal vision, is used as a tool to study cognitive processes

in many areas of research, including mathematics education

research. ET investigates overt attention since people pay overt

attention to those areas that they perceive by the foveal vision:

When the eyes move directly to the stimulus, their attention

is there, whereas those areas that are perceived peripherally

may be taken in by covert attention (Posner, 1980; Carrasco,

2011).

ET is of growing interest in research in mathematics

education (and, prospectively, also for educators) as a

comparatively unobtrusive tool that allows access even to

unconscious cognitive processes (Lilienthal and Schindler,

2019; Strohmaier et al., 2020; Schindler, 2021). Interest in ET

has increased since ET devices became more affordable, easy

to use, advanced, and accurate (Lilienthal and Schindler, 2019).

Another reason for the increasing popularity of ET is that the

inherent difficulty to draw conclusive inferences from gaze

tracks, as well as the difficulty to extract useful information

from a large amount of data, are mitigated by theoretical

advances in interpretation (Schindler and Lilienthal, 2019). The

interpretation of ET data is often based on the so-called eye-

mind hypothesis (Just and Carpenter, 1980). This hypothesis

states that there is no significant difference between what the

eyes fixate on and what is processed (Holmqvist et al., 2011).

Even though this hypothesis, which was developed in reading

research (Just and Carpenter, 1980), does not generally hold true

in mathematics (see Schindler and Lilienthal, 2019), previous

research has shown that the interpretation of eye-tracking data

in the domain of enumeration and quantity recognition is

more straightforward (Schindler and Lilienthal, 2018; Schindler

et al., 2019a, 2020b). Another reason for the growing interest

in ET in mathematics education research is that computational

resources for automated analysis of gaze data are available at

a low cost. This and the other factors mentioned above have

opened the prospect of novel applications of ET in mathematics

education that use AI for automated or partially automated

analysis of gaze data (Schindler et al., 2020a). During the last

decade, mathematics education research has seen a notable

increase in the number of publications that use ET (Lilienthal

and Schindler, 2019; Strohmaier et al., 2020). An extensive

review paper by Strohmaier et al. (2020) identified a large

variety of topics, including studies of numbers and arithmetic

(the largest group), learning difficulties, computer-supported

learning, and studies of affective variables (Strohmaier et al.,

2020).
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Eye-tracking device and stimuli

We recorded eye movements with the screen-based eye

tracker, Tobii Pro X3-120. This eye tracker allows the tracking

of eye movements (binocular) with a sampling rate of 120Hz.

It is an eye-tracker shaped like a bar that can be mounted to

the bottom of a screen’s frame. Therefore, it is unobtrusive

and not distracting to participants. Tobii Pro X3-120 uses

infrared illuminators to create corneal reflection patterns from

participants’ eyes. According to the manufacturer, the accuracy

is 0.4◦ (Tobii, 2019). The average accuracy in this study was 0.9◦.

Participants can move during the recording without affecting

accuracy and precision. A 9-point calibration was performed

before each data collection.

In total, there were 36 items representing the sets from 1 to

9. Every quantity was presented in four different arrangements:

The sets were each presented in a canonical arrangement and

in three random arrangements, arranged differently each time

(see Figure 1 for examples). For the random arrangements, two

ranges can be distinguished: the subitizing range (2–4) and the

counting range (5–9). The canonical arrangements were divided

into the dice range (2–6) and beyond the dice range (7–9). The

items were the same as in the study by Schindler et al. (2019b).

The enumeration tasks were presented on a 24” full HD

screen with a refresh rate of 60Hz and a resolution of 1,920 x

1,080 pixels. The dots on this screen had a diameter of 2 cm and

a maximum span of the dots (vertical/horizontal) of 15 cm. The

students sat on a chair about 60 cm from the monitor.

Machine learning to support the analysis
of eye-tracking data

Our study uses ET in combination with machine learning

(ML) to investigate student enumeration processes. Generally,

the term ML on the one hand refers to a subject of study

in AI: the study of computer algorithms that can improve

automatically through experience and by using training data

(Mitchell, 1997). In addition, ML refers to a specific set of

methods “that can automatically detect patterns in data, and

then use the uncovered patterns to predict future data, or to

perform other kinds of decision making under uncertainty”

(Murphy, 2012, p. 1). It is important to emphasize that often,

no explicit manual coding is required. This goes along with one

reason why ML is appealing: It promises to shorten or eliminate

the laborious process of developing complex software. More

importantly, ML allows learning models from examples, which

represent patterns or dependencies that are otherwise unknown

and cannot be coded analytically.

Among the three major types of ML, supervised learning,

unsupervised learning, and reinforcement learning, only

supervised and unsupervised machine learning have been used

so far in mathematics education, to the best of our knowledge.

In this work, we use unsupervised learning. For a better

understanding, we describe the general differences between

supervised learning and unsupervised learning in this section

and discuss related work that used unsupervised learning

in mathematics education in the following. In predictive or

supervised learning, the goal is to learn a mapping from inputs

x to outputs y, given a labeled training set. After training, the

learned mapping can be used to make categorical or nominal

predictions (Murphy, 2012). Supervised learning (SL) was used,

for example, in Schindler et al. (2019b), where the inputs x are

(as in this paper) the heatmaps that represent the non-temporal

information in ET sequences and the labels for each heatmap

specify whether it belongs to a student with MD or a student

who is typically developing. After training as described in

Schindler et al. (2019b), the SL algorithm can classify unseen

heatmaps and can be used to predict whether the corresponding

student is likely to have MD or not. The second type of ML that

has been previously used in mathematics education research is

the descriptive or unsupervised learning approach (USL), where

training samples x but no labels y are given. The computer is

then tasked to “find ‘interesting patterns’ in the data” (Murphy,

2012, p. 2). This is also called “exploratory data analysis” or

“knowledge discovery.” As Murphy (2012) notes, USL is a much

less well-defined problem than SL. This is because there is no

a-priori guidance about what kinds of patterns to look for,

and there is no obvious error metric to use, unlike SL, where a

prediction y for a given x can be compared to the observed value

(Xu and Wunsch, 2009). USL algorithms typically separate the

unlabeled training data {x} into a number of meaningful clusters,

and the major interest in USL is in such clustering algorithms.

Clustering can be useful for several reasons, such as to get a

compressed representation of the data or to generate hypotheses

through data exploration (Aldenderfer and Blashfield, 1984).

In the context of mathematics education, Schindler et al.

(2020a) have explored the possibility of identifying student

strategies in whole number representations using ET combined

with USL. Quantity recognition tasks on the 100-dot field

were presented, and, as in this paper, heatmaps were used

as representations of gaze sequences. The result of a specific

clustering algorithm, Self-Organizing Maps (SOMs, Kohonen,

2001), was then evaluated to find out whether the clusters were

consistent with respect to enumeration strategies. The initial

results were mixed. The clusters found with the SOM algorithm

were consistent to some extent but sometimes also subsumed

different strategies in one cluster. This result is not surprising

as the clustering used only the visual similarity of heatmaps and

discarded, for example, temporal information and information

about absolute durations. Other clustering algorithms (for

example, with tailored proximity metrics and an optimized

intermediate representation) may improve well the consistency.

However, an important aspect of Schindler et al. (2020a) study is

that clustering was used to provide an independent, non-human
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FIGURE 1

Examples of the items.

view of the data. In this sense, clustering can be seen as an

example, in which AI is used to support human researchers—

similar to a researcher colleague who takes an independent

look at the data with a different perspective. In the future, we

can imagine that different USL components, based on different

clustering algorithms, generate different category hypotheses

and, like an “AI colleague,” make suggestions about meaningful

ways to categorize the data. Human researchers would then

interpret and verify these suggestions based on pre-studies with

smaller numbers of participants and a principled understanding

of the applied USL algorithms.

Procedure

The study took place in individual sessions in a quiet

room at the respective schools of the students. Tasks were

presented on the full HD screen with the eye tracker attached

to the bottom frame. The study began with the calibration

procedure, which was followed by three practice tasks to verify

and ensure task comprehension. This was followed by 36

enumeration tasks. Participants were instructed to correctly

name the number of dots represented as quickly as possible

in their preferred communication modality (spoken language,

sign-supported speech, or sign language). A fixation star was

displayed between tasks in the center of a white screen to

separate each task: Students were instructed to fixate on the

star as long as it was visible so that students’ gazes in the tasks

always started from the very same position, the center of the

screen. The items were intermixed randomly, using the same

order for each student. The students were not given feedback on

their responses. Students’ responses were recorded with an audio

recorder to analyze if they answered correctly (for example, “six”

for six dots) or incorrectly. For students who communicated

in sign language, responses were recorded in writing. For the

analyses of student enumeration processes, the sets with one

dot were not included since the enumeration processes can

only be meaningfully differentiated from 2 points upwards.

Thus, 32 tasks per student were analyzed, resulting in a total of

7,264 tasks. To analyze student enumeration processes, we used

heatmaps provided by the Tobii Pro Lab software together with

AI (ML).

Data analysis

Input data

ET devices, like the one used in this study, offer different

representations for the recorded ET data, such as detailed scan

paths comprised of saccades and fixation times. A slightly less

complex but rather intuitive representation is an aggregated

heatmap, where the spatial distribution of gaze targets is

represented as an image. This representation loses parts of the

temporal information completely, such as the order in which

the gaze shifts; and it represents other aspects only in relative

terms, such as the time the gaze focuses on a single position.

This information is color-coded relative to the length of the

complete trial. Despite these shortcomings, patterns are easily

accessible for human experts to interpret on heatmaps, and they

allow the use of tried and tested image processing methods and

ML approaches. Furthermore, previous studies (Schindler et al.,

2019a,b) indicate the usefulness of heatmaps for assessing the

students’ enumeration processes since the enumeration process

employed by the student can be identified by a human expert

(Schindler et al., 2020a). In our processing pipeline, which is

shown in Figure 2, we use the heatmaps generated by the Tobii

Pro Lab Software as input data (Figure 2A). Each task of each

student generates a single heatmap of 1,920x760 color pixels

(∼1.5 megapixels) for a total of 7,264 heatmaps with more than

10 billion data points (10,930,867,200).

Preprocessing

In an initial data cleaning step, heatmaps were

removed from the data pool if the student did not solve

the enumeration task correctly (Figure 2.1). This step is
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FIGURE 2

Data flow diagram illustrating the data analysis steps employed in this study. The green processing elements describe steps the system performs
automatically, while the turquoise element indicates manual analysis. Rectangular boxes contain raw or processed data. Numerals indicate the
order of processing steps; letters indicate the order the data are generated in; and they are referenced in the detailed explanations below.

necessary to exclude a random gaze pattern where the

student just guessed instead of enumerating the dots

shown. After performing this filter step, 6,615 usable

heatmaps remained.

Each heatmap was reduced in size by converting them to

grayscale images and subsampling them to 160 x 90 pixels

each (Figure 2B). This drastic reduction in dimensionality (by a

factor of more than 300) without losing important information

is possible since the heatmap images do not contain high-

frequency components (that is, details on the level of a few

pixels). Even isolated fixations are represented as smooth blobs,

and the minimum blob size is large enough to always be

conserved in the reduced-size images. This dimensionality

reduction was done for computational reasons only. Executing

the clustering algorithm on full-size images will yield very

similar if not identical cluster assignments, but the time required

on off-the-shelf computer hardware increases significantly: less

than an hour to process all tasks with dimensionality-reduced

images (160 x 90 gray value pixels) and an estimated week for

original-sized images (1920 x 760 color pixels).

Clustering

The purpose of a clustering algorithm is to automatically

assign multivariate data into subgroups (Everitt et al., 2011). In

this study, each heatmap was grouped with similar heatmaps to

automatically identify clusters, in which all heatmaps represent

similar enumeration processes of the students (Figure 2.2). A

cluster can be represented by its prototype, which, in this case, is

the average heatmap (see Figure 3) of all the original heatmaps

assigned to this cluster. Finding these groups automatically

required two decisions by the system designer: First, the concept

of (dis-) similarity for the data had to be defined. This relates to

the question, “when are two heat maps similar to each other [see

(1) in the following]?” Second, the specific clustering algorithm

had to be chosen, and an assumption about the number of

clusters or granularity of the data had to be made [see (2) in

the following].

(1) Defining the similarity between two images is broadly

explored in the digital image processing community (Goshtasby,

2012). While there is often the possibility to have domain-

or application-specific definitions, we opted for a standard

approach in this study and used the Euclidean distance d

between two heatmaps as a measure for their dissimilarity. It was

calculated by comparing two heatmapsH1 andH2 pixel by pixel,

that is, summing the squared pixel differences:

d = ‖H1 −H2‖2 =

√

√

√

√

√

160
∑

i=1

90
∑

j=1

[H1
(

i, j
)

−H2(i, j)]
2

Note that H1(i, j) describes the color of the pixel at position

i, j in heatmap H1. The distance d for any two identical

heatmaps is always zero, and the more the pixel values

differ, the larger d becomes. Likewise, the pattern recognition

and machine learning fields have spawned large numbers of

different clustering algorithms (Everitt et al., 2011), all with

different advantages and disadvantages of their own. As we

are interested in explorative data analysis, this study applies

the SOM algorithm (Kohonen, 2001). The distinctive feature

of SOMs in comparison to other cluster algorithms is the a

priori assumption of a grid structure defining a relationship
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between the clusters. This 2D-grid, from which the map part

of the name is derived, can provide additional information

for interpreting the clustering results. The algorithm contains

an iterative optimization procedure, which randomly selects a

heatmap and calculates the distance to all cluster prototypes. The

closest prototype will then move toward the current heatmap,

making the cluster prototype more similar to the heatmap. The

moving cluster representatives’ neighbors, as defined by the a

priori grid, will also move in that direction, but to a lesser degree.

Then, the next heatmap is chosen, and the procedure repeats

until the optimization process converges, that is, the cluster

centers stop moving when all similar heatmaps are assigned

to the same cluster. Due to its nature, the algorithm may

produce different results depending on the random initialization

of cluster representatives, and the order the algorithm selects

the individual heatmaps for comparison. For the algorithmic

details, we refer to Kohonen (2001). For the implementation,

we used the Matlab’s Deep Learning Toolbox V. 13.0 (RRID:

SCR_001622) with standard learning parameters.

(2) SOMs, like many other clustering algorithms, require

choosing the number of groups and their relationships to each

other as part of the algorithm. This can be done automatically

by defining a cluster quality measure and performing an

additional model selection optimization loop, which increases

computational costs significantly, or it can be done manually by

either guessing or choosing the number based on the domain

knowledge. Since a previous study (Schindler et al., 2020b)

identified three different processes, this study used six clusters

in a 3 x 2 grid structure. Under the assumption that all the

three different processes are present in the data and sufficiently

dissimilar as measured by the Euclidian distance, they each form

one group, and the additional groups can represent outliers, such

as the previously unobserved processes or the subgroups of one

of the three identified processes.

Cluster assignment

As a result of the clustering process, each heatmap is assigned

to one of the six clusters (Figure 2C). The unused information in

the clustering process can now be determined for each cluster.

This includes the number of students who are DHH and hearing

students and other statistics for each cluster.

Cluster prototypes

Since the clustering itself was performed on the size-

reduced heatmaps, in the next step, full-size cluster prototypes

(Figure 2.3) are calculated from the original heatmaps. To help

with the visual inspection of the cluster prototypes and for easier

distinction, we shift the color space for those prototypes from the

red-green color table created by the ET software to a red-blue

color table for the cluster prototypes. This can be done for RGB

images by copying the green channel into the blue channel and

then setting the green channel to zero (Figure 2D).

Qualitative analysis

The unsupervised learning results in six clusters each for

every task (item) used in this study. For each of the non-empty

clusters, we interpreted the average heatmaps (Figure 2.4). We

assigned categories of processes based on a system that had

been developed inductively in an earlier study (Schindler et al.,

2020b). For example, for the dice patterns, we distinguished the

following three types of processes:

(1) Simultaneous enumeration: Presented dots are

enumerated simultaneously. The gazes are predominantly in

the middle of the pattern (on the middle point).

(2) Enumeration through the use of groups/structures:

Presented dots are enumerated through the use of groups/

structures: Gazes are on parts of the dots, for example, to one

side, indicating the use of symmetries.

(3) Enumeration through counting: At least half of the dots are

looked at—with gazes on at least half of the points—or every

dot is counted, which means that gazes are on every dot.

Note that for the random arrangements in the counting

range, the three types of processes were minimally different: (1)

Quasi-simultaneous enumeration, (2) Enumeration through the

use of groups/structures, and (3) Enumeration through counting.

The first process in this case was the quasi-simultaneous

enumeration because sets of dots in the counting range cannot

be enumerated simultaneously but quasi-simultaneously (see

Schindler et al., 2020b for more detail).

In practice, this means that, for the example of the dice five,

we assigned type 1 to C3 and C6, type 2 to C2, C4, and C5, and

type 3 to C1 (Figure 3).

Two of our researchers categorized all average heatmaps in

this way. We assigned types of processes for each of the four

conditions: (a) subitizing range (2–4) in random arrangements,

(b) counting range (5–9) in random arrangements, (c) dice range

(2–6) in canonical arrangements, and (d) beyond dice range

(7–9) in canonical arrangements.

We then calculated how many student heatmaps were

assigned to each type of process. For this, we drew on the

information of how many heatmaps (of students who are DHH

and of hearing students) were in each cluster. For example, for

the dice five, we found (1) type 1: 33 (=13+20) DHH and 82

(=51+31) hearing, (2) type 2: 24 DHH and 62 hearing, and (3)

type 3: 1 DHH and 13 hearing.

Statistical analysis

To identify group differences in student enumeration

processes, we carried out k x 2 chi square tests, which allowed us

to compare two independent samples for a k-stepped property
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FIGURE 3

Example of clusters for the dice five (canonical arrangement, dice range).

(Figure 2.4). In our case, we had two groups (DHH, hearing)

and three enumeration processes. We conducted a 3 x 2 chi

square test for each condition: (a) subitizing range (2–4) in

random arrangements, (b) counting range (5–9) in random

arrangements, (c) dice range (2–6) in canonical arrangements,

and (d) beyond dice range (7–9) in canonical arrangements.

We calculated effect sizes using Cramérs V. According to Cohen

(1988), Cramérs V can be interpreted as follows: V = 0.10 is

a small effect, V = 0.30 is a medium effect, and V ≥ 0.50

is a large effect. For degrees of freedom of 2, like in our

study, according to Cohen (1988) V = 0.07 is a small effect,

V = 0.21 a medium effect, and ≥0.35 a large effect. Within

the subitizing range, 1,961 items were analyzed (2–4 in three

different arrangements); within the counting range, 2,972 items

were analyzed (5–9 in three different arrangements); in the dice

range, 1,084 items were analyzed (2–6 in one arrangement);

and in the beyond dice range, 598 items were analyzed (7–

9 in one arrangement). In the cases where the chi square test

showed significant group differences, we calculated cell tests to

investigate what the significant group differences were due to.

We carried out the statistical analyses using the statistics and

analysis software IBM SPSS 28 (RRID: SCR_019096).

Results

Chi square tests were performed to investigate the

relationship between hearing loss and enumeration processes.

The chi square tests revealed significant differences1 in the

distribution of enumeration processes (Figure 4) between

students who are DHH and hearing students for both conditions

in random arrangements: (a) subitizing range: χ
2 (2) = 7.91,

p = 0.038, V = 0.06 and (b) counting range: χ
2 (2) = 35.54,

p < 0.001, V = 0.11. Effect sizes were small. For the dice

range in the canonical arrangement condition (c), chi square

test also revealed significant differences with small effect sizes

in the distribution of enumeration processes between DHH

and hearing students: χ
2 (2) = 13.87, p = 0.002, V = 0.11.

Yet, no significant difference was found for the larger sets in

canonical arrangement (beyond dice range): χ
2 (2) = 0.26,

p = 0.878. This means that the distribution of enumeration

processes did not differ between students who are DHH and

hearing students in the beyond dice range in the canonical

arrangement condition. Cell tests for the differences between

groups revealed the following results: (a) Subitizing range:

Students who are DHH used simultaneous enumeration more

often than hearing students (χ2 (1) = 7.53, p = 0.018, V =

0.06). (b) Counting range: Students who are DHH used quasi-

simultaneous enumeration more often than hearing students

(χ2 (1) = 31.74, p < 0.001, V = 0.10). Students who are

DHH used enumeration of groups less often than hearing

students (χ2 (1) = 20.95, p < 0.001, V = 0.08). (c) Dice

range in canonical arrangement: Students who are DHH used

1 Bonferroni-Holm adjusted p-values are given in the following.
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FIGURE 4

Distribution of enumeration processes in four conditions (significant group di�erences are marked with*).

simultaneous enumeration more often than hearing students

(χ2 (1) = 11.04, p < 0.001, V = 0.10). Students who are DHH

used enumeration through counting less often compared to

hearing students (χ2 (1)= 8.49, p= 0.008, V = 0.09). Also here,

all effect sizes were small.

Summary and discussion

The aim of this study is to investigate if students who are

DHHdiffer from hearing students in small number enumeration

processes. We used the ET data of 227 students (164 hearing

students, 63 students who were DHH). For analyzing the

students’ eye movements, we used ET in combination with

AI, specifically a clustering algorithm, and the analysis of

human experts to identify enumeration processes from the

heatmaps of student gaze distributions. Our study investigates

the enumeration processes of school-age students who are DHH

in a large-scale study—and it brought interesting results to light,

indicating that students who are DHH used more advantageous

processes than their hearing peers in different task conditions.

A further feature of this work is that we used AI to analyze

the differences in small number enumeration processes between

students who are DHH and hearing students. The ML-based

processing pipeline introduced in this study, first and foremost,

allowed us to efficiently process gaze heat maps for a large

number of students by automatically clustering the enumeration

strategies based on the patterns in the data. The automated

clustering analysis also provided an independent view of the

data that can support human researchers as an “AI colleague”

in the interpretation of gaze data. The presented algorithms are

not specific to the task of small set enumeration but can be

applied to any set of heat maps. Hence, the pipeline can serve

as a blueprint for similar studies, but also as a basis for the

development of automated student assessment tools supporting

researchers and teachers.

We examined student enumeration processes of sets under

four conditions: both the subitizing range (2–4) and the

counting range (5–9) in random arrangements, and both

the dice range (2–6) and beyond dice range (7–9) in

canonical arrangements. We found significant differences in the

distribution of enumeration processes between students who

are DHH and hearing students in both random arrangement

conditions: In the subitizing range and the counting range,

students who are DHH used more advantageous enumeration

processes than hearing students. This means that students

who are DHH enumerated the presented dots more often

(quasi-) simultaneously, that is, they took in all dots at a

glance. For dice patterns in the canonical arrangement, we also

found significant differences in the distribution of enumeration
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processes between students who are DHH and hearing students.

Also here, students who are DHH more often enumerated the

presented items simultaneously, indicating that students who are

DHH recognized and recalled the dice patterns more often than

hearing students. However, it should be noted that the effect

sizes were small for all significant differences; practically, the

effect of group on students’ enumeration processes is small. Yet,

the significant differences are interesting against the backdrop

of the following aspect: The sample of students who are DHH

in our study was diverse, for example, regarding language use,

which is known to be a major influencing factor on the learning

and achievement of students who are DHH. Also, approximately

two-thirds of the students who are DHH (65%) in our study had

mathematical difficulties. With a large heterogeneity within this

group in terms of language use and hearing loss and the fact that

a substantial number of them had MD, it is remarkable that,

still, significant group differences were found—with students

who are DHH performing better than hearing students. Even

if effect sizes are small, our findings indicate that students

who are DHH in third to fifth grade do not appear to have

difficulties in small number enumeration processes as compared

to hearing students at that age but, rather, appear to use more

advantageous enumeration processes than their hearing peers.

They use subitizing and groupitizing more often, and they

recognize and recall dice patterns more often. This is interesting

and contributes to the state of research in different ways.

Bull et al. (2006) had shown that, for adults who are DHH

and at a high academic performance level (university students),

there are no differences in response times in small number

enumeration as compared to their hearing peers. Our study

showed that children who are DHH at the age of approximately

10–11 years not only perform as well as their hearing peers, but

they partially appear to perform even better than their hearing

peers in that specific area. This is interesting since also in our

sample, the students who are DHH had significant difficulties

in mathematics. These difficulties do not seem to go hand-in-

hand with subitizing deficits—unlike students with MD, where

a “dysfunctional subitizing mechanism” (Schleifer and Landerl,

2011, p. 280) appears to accompany MD. Our results indicate

that the difficulty profile of students who are DHH appears to

differ from that of students with MD in general.

Furthermore, our study found that the students who

were DHH also performed better than their hearing peers in

conceptual subitizing, also called groupitizing (Clements, 1999;

Starkey and McCandliss, 2014): In the counting range, students

who are DHH used the quasi-simultaneous enumeration more

often, where it is necessary to use the part-whole relationship

and where conceptual understanding is necessary (Krajewski

and Schneider, 2009; Starkey and McCandliss, 2014). This is

particularly interesting since students who are DHH generally

perform lower than their hearing peers in mathematics. Still, our

study indicates that they do have this fundamental conceptual

knowledge and apply it evenmore often than their hearing peers.

Finally, it is worth mentioning that students who are DHH

recognized and recalled dice patterns at one glance more

often than their hearing peers. Less often, they needed to

take in the dots serially. We can only speculate about the

reasons. One possibility is that students who are DHH are

more likely to memorize and recall visual patterns. Overall, it

is often discussed that visual abilities are enhanced in relation

to auditory deprivation in people who are DHH (Hauthal

et al., 2013). Many studies have implied that a lack of auditory

experience from an early age influences the organization of

the human brain for peripheral and central visual processing

and is often compensated with supranormal performance in

other sensory systems, such as vision (Alencar et al., 2019).

Scott et al. (2014) found that adults with profound, congenital,

and hereditary hearing loss have a network of brain regions

exhibiting enhanced responsiveness to peripheral visual stimuli.

Furthermore, deaf persons appear to have a different visual

viewing behavior in some aspects, for example, a preferential

central fixation pattern compared to hearing persons (Lao

et al., 2017). However, this link to a better visual ability

and performance has predominantly been associated with sign

language, as some advantages in visual-spatial tasks are not

only found in deaf individuals but also in hearing individuals

who are skilled signers (Marschark et al., 2015). However,

in our study group, most of the students who were DHH

used spoken language or sign-supported speech as a preferred

communication method, not sign language. Yet, in their regular

schooling, they were in contact with sign language frequently,

and it is further possible that visual orientation played an

important adaptive or compensational role for these students,

as well as in their teaching. Didactics and teaching materials

in the special schools for students who are DHH are often

supported by visualizations in such a way that they can be

easily accessed by all students, both sign language and spoken

language users (Nunes, 2004). Knoors and Marschark (2014)

emphasized in their research that students who are DHH are

not hearing learners who simply cannot hear; they may utilize

different abilities in dealing with tasks.

Only in the canonical arrangements beyond the dice range

did the students who are DHH and the hearing students apply

processes similarly. One possible explanation is that here, the

hearing students had more experience dealing with symmetries,

and this compensated for the advantages that students who are

DHHmay have had otherwise.

Limitations and implications for
future studies

Besides summarizing and discussing our results, we want

to discuss the limitations of our study and point out some

suggestions for future work that emerge. One possible limitation

of this study lies in the selection and composition of the
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sample. The group of hearing students consisted of fifth-grade

students (mean: 10.9 years, SD: 0.7 years), and the group

of students who are DHH consisted of fifth-, fourth-, and

third-grade students (mean: 11.9 years, SD: 1.0). So, students

who are DHH in our study were on average in lower grade

levels, but at the same time older than the hearing students,

which makes it difficult to compare the groups in relation to

their mathematical development in general. However, given

that children learn to enumerate small numbers of dots well

before the age of 10—before or at the very beginning of

school—and since the curriculum in grades 3–5 does not cover

small number enumeration, the grade levels were not critical

for this skill. Therefore, the heterogeneity of the groups was

acceptable and—in our view—biased the results marginally at

most. Furthermore, the group of students who are DHH showed

a large heterogeneity in terms of familial first language (L1),

their communication modality, the degree of hearing loss, and

their use of hearing aids or cochlear implants. On the other

hand, the composition of the group of students who are DHH

in our study represented well the heterogeneity of students

who are DHH that is often encountered in special schools for

students who are DHH in Germany: The DHH sample in our

study had the commonality that they attended special schools

for students who are DHH in Germany and they all had a

peripheral hearing loss and, in a few cases, a central auditory

processing disorder, yet, they were diverse otherwise. Subgroups

were small, which prevented us from running subgroup tests.

However, for future research, it would be valuable to look closer

into language abilities and group differences within the group

of students who are DHH in terms of communication modality,

degrees of hearing loss, etc.

Regarding the applied clustering methodology, it is worth

noting that the generic approach we used in this article was

not optimized for this application. While we do not expect

substantially different results if a different clustering algorithm

had been applied, the choice of the right dissimilarity measure

might be more sensitive in the future. In this study, we used

the Euclidean distance, which may not be optimal in cases

where the appearance of the heatmaps that belong to one

enumeration process is, in part, the same as the appearance

of the heatmaps belonging to another process. In such cases,

the heatmaps that correspond to two different processes will be

scored to be similar andmight end up in the same cluster. Hence,

investigating distance metric learning methods for eye-tracking

heatmaps that provide a stronger separation for those cases is

a promising topic to investigate in the future (see Xing et al.,

2002).

Conclusion

The results of this study indicate that students who are DHH

do not lag in the enumeration of small numbers compared to

hearing students but rather appear to use more advantageous

processes in enumerating small sets than their hearing peers.

Our study suggests that difficulties in enumerating small

numbers do not coincide with the MD that students who

are DHH often have, which offers interesting perspectives for

further research.

Pedagogical implications

For educational practice, our results indicate that students

who are DHH—regardless of their language modality—

appear not to need support in enumeration processes, such

as the part-whole relationship. In this respect, the need

for support differs from that necessary for students with

MD in general, where the practice of, for example, basic

visual small number enumeration processes can be valuable,

especially in early grades. In our study, even students

who were DHH and had MD showed advanced skills in

small number enumeration. For supporting students who are

DHH, a focus on other aspects of mathematics learning

that are known to be difficult for DHH learners, including

conceptual understanding, problem-solving, and word problem

solving, appear to be more significant. These results and

consequences are to be taken into consideration for teacher

training in special education, ideally across all spoken and

signed languages, which should be guided by the needs

and strengths of the group of students who are DHH.

Some pedagogical suggestions for DHH teachers and early

intervention practitioners “from research to practice” have

been recently made; for example, on teaching numeracy and

early math concepts (Kritzer and Green, 2021), fostering

fraction learning (Mousley, 2021), spatial reasoning (Thom

and Hallenbeck, 2021), and usage of sign language in the

mathematics classroom (Krause and Wille, 2021). Our study

indicates that small number enumeration appears to be among

the relative strengths of students who are DHH. This is

encouraging given the general difficulties and delays in their

mathematical development.
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