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The driver is one of the most important factors in the safety of the transportation system.
The driver’s perceptual characteristics are closely related to driving behavior, while
electroencephalogram (EEG) as the gold standard for evaluating human perception is
non-deceptive. It is essential to study driving characteristics by analyzing the driver’s
brain activity pattern, effectively acquiring driver perceptual characteristics, creating
a direct connection between the driver’s brain and external devices, and realizing
information interchange. This paper first introduces the theories related to EEG, then
reviews the applications of EEG in scenarios such as fatigue driving, distracted driving,
and emotional driving. The limitations of existing research have been identified and
the prospect of EEG application in future brain-computer interface automotive assisted
driving systems have been proposed. This review provides guidance for researchers to
use EEG to improve driving safety. It also offers valuable suggestions for future research.

Keywords: electroencephalogram, distraction driving, emotion driving, fatigue driving, traffic safety

INTRODUCTION

It’s well-known that drivers play a crucial role in the driving process, which requires substantial
cognitive effort and attention (Lemercier and Cellier, 2008) from the operator’s brain (Chisholm
et al., 2008). According to the Statistics of the World Health Organization (WHO), 1.35 million
people die from road traffic accidents every year (Tan et al., 2021; Wang et al., 2021).

Fatigue and distraction (Stutts et al., 2001) are thought to be important factors in traffic accidents
(Carney et al., 2015). Although the ratio of the accidents caused by fatigue driving varies from about
1% to about 20% in different regions (Pei et al., 2013; Anund et al., 2016), the consequences of
traffic accidents caused by fatigue are comparatively more serious, and fatigue driving accounts for
a higher proportion in fatal accidents (Armstrong et al., 2010). This is because the fatigue is more
likely to be ignored by drivers than other factors (Vanlaar et al., 2008; Miller et al., 2020), which
was interpreted as an optimistic bias in some research (Meng et al., 2015). This optimistic bias will
make drivers less inclined to rest when they feel tired, and more likely to continue to drive, which
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increases the possibility of accidents. The data had shown that
lane departure crashes caused by driving distraction in the
United States account for 20% of officially reported crashes, and
accounts for 41% of traffic accident mortality (Fagerberg, 2004).
Klauer et al. (2006) found that nearly 80% of collisions and 65%
of critical collisions were related to distraction by analyzing the
raw driving data of 100 vehicles (). This is because the distraction
can slow down the reaction time (RT) of the driver by up to
two seconds, thereby raising the risk for accidents significantly
(Zwahlen et al., 1988). For instance, the visual distraction can
reduce driver’s lateral control ability and the time of looking at
the road (Carsten, 2006).

As the driver’s psychological feedback to the traffic
environment, emotion is also considered to be the main
factor causing traffic accidents. For instance, the congested
traffic situation often stimulates the anger emotion generation
of drivers, and further induces drivers’ cognitive deficiency (e.g.,
attentional bias) (Mesken et al., 2007). Anger provocation leads
to an increased tendency to underestimate the potential traffic
hazards (Stephens and Groeger, 2009). With the diversification
of modern life style, emotional changes are more prominent,
including not only negative emotions, but also extreme emotions,
which will lead drivers to an abnormal driving level. As is evident
from the quoted accident statistics, the status of drivers is the
most commonly contributing factor in fatal accidents worldwide,
moreover, an ineffective driving status (e.g., fatigue, distraction,
anger) plays an important role in the sequence of events leading
to many of the accidents.

Poor driving status (Abdoli et al., 2015) (e.g., distracted
and drowsy) may have a significant impact on the quality
of maneuvers performed, with potentially catastrophic
consequences for both the passenger and the driver. Roughly
speaking, the two tasks may have similar visuomotor and
cognitive characteristics that may cause similar adjustments
in workload (Hancock and Verwey, 1997) profiles, affecting
driver performance (Horberry et al., 2006), which may lead
to potentially catastrophic consequences. Situations exist that
require alertness (Smith et al., 2000) from the driver for noticing
issues as well as accurate judgment for tackling them. Hence,
the need for a continuously improved understanding of driver
behavior and how to optimize driving performance is particularly
important. Therefore, effective monitoring and regulation of
drivers’ bad driving state and in-depth revelation of the nature of
dangerous driving behavior have become a research hotspot in
the field of road traffic safety.

The most common methods for driver status detection
can be divided into the vehicle-based, video-based, and
physiological signals-based techniques. The self-assessment
(Eby et al., 2003) of fatigue, driving physical features (Ji
et al., 2004; Peng et al., 2022b), facial features (Lee and
Chung, 2012), voice intonation features (Krajewski and Nöth,
2007), and neurophysiological features (Fan et al., 2021)
measures may contain camouflaged data in the research
process, leading to certain unreliability of research conclusions.
Among these methods, the neurophysiological measurements
and their associated features are the most effective, which
have been widely used in attempts to describe different

human mental statuses and to estimate the activity of
central nervous systems related to driving performance. The
physiological signals include electroencephalography (EEG),
electrocardiography (ECG), electromyography (EMG), electro-
oculogram (EOG), Phonocardiogram (PCG), galvanic skin
response (GSR), respiration rate (RT), and skin temperature (ST),
all of these physiological data (Shen et al., 2008) that have been
widely used in attempts to identify and detect human statuses
(Jap et al., 2009; Gunes et al., 2011; Cheng et al., 2022b; Fu et al.,
2022; Peng et al., 2022a). Among these methods, the EEG signals
represent the most promising way to detect driver states since
they can reflect the physiological activity of the human brain
more intuitively and are more accurate due to strong immunity to
artifacts (Chavarriaga et al., 2018). EEG is an electrophysiological
signal, and different mental activities, emotions or external
activities can affect the changes of brain waves. Compared
with other physiological signals, EEG signals can reflect the
physiological activity of the human brain more intuitively, which
are called the “gold standard” for evaluating human cognitive
state due to their advantages of high temporal resolution, non-
invasiveness, low-cost properties (Xing et al., 2020). Moreover,
EEG uses a simple and subject-acceptable method to obtain
data that can be used for driver state perception analysis.
Therefore, EEG signals have become a common focus for future
intelligent transportation-assisted driving and brain-computer
interface fields (Cheng et al., 2022a; Fan et al., 2022). An optimal
human-machine symbiotic interaction, where the vehicle can
consider the driver’s goals and preferences, can be achieved
by fully exploring the intrinsic correlation between driving
states and physiological/psychological signals. The block diagram
of the driving assistance system considering driving states is
shown in Figure 1. With full consideration of the environmental
information, driver’s physiological signals (e.g., EEG, heart rate,
respiratory rate) and facial expressions, and the driving states
inferred by the recognition modules, especially a brain-machine
interfaces (BMIs), the controller of driving assistance system can
determine the type and level of assistance it provides.

This study systematically reviews these EEG-based researches
of adverse driving states (e.g., fatigue, distraction and emotion)
from the theoretical, technical and applied levels, including
their definitions, causes, effects on driving behavior, generation
mechanism from the EEG level, detection methods based on
EEG, etc. Furthermore, the key EEG theoretical concept is also
introduced. This study can help road traffic safety researchers
to understand the nature of bad driving behavior, grasp the
development and dilemma of adverse driving state detection in
the field of brain science, and determine the future development
perspectives. The remainder of the paper is organized as follows:
Section “Basic Theory of Electroencephalography” introduces
the basic theory of EEG, sections “Study of Fatigue Driving
Based on EEG,” “Study of Distraction Driving Based on EEG,”
and “EEG Based Studies in Emotional Driving” respectively
introduce the main applications of EEG in the traffic field such as
fatigue driving, distracted driving, and emotional driving; section
“Discussion, Conclusion, and Future Prospects” summarizes the
development trend and limitation of adopting EEG for drivers in
the future transportation field.
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FIGURE 1 | Driving assistance system considering driving states.

BASIC THEORY OF
ELECTROENCEPHALOGRAPHY

To begin with, we introduce the theories of EEG signals, the types
of EEG electrodes, brain waves or neural oscillation. EEG is a
method of recording brain activity using a net of regularly spaced
electrodes and is the superimposed of postsynaptic potentials of
many neurons in the cerebral cortex (Shan et al., 2018; Hou et al.,
2021; Liu et al., 2022).

Electrocorticogram (ECoG) refers to similar records obtained
directly from the cerebral cortex or dura mater. Local field
potential (LFP) refers to the insertion of a small electrode into
the brain to record electrical signals generated by brain activity.
All three techniques record postsynaptic potentials generated
by neuronal activity (Buzsáki et al., 2012). Figure 2 shows the
differences in three different types of brain activity recording
techniques. This paper mainly discusses EEG, which is the most
widely used in neuroscience research (Henry, 2006). Figure 3
shows the EEG 10–20 international system, which is widely used
to regulate the position of electrodes (Acharya et al., 2016). The
system specifies the standardized position of 75 electrodes on the

scalp, each at 10 and 20% points along the longitude and latitude
lines, respectively. The name of the electrode consists of two
parts. The English letter is the approximate area corresponding to
the electrode: frontal pole (Fp), frontal lobe(F), central region(C),
parietal lobe(P), occipital lobe(O), temporal lobe(T), and the
ending number represents the distance to the midline. The higher
the number, the farther away from the midline. Odd numbers
are used in the left hemisphere and even numbers are used in
the right hemisphere (the division between left and right is based
on the subjects’ perspective). According to its spatial location, the
cerebral cortex is divided into frontal lobe, parietal lobe, temporal
lobe and occipital lobe.

Analysis of brainwaves and their decomposition in different
frequency bands are often used to assess changes in the “intrinsic
dynamics” of the subject while performing simple cognitive
or sensor-motor tasks (Kim et al., 2020). EEG is the gold
standard for brain activity measurement and is considered a
good indicator of mental status (Shalash, 2019). The amplitude
or power of brain waves in specific brain regions, as well
as in different frequency bands throughout the brain, has
been shown to be reliably associated with different cognitive
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FIGURE 2 | Three brain activity recording techniques.

FIGURE 3 | EEG 10-20 international system.

processes (Züst et al., 2019). Brain waves are usually divided into
five different waves according to their frequencies, namely the
Gamma (30–42 Hz), Beta (13–30 Hz), Alpha (8–13 Hz), Theta
(4–8 Hz) and Delta (0.5–4 Hz) waves (Holm et al., 2009) as
shown in Figure 4, of which Delta and Theta waves are called

slow waves, which usually appear when a person is asleep or in
meditation. The alpha wave is the basic rhythm of normal brain
waves, which occurs when the brain is awake and relaxed. The
beta wave is a fast wave, which usually occurs when a person
is mentally stressed or hyperactive. It has been shown that a
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decrease in alertness and a worse performance are associated
with increased EEG power spectra in the theta band and changes
in EEG alpha power (Gale et al., 1977). In addition, Okogbaa
et al. (1994) noted that increased EEG power spectra in the beta
band were associated with increased alertness and arousal, alpha
waves occurred during relaxation conditions with reduced levels
of attention in a drowsy but awake state; and theta waves occurred
primarily in the sleep state. Many studies on EEG studies have
also been conducted by extracting the characteristic quantities of
these EEG waves data analysis.

Currently, there are numerous applications of EEG research
results in the study of traffic driving behavior, mainly focusing
on traffic safety. The driver is an important component of the
traffic system, and in the field of intelligent transportation, vehicle
driver assistance is a key component of the traffic system, and the
development of its vehicle driver assistance systems has mostly
focused on monitoring the driver’s driving state (Namazi et al.,
2019). In the field of traffic flow theory, some exploratory studies
have been conducted to incorporate the driver’s physiological and
psychological perceptions during dynamic driving as a parameter
in traffic flow models (Tang et al., 2012). EEG signals can
visually reflect the physiological activity of the brain, which
further reflects the psychological perceptual activity of a person.
Therefore, applying the results of EEG signal research to the
field of traffic driving behavior can effectively improve driver
cognition and contribute to the development of relevant traffic
models that incorporate driver perception. Next, we discuss the
research on driver brain waves under fatigue driving, distracted
driving, and emotional driving, respectively.

STUDY OF FATIGUE DRIVING BASED ON
EEG

Whether the driver’s fatigue state can be accurately detected is
very important to ensure driving safety. Studies have shown that
driving fatigue may be caused by driver mental overload (Hu and
Lodewijks, 2021) or mental underload (Ahlstrom et al., 2021).
Mental overload usually occurs because of continuous, long-time
concentrated work. And although the effect of mental underload
on fatigue is not as obvious as mental overload, it will still
aggravate driver’s drowsiness in situations such as night driving
or driving straight for a long time (Young and Stanton, 2007;
Solls-Marcos et al., 2017). Some researchers stated that mental
underload would impair the driver’s ability to distribute attention
resulting in an inevitable collision (Nilsson, 1996; Young and
Stanton, 2002). Despite there being some differences between
fatigue, drowsiness and sleepiness, they usually mean the same
thing in EEG-based research. In this section, we will discuss the
development history and application of EEG fatigue detection.

At first, studies were mostly aimed at finding a qualitative
relationship between fatigue and EEG signals. Lal and Craig
(2001) analyzed and obtained the changing characteristics of
EEG in different fatigue levels based on the average awake-
stage EEG activity, and found that the activity of delta wave
and theta wave increased in the fatigue stage. Shen et al. (2008)
detected the drivers’ mental state via EEG and proved that
using EEG to estimate the drivers’ fatigue level is feasible.

Yeo et al. (2009) carried out a driving simulating experiment
which indicated that there was an alpha loss phenomenon when
the subjects were sleepy.

Later, research were performed to discover possible EEG-
based fatigue parameters or features and to quantitatively analyze
the link between fatigue and EEG signal. Jap et al. (2009)
proposed four kinds of algorithms (i) (θ + α)/β, (ii) α/β, (iii)
(θ+ α)/(α+ β), and (iv) θ/β to detect the fatigue, and found that
algorithm revealed a larger increase in all four algorithms when
fatigue was detected. They also examined the possibility of using
features of alpha, beta, delta and theta wave to identify fatigue,
and proposed four kinds of combination indices θ/α, β/(α + β),
(β + α)/β and (θ + α)/(α + β). Combining these indices with
driving time, the results showed that the change of θ/(α + β),
β wave and θ wave could be applied to detect fatigue together
(Jap et al., 2011). These studies brought forward new indices by
combining EEG signal with its physiological characteristics and
verified the effectiveness of these indices subsequently. It is an
efficient way to find new fatigue indicators for later studies.

Further, the time-dependent EEG signal is transformed into
a spectrum of EEG power varying with frequency, so as to
directly analyze the changes of different frequencies or frequency
bands related to specific brain activity is called frequency domain
analysis. In the field of driving safety, EEG is usually divided into
delta rhythm (0.5–4 Hz), theta rhythm (4–8 Hz), alpha rhythm
(8–13 Hz), beta rhythm (13–30 Hz), and gamma rhythm (above
30 Hz) according to the length of the period or the frequency.
The EEG study can be analyzed by directly extracting these
rhythms or the associated signal characteristic quantities made
by the combination of these rhythms. Ahlström et al. (2018)
found by power spectral density estimation that in the same road
environment, due to increased subjective sleepiness in night-time
driving, EEG alpha rhythm content increased in the same road
environment. In addition, it is becoming a common analysis
method to focus on the spatial distribution of EEG signals on the
scalp surface by combining the frequency domain information
and extracting the corresponding feature indicators to analyze the
activity status of different brain regions. In addition, combining
frequency domain information with spatial information to focus
on the spatial distribution of EEG signals on the scalp surface
and extracting corresponding characteristic indicators to analyze
the activity status of different brain regions is also becoming a
common analysis method. Charbonnier et al. (2016) used the
spectral information of EEG signals obtained in six brain regions
to calculate the spatial covariance matrix of EEG in different brain
regions over 20 s and transformed it into a driving fatigue index
varying between 0 and 1. The conclusion showed that the alpha
rhythm-based driving fatigue index can be used as a characteristic
indicator for an accurate assessment of mental fatigue over a
long period of time.

There are also studies that extract novel features. For example,
a new feature ξ 20 is generated by bispectrum analysis of the
30 s time window (Vinayak et al., 2010). This feature can track
the gradual development of drowsiness until standard sleep stage
I. Another new feature, IEBW, is generated by PTFD analysis
and has a 10-s time window (Yoshida et al., 2007). This feature
can distinguish between the awake state and the sleepy state and
the normal sleeping state. However, these two features require
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FIGURE 4 | EEG wave band categories.

intensive computing, so their real-time performance needs to be
further evaluated.

Based on these features and parameters, researchers had
proposed methods of driver state classification. Vuckovic et al.
(2002) Used the complete spectral density of EEG as the
input of artificial neural network to automatically identify
the driver’s alert state and sleepy state. Guo et al. (2016)
argued that α/β had the highest correlation with reaction
time, and used a Gray correlation to enhance the accuracy
of fatigue classification, finally achieving an accuracy of 86%.
However, there were only two EEG experts to observe the
EEG waveform to subjectively judge the subjects’ awake and
sleepy states, which is a lack of objectivity. Mu et al. (2017)
estimated the feasibility of an entropy-based feature extraction
method and acquired an accuracy of 98.75% using Support
Vector Machine(SVM) classification algorithm. Although SVM
performs well in generating decision surfaces when processing
high-quality data, it isn’t suitable for complex invariance. San
et al. (2016) proposed a hybrid deep genetic model to remedy
for the deficiency of SVM in processing complex invariance.
Chen et al. (2018) combined synchronization likelihood with
minimum spanning tree, and employ them in feature recognition
and classification. Zeng et al. (2019) proposed a new detecting
method of driver state based on LightGBM algorithms and
gained a better performance in classification and decision
efficiency compared to SVM, convolutional neural network
(CNN) and other traditional classification methods. More and
more studies also prefer to use time-frequency analysis to obtain
information of EEG, where wavelet analysis and wavelet packet
analysis become the focus of attention of various researchers.
B and Chinara (2021) extracted time-frequency features from
EEG signals in the selected channel using wavelet packet
transform, and finally proposed a drowsiness detection model
based on single-channel EEG signals. Wang proposed a driving
fatigue detection method based on multi-non-linear feature

fusion strategy to evaluate the degree of driver fatigue (Wang
et al., 2020). These models not only explore new feature
indexes, but also reduce the dimensionality of EEG data,
greatly improve the running speed of the model, and are of
practical significance.

On the basis of the improved discrimination and prediction
methods of driver fatigue, the research of brain fatigue
monitoring system based on EEG began to emerge. Lin et al.
(2005) established a system based on EEG power spectrum
analysis, independent component analysis and fuzzy neural
network model. The system could evaluate the driver’s cognitive
state and predict the driver’s driving behavior at the same
time. Lin et al. (2011b) optimized the process of artifact
removal and brain source selection. On this basis, the driver
fatigue recognition model is established by using independent
component analysis and self-organizing map, and the accuracy
is about 90%. Raut and Kulkarni (2014) designed a brain
computer interface system that can detect driving fatigue
in real time, which can monitor the driver’s sleepiness and
send an alarm to the driver when it is found, so as to
prevent traffic accidents (Raut and Kulkarni, 2014). Some real-
time and practical driver fatigue identification devices for car
drivers, train drivers and pilots were also designed. He et al.
(2014) developed a real-time fatigue monitoring device based
on sedentary EEG, which can run under Android system.
Zhang et al. (2017) designed a portable EEG-based fatigue
detection device for high speed train drivers. The device
would collect drivers’ EEG and send the raw EEG data to the
computer where the data is processed to detect drive fatigue.
Once fatigue was detected, the device would send a message
to wake the driver up. Some studies integrated EEG with
other human features in order to obtain higher recognition
accuracy and processing speed. Fu et al. (2016) combined
EEG with Electromyogram(EMG) and respiratory signal, which
significantly increase the posterior probability.
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However, for the sake of safety, most driving fatigue
simulation experiments were carried out under laboratory
simulation conditions. And researchers had built driver fatigue
detection systems based on EEG in the laboratory environment.
Although the development process of drowsiness is similar to the
real on-road environment (Fors et al., 2018), some researchers
suggested that subjects tended to have higher subjective and
physiological drowsiness level using a driving simulator (Hallvig
et al., 2013). As a result, in order to ensure security, more factors
must be involved in the migration from laboratory environment
to real environment. In addition, for the real environment, the
probability of identification error should be reduced as much as
possible. Hybrid measurement based on EEG was considered to
provide a more reliable solution (Dong et al., 2011), and hybrid
measurement reduced the number of identification errors, thus
improving the availability of the system.

Timeliness is a major challenge for driver fatigue detection.
In order to solve this problem, it is necessary to use not only a
shorter data processing time window, but also an intelligent data
mining model to ensure that the driver’s drowsiness is estimated
in time (Wei et al., 2015). From the point of view of timeliness,
EEG is more suitable for driver fatigue detection applications.
The physiological reason behind the short time window of EEG
analysis is its direct relationship with drowsiness. The key is that
for EEG itself, the time window of feature extraction is directly
related to the timeliness of the fatigue detection system.

In addition, the latest developments in EEG dry sensors,
low-power integrated circuits and wireless communication
technologies have moved EEG-based fatigue detection from
research to practical applications. Chen et al. (2017) proposed a
new EEG method based on main band power spectral density
(PSD) to estimate the mental load of tasks, which reliably
evaluates the cognitive needs of construction tasks. With the
development of wireless and wearable EEG devices, we believe
that EEG-based fatigue detection system is a more promising
research field under natural driving conditions.

Electroencephalogram related technologies make it possible to
develop driver fatigue detection systems with higher precision
and lower time delay. Due to the non-hidden characteristics
of EEG, driver fatigue can be identified or predicted before
external performance, which effectively reduces the time of
detection-feedback loop, gives drivers more reaction time and
reduces the incidence of accidents. In the long transition period
between manual driving and automatic driving, the detection
and feedback of driver fatigue based on EEG can effectively
reduce the incidence and mortality of traffic accidents. The
experimental environment and corresponding research methods
of some studies are summarized and sorted out as shown in
Table 1.

STUDY OF DISTRACTION DRIVING
BASED ON EEG

The International Organization for Standardization defined
distracted driving (Pettitt et al., 2009) as “focusing on activities
unrelated to driving, which seriously affects driving behavior.”

Lee et al. (2008) defined driving distraction as “a kind of
dangerous behavior that drivers turn their attention to activities
unrelated to driving tasks, resulting in the decline of drivers’
vision, cognition, decision-making, and operation ability.”

The distraction task may be derived from the external
environment (Regan et al., 2008), which is a significant stimulus
for bottom-up attention grabbing (Miller and Buschman,
2013). On the other hand, distraction can also be internal, a
phenomenon known as cognitive distraction (Chun et al., 2011).
However, the driver’s attention capacity is limited, due to this
feature, the driver needs to choose the focus of attention, either
toward driving or toward distraction. Investigating the origins of
distraction and its influence on driving behavior is very important
for improving safety on the road. For instance, research in this
field could contribute to the development and improvement of
advanced driver assistant systems (ADAS) that help to reduce the
number of accidents by flexibly adjusting to the current driver
state. The National Highway Safety Administration divided
driving distraction into visual distraction, auditory distraction,
cognitive distraction and physical distraction (Ranney et al.,
2001). In the complex and diverse traffic environment, the types
of stimuli that cause driver distraction include visual stimulus
(Karthaus et al., 2018), auditory stimulus (Caird et al., 2018)
and so on. The study found that, compared with auditory
stimuli, visual resource conflict is the largest (Wickens, 2002).
Various studies have confirmed that visual stimulation has a
greater distracting effect (Sodnik et al., 2008). Therefore Human
Machine Interface and The Safety of Traffic in Europe had done
a lot of research (Carsten, 2006) con the evaluation methods
and indicators of drivers’ visual distraction and cognitive
distraction. It was found that visual distraction could reduce
the lateral control ability and the time of looking at the road;
Cognitive distraction would reduce the driver’s steering ability,
and improve the driver’s frequency of looking at the center of
the road and lane line keeping ability. Previous research (Wali
et al., 2013a) showed that researchers had been able to use
machine vision to detect and identify visual distraction efficiently
and accurately. Compared to visual distraction, the detection
accuracy of cognitive distraction is higher since the relevant data
is more simple to process (Sonnleitner et al., 2014). Furthermore,
it is more easily implemented to monitor driver’s cognitive
distraction in real time. For these reasons, EEG-based distraction
detection experiment is largely regarded to cognitive detection.
And researches on EEG-based distraction detection were mainly
about finding the relationship between EEG signal and visual
distraction or cognitive distraction.

Due to different types of interference, the research on
distracted driving is more detailed than fatigue driving (Young
and Salmon, 2012). It includes not only the relationship between
EEG and distracted driving and the classification of distracted
driving, but also the active site of different interference tasks
in the brain and the prediction of the starting and ending time
of distracted driving by EEG. At present, research regarding
cognitive distraction accounts for the largest proportion, and
the experiment on distraction detection is also mainly under
driving simulation environment. Moreover, the data processing
mainly depends on the theory of probability and statistics. At the
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TABLE 1 | Research summary of fatigue driving based on EEG.

Author (year) Objective Environment Participants EEG signal analysis method Data analysis
method

Lal and Craig,
2001

Relationship between EEG
and fatigue

Static test 35 Power spectrum analysis ANOVA;
Post hoc analysis

Vuckovic et al.,
2002

Discrimination and
classification of fatigue

levels

Static test 17 manual judgment T-test

Lin et al., 2005 Driving fatigue monitoring
system based on EEG

Driving simulation 10 Power spectrum analysis;
Independent component

analysis

Correlation analysis

Shen et al.,
2008

Fatigue measurement Static test 10 FFT; Power spectrum analysis T-test

Yeo et al., 2009 Driver fatigue classification Driving simulation 20 FFT; Power spectrum analysis –

Jap et al., 2009 EEG fatigue parameters Driving simulation 52 FFT ANOVA

Kar et al., 2010 EEG fatigue parameters Real on-road
experiment&Driving

simulation

40 Wavelet transform; Entropy
based analysis

Average deviation;
Standard deviation

Jap et al., 2011 EEG fatigue parameters Driving simulation 50 FFT ANOVA; LSD
multi-comparison

Raut and
Kulkarni, 2014

Driving fatigue monitoring
system based on EEG

– – – –

Wang et al.,
2014

Fatigue measurement Driving simulation 14 Independent component
analysis; Self-organizing map

–

He et al., 2014 Driving fatigue monitoring
system based on EEG

Driving simulation 18 manual judgment –

Guo et al.,
2016

Relationship between EEG,
fatigue and reaction ability

Driving simulation 20 Power spectrum analysis Cross validation

San et al., 2016 Fatigue measurement Driving simulation 5 Power spectrum analysis –

Mu et al., 2017 Fatigue measurement Driving simulation 12 Entropy based analysis T-test

Zhang et al.,
2017

Driving fatigue monitoring
system based on EEG

Driving simulation 20 Wavelet packet transform –

Chen et al.,
2018

Fatigue measurement Driving simulation 15 Wavelet packet transform T-test

Zeng et al.,
2019

Fatigue measurement Driving simulation 10 Independent component
analysis

Cross validation

same time, because setting different cognitive interference tasks
is needed in distracted driving experiments, the EEG activities
related to interference events have become the hot spot of
distracted driving research.

Electroencephalogramsignals can be extracted from a variety
of feature indicators, and the selection of appropriate feature
indicators is very important for the content of the study. The
Event-Related Spectral Perturbations (EPSP) analysis (Lin et al.,
2008) has been widely conducted. Lin et al. (2008) designed
random vehicle trajectory offset interference and mathematical
calculation interference experiments, and found that when the
driver is distracted, there would be an increase of frontal theta
and beta activities. Then, further study showed that the increase
of frontal theta wave power could be an indicator of the severity
of interference during real driving (Lin et al., 2011a). Almahasneh
et al. (2014) analyzed the hemispheric data and stated that the
right frontal cortex was the most affected area during distracted
driving. Therefore, the activation of the right frontal cortex
might be regarded as a feasible spatial index that indicates the
driver distraction. They later discovered that when the driver was

distracted, the frontal lobe electrode pairs and the posterior parts
of the brain showed a higher degree of coherency (Almahasneh
et al., 2016). Savage et al. (2020) argued that distraction could
cause an overall reduction of theta wave activity in occipital
part. Wali et al. (2013b) extracted the power spectral density
and spectral center of gravity frequency of different wavelets
(DB4, db8, Sym8, and coif5). Mean and standard deviation were
calculated and an analysis of variance (ANOVA) was performed.
The result showed that these two features of Sym8 are highly
distinguishable from distraction levels. Using the power spectral
density features extracted by Sym8 wavelet, the best average
accuracy obtained by subtraction fuzzy classifier was 79.21%. Liu
et al. (2016) used the semi-supervised machine learning method
to improve the G-mean by 0.0245 compared with the traditional
supervised learning method without adding labeled data.

The potentials can be measured by electrodes attached to
the subject’s scalp when they are exposed to external visual or
auditory stimuli. Such evoked potentials are often referred to
as event-related potentials (ERPs) (Donchin, 1979). In studies
of driver distraction, ERP is commonly used to measure the
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TABLE 2 | Research summary of distracted driving based on EEG.

Author (year) Objective Environment Participants EEG signal
analysis method

Data analysis
method

Berti, 2010 Relationship between
REPs and distraction

Static test 12 Amplitude analysis T- test;
ANOVA

Lin et al., 2008 Relationship between
EEG and distraction

Driving
simulation

11 ICA; FFT; ERSP ANOVA

Lin et al.,
2011a

Relationship between
EEG and distraction

Driving
simulation

15 ICA; FFT; ERSP ANOVA

Lin et al.,
2011b

Relationship between
EEG and distraction

Driving
simulation

16 ICA; FFT; ERSP ANOVA

Wali et al.,
2013b

Relationship between
EEG and distraction

Driving
simulation

50 Wavelet packet
transforms; FFT

Mean ± SD;
ANOVA

Almahasneh
et al., 2014

The active position of
the brain when

distracted

Driving
simulation

42 Amplitude analysis;
Linear discriminant

analysis

Paired sample
t-test

Liu et al., 2016 Distraction
measurement

Real on-road
experiment

41 – –

Savage et al.,
2020

Relationship between
EEG and distraction

Driving
simulation

17 ICA T-test

amplitude and latency of one or several components of the EEG
signal. For example, one study used negative slow waves (NSW),
the most negative event-related potentials in the 430-995 ms
range on electrodes Fz and Cz, to assess the allocation of neural
resources in single- and dual-task conditions (Chan and Singhal,
2015). It was found that the NSW wave amplitude was reduced
in the dual-task condition compared to the single-task condition
and indicated that the driver shifted cognitive resources from the
primary driving task to processing distracting stimuli. In another
study comparing P300 wave amplitude with driving difficulty, an
increase in difficulty was found to be associated with a decrease
in P300 wave amplitude (Chan et al., 2016). Liang and Lin (2018)
showed in a study of driver perception of road hazards that there
were differences in event-related potentials between hazardous
and non-hazardous stimuli in the Pz, Cz, and C3 channels, and
in particular, significant differences between hazardous and safe
drivers within a time window of 80–100 ms after stimulation.
Studies using ERP signals to investigate the association between
hazard perception and driver behavior deserve further attention.

Furthermore, the event-related potential P300 (Soltani and
Knight, 2000) reflects physiological and psychological functions
related to cognitive processes such as perception and memory,
and can be divided into two subgroups, P3a and P3b. It is
found that when drivers deal with simple interference tasks,
there is no significant change in driving behavior, but the
amplitude of ERP in EEG signal is significantly weakened,
which suggests that stimulus context as defined by the
target/standard discrimination difficulty rather than stimulus
novelty determines P3a generation. In the driving context,
for example, inhibition deficits associated with declines in the
cognitive processing of distraction stimuli are reflected in a
smaller P3b amplitude (Karthaus et al., 2018). Analyzing the
types of event-related synchronization and desynchronization
(ERS/ERD) of drivers under auditory interference can provide
a new idea for the cognitive model modeling of brain-
computer interaction.

Some researchers held the opinion that driving distraction was
generally the interaction of two or more types of distractions.
Yusoff et al. (2017) discussed the feasibility of a hybrid
detection methods using four kinds of common measurement
method (driving performance measurement, driver physical
measurement, driver biological measurement and subjective
reports), and proposed a hybrid measurement method of physical
measurement and physiological measurement. They verified that
this hybrid method had higher accuracy than other methods in
detecting distraction (Yusoff et al., 2017).

Different from other detection methods that rely on external
features, EEG-based detection can effectively identify all types
of distraction, and has advantages in the detection of cognitive
distraction. This feature may enable using a single EEG device
to recognize mixed distractions, reduce the number of detection
devices, and improve portability. The experimental environment
and corresponding research methods of some studies are
summarized and sorted out as shown in Table 2.

EEG BASED STUDIES IN EMOTIONAL
DRIVING

Emotional driving is when a driver’s emotional state deviates
from the norm driving behavior (Dula and Geller, 2003).
Some studies have pointed out that emotion has become one
of the main causes of traffic accidents, among which the
identification of emotion is the focus of driving emotion research
(Villanueva et al., 2015).

Emotions themselves are highly complex and abstract,
and psychologist Russell (1980) proposed a two-dimensional
model of emotions, also known as the Valence-Arousal model
(Figure 5), in which the horizontal and vertical axes represent
Valence and Arousal, respectively. Since the two-dimensional
model cannot effectively distinguish emotions such as fear
and anger, Mehrabian proposed a three-dimensional spatial
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representation of emotions, adding “dominance” to Valence and
Arousal, which is also known as the Valence-Arousal-Dominance
model (Mehrabian, 1996).

Emotions play an extremely important role in the driver’s
decision making, planning, reasoning and other behaviors (Ali
et al., 2018). According to the Valence-Arousal model, the
common driver emotions can be divided into positive emotions
(e.g., happy, excited) and negative emotions (e.g., nervous, sad).
Studies (Dula and Geller, 2003) have shown that emotions can
significantly cause young drivers to engage in risky driving
behaviors such as reckless driving and risky driving (Fernandes
and Job, 2003), especially negative emotions. Positive emotions
enable drivers to drive better, thus playing a certain positive
role in traffic safety (Lewis et al., 2008). Steinhauser et al.
(2018) studied the effects of positive and negative emotions on
driving behavior and showed that emotions acted as a mediator
to influence the driver’s attentional state and thus directly
changed driving behavior. Existing research (Megías et al.,
2011) demonstrates that drivers’ emotional states have a direct
impact on their alertness, hazard awareness, and maneuverability
(Pêcher et al., 2009). Drivers with irritability tend to drive fast and
easily get irritated during driving, leading to aggressive driving
behavior (Elander et al., 1993). For example, when their vehicle
is forced to slow down due to the influence of other vehicles,
they will have an angry mood, and then they will overtake the
vehicle by repeatedly accelerating and changing lanes (Stephens
and Groeger, 2009). Current research has focused on driving
behavior in relation to risk perceptions, emotions, attitudes,
and certain human characteristics, among which emotions and
affective components highly influence human decision-making
and perceived risk (Slovic et al., 2004). Barrett and Salovey
(2002) suggested that emotions play a major role in motivational
behavior. Analyzing the influence of the mood of driving
behavior is also very meaningful, because it is difficult to change
one’s character, but it can adjust and control the emotions,
understand how the emotional states affect driving behaviors
to affect driving behavior, is vital for development of advanced
driver assistance system, the system through the flexibility to
adapt to the current state of the driver to improve safety. This
has great implications for reducing dangerous driving behavior.

At the cognitive level of the brain, the brain localization theory
suggests that brain structure is closely related to emotions. Sarlo
et al. (2005) used the film to induce negative emotion and neutral
emotion of the subjects, respectively. The study found that the
alpha band of EEG signals is highly related to emotional changes.
When negative emotions are induced, the potentials of the alpha
band in the right hindbrain will produce a strong response
(Sarlo et al., 2005). The research from Balconi and Lucchiari
(2008) and Miltner et al. (1999) indicated that two types of wave
signals, gamma and beta, are particularly useful for recognizing
emotion. Li and Lu (2009) observed that gamma wave signal was
related with two particular but distinct emotions: happiness and
sadness. On the other hand, Bos found that the most reliable
electrode positions for detecting emotional valence are F3 and F
(Lin et al., 2010).

Driver emotion recognition is becoming an important task
for advanced driver assistance systems (ADAS), and data shows

that monitoring the driver’s emotions while driving can provide
important feedback to the driver, which can be useful in
preventing accidents. Common emotion recognition methods
can be divided into two categories based on non-physiological
signals and physiological signals. Most of the initial studies used
non-physiological signals such as facial expressions (Anderson
and McOwan, 2006), voice intonation and physical features to
extract recognition features (Yin et al., 2017), but the effect of
recognition was not satisfactory because these features could
be artificially and deliberately disguised. Physiological signal
recognition mainly consists of two types, one is based on the
peripheral nervous system, such as measurement of human
heart rate, respiration, skin impedance, and physiological signals
such as electromyography (Picard et al., 2001), and the other
is based on the EEG signals of the central nervous system.
The biggest advantage of peripheral nervous system-based
recognition methods is that emotions are not easily artificial,
but the disadvantage is the lack of a uniform criterion and
low accuracy. With the continuous research, it has been found
that emotions are closely related to human physiological and
psychological activities, and the association with cortical activity
is particularly obvious. The EEG signals also have the advantage
of being less susceptible to artifacts because they contain a lot
of physiological information, and they are more accurate than
other physiological signals (Jie et al., 2014). It has become a hot
and cutting-edge technology to study driver’s emotions through
brain electricity. In 2016, a study (Zhang and Lee, 2010) made an
effective distinction between positive and negative emotions in
human beings through EEG. Zhang et al. (2011) classified the four
emotions by an effective method combining GA-Fisher classifier
and EEG, with an accuracy of 79.82–82.74%. Abhang et al. (2016)
proposed an efficient and reliable emotion recognition system
based on EEG signals.

Petrantonakis and Hadjileontiadis (2010) proposed a high-
order crossover EEG feature of emotion recognition, and used
this feature to identify emotion. Lin et al. (2010) induced 26
subjects into four emotions of joy, anger, joy and sadness,
and then used linear classification algorithm to classify the
collected EEG signals, with an accuracy of 79.23 and 85.35%. Nie
et al. (2011) combined hybrid adaptive filtering with high-order
crossover to classify six emotions, and the accuracy was 85.17%.
Taking into account the driver’s personality characteristics and
the influence of traffic environment, Fan et al. (2010) established
a driver emotion detection model based on EEG signals using
Bayesian network, which can provide adaptive assistance, and
pointed out that in addition to alcohol and fatigue, emotion
is another factor that affects driver behavior. Therefore, driver
emotion detection can help improve driving safety. Chae
(2015) found correlations between six emotions in simulated
driving and brain signals evoked by flat-screen display images,
suggesting that a novel driver vehicle interface could be designed.
Rothkrantz et al. (2009) proposed a system of classification
of certain emotional states by analysis of EEG signal, which
can evaluate the drivers’ respondents under extreme emotions.
Frasson et al. (2014) uses an EEG system to capture and analyses
the type and intensity of the driver’s emotions, then generate
corrective actions that can reduce the emotions. After a period of
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FIGURE 5 | Valence-Arousal model of emotion.

training, drivers are able to correct their emotions on their own
(Frasson et al., 2014).

Katsis et al. (2008) proposed a method to evaluate the
emotional state of a race car driver and designed a wearable
system for emotion recognition, which assessed the emotional
state by facial electromyography, ECG, respiration, and electrical
skin activity, and validated the system. In future research on
driving emotion recognition, extracting multimodal features will
be beneficial to improve the accuracy of recognition models
and provide strong support for the development of real-
time driving emotion detection devices. Zheng et al. (2014)
proposed an emotion recognition technique combining eye-
movement information and EEG, whose experiment results
show that the performance of the fusion model combining EEG
and eye tracking features outperforms previous methods based
on unimodal signals. Currently, multimodal-based driver state
modulation is also a hot research topic to improve the overall
model recognition accuracy.

DISCUSSION, CONCLUSION, AND
FUTURE PROSPECTS

It is necessary to study the EEG characteristics in different
driving states, and to try to decipher the intrinsic correlation
between driving behavior and brain activity from a neurological
perspective, to study the intrinsic mechanism of driving
behavior at a deeper level, and to apply it to future vehicle

intelligent assistance systems, which can help improve the driving
experience and enhance driving safety. This paper provides
a review of the applications of EEG signals in the field of
traffic safety, focusing on the monitoring of poor driving status,
including fatigued driving, distracted driving, emotional driving,
and some other applications. Given the above, understanding the
states of drivers may lead to better state management.

In general, the advantages and limitations of applying EEG to
driver state detection can be summarized as

Advantages
Human cognitive states are closely related to human
physiological and psychological activities, and the association
with cortical activity is particularly obvious. Compared with other
physiological signals, EEG signals can reflect the physiological
activity of the human brain more intuitively and are more
accurate since they are less susceptible to artifacts. Moreover, the
EEG signals also have the advantages of high temporal resolution,
non-invasiveness, low-cost properties.

Limitations
The common head-mounted EEG measurement equipment used
in EEG experiments are not very applicable in naturalistic
driving conditions, because they are inconvenient to carry and
the signals acquired by them fluctuate greatly when the drivers
engage in various tasks (e.g., observing the surrounding traffic
and reacting to a conflict) which can lead to uncontrolled

Frontiers in Psychology | www.frontiersin.org 11 July 2022 | Volume 13 | Article 919695

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-13-919695 July 16, 2022 Time: 14:24 # 12

Peng et al. EEG in Driving Safety

interference to data collection. At present, the EEG experiments,
which are non-invasive to the human brain and harmless
to the psychology of the subjects, were usually conducted in
driving simulators with a significant difference from real traffic
environment. Unfortunately, there often is a certain arbitrariness
in the behavior of the subjects since they think the driving
errors will not lead to catastrophic consequences. Therefore,
it is questionable whether the experiment results can truly
reflect the EEG changes in real-life scenarios. Furthermore,
the effectiveness of state recognition models based on EEG is
closely related to study sample since the EEG signals have strong
individual characteristics, which may cause the models trained
in laboratory environment cannot deal with actual driving
contexts very well.

Aiming at these limitations, some future research prospects
were proposed to apply such technologies based on EEG to actual
driving contexts and traffic safety improvement, as follow.

A portable acquisition device is the foundation for
applying these state detection technologies based on EEG
to the actual driving contexts. With the development
of EEG dry sensors, low-power integrated circuits and
wireless communication technologies, the EEG-based driver
state detection under naturalistic driving conditions are
considered to be promising. For instance, the drowsiness
of professional drivers has been detected by simply
wearing a cap with an EEG acquisition device in
Australian coal mines.

A high-accurate and real-time state detection is necessary
to deal with actual driving contexts. With the improvement
of processing speed and computing power of computers, the
machine learning approaches in a multi-modal setting, which
can fully mine the complex data information and implicit
features collected in unconstrained scenarios, are regarded as
a viable bridge from research to practical use. For instance,
a classification based on the dissimilarities of multi-modal
physiological signals can efficiently recognize drivers’ emotions
(Bota et al., 2019).

Automated driving is considered to be an effective means
to avoid traffic accidents caused by poor driver driving status.
Limited by technological development and legal establishment,
the autonomous vehicles will be in human-machine co-
driving phase for a long time. The current automated driving
development does not consider the impact of bad driving states
on driving behavior, and it is difficult to achieve accurate
prediction of the driving behavior of drivers in different
states. With the help of advanced machine learning algorithm
techniques (Tan et al., 2022), the road traffic efficiency and
safety will be significantly improved by applying the state
detection technologies based on EEG to the practical use, such
as an advanced brain-controlled driving assistance system or an
automated driving system incorporating human brain cognitive
decision-making and learning human driving behavior.
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