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A comparison of mental
arithmetic performance in time
and frequency domains

Anmar Abdul-Rahman*

Department of Ophthalmology, Counties Manukau DHB, Auckland, New Zealand

The Heisenberg-Gabor uncertainty principle defines the limits of information

resolution in both time and frequency domains. The limit of resolution

discloses unique properties of a time series by frequency decomposition.

However, classical methods such as Fourier analysis are limited by spectral

leakage, particularly in longitudinal data with shifting periodicity or unequal

intervals. Wavelet transformation provides a workable compromise by

decomposing the signal in both time and frequency through translation and

scaling of a basis function followed by correlation or convolution with the

original signal. This study aimed to compare the accuracy of predictive models

in mental arithmetic in time and frequency domains. Analysis of the author’s

response time at mental arithmetic using a soroban was modeled for two

periods, an initial period (TI = 68 days), and a return period (TR = 170 days) both

separated by an interval of 370 days. The median (min,max) response times in

seconds (s) was longer for all tasks during the TI compared to the TR period

(p < 0.001), for addition [CTAdd 62 (45, 127) vs 50 (38, 75) s] and summation

[CTSum 68 (47, 108) vs 57(43, 109) s]. Response times were longer for errors

regardless of the study period or task. Therewas an increasing phase di�erence

for the addition and summation tasks during the TI period toward the end of the

series 49.65o compared to the TR period where the phase di�erence between

the two tasks was only 2.05o, indicating that both tasks are likely demonstrating

similar learning rates during the latter study period. A comparison between time

and time/frequency domain forecasts for an additional 100 tasks demonstrated

higher accuracy of themaximumoverlap discrete wavelet transform (MODWT)

model, where the mean absolute percentage error ranged between 5.48 and

8.19% and that for the time domain models [autoregressive integrated moving

average (ARIMA), generalized autoregressive conditional heteroscedasticity

(GARCH)] was 6.16–10.80%.
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1. Introduction

Mathematical learning theory was an audacious research concept in learning theory

developed in the late 1940s and early 1950s. It attempted to explain fundamental

psychological processes through deterministic and probabilistic processes (Atkinson

and Calfee, 1963). These processes were then treated analytically to generate precise

behavioral predictions for a variety of experimental settings (Howard, 2014). However,
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the brain has many degrees of freedom at its disposal,

therefore deriving correct expressions for physical processes,

given only constraints from behavioral data seemed impossible,

yet mathematical learning theory has been largely successful in

describing essential features of neural data (Howard, 2014).

Time and its influence on neural and psychological data

form a central question in many study designs, the analysis

follows two distinct yet broadly equivalent modes of modeling

information content in time: 1) Time-domain methods, and

2) Frequency-domain methods. Time-domain methods have

their origin in the classical theory of correlation. Such methods

address the autocovariance and cross-covariance functions

of the series. They are described by autoregressive moving-

average models for a single series and transfer-function models

for two or more causally related series. Frequency-domain

analysis represents the signal’s energy distribution and includes

information on the phase shift, which could be subjected

to an inverse transformation to combine all the frequency

components and regenerate the signal in the time domain

(Pollock et al., 1999a). Frequency-domain methods are based

on an extension of the methods of Fourier analysis which

originate in the idea that, over a finite interval, any analytic

function can be approximated by a weighted sum of sine

and cosine functions of harmonically increasing frequencies

that are integer multiples of a fundamental frequency (Pollock

et al., 1999b). However, Fourier analysis and its probabilities

depend on several assumptions these include evenly spaced

data of infinite duration with a high sampling rate (Nyquist

frequency), Gaussian noise distribution, frequency periodicity,

and stationary frequency content of the signal (Solomon,

1991). An additional limitation in modeling time series data is

what is known as the Heisenberg-Gabor uncertainty principle,

which stipulates that a signal cannot be arbitrarily localized

simultaneously both in time and frequency (Flandrin, 1998).

Therefore, an inverse relationship exists between the dispersion

of a function and the range of the frequencies which are present

in its transform (Pollock et al., 1999a). Alfred Haar proposed

an alternative system to Fourier analysis in 1909, giving rise

to the Haar measure, Haar wavelet, and Haar transform. In

his Doctoral thesis appendix in 1910, he described the wavelet

transform, and he used the re-scaled square function as an

example of an orthogonal function in the theory of series

expansion of real functions. These functions are made up of a

short positive followed by a short negative pulse (Haar, 1910;

Akujuobi, 2022). This method of signal analysis provides a

workable compromise in time and frequency resolution arising

from theHeisenberg-Gabor uncertainty principle. Themeans by

which wavelets allow signal localization in time and frequency

domain simultaneously is by translation of the mother wavelet

to obtain time information and scaling the mother wavelet to

obtain frequency information (Percival and Walden, 2000b). A

wavelet can encapsulate both the trend and cyclical components

as well as highlight the intensity of any given point along the

time series itself (Bolman and Boucher, 2019). This approach

can be applied to a series with non-stationary frequency content,

sparse data points, superimposed stochastic processes, trends,

breakdown points, discontinuities in higher derivatives, and self-

similarity (Bolman and Boucher, 2019; Oliveira et al., 2019).

In previous work, an ARIMA model demonstrated favorable

forecasting capability inmental arithmetic compared toWright’s

model and simple linear regression (Abdul-Rahman, 2020). This

study aims to compare the predictive accuracy of time series

models of mental arithmetic response times by extension in both

time and frequency domains.

2. Materials and methods

2.1. Mental arithmetic task description

The acquisition of microsurgical skills is dependent on

factors other than procedure-related dexterity. Higher cognitive

processes determine the procedure’s success including error

detection, planning, and decision-making (Kohls-Gatzoulis

et al., 2004). Additionally, developmental studies demonstrate a

correlation between fine motor skills and mathematical ability,

suggesting deeper cognitive connections between these tasks

(Luo et al., 2007; Fischer et al., 2020). The justification for using

mental arithmetic in this study was to model a learning task that

can be unambiguously measured for response time, accuracy

and long-term memory as a theoretical surrogate for cognitive

processes encompassing the aforementioned principles.

A Japanese soroban (abacus) was used to perform the

addition and summation of sequential columns of 6-digit

numbers. The test consisted of a computer-generated list of 100

digits, ranging between 100,000 and 999,999 (3rd kyu). Test

sheets were randomly generated from a website dedicated to

training in the use of the soroban (www.sorobanexam.org). In

this study, every chain of ten digits is termed a trial and every

ten trials are one test. Each test consisted of a chained sequence

of 6 addition and 4 summation (addition and subtraction) tests.

All tests were conducted at the same time of the day between 7:00

and 7:30 a.m. Two separate computers were used. to administer

tests, this was to prevent interference between data collection

and the on-screen text-to-speech software used to vocalize the

test sheet tasks. One computer used the built-in iOS voice-over

application (Big Sur 11.6.1) to vocalize a list of numbers from

a test sheet in .pdf format. The computer-generated voice-over

reading rate was commenced at 120 words per minute (wpm) at

the beginning of the study, which was incrementally increased

to 200 wpm toward the end of the study. Increments in reading

rates were adjusted at intervals dependent on task response

time to minimize auditory comprehension errors. The second

computer (Big Sur 11.6.1) was used to execute custom software

written in R computing language (R Core Team, 2020), which

captured task response time in seconds (s). The data capture
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program was executed simultaneously with the on-screen voice-

over application. The software consisted of a for-loop that

recorded the loop running time.When the 10 digits/trial column

computation was completed, the timer loop displayed an on-

screen text prompt to finalize the outcome of the computation as

y/n for correct/errors, respectively. Outcomes were recorded as

errors when the number configured by the soroban beads did not

match the pre-printed trial column result. For each test captured

data including date, time, test type, response time, and trial

outcomes, these were automatically appended to a locally stored

file in .csv format for further analysis. For each test, no breaks

were provided between sequential trials of 10-digit columns. The

test was concluded when 10 trial columns were computed. The

total test duration, therefore, ranged from 7 to 12 min. Tests

that were interrupted by errors in the text-to-speech vocalization

were considered outliers and were excluded from the analysis.

The cumulative calculation time was defined as response time

(s) for the addition (CTAdd) or summation (CTSum) tasks for an

individual study period regardless of the trial outcome. Details

of the principles of complementary arithmetic and the principle

of calculation using the soroban are discussed in previous work

(Abdul-Rahman, 2020).

The total study duration was 608 days divided in two

periods: an initial period (TI) lasting 68 days (1,610 trials, total

test time 29.38 h), and a return period (T|R) for 170 days (1,700

trials, total test time 25.35 h), both separated by an interval

of 370 days. This was to assess whether the skills in soroban-

based calculation degraded over a period where the task was

not practiced. The time series sample size (N) for TI and TR
study periods was N = 947, 1,020 for addition, and N = 663, 680

for summation, respectively. Response time, error percentage

and long-term performance retention were used to represent

learning gains, accuracy, and long-term memory, respectively.

2.2. Statistical analysis

Distributions of CTAdd and CTSum were modeled using

fitdistplus() package (Delignette-Muller and Dutang, 2015).

Since distributions of response times were non-normal, standard

performance indices included response time (performance gain)

expressed as the median, and the interquartile range (IQR),

mean and standard error were used where appropriate. Error

percentage indicated the rate of incorrect trial responses, and

served as a measure of response accuracy (Steinborn and

Huestegge, 2016). Pearson’s Chi-squared test (χ2) with Yates’

continuity correction was used to evaluate the accuracy of

addition and summation tasks in a contingency table. The effect

size was calculated using the Cramer V-test (Cohen, 2013),

using the following scale: small 0.10–0.30, moderate 0.30–0.50,

large ≥ 0.50. Pairwise analysis of variance (ANOVA) was used

for hypothesis tests of response time. Mosiac plots were used

TABLE 1 Response time for addition and summation tasks for the

initial and return study periods.

Learning period = 68 days = 29.38 h

Task Median (IQR) Min Max Skew Kurtosis

Addition 62 (12) 45 127 1.268 3.81

Summation 68 (16) 47 108 0.831 0.439

Interval = 370 days

Return period = 170 days = 25.35 h

Task Median (IQR) Min Max Skew Kurtosis

Addition 50 (6.25) 38 75 0.905 1.231

Summation 57 (9) 43 109 1.204 3.72

Response time median and interquartile range (IQR) for the cumulative time for addition

and summation tasks. Max, maximum; Min, minimum.

TABLE 2 Response time for addition and summation tasks subsetted

by test outcomes.

Learning period = 68 days = 29.38 h

Task RTc Correct (n%) RTe Errors (n%) Total

Addition 61 (11) 736 (77.7%) 66 (14) 211 (22.3%) 947 (58.8%)

Summation 66 (15) 469 (70.7%) 71 (16) 194 (29.3%) 663 (41.2%)

Total 1205 (74.8%) 405 (25.2%) 1610

Interval = 370 days

Return period = 170 days = 25.35 h

Task RTc Correct (n%) RTe Errors (n%) Total

Addition 50 (7) 889 (87.2%) 52 (6.5) 131 (12.8%) 1020 (60.0%)

Summation 56 (9) 546 (80.3%) 58 (10) 134 (19.7%) 680 (40.0%)

Total 1435 (84.4%) 265 (15.6%) 1700

Mental arithmetic tasks were performed over 608 days, which consisted of a learning

followed by a return period after an interval of 370 days. There was improvement in task

response time especially for addition in the TR study period. RT = median (interquartile

range) response time in seconds for correct responses (RTc) and errors (RTe). Percentages

are calculated for the table rows.

to visualize the hypothesis test outcomes. A p < 0.05 was

considered statistically significant for all tests.

2.3. Analysis in the time domain

Time series models were used to evaluate mean response

time (±) standard error (se). Model predictive accuracy was

determined by comparing the lowest mean absolute percentage

error (MAPE). Analysis in the time domain was achieved using

autoregressive integrated moving average models (ARIMA)

for the TI period. However, due to autoregressive conditional

heteroscedasticity (ARCH) effects generalized autoregressive

conditional heteroscedasticity models (GARCH) were used for

the TR period.
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2.3.1. Autoregressive integrated moving
average models

An ARIMA time series model is defined by three terms

(p,d,q), which represent the autoregressive (p), integrative

(d), and the moving average (q) parameters of the model.

Iterative tests of the ARIMA model (p,d,q) order were done

using auto.arima() command from the R forecast package

for the TI period time series. This command combines unit

root tests, minimization of the corrected Akaike’s Information

Criterion (AICc), andMaximum likelihood estimation (MLE) to

obtain the optimum model fit (Hyndman and Athanasopoulos,

2018). Model order validity was confirmed by plotting

the autocorrelation (acf) and partial autocorrelation (pacf)

functions. Curve fitting diagnostics were undertaken both

numerically selecting the model demonstrating the lowest

Akaike information criterion amongst the compared ARIMA

models of different orders using the lowest MAPE value. The

characteristic roots of the time series equations were plotted to

assess whether the model is close to invertibility or stationarity

in relation to the complex unit circle, where roots close to the

unit circle may be considered numerically unstable. After visual

inspection of the time series plot for stationarity, the assumption

was confirmed by applying two statistical tests: the augmented

Dickey-Fuller test, where a lag length (k) was chosen by default

for this test (CTAdd k = 7, and CTSum k = 6), where a p leq

0.01 was considered statistically significant for all four mental

arithmetic tasks. The Kwiatkowski-Phillips-Schmidt-Shin test

(KPSS) was then applied, which is used for testing the null

hypothesis that an observable time series is stationary around

a deterministic trend, or is non-stationary due to a unit root.

This test demonstrated a statistic of < 1% of critical value for all

tasks, confirming stationarity after differencing, which is in turn

a critical step for further statistical validity. Both the acf plot of

the residuals and the Ljung-Box test were performed to assess

for autocorrelation within the series. Autoregressive conditional

heteroscedasticity (ARCH) among the lags was assessed using

the McLeod-Li test, where the TI models showed that ARCH

effects were absent. However, the TR period demonstrated

significant ARCH effects. From a total of 30 lags, there was 100%

heteroscedastic error (lag 1 to 30) in the addition series and 23%

in the summation series (lag 7–30). Therefore a GARCH model

was used to fit the time series for the TR period.

2.3.2. Generalized autoregressive conditional
heterosedasticity models

Conditional heteroscedasticity implies that there is a non-

constant variance of the predictors in the time series. The

GARCH-in-mean (GARCH-M)model was used to represent the

TR time series tasks. Skewed student-t distribution was used to

model the residuals. Model fit was assessed using information

criteria, Ljung-Box, and Pearson’s goodness of fit tests. Forecast

accuracy parameters were calculated by splitting the TR period

time series to training and test sets addition (training = 900, test

= 180 data points), and summation (training = 500, test = 120

data points). Bootstrapping was used to generate forecasted data

(100 data points) from the GARCHmodels.

2.4. Analysis in the time and frequency
domains

Models of response time in the frequency domain were

generated using both continuous and maximal overlap discrete

wavelet transform (MODWT) as detailed below. The latter

model was used to generate the time series forecast.

2.4.1. Wavelet transform

The cyclical component of a time series, which is defined as

(regular or periodic) oscillations around the trend that remove

the irregular component and depict the series as an expansion

and contraction phase, is quantified by frequency domain

analysis. The choice of wavelet depends upon the type of signal

to be analyzed and the application, therefore there is no absolute

way to choose a certain wavelet from the extended family of

wavelet basis functions (Mallat, 1999; Fugal, 2009; Haddadi et al.,

2014). Two transformations were applied to each time series,

a continuous (CWT) and discrete (DWT) wavelet transform.

The first applied transformation was a Morlet wavelet transform

(continuous wavelet) using the WaveletComp package. The

purpose was to estimate the phase difference between the tasks

for each study period (Roesch and Schmidbauer, 2018). Pre-

processing and parameter selection for the data before applying

the transformation included removing 10 data points at the

extremes of each time series to reduce the edge effect. As there

were 10 trials per test the time resolution (dt) = 10 was selected

combined with a high-frequency resolution (1/250). The phase

of a given time series can be viewed as the position in the pseudo-

cycle of the series and it is parameterized in radians ranging

from −π to π (Cazelles et al., 2007). MODWT is a modified

version of the discrete wavelet transform (DWT), it allows

to perform a multi-resolution analysis which is a scale-based

additive decomposition particularly important for a longitudinal

data with multiple frequency content, additionally, unlike a

DWT it is insensitive to the choice of the starting point for the

series in its decomposition (Percival and Walden, 2000a; Zhu

et al., 2014).

3. Results

3.1. Task outcomes

Total task response time for the TI period was longer despite

the lower number of tasks in this period, where a total of 1,610
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FIGURE 1

Mosaic plots of the mental arithmetic learning task outcomes subsetted by study phase. The width of the columns indicates the proportions in

each group, which corresponds to the column totals in Table 2. The height of the boxes (rows/horizontal break) is the proportions of the

outcomes in each of the initial (TI) and return (TR) study periods, which represents the rows of Table 2. Standardized residuals indicate that there

are more (blue) observations than would be expected under the null model for erroneous responses in the TI period and less (red) in the TR

period for both tasks. Since the horizontal bars are at unequal levels, therefore there is a statistically significant di�erence between task outcome

and study period. i.e. there was a statistically significant di�erence between correct responses and errors in both the TI and TR study periods.

y=yes, n = no.

trials (test time of 29.38 h) were performed, compared to the

TR period where a total of 1,700 trials over a shorter total

test time of 25.35 h was undertaken. Tables 1, 2 summarize the

response times and outcomes for the tasks by study period.

There was a statistically significant (p < 0.0001) improvement

in overall task accuracy 74.8 vs. 84.4% for TI and TR periods,

respectively, (χ2 = 46.29, N = 3,310, df = 1), here the effect size

was small (Cramer V = 0.12). Highest improvement occurred

with addition where the number of correct responses increased

from (TI = 45.7% to TR = 52.3%) compared to the correct

responses in summation (TI =29.1% to TR = 32.1%). Mosaic

plots (Figure 1) provide a summary of the hypothesis tests for

task outcomes by study period.

3.2. Task performance time

The distribution of performance times (CTAdd and CTSum)

were non-normal. The cumulative distribution functions

demonstrated a lognormal fit with a skew to the right for

CTAdd and CTSum for all study periods. Table 1 summarizes the

descriptive statistical parameters for the response time, where

it can be noted that addition tasks had consistently shorter

response times than summation. Within task group (addition,

summation) pairwise ANOVA (Figure 2) showed a statistically

significant difference between response times subsetted by study

period (Table 2) with erroneous responses being longer than

correct responses during all study periods regardless of the task

category (p < 0.001). To evaluate the influence of the interval

where no practice was undertaken on the response time, the

mean response time for the last and first 20% of trials for the

T|I and TR periods were compared, these, respectively, were

(54.27, 57.79 s) for addition and (59.49, 65.75) for summation,

these differences were statistically significant (p < 0.0001), that

indicated some degradation of performance.

3.3. Analysis in the time domain

The sub-daily time series frequency ranged from 10 to 70

trials (median 30) per day for the TI period and was more

consistent at 10 trials/day for the TR period.

3.3.1. Autoregressive integrated moving
average model

Figures 3A,B are time series plots for the TI addition and

summation tasks, respectively, with autocorrelation (acf) and

partial autocorrelation (pacf) correlograms. In these graphs the

ARIMAmodel fit is represented by the central blue line. The acf
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FIGURE 2

Boxplot of mental arithmetic response time subsetted by outcome. Response times for errors were consistently longer than correct responses

for both tasks. Di�erences were statistically significant for all study periods (p < 0.001). TI = initial study period, TR = return study period, Time=

task response time, y=yes, n=no.

plots show a geometric pattern consistent with a declining trend

over time. Additionally, a strong correlation of the sequential

points up to lag 30 can be noted. The pacf shows a significant

correlation at the 95% confidence interval up to lag 6 for addition

and lag 5 for summation. These tests confirm the learning gains

with a <20% correlation of test scores at each 6th trial in the

series for addition and 5th trial for summation at the 95%

confidence interval. A favorable model fit in the time series can

be visually confirmed as a blue line in the time series plots.

Model coefficient and fit parameters are listed in Table 3 where

it can be noted that MAPE was 6.16 and 7.94% for CTAdd and

CTSum, respectively. The ARIMA equations can be written in

the standard form:

Addition task time Series ARIMA (2,1,3) with Drift for the

initial learning period:

(1−φ1 B−φ2 B
2) (1−B)(yt−δ t) = (1+θ1 B+θ2 B

2
+θ3 B

3) εt
(1)

Summation time series ARIMA (4,1,3) with Drift for the

initial learning period:

(1− φ1 B−φ2 B
2−φ3 B

3−φ4 B
4) (1− B)(yt − δ t)

= (1+ θ1 B+θ2 B
2+θ3 B

3) εt
(2)
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FIGURE 3

Analysis in the time domain for the initial period data: Autoregressive integrated moving average (ARIMA) model for the (A) Addition task time

Series ARIMA (2,1,3) with Drift (B) Summation time series plot ARIMA (4,1,3) with Drift. Autocorrelation defines the degree of similarity between a

particular time series and a lagged version of itself over subsequent time intervals. The autocorrelation functions (ACF) demonstrate a declining

geometric pattern consistent with the trend of the time series of accelerating response time, which remain significant at the 95% confidence

interval for a lag >25. Partial autocorrelation functions (PACF) show that lags <6 and <5 are significant for addition and summation, respectively.

Consequently, confirming an autoregressive model fit below the 5th order for both tasks.

TABLE 3 Autoregressive integrated moving average model parameters for mental arithmetic addition and summation tasks during the initial study

period.

Addition ARIMA (2,1,3) with drift ar1 ar2 ma1 ma2 ma3 drift

Coefficients –1.4012 –0.8829 0.4615 –0.4722 –0.8061 –0.0324

se 0.0716 0.1214 0.0734 0.1050 0.1165 0.0104

p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.002

AIC = 5974.74, RMSE = 5.64, MAPE = 6.16

Summation ARIMA (4,1,3) with drift ar1 ar2 ar3 ar4 ma1 ma2 ma3 drift

Coefficients –0.9106 –0.7419 0.1901 0.0643 0.0382 –0.0347 –0.9313 –0.0459

se 0.0550 0.0651 0.0589 0.0424 0.0380 0.0454 0.0341 0.0088

p-value <0.0001 <0.0001 <0.001 <0.12 <0.31 <0.46 <0.0001 <0.0001

AIC = 4491.29, RMSE = 7.08, MAPE = 7.94

Addition and summation time series required a 2nd and 4th order autoregressive terms. ar, autoregressive coefficients; ma, moving average coefficients; se, standard error; RMSE, root

mean square error; MAPE, mean absolute percentage error; AIC, Akaike Information Criterion.
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FIGURE 4

Analysis in the time domain for return period data: Generalized autoregressive conditional heteroscedasticity (GARCH) model for (A) addition

and (B) for summation with 1% variance lines. A GARCH model was required for this period due to volatility in the series, this was likely due to

the number of complementary operations in a single calculation, a variable unaccounted for in the model. QQ plots of the standard residuals for

both tasks demonstrated a favorable model fit.

3.3.2. Generalized autoregressive conditional
heterosecdasticity

As the TR period demonstrated significant ARCH effects.

From a total of 30 lags, there was 100% heteroscedastic error

(lag 1 to 30) in the addition and 23% in the summation series

(lag 7–30). Therefore a GARCH model was fitted to the time

series of the TR period. Figures 4A,B are GARCHmodel fit plots

with 1% variance. Model goodness of fit for the addition and

summation tasks is demonstrated graphically using QQ plots in

Figures 4A,B, respectively. The equation coefficients (Table 4)

achieved statistical significance (p < 0.001) for both tasks.

Adjusted Pearson goodness of fit test demonstrated p > 0.05

for both models. The GARCH model predicted a mean of 49.48

± 3.46 and 56.49 ± 5.39 s MAPE 8.03 and 10.80% for CTAdd
and CTSum, respectively. The equations of the GARCH models

fitted with a skewed student-t distribution of the standardized

residuals can be written in the form:

GARCH addition in the TR period:

xt = 42.00+ 0.08σt + ǫt

σ 2
t = 0.01+ 0.003 · ǫ2t−1 + 0.99 · σ 2

t−1

ǫt = σt · (−1.00)

(3)

GARCH summation in the TR period:

xt = 44.78+ 0.08σt + ǫt

σ 2
t = 0.02+ 0.01 · ǫ2t−1 + 0.98 · σ 2

t−1

ǫt = σt · (−1.00)

(4)
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TABLE 4 Generalized autoregressive conditional heteroscedasticity

model coe�cients for mental arithmetic addition and summation

tasks for the return study period.

Coefficients Addition se Summation se

Mu (µ) 42.001325 0.084257 44.780064 0.225086

Gamma (γ ) 0.568904 0.003714 0.367082 0.003766

Omega (ω) 0.006396 0.000034 0.016443 0.000077

Alpha (α1) 0.003531 0.000057 0.005856 0.000017

Beta (β1) 0.991902 0.000001 0.981010 0.00

Eta (η11) –1.000000 0.000005 –0.999546 0.001007

Lambda (λ) 0.078881 0.002103 0.076132 0.001048

Skew 1.424227 0.058776 1.482621 0.114878

Shape 6.679549 0.264986 19.469519 0.468663

Log likelihood –2768.72 –2117.72

AIC 5.45 6.26

BIC 5.49 6.31

The model shows a positive skewed distribution as the skew is >1 (addition = 1.424227,

summation = 1.482621). Therefore skewed standard student-t distribution was used to fit

the residuals. Shape is based on degrees of freedom higher values (addition = 6.679549,

summation = 19.469519) indicate vertical tails. The p < 0.001 for all coefficients.

3.4. Time and frequency domain analysis

3.4.1. Continuous morlet wavelet transform

In the TI period, the maximum power was 101.905 and a

steep power gradient was distributed throughout the addition

task series transform. The power declined to a maximum of

27.681 during the TR period in this series. The power spectrum

for the summation task during the TI period was at a maximum

of 25.424, and during the TR period a maximum of 30.402 was

attained. Therefore the difference in maximum power between

study periods was higher for addition (74.224) compared to

summation (–4.978) consistent with the higher learning gains

in this task.

Continuous wavelet transforms are demonstrated in

Figure 5, where the number of trials of the series is displayed

on the horizontal axis, while the vertical axis shows the scale

(the lower the frequency, the higher the scale). Colors toward

the red end of the scale represent regions with significant

power, while colors toward the blue end (cold regions) of the

scale signify lower power between the series. Cold regions

beyond the significant areas represent time and frequencies

with no dependence in the series. It can be observed that a

dominant high power spectrum occurs early in the TI period,

whereas in the TR period high power and volatility were

distributed throughout the series. The phase difference mean

(min, max) between tasks (addition and summation) within a

study period is demonstrated in Figure 6. Whereas, during the

TI period there was an increasing phase difference toward the

end of the series 0.3336π (0.0612π , 0.5927π) [60.04o(11.02o,

106.69o)], the phase of summation task preceded that of

addition throughout the series, in contrast during the TR period

the phase difference between the two tasks was minimal 0.0507π

(–0.0561π , 0.2873π) [9.12o(-10.09o, 51.71o)].

3.4.2. Maximum overlap discrete wavelet
transform

Maximum Overlap Discrete Wavelet Transform

demonstrated that 99.063–99.573% of the series energy

was represented in the d1–d3 Daubechies waveforms (Table 5)

for all four series. For the TI period the MODWT model

predicted a reduction of both CTAdd to a mean of 51.36 ± 0.12

s with an error of 6.07% and CTSum to a mean of 56.76 ± 0.10

s with an error of 6.85% over 100 forecasted trials. For the TR
period MODWT predicted a mean of 44.63 ± 0.07 and 53.35

± 0.11 s MAPE 5.48 and 8.19% over 100 forecasted trials for

CTAdd and CTSum, respectively. Forecasted mean response

time and accuracy for the time and time/frequency domain

models are compared in Table 6 and demonstrated graphically

in Figures 7, 8.

4. Discussion

Since the early descriptions of equations of learning theory

by Ebbinghaus (1880), performance has been considered

as smooth decelerating functions of time (Jaber, 2019).

Subsequently, early behavioral theories were formulated,

championed by Edward Thorndike, where learning was thought

to be governed by three laws (effect, readiness, and exercise),

and it was believed that learning occurred as a consequence

of positive and negative associations between stimuli and

responses (Thorndike, 1913). In the 1950’s mathematical

theories of learning focused on formulating predictive equations

for behavioral responses, particularly in probability space

(Howard, 2014). In previous work, it was demonstrated that by

capturing variation in performance using an ARIMA model,

forecast accuracy in mental arithmetic using the soroban could

be improved over models that are limited to estimating mean

response time only. Additionally, predictions by an ARIMA

model showed no statistically significant difference from

the actual test values (Abdul-Rahman, 2020). In the current

empirical study, performance modeling was extended into the

frequency domain where forecast accuracy was shown to be

more favorable compared to the corresponding time-domain

approaches. The reason behind these analytic gains is likely due

to smoothing and noise reduction by frequency decomposition,

which may have improved predictive accuracy (Cohen, 2014).

The other advantage of frequency decomposition is that the

evolution of the time series can be observed and quantified.

Additionally, the phase of the time series of the two tasks can

be accurately estimated and in our case becomes similar in the

return study period between the two tasks. Mental arithmetic
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FIGURE 5

Morlet continuous wavelet transform for the addition and summation tasks for the initial study and return study periods, which highlights the

wavelet spectra in each series. The colors code for wavelet power values from dark blue (low values), to red (high values). The low contrast zone

in the image periphery indicates the cone of influence that delimits the region not influenced by edge e�ects. The wavelet power spectrum

depicts the evolution of a time series’ variance at various frequencies, with periods of high variance corresponding to periods of high power at

various scales. Whereas the highest wavelet power is distributed irregularly throughout the TR series, wavelet power is highest at index < 200 for

the TI series especially for the addition task. These findings quantify the accelerated response time in the earlier part of the TI series and the

more consistent response time in the TR series with interspersed volatility. sstd= skewed student-t distribution.

task-dependent differences in cognitive processing may underlie

these within period response time and phase differences. Of the

various models of cognitive arithmetic processing, they all share

common assumptions, where performance on simple arithmetic

operations depends on retrieval from long-term memory; the

memory representation is organized and structured in terms

of the strength of individual connections and reflects varying

degrees of relatedness among the elements; and the strength

with which the elements are stored. Hence the probability

or speed of retrieving information depends critically on

experience, especially acquisition, rather than on numerical

characteristics inherent in the information itself (Ashcraft,

1992). Additionally, when comparing 20% of each at the end

of the initial and first 20% of the return study periods, there

was a loss of learning gain, however, the loss was minimal

(3.52 s for addition and 6.26 s for summation). It is likely the
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FIGURE 6

Within study period phase of the two tasks computed in the first 600 data points in the time series. Whereas a higher phase di�erence

[mean(min, max)] in the initial study period 0.3336π (0.0612π , 0.5927π ) indicates a that the series are non-synchronized initially, in the return

study period the reduction of the phase di�erence to 0.0507π (-0.0561π , 0.2873π ) suggests that displacements of periodic phenomena in two

time series are minimally di�erent. This likely indicates similar learning rates for both tasks in the latter study period.

influence of the abacus-based visuospatial imagery format on

long-term memory may have helped to mitigate the extent

of skill degradation and retained this at a minimum level.

Moreover, studies on fluency in addition and summation

conclude that subtraction is a more difficult task compared to

addition as subjects deduce differences from their knowledge of

sums (Kamii et al., 2001). This interpretation is assumed in the

light of Piaget’s theory where a developmental characteristic is

the general primacy of the positive aspect of actions, perception,

and cognition over the negative aspect (Piaget, 1976). Therefore,

differences in response time are thought to be dependent on

differences in long-term memory retrieval, particularly in

associations between nodes of memory networks (Ashcraft,

1992). It is interesting to note, that this differs from a cognitive

perspective and extends beyond memory-based responses to

spatial interactions. Current theories of arithmetic processing

make different predictions for the interaction between space

and mental arithmetic, these studies tested the hypothesis that

addition and summation can cause shifts of spatial attention,

where right-side targets are detected faster than left-side targets

when preceded by an addition operation, and left-side targets

are detected faster than right-side targets when preceded by

a subtraction operation, these findings have been replicated

in several studies (Li et al., 2018). This evidence suggests that

cognitive mechanisms that underlie the differences in mental

arithmetic processing may extend beyond long-term memory

retrieval only or the presence of operation-dependent neural

pathway interactions occur during the retrieval process.

All models demonstrated a reduction of response time

with learning for both mental arithmetic tasks, more notable

during the initial study period for the addition task. The

visuospatial format of numerical representations in the soroban

likely enhanced these learning gains, where computations are

represented as a function of the changing bead configurations.

Hatano et al. examined representational changes in digit

memory as a function of expertise in mental-abacus operation

in five groups of 54 operators differing in skill. They reported

an inverse relationship between operator skill and memory

vulnerability for digits to an aural-verbal interpolated task and

a direct relation to the vulnerability to an interpolated visual-

spatial task, which suggests that advanced operators apply the

mental abacus calculations to visual memory (Hatano et al.,

1987). These results were confirmed by Frank and Barner who in

a study on 38 subjects speculated that numerical computations

were represented in the visual working memory by splitting the

abacus into a series of columns, each of which they thought

was independently stored as a unit with its own detailed

substructure (Frank and Barner, 2012). Most individuals

acquire this ability after abacus skills have become automated,

and possess the ability to mentally manipulate the abacus

synonymous with operating a real abacus (Stigler, 1984). This

dependence on visual imagery may allow a rapid progression

in the learning task by utilizing alternative analytic resources

and minimizing skill degradation. Researchers have also argued

that additional cognitive advantages of abacus training may

involve multiple components of working memory and exert
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a transfer effect, thereby improving visuospatial memory for

other tasks (Wang, 2020). Comparisons of visuospatial memory

span tests between subjects skilled in abacus-based mental

arithmetic techniques and those who lack this skill demonstrated

significant performance differences in both cross-sectional

and longitudinal study designs (Bhaskaran et al., 2006; Chen

et al., 2006; Lee et al., 2007; Kamali et al., 2019). These

visuospatial and working memory effects are likely to have

acted to improve computational skills during task learning in

the current empirical study. Due to the auditory nature of the

presented stimulus, further learning gains would have been

achieved through the phonological loop, which refers to the

temporary storage of phonological and auditory information

(Wang, 2020). Although untested in the current study, higher

digital spans have been found in subjects skilled in abacus-

based mental arithmetic methods compared to those in standard

arithmetic skills. Hatano and Osawa reported a larger than

average digit span in three abacus-based mental arithmetic

experts. This finding was specific for digits but not object names

or letters. Additionally, they reported that the digit span of

abacus experts was more affected by concurrent visuospatial

distractors in contrast the digit span of non-experts was more

affected by concurrent verbal distractors (Hatano and Osawa,

1983). Similarly, Hatta et al. investigated digit spans in 29

soroban experts they reported a superior ability in digit memory

in soroban experts, digital memorization competence of soroban

experts was reduced by the presence of pictorial soroban figures

but was not reduced by the presentation of digits, seems to

indicate that experts utilize images which are analogous to the

actual soroban as an aid to hold numbers in memory. Moreover,

soroban experts were noted to make special types of error, such

as the number five error, more than control subjects, this also

seems to suggest that soroban experts utilize soroban images; as

frequent occurrences of errors of this type can only be explained

by soroban visualization (Hatta et al., 1989). Recently, the

neurophysiological mechanism underlying the superior short-

term memory for digits in abacus experts was investigated

by Tanaka et al. in a functional magnetic resonance imaging

study. They compared the brain activity of abacus experts

and non-experts during the memory retention period. They

found that whereas in controls, activity was greater in cortical

areas related to verbal working memory, including Broca’s area,

in experts, activity was greater in cortical areas related to

visuospatial working memory, including the bilateral superior

frontal sulcus and superior parietal lobule (Tanaka et al., 2002).

Therefore the visuospatial and the phonological loop properties

of abacus-based operations have unique advantages on the

working memory and may consequently allow a longer-term

higher skill retention.

In general, the differences in time, and frequency domain

properties of all time series may be attributable to different

properties of the learning process described in what is

known as phase theories, where initial, intermediate, and

TABLE 5 Energy for Daubechies wavelet coe�cients (d1-d9) are

calculated in percentages, s9 is the Maximum overlap discrete wavelet

transform scaling coe�cient.

Addition TI Addition TR Summation TI Summation TR

d1 80.482 81.024 79.023 76.468

d2 16.719 15.772 16.945 19.393

d3 2.372 2.653 3.377 3.202

d4 0.350 0.465 0.535 0.601

d5 0.064 0.070 0.083 0.182

d6 0.009 0.010 0.027 0.070

d7 0.002 0.001 0.007 0.033

d8 0.000 0.000 0.002 0.020

d9 0.000 0.001 0.002 0.018

s9 0.002 0.002 0.000 0.015

Noted is that >90% of the energy of all time series is encapsulated in the first two wavelet

decompositions.

established phases of learning exhibit different relationships

between knowledge structures, where ultimately a level of

automaticity is achieved (Shuell, 1990). These differences in

performance over time generate analytic challenges, where non-

stationarity, heteroscedasticity, and non-normal distribution

of test variables were the most prominent. Non-stationary

frequency characteristics of the series favored frequency

decomposition methods other than Fourier analysis, as classical

assumptions do not apply in the presence of non-stationarity,

non-periodicity, and signal volatility. Continuous Wavelet

transform decomposed the time series into a linear combination

of different frequencies, and therefore was able to capture

dynamics in period and intensity and to model the trend

in the series. Although there were no specific localizing

features in the power spectra, it provided an overview of

the signal of the series and phase relationships. It allowed

the exact frequencies at which dominant learning across the

entire time series, thereby enabling direct visualization of the

evolution and volatility of the learning process throughout

the series even in the presence of non-stationary frequency

characteristics (Schlüter and Deuschle, 2010; Avdeeva et al.,

2021). In the current study, phase differences were minimal

in the TR period, this probably indicates stabilization of the

learning process to a constant low rate between the two tasks.

The multi-resolution decomposition wavelet transformation

allowed for frequency and scale-specific variance of the series,

therefore forecast accuracy using wavelet transformation which

addressed these barriers was more favorable (MAPE 5.48–

8.19%) than the strictly time-domain models, where forecast

accuracy was degraded (MAPE 6.16–10.80%), especially in the

presence of volatility. Recently Pathan et al. (2019) described

the use of a DWT in the classification of efficient mental

arithmetic tasks using Functional Near-Infrared Spectroscopy

an alternative to EEG, they reported an accuracy of 93.26% using

DWT-based features in a support vector machine algorithm.
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TABLE 6 Mean mental arithmetic response times (s) forecasted for 100 trials using time (ARIMA, GARCH) and time/frequency (MODWT) domain

model fits.

Task Mean ARIMA GARCH MODWT

Addition TI 62.92± 0.30 49.50± 0.10 (6.16%) 51.36± 0.12 (6.07%)

Summation TI 69.68± 0.44 54.81± 0.14 (7.93%) 56.76± 0.10 (6.85%)

Addition TR 51.14± 0.16 45.47± 0.03 (8.03%) 44.63± 0.07 (5.48%)

Summation TR 57.49± 0.29 51.96± 0.04 (10.80%) 53.35± 0.11 (8.19%)

Accuracy data suggests theMODWT provided better accuracy particularly for the return (TR) compared to the intial (TI ) study period, where the former is characterized by series volatility.

Reported are mean ± standard error mean absolute percentage error (MAPE), ARIMA, autoregressive integrated moving average; GARCH, generalized autoregressive conditional

heteroscedasticity; MODWT, maximum overlap discrete wavelet transform.

FIGURE 7

Graphical representation of maximal overlap discrete wavelet transform (red plot) for the addition tasks (black plot). The decomposition was

done using the using a d1-8 Daubechies wavelet, where W and V are the coe�cient vectors that have been circularly advanced by the exponent

in the shift operator (T).

Karthikeyan et al. used a DWT to detect autonomic nervous

system activity generated from stress response to mental

arithmetic, they reported a classification rate of 96.3 and 75.9%

in low and high-frequency bands respectively (Karthikeyan

et al., 2012). Several studies suggest that ARCH/GARCH

models outperform ARIMA models in short-term forecast

accuracy and asymmetric heavy-tailed distributions (Sparks and

Yurova, 2006; Ekinci, 2021). Heteroscedasticity (non-constant

variance of the error term) appeared in the TR time series,

which has a known degrading influence on model forecast

accuracy (Wang and Akabay, 1994; Schlüter and Deuschle,

2010). Heteroscedasticity was likely due to the number of

complementary operations in a single calculation, a property

that was not taken into account in the models resulting in

variable performance.

The non-normal distribution of performance times is

consistent with the distribution of response times predicted in

Item Response Theory. In an analysis of reading speed Rasch

derived a gamma distribution for the response time, and a

Poisson distribution for the number of items completed, this

is known as the Rasch model (Rasch, 1993). Although the

difference in performance time between correct and erroneous

responses contracted in the TR period by 20–40% (from 5 to

4 s for the summation task, and 5–2 s for the addition task),

performance time was consistently longer for tasks with errors,

the difference remained statistically significant throughout the

test period. In a population of 894 subjects, Lasry et al. reported a

difference of approximately 50% between correct and erroneous

responses to conceptual questions (Lasry et al., 2013). This is

known as the speed-accuracy trade-off, where errors are more

probable with longer task performance times (van der Linden,

2007; Lasry et al., 2013).

The limitation of wavelet transform is an increase in the

model complexity. Additionally, the non-standardization of
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FIGURE 8

Graphical representation of maximal overlap discrete wavelet transform (blue plot) for the summation tasks (black plot). The decomposition was

done using the using a d1-8 Daubechies wavelet, where W and V are the coe�cient vectors that have been circularly advanced by the exponent

in the shift operator (T).

wavelet choice from an extended family of basis functions

introduces ambiguity in the optimal approach. However,

time-series characteristics like volatility or the existence of

long-term trends and the forecasting horizon are the most

significant factors influencing forecast accuracy and are

addressed appropriately by wavelet transformation (Schlüter

and Deuschle, 2010).

5. Conclusion

The time and frequency properties of learning response

times are useful to consider in understanding learning

processes. Wavelet transformation is a useful method of

time series decomposition where variables are non-stationary,

heteroscedastic, and non-normal. Wavelets can characterize

changes in the evolution and phase of the series in addition

to generating accurate forecasts from this method compared to

strictly time-domain models.
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