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In recent years, the possible benefits of mindfulness meditation have 

sparked much public and academic interest. Mindfulness emphasizes 

cultivating awareness of our immediate experience and has been associated 

with compassion, empathy, and various other prosocial traits. However, 

neurobiological evidence pertaining to the prosocial benefits of mindfulness 

in social settings is sparse. In this study, we  investigate neural correlates of 

trait mindful awareness during naturalistic dyadic interactions, using both 

intra-brain and inter-brain measures. We used the Muse headset, a portable 

electroencephalogram (EEG) device often used to support mindfulness 

meditation, to record brain activity from dyads as they engaged in naturalistic 

face-to-face interactions in a museum setting. While we did not replicate prior 

laboratory-based findings linking trait mindfulness to individual brain responses 

(N = 379 individuals), self-reported mindful awareness did predict dyadic inter-

brain synchrony, in theta (~5–8 Hz) and beta frequencies (~26-27 Hz; N = 62 

dyads). These findings underscore the importance of conducting social 

neuroscience research in ecological settings to enrich our understanding of 

how (multi-brain) neural correlates of social traits such as mindful awareness 

manifest during social interaction, while raising critical practical considerations 

regarding the viability of commercially available EEG systems.
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Introduction

Recent years have seen an increase in popular interest in the benefits of mindfulness. 
As a personality trait, mindfulness refers to attending to the present moment experience 
without judging occurring feelings or thoughts (Bishop et al., 2006), and has been associated 
with prosocial behaviors and traits (Donald et al., 2019): Multiple psychometric studies 
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have shown that trait mindfulness is correlated with agreeableness 
(Thompson and Waltz, 2007), empathy (Dekeyser et al., 2008), 
and conscientiousness (Thompson and Waltz, 2007; Giluk, 2009); 
and mindfulness-based interventions and training programs are 
found to effectively enhance compassion and empathy (Kreplin 
et al., 2018; Campos et al., 2019).

Some prevailing frameworks for understanding 
mindfulness theorize that the practice improves attentional 
control, self-awareness, metacognition, and emotional control 
(Lutz et  al., 2007; Vago and Silbersweig, 2012). Indeed, 
mindfulness-related changes in brain and behavior have been 
observed various socially relevant behavioral paradigms, such 
as the Affective Stroop Task (Allen et  al., 2012), pain 
perception tasks (Grant et al., 2011; Lutz et al., 2013; Mascaro 
et al., 2013), emotional provocation (Taylor et al., 2011), and 
prosocial decision-making (Kirk et  al., 2016). These and 
related findings have led researchers to suggest that people 
who practice mindfulness develop self-regulation capacities 
(Chiesa et  al., 2011), which in turn leads to the ability to 
increase the awareness of others in social settings (Schindler 
and Pfattheicher, 2021). Taken together, these findings suggest 
that by training their self-regulation functions, mindful 
individuals may be better able to observe and alter their social 
responses and emotional awareness, and engage in prosocial 
behaviors (Tang et  al., 2015; Berry et  al., 2020). This is 
indirectly supported by neuroimaging studies of mindfulness 
meditators: A meta-analysis found meditators, compared to 
novices, exhibited consistent changes in regions that have been 
associated with self-awareness (Craig, 2004), higher-order 
self-processing (Cavanna and Trimble, 2006), and 
metacognition (Christoff and Gabrieli, 2000; Fleming et al., 
2010; McCaig et  al., 2011). Electroencephalogram (EEG) 
studies, in turn, have identified lower frontal gamma activity 
in long-term mindfulness meditators during meditation (Lutz 
et al., 2004).

Crucially, however, despite mindfulness being linked to 
prosocial traits and to various affective modalities in controlled 
laboratory studies, few studies to date have investigated the 
neural correlates of trait mindfulness during naturalistic social 
interaction (Kaplan et  al., 2018). Neural correlates of 
mindfulness-related prosociality have been observed using fMRI 
in controlled tasks like viewing emotional images (Taylor et al., 
2011) and playing an Ultimatum Game (Kirk et al., 2016). In the 
case of naturalistic behaviors, mindfulness-related prosociality 
has been measured using self-report. For example, one survey 
study showed that trait mindfulness is associated with a 
heightened perceptual focus in conversations, but not daily 
behavioral patterns that exhibit prosocial orientation (Kaplan 
et al., 2018). Critically, while mindfulness meditation has been 
theorized to support social brain function, to our knowledge this 
has yet to be  validated in naturalistic social settings: We  are 
unaware of any studies that have linked neural activity during 
naturalistic interaction to either trait mindfulness or 
mindfulness-based training. To fill this gap, we recorded brain 

activity from dyads during face-to-face communication, and 
asked whether mindfulness-related traits (Brown and Ryan, 
2003) predict neural responses during social interaction similar 
to those in laboratory-based tasks.

To answer this question, we  adopted a “crowdsourcing” 
approach to collect naturalistic inter-brain synchrony data in a 
participatory art installation Mutual Wave Machine, an 
interactive multi-brain neurofeedback installation that 
translates the real-time correlation of pairs’ EEG activity into 
light patterns (described in detail in Dikker et al., 2021; also see 
wp.nyu.edu/mutualwavemachine). Pairs of museumgoers were 
invited to interact naturally with each other while receiving 
audio-visual feedback of their inter-brain synchrony. 
We recorded their EEG activities for the neurofeedback and for 
offline analyses. In the offline analyses, our group has previously 
found that inter-brain coupling is linked to social closeness, 
personal distress, and shared social attention (Dikker et  al., 
2017, 2021), demonstrating scientific validity of the paradigm. 
Here, we  use the same paradigm (Chen et  al., 2021) to 
investigate trait mindful awareness, with the following 
differences: we  used a four-channel instead of a 14-channel 
portable EEG headset, adopted a different synchrony metric 
(Circular Correlation Coefficient, see Data Analysis), and asked 
different research questions.

To record participants’ brain activity we  used Muse, a 
4-channel EEG headband commercialized as a neurofeedback tool 
for mindfulness-based stress reduction training (MBSR; Hashemi 
et al., 2016). As a neurofeedback tool, Muse and its accompanying 
app have been reported to be effective in reducing stress in breast-
cancer patients (Millstine et al., 2019), and improving well-being 
and attention (Bhayee et al., 2016). The validity of Muse-collected 
data was demonstrated in a couple of studies: an ERP study 
showed the pooled average of TP9 and TP10 electrodes 
successfully captured the N200, P300 responses (Krigolson et al., 
2017); EEG data signatures such as power spectral density (PSD), 
the individual alpha frequency (IAF) and the frontal alpha 
asymmetry (FAA) measures computed from Muse data were 
consistent with those from a research-grade EEG system (Cannard 
et al., 2021); researchers successfully classified perceived mental 
stress level using the theta-band PSD from Muse (Arsalan et al., 
2019). However, mindfulness-related EEG research using the 
Muse headset has generated mixed results. For example, one study 
using the Muse observed a significant increase in beta and gamma 
frequencies in the post-meditation sessions compared to 
pre-meditation (Karydis et al., 2018). Another study using the 
“calm score” computed by the Muse app (a proposed proxy for 
mindfulness), however, failed to observe “calm score” changes in 
participants after a 1-month meditation intervention. Additionally, 
some researchers have reported findings where the “calm score” 
did not reflect participants’ increased trait mindfulness (Acabchuk 
et al., 2020).

Portable, wireless EEG headsets are increasingly used to 
conduct social neuroscience research in naturalistic settings, and 
specifically in so-called hyperscanning studies—studies that 

https://doi.org/10.3389/fpsyg.2022.915345
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://paperpile.com/c/WtqloA/f4ajP
http://wp.nyu.edu/mutualwavemachine


Chen et al. 10.3389/fpsyg.2022.915345

Frontiers in Psychology 03 frontiersin.org

simultaneously measure the brain activity of multiple people 
interacting with each other. Using a range of metrics to quantify 
inter-brain connectivity (Ayrolles et  al., 2021), inter-brain 
coupling has been linked to a variety of factors during both verbal 
and non-verbal social tasks (Czeszumski et al., 2020). Inter-brain 
coupling has been associated with prosociality in various contexts. 
For example, inter-brain coupling studies using EEG have shown 
higher synchrony for couples than strangers in natural 
conversation and motor coordination tasks (Kinreich et al., 2017; 
Djalovski et al., 2021), in social coordination and cooperation (Mu 
et al., 2017; Barraza et al., 2020), and in teams with better collective 
performance (Reinero et al., 2021). During social interactions 
outside of laboratory environments, our group has previously 
found that inter-brain coupling is linked to social closeness, 
personal distress, and shared social attention (Dikker et  al., 
2017, 2021).

In sum, the first aim of the present study was to investigate 
whether laboratory findings on the neural correlates of 
mindful awareness replicate during naturalistic social 
interaction in an EEG device that has been explicitly 
associated with mindfulness meditation. Specifically, we asked 
if more mindful individuals exhibited enhanced EEG alpha 
(8–12 Hz) and theta (4–8 Hz) power during face-to-face social 
engagement (Takahashi et al., 2005). The second aim of this 
research was to capture possible “multi-brain” neural 
correlates of mindful awareness during naturalistic 
interaction. We  investigated whether inter-brain coupling 
correlates with mindful awareness during naturalistic social 
settings, building on a growing body of research on 
mindfulness on the one hand, and social neuroscience 
research using portable EEG systems on the other.

Materials and methods

Participants

We collected data from participants who partook in the 
Mutual Wave Machine exhibition at Espacio Telefónica in 
Madrid, Spain (2019; see Study Setup). 554 individuals 
participated in the study, including 271 females, 245 males, and 
three individuals who identified as “other.” Participants’ ages 
ranged from 12 to 81 years, with an average of 33.8 years. After 
removing data with poor quality, we  ended up with 379 
participants for the PSD analysis, and 62 dyads (124 
individuals) for inter-brain analysis (see Data Analysis). For 
inter-brain analysis, we retained 22% of participants, which is 
a lower retention rate than the previous iteration’s 39% (Dikker 
et al., 2021). This could be explained by the employment of the 
4-channel EEG headset rather than 16 channels in the previous 
study (see Discussion).

Participants completed the questionnaires and consent forms 
in Spanish. They were informed that the primary purpose of 
participation was the art experience, but their data would be used 

for research in the future. Participation was voluntary and without 
monetary compensation. Individual written informed consent was 
obtained before the session.

Study setup

This study was conducted as part of the participatory art 
installation Mutual Wave Machine where pairs of participants 
interacted naturally in a museum setting. This setup allowed us to 
study real-world face-to-face social interactions in a large 
population of participants recruited outside of the traditional 
research subject pool.

Museum visitors freely interacted with each other while their 
EEG was recorded using the Muse, a four-electrode wireless EEG 
system (Krigolson et al., 2017). In the current study, we recruited 
visitors at the Mutual Wave Machine exhibition at Espacio 
Telefónica in Madrid, Spain. Participants could participate either 
in pairs or individually to be paired with others. The artwork 
featured two shell-like structures enclosing the two participants 
facing each other, with visual projection on the shells and 
auditory feedback. EEG headsets were applied while participants 
completed a consent form and pre-experiment questionnaire. 
They were told the purpose of the work is to investigate whether 
being on the same “brain wavelength” related to their subjective 
feelings of “being in sync,” and that the brightness of the visual 
feedback reflected their synchrony level in real time. They were 
encouraged to try different strategies to achieve more synchrony. 
Note that there is evidence in past iterations that suggests being 
well-informed about the experiment increases pairs’ synchrony 
(Dikker et al., 2021). This increase, however, persisted even when 
the neurofeedback signal was a sham, suggesting the “placebo 
effect” of the knowledge about the experiment. We thus adopted 
this protocol to observe synchrony in the most encouraging  
setting.

The interaction typically lasted 10 min. Real-time inter-brain 
power correlations were calculated and used to generate visual 
feedback for the participants as part of the 10-min experience 
(Chen et al., 2021). Specifically, EEG data collected from the pair 
was processed in 6-s windows in real time. Both data streams were 
filtered into four frequency bands using FFTW (www.fftw.org; 
delta: 1–4 Hz; theta: 4–7 Hz; alpha: 7–12 Hz; beta: 12–30 Hz), and 
then Hilbert transformed to derive their instantaneous spectral 
power. Inter-brain synchrony was then calculated as the Pearson 
Correlation coefficient of the pairs’ instantaneous spectral power 
of particular frequency bands. Note that in some of the previous 
iterations, we took the effort to validate the EEG signal through 
eyes open/closed and up/down control experiments, which we did 
not perform in the current study due to practical limitations. 
Instead, we  adopted strict data exclusion criteria semi-
automatically (see EEG preprocessing).

Before and after the session, participants were asked to 
complete questionnaires for their affective traits and states 
(see Materials).
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Materials

All participants were asked to complete short questionnaires 
both before and after the session, addressing their relationship to 
each other, mood, and personality traits. Relationship measures 
include questions about relationship duration and social 
closeness. Affective personality trait measurement consisted of 
(a) a revised 14-item version of the Interpersonal Reactivity Index 
after the session (Davis and Others, 1980), including the subscales 
Personal Distress (e.g., “When I see someone who badly needs 
help in an emergency, I go to pieces”) and Empathic Concern 
(e.g., “I often have tender, concerned feelings for people less 
fortunate than me”). Internal reliability for each scale of the IRI 
was (<0.90), but it is in line with the literature: PD with a 
Cronbach’s alpha of 0.74 and EC with 0.74; and (b) the MAAS 
(Brown and Ryan, 2003), consisting of 15 items measuring one’s 
awareness of what is taking place at the present (e.g., “I could 
be experiencing some emotion and not be conscious of it until 
sometime later.”). Both questionnaires were answered on a five-
point Likert scale ranging from “Does not describe me well” to 
“Describes me very well.” Social closeness was assessed using the 
Inclusion of the Other in the Self (IOS) Scale, a pictorial measure 
of closeness with two overlapping circles representing the self and 
the other (Aron et  al., 1992). Participants also completed a 
shortened version of the Positive and Negative Affect Schedule 
(PANAS-X; (Watson and Clark, 1994), which was not analyzed 
here because the purpose of the study was to investigate the 
(inter-brain) neural correlates of mindful awareness.

This study focuses on mindful awareness, one facet of the self-
report trait mindfulness (Baer et al., 2006). We used the Mindful 
Attention Awareness Scale (MAAS), a standardized questionnaire 
designed to assess the open awareness of the present moment 
(Brown and Ryan, 2003). The MAAS has been widely applied and 
shown to successfully probe specific aspects of mindfulness, such 
as acting with awareness (Coffey and Hartman, 2008), perceived 
inattention (Van Dam et al., 2010), and burnout and engagement 
(Kotzé and Nel, 2016). Due to the limitation of the setup, we used 
the short MAAS questionnaire (7 out of the 10 questions) instead 
of more comprehensive mindfulness measures such as the Five 
Facet Mindfulness Questionnaire (FFMQ; Baer et al., 2006) which 
contains 38 questions, longer than what we could fit in during the 
limited session each person had in the museum. Since MAAS only 
focuses on the awareness factor of the FFMQ (other factors are 
observing, describing, non-judging and nonreactivity), our 
finding addresses only mindful awareness, rather than 
mindfulness in general.

Before the session, participants completed Relationship 
measures, Empathic Concern part of the IRI, the MAAS scale, and 
the IOS scale. After the session, participants completed the 
Empathic Concern as well as the Personal Distress parts of the IRI, 
the IOS scale, and the PANAS-X questionnaire. Note that there 
was a risk of demand characteristics since MAAS was measured 
beforehand. However, the inter-brain synchrony was measured 
when participants were already encouraged to connect, so 

we believe demand characteristics due to MAAS testing is only 
secondary to such effects, if they exist.

Data analysis

Personality metrics
After removing incomplete and incorrect data entries, 475 

individuals’ answers were preserved. For the purpose of this 
study, the following metrics were analyzed: MAAS score, social 
closeness scale, Personal Distress, Empathic Concern, sex, age. 
To investigate which trait measure was related to mindful 
awareness, we constructed a multiple linear regression analysis 
using Personal Distress, Empathic Concern, age, and social 
closeness scale as predictors, and the MAAS score as the 
predicted variable.

EEG preprocessing
The initial dataset consisted of 277 pairs of ~10-min 

recordings. First, EEG data files were removed if files were not 
readable (4 pairs), the two EEG files were misaligned (119 pairs), 
or subjects’ self-reported information was missing (57 pairs). 
Each individual EEG dataset was then bandpass filtered from 0.1 
to 30 Hz and segmented into 1-s epochs (“pseudo trials”). Bad 
channels were manually rejected upon visual inspection: since 
frontal channels (Fp1, Fp2) were noisier and more often removed 
than temporal channels (TP9, TP10), our data is mainly driven 
by the temporoparietal channels. We used the Python package 
“autoreject” (Jas et al., 2017) to remove epochs with movement 
artifacts and eye blinks, followed by manually checking the 
automatic selection and correction procedure. This resulted in 
the additional exclusion of 20 pairs due to poor data quality. 
Note that for inter-subject connectivity analyses, we  only 
preserved temporally overlapping epochs that “survive” the 
preprocessing for both participants in each pair: unmatched 
epochs were removed. For individuals’ spectral power analyses, 
we used all the artifact-free epochs, regardless of the participants’ 
partners’ data, and removed participants with less than 60 clean 
epochs (60 s). Lastly, datasets with less than 50 remaining epochs 
(50 s) after these preprocessing steps were excluded from further 
analysis (15 pairs removed). These preprocessing steps resulted 
in 62 pairs (124 individuals) for the intersubject connectivity 
analysis, and 379 individuals for the spectral power analysis.

After preprocessing, we performed the short-time Fourier 
transform on the 1-s epochs, using a Hanning window with a 
one-sample step size, resulting in complex spectral coefficients of 
1 Hz resolution from 1 to 30 Hz.

Individual PSD analysis
Individual PSD was computed from the preprocessed, 

epoched data (see previous section). We applied Welch’s method 
to estimate PSD per epoch from 1 to 30 Hz and averaged the 
result across all epochs and channels. The result was one PSD 
value per frequency for each participant. We  then used 
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cluster-based permutation analysis to investigate whether the 
PSD values significantly correlated with participants’ mindful  
awareness.

Inter-brain coupling analysis
Inter-brain coupling was calculated using Circular Correlation 

Coefficient (CCorr), which is a phase synchrony measure that is 
argued to be robust to spurious synchronization (Burgess, 2013; 
Goldstein et  al., 2018). CCorr was computed between 
corresponding channels in the dyad, and then averaged across 
channel pairs.

To capture slower, transient information throughout the 
time series, the epoched complex coefficients were concatenated 
before the correlation (henceforth referred to as “concatenated”), 
resulting in two discontinuous complex series from the pair. 
CCorr was then computed by correlating the angular 
component of the two concatenated series for each pair with 
respect to all four channels using the Python package Astropy 
(Astropy Collaboration et  al., 2018). The computation is 
demonstrated in eq. 1.1 (Circular Correlation and Regression, 
2001), where X and Y are concatenated series from a certain 
frequency bin, and n represents the total number of time points 
(e.g., if 100 epochs are preserved, there are 
256 Hz × 100 s = 25,600 time points). We used 1 Hz frequency 
bins ranging from 1 to 30 Hz. Following previous analyses of 
similar datasets, we also used a second metric, concatenated 
Projected Power Correlation (PPC; Hipp et al., 2012; Dikker 
et  al., 2021) demonstrated in eq.  1.2–5, where X t f,( ) and 
Y t f,( ) are the concatenated complex coefficients at frequency 
f . First, the projection of Y t f,( )  on X t f,( )  is removed, 

leaving only the part of Y that’s orthogonal to X , i.e., 
Y t fX⊥ ( ), , and the same computation was done for X t f,( ) , 
resulting in X t fY⊥ ( ),  (eq.  1.2). Second, we  computed the 
correlation between | ( )X t, f | and ( )⊥XY t, f , and | ( )Y t, f | and 
X t fY⊥ ( ),  respectively, and then averaged the two values as 

our PPC per frequency bin.
To investigate the difference between concatenating epochs 

versus averaging epochs, we also applied the same method to 
the epoched complex coefficients without concatenating 
(henceforth referred to as “epoched”). In such “epoched CCorr” 
or “epoched PPC,” the same calculation was done to individual 
epochs, and the result was an average of CCorr values across 
epochs. These exploratory results can be  found in 
Supplementary Figures S1, S2.
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Cluster-based permutation analysis for 
correlation

The following procedure applies to both the individual PSD 
and pairs’ inter-brain coupling, in relation to either participants’ 
mindful awareness or pairs’ average mindful awareness, 
respectively. Interbrain synchrony is often computed using a 
variety of methods and thus is only meaningful in contrasting 
conditions with statistical analyses (Ayrolles et  al., 2021). 
Therefore, we  adopted the cluster-based permutation 
technique, a non-parametric and data-driven method to 
compare conditions.

To investigate the relationship between mindful awareness 
and inter-brain coupling, we computed the Pearson Correlation 
Coefficient between pairs’ MAAS score and connectivity 
metrics in every frequency bin, using a cluster-based 
nonparametric test to correct for multiple comparisons. The 
protocol is adapted from Dikker et al. (2021). First, Pearson 
correlation coefficients were computed between every 
frequency bin and pairs’ average MAAS scales, generating 30 
correlation values. Correlation significance thresholds r_upper 
and r_lower were then determined by choosing the 97.5th and 
2.5th percentile of the 30 correlation values, respectively. Then 
the random permutation procedure started with randomly 
shuffling the behavioral variable (e.g., MAAS scale), and 
computing correlation values for each frequency bin. 
Correlation values higher than r_upper or lower than r_lower 
were marked as significant in this permutation, and significant 
correlation values that were adjacent in frequencies were 
identified as clusters. For each cluster, we extracted the cluster 
size as our cluster statistics. When there was more than one 
cluster, the maximum cluster size was chosen. This random 
permutation procedure was repeated 2000 times, generating a 
distribution of cluster statistics, of which the 95th percentile 
was determined as the significant cluster threshold. Last, from 
the actual correlation values, we  identified clusters using a 
value of p threshold of 0.1 and compared their sizes to the 
significant cluster threshold. The Monte-Carlo value of p was 
then calculated from the percentile score of the actual cluster 
size in the cluster statistic distribution. A Monte-Carlo value of 
p lower than the significant threshold 0.05 would mean the 
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actual cluster size is larger than 95% of the random distribution 
of cluster sizes.

We applied the same procedure to correlate mindful awareness 
with individual PSD values, replacing the pairs’ average MAAS 
scale with individuals’ MAAS scale.

Results

Individuals’ EEG spectral power does not 
predict mindful awareness

Contrary to prior findings illuminating neurobiological 
changes related to mindfulness in laboratory contexts, i.e., a global 
increase in alpha and theta power during various kinds of 
meditations (Takahashi et al., 2005; Lomas et al., 2015; Lee et al., 
2018), we found no significant correlation between individuals’ 
power spectral density during social interaction and their MAAS 
scales (Figure 1).

Inter-brain coupling is correlated with 
dyads’ mindful  
awareness

The cluster-based permutation analysis showed that pairs’ 
mindful awareness predicted inter-brain coupling (CCorr; 
Monte-Carlo value of p < 0.001). Specifically, as can be seen in 
Figure 2B, there were two clusters where the CCorr theta band 
(5–8 Hz) cluster shows a negative correlation between  
CCorr and subjects’ MAAS scales [Figure  2B, circular  

correlation coefficient at 7 Hz; r(62) = −0.373], and the high 
beta band (26–27 Hz) cluster shows a positive correlation 
[Figure  2C, circular correlation coefficient at 26 Hz; 
r(62) = 0.325]. Figure  2A shows the Pearson Correlation 
Coefficient between the MAAS and CCorr at every frequency 
from 1 to 30 Hz, with significant clusters marked with 
bold lines.

Personal distress predicts mindful 
awareness

The regression analysis showed Personal Distress as the only 
significant predictor among sex, age, Empathic Concern and 
Social Closeness [t(475) = −5.493, p < 0.001; Figure  3] for trait 
mindful awareness (for the full results, please see 
Supplementary Table S1). Individuals with lower personal distress 
reported higher MAAS scale.

Discussion

This study investigates the neural correlates of mindful 
awareness in naturalistic face-to-face social interactions. Our 
study investigated the relationship between mindful awareness 
and prosociality on both the psychometric and neurobiological 
level. The questionnaire results showed that trait mindful 
awareness was associated with lower personal distress. The EEG 
results showed that neural correlates of mindful awareness during 
social interaction were found in interbrain synchrony, but not in 
individual EEG power changes.

FIGURE 1

Pearson correlation coefficient between individuals’ MAAS score and their power spectral density (PSD). Cluster-based permutation analysis of the 
correlation coefficients showed no significant clusters (p = 0.92).
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Intra- vs. inter-individual neural 
correlates of mindful awareness

Contrary to previous studies, we did not find a relationship 
between individual brain activity (power spectral density) and 
mindful awareness. There are a few possible explanations for this 
null effect. First, past studies investigating EEG power and 
mindfulness have been focusing on different types of mindfulness 
correlates from ours: power changes in individuals have been 
observed only in meditative states (Lutz et al., 2004; Takahashi 
et al., 2005), and functional changes in other controlled lab tasks 
are observed with fMRI (Brefczynski-Lewis et al., 2007; Farb et al., 
2007; Grant et al., 2011; Taylor et al., 2011; Allen et al., 2012; 
Hasenkamp and Barsalou, 2012; Lutz et al., 2013; Mascaro et al., 
2013) or in event-related potentials with EEG (Brown et al., 2013; 
Wong et al., 2018). Second, using a four-channel portable EEG 

system in a noisy, less controlled setting might also have 
contributed to a null result. It is important to reiterate, however, 
that we did find inter-brain correlates of mindful awareness during 
social interaction.

This is not the first study to report a discrepancy between 
intra- and inter-brain neural correlates: other hyperscanning 
studies have similarly found that a multi-brain approach 
captures neural correlates of social behaviors that are not 
observed in individuals (Simony et  al., 2016; Balconi et  al., 
2017; Davidesco et al., 2019; Dikker et al., 2021). For example, 
in one study an inter-brain network but not individual brain 
activity predicted players’ strategy in prisoner’s dilemma 
(Fallani et  al., 2010), and inter-brain coupling but not 
individual alpha power nor intra-brain synchrony predicted 
students’ performance during lessons (Davidesco et al., 2019). 
Under the rationale that online mutual interaction is “a 

A

B C

FIGURE 2

Correlation results between trait mindful awareness and CCorr. (A) Pearson correlation coefficients (y-axis) between pair-averaged MAAS and 
inter-brain coupling (CCorr), for each 1-Hz frequency bin from 1 to 30 Hz (x-axis). Two significant clusters (monte-carlo p = 0.002) are highlighted 
in bold. (B) Scatter plot between CCorr at 7 Hz and pair-averaged MAAS. The dotted line is the linear regression line. [r(62) = −0.373]. (C) Scatter plot 
between concatenated CCorr at 26 Hz and pair-averaged MAAS scale [r(62) = 0.325].

https://doi.org/10.3389/fpsyg.2022.915345
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Chen et al. 10.3389/fpsyg.2022.915345

Frontiers in Psychology 08 frontiersin.org

complex nonlinear system that cannot be  reduced to the 
summation of effects in single isolated brains” (Koike et al., 
2015), our study further validates a multi-brain approach in 
complex social tasks by extending it to a naturalistic setting 
and portable EEG systems.

Note that in previous iterations of the current study’s 
experimental setup, the Mutual Wave Machine, we found inter-
brain coupling was correlated with pairs’ relationship duration 
and with their affective personalities (social closeness and 
perspective taking) using the EMOTIV portable EEG system. 
The current study intends to validate the easier-to-use EEG 
system Muse, focusing on a different affective trait, mindful 
awareness. Although we did not replicate previous findings 
about social closeness and perspective taking, it could be due 
to the significant difference in experimental setup and data 
analysis methods between the current study and past iterations 
using EMOTIV.

Mindful awareness and empathy 
measures

Our questionnaire results showed a negative correlation 
between trait mindful awareness and personal distress, but not 
between trait mindful awareness and empathic concern. In line 
with previous research, this result suggests that mindful awareness 
might alleviate the negative consequences of empathy, but not 
necessarily contribute to empathic feelings: Previous research has 
suggested a complicated relationship between mindfulness and 
empathy, especially when empathy is dissected as a 
multidimensional construct (Davis and Others, 1980). Measuring 

overall self-reported empathy, some studies have reported a 
positive correlation between trait mindfulness and empathy 
(Beitel et al., 2005; Dekeyser et al., 2008; Greason and Cashwell, 
2009), and mindfulness-based stress reduction (MBSR) training 
has been shown to increase participants’ self-reported empathy 
(Shapiro et al., 1998). However, other studies did not find effects 
of mindfulness-based training on self-reported empathy, empathic 
concern, or emotion recognition (Galantino et al., 2005; Lim et al., 
2015). Specifically, in an eight-week MBSR training for nursing 
students, self-reported personal distress decreased, whereas self-
reported empathic concern and perspective taking did not change 
(Beddoe and Murphy, 2004).

Distinct from empathic concern, personal distress is a self-
oriented negative feeling that is often associated with reduced 
perspective taking and compassion fatigue when witnessing 
others’ suffering, and can be  unrelated to prosocial behaviors 
(Pulos et al., 2004; FeldmanHall et al., 2015). Thus, our finding 
that trait mindful awareness is negatively correlated with personal 
distress but not related to empathic concern, is in line with 
previous work. Such empirical evidence supports the theory that 
mindful awareness is a vital part of self-compassion, which 
contributes to the resiliency against emotional fatigue (Figley, 
1995; Neff, 2003; Thomas, 2012).

Relationship between trait mindful 
awareness and inter-brain coupling

We observed a positive correlation between inter-brain 
coupling and mindful awareness in the beta frequency range, 
but a negative correlation in the theta frequency range. This 
finding seems puzzling in light of past studies reporting a 
positive relationship between inter-brain coupling and prosocial 
behavior and prosocial traits (Valencia and Froese, 2020). 
However, recent work has pushed back on the leading 
assumption that more synchrony is always ‘better’ (for review, 
see Mayo and Gordon, 2020). For example, multiple studies 
have found cognitive downsides of behavioral synchrony, such 
as insecure attachment (Feniger-Schaal et  al., 2016), worse 
performance in cooperative problem solving (Abney et  al., 
2015; Wallot et  al., 2016), and decreased self-regulation 
(Galbusera et al., 2019). Physiological research has also yielded 
mixed results about the link between synchrony and couples’ 
relationships as well as parent-infant engagement (Timmons 
et al., 2015; Wass et al., 2019). In their review, Mayo and Gordon 
(Mayo and Gordon, 2020) proposed situating synchrony in an 
interpersonal system that contains both collective and 
independent behaviors and taking into account both the 
synchronization and segregation aspects inherent to synchrony. 
While neural studies overwhelmingly report positive 
relationships between inter-brain synchrony and social factors, 
there too, some studies pointed to the complexities of such 
relationships. For example, Goldstein et al. (2018) found that, 
during hand holding, romantic partners’ inter-brain coupling 

FIGURE 3

Correlation between personal distress and MAAS. Individuals’ 
personal distress is negatively correlated with MAAS scale 
[t(475) = −5.493, p < 0.001].
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(CCorr) was negatively correlated with analgesia of the target 
person upon pain stimulation, and positively correlated with 
empathic accuracy of the partner. Separate examination of the 
effect of pain and touch, however, suggested distinct brain-
coupling components associated with the experience of pain 
and the empathy for pain. The relationship between inter-brain 
synchrony and mindful awareness, a personality trait that 
entails a mixture of cognitive properties, may also correspond 
to multiple processes and require further investigation.

Conclusion

This study used consumer-grade portable EEG (Muse) and 
asked how trait mindful awareness and prosociality manifest 
itself in neural responses during naturalistic dyadic face-to-
face social interactions. Neural correlates of mindful awareness 
during social interaction were evident in inter-brain coupling, 
but we did not replicate previous studies showing individual 
EEG power changes as a function of mindful awareness using 
a consumer-grade EEG system. In addition, the directionality 
and signature of the relationship between mindful awareness 
and inter-brain coupling varied by frequency and by how inter-
brain coupling was computed. Together, our findings are 
suggestive of a complex relationship between mindful 
awareness and inter-brain coupling, while at the same time 
raising a cautionary note about methodological approaches in 
hyperscanning research.
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