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Bifactor latent models have gained popularity and are widely used to model 

construct multidimensionality. When adopting a confirmatory approach, 

a common practice is to assume that all cross-loadings take zero values. 

This article presents the results of a simulation study exploring the impact 

of ignoring non-zero cross-loadings on the performance of confirmatory 

bifactor analysis. The present work contributes to previous research by 

including study conditions that had not been examined before. For instance, 

a wider range of values of the factor loadings both for the group factors and 

the cross-loadings is considered. Parameter recovery is analyzed, but the 

focus of the study is on assessing the sensitivity of goodness-of-fit indices 

to detect the model misspecification that involves ignoring non-zero cross-

loadings. Several commonly used SEM fit indices are examined: both biased 

estimators of the fit index (CFI, GFI, and SRMR) and unbiased estimators 

(RMSEA and SRMR). Results indicated that parameter recovery worsens when 

ignoring moderate and large cross-loading values and using small sample 

sizes, and that commonly used SEM fit indices are not useful to detect such 

model misspecifications. We recommend the use of the unbiased SRMR index 

with a cutoff value adjusted by the communality level (R2), as it is the only 

fit index sensitive to the model misspecification due to ignoring non-zero 

cross-loadings in the bifactor model. The results of the present study provide 

insights into modeling cross-loadings in confirmatory bifactor models but 

also practical recommendations to researchers.

KEYWORDS

bifactor models, magnitude of factor loadings, cross-loadings, goodness-of-fit, 
unbiased SRMR index

TYPE Original Research
PUBLISHED 18 August 2022
DOI 10.3389/fpsyg.2022.923877

OPEN ACCESS

EDITED BY

Karl Schweizer,  
Goethe University Frankfurt,  
Germany

REVIEWED BY

Alberto Maydeu-Olivares,  
University of South Carolina, United States
Christine Distefano,  
University of South Carolina, United States

*CORRESPONDENCE

Carmen Ximénez  
carmen.ximenez@uam.es

SPECIALTY SECTION

This article was submitted to  
Quantitative Psychology and Measurement,  
a section of the journal  
Frontiers in Psychology

RECEIVED 19 April 2022
ACCEPTED 28 July 2022
PUBLISHED 18 August 2022

CITATION

Ximénez C, Revuelta J and 
Castañeda R (2022) What are the 
consequences of ignoring cross-loadings 
in bifactor models? A simulation study 
assessing parameter recovery and 
sensitivity of goodness-of-fit indices.
Front. Psychol. 13:923877.
doi: 10.3389/fpsyg.2022.923877

COPYRIGHT

© 2022 Ximénez, Revuelta and Castañeda. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.923877﻿&domain=pdf&date_stamp=2022-08-18
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.923877/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.923877/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.923877/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.923877/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.923877/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.923877/full
https://orcid.org/0000-0003-1337-6309
https://orcid.org/0000-0003-4705-6282
https://orcid.org/0000-0003-3681-9782
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.923877
mailto:carmen.ximenez@uam.es
https://doi.org/10.3389/fpsyg.2022.923877
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Ximénez et al. 10.3389/fpsyg.2022.923877

Frontiers in Psychology 02 frontiersin.org

Introduction

The bifactor measurement model was originally developed by 
Holzinger and Swineford (1937) to explain hierarchical latent 
structures of multidimensional variables. It uses a hybrid model 
which includes a general factor on which all items load and one or 
more group factors (also known as specific factors) on which 
subsets of items load. However, the bifactor model was ignored for 
years and it has been rediscovered as a popular method to model 
construct dimensionality just in the last two decades (Reise, 2012; 
Reise et al., 2016). For instance, Cucina and Byle (2017) found that 
the bifactor model fits better than other latent models to assess the 
dimensionality of mental abilities test batteries. Moreover, bifactor 
analysis has been used to model the dimensionality of classical 
psychological scales (e.g., the Rosenberg Self Esteem scale, Hyland 
et al., 2014; the Psychopathy Checklist-revised scale, Patrick et al., 
2007; and scales of language testing, Dunn and McCray, 2020).

Previous research has examined different issues of the design 
of the study that affect parameter recovery and the goodness of fit 
of bifactor models, particularly when an exploratory approach is 
adopted (Reise, 2012; Morin et al., 2016; Garcia-Garzon et al., 
2019; Giordano and Waller, 2020). The present research focuses 
on the consequences of ignoring cross-loadings in a model when 
a confirmatory approach is adopted. In confirmatory factor 
analysis (CFA), it is common to constrain cross-loadings to zero 
values, assuming therefore that each item loads only on a single 
construct. However, items are rarely related to a single construct, 
so this practice may introduce model misspecification and, 
consequently, a negative impact on the parameter recovery and 
goodness of fit of the model. Moreover, researchers may not 
be aware that their models include cross-loadings and therefore to 
misinterpret their theoretical models. The present study aims to 
investigate the consequences of ignoring the non-zero cross-
loadings in confirmatory bifactor models and evaluate the 
sensitivity of goodness-of-fit indices to detect such 
model misspecification.

Previous research has addressed these problems in the context 
of structural equation modeling (SEM) and CFA models (e.g., 
Beauducel and Wittmann, 2005; Hsu et al., 2014 and Wei et al., 
2022) but few studies have assessed these issues in the context of 
confirmatory bifactor models (only the recent study by Zhang 
et al., 2021a). The present study aims to fill this gap and goes 
beyond previous research in that it focuses specifically on 
confirmatory bifactor models and considers a wide range of study 
conditions to assess the importance of the magnitude of the factor 
loadings in bifactor models. We manipulate the loading size both 
in the group factors and the cross-loadings. We also study the 
performance of different goodness-of-fit indices to detect 
misspecified models by ignoring the non-zero cross-loadings in 
the group factors. More specifically, our study includes two fit 
indices for which asymptotically unbiased estimates are 
implemented in SEM software (the root mean squared error of 
approximation or RMSEA, and the unbiased standardized root 
mean squared residual or SRMRu), and three fit indices in which 

biased estimators are currently in use (the comparative fit index 
or CFI, the goodness-of-fit index or GFI, and the SRMR), and 
we assess their sensitivity to detect misspecified models with the 
aim of providing practical recommendations to researchers.

The remainder of this article is organized as follows. First, 
we review previous research on the importance of cross-loadings 
for parameter recovery of bifactor models. Second, we  briefly 
describe the goodness-of-fit indices used in our study and the way 
the magnitude of the factor loadings affects them. Next, 
we  describe the design of our simulation study in which 
we manipulate model specification, sample size, and loading size 
in the group factors and cross-loadings. We then summarize the 
results, and evaluate the adequacy of the goodness-of-fit indices 
to detect model misspecification in bifactor models. We conclude 
with a general discussion of the results and their practical 
implications for applied researchers.

Importance of cross-loadings in 
bifactor models

In a bifactor model, typically, each item is designed to load on 
the general factor and on a group factor. However, in practice, 
items may also have relatively small or moderate non-zero 
loadings on other group factors, namely cross-loadings. In 
practical applications, when the bifactor analysis is conducted via 
a confirmatory approach (i.e., CFA), the cross-loadings are fixed 
at zero values for simplicity and to prevent nonidentification due 
to approximate linear dependencies between the general factor 
and the group factors (Zhang et al., 2021b), and nonconvergence, 
that may arise in bifactor models, particularly if they include large 
cross-loadings (Mai et al., 2018). However, this practice may result 
in biased estimates and anomalous results. For instance, forcing 
even small cross-loadings to zero substantially inflates the 
estimates of the factor correlations in CFA models (Asparouhov 
and Muthén, 2009; Mai et  al., 2018). Thus, modeling cross-
loadings is important, and researchers should be aware that the 
presence of non-zero cross-loadings does not contaminate the 
constructs or imply that the fitted model could be inappropriate. 
On the contrary, constraining non-zero cross-loadings to zero will 
bias other model parameters (Morin et al., 2016).

The issue of the importance of cross-loadings has been studied 
in the context of SEM models but it has received less consideration 
in the context of confirmatory bifactor models. Beauducel and 
Wittmann (2005) studied the impact of ignoring secondary 
loadings taking values of 0.20 and 0.40 in CFA models and found 
that small distortions from simple structure on the data did not 
lead to misfit in typically used fit indexes (e.g., RMSEA and 
SRMR). Hsu et al. (2014) considered the impact of ignoring cross-
loadings with near-zero magnitudes (0.10 to 0.20 values) in SEM 
models. They found that the parameter estimates were biased if 
parameter cross-loadings were higher than 0.13. More specifically, 
the pattern coefficients and factor covariances were overestimated 
in the measurement model, whereas the path coefficients with the 
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forced misspecified zero cross-loadings were underestimated. As 
in the study by Beauducel and Wittmann (2005), they also found 
that the RMSEA and SRMR indices failed to detect model 
misspecifications by forcing cross-loadings to zero. More recently, 
Wei et al. (2022) studied the effect of ignoring cross-loadings in 
SEM models. They considered cross-loading values ranging from 
0 to 0.30 and target loadings ranging from 0.55 to 0.95. They 
found that the parameter bias was larger as cross-loading values 
increased and the magnitude of target loadings decreased. 
However, under conditions of large target loadings (λ > 0.80) and 
medium-large sample size (N > 200), the parameter estimation 
was unbiased.

In the context of confirmatory bifactor models, there is only 
one recent study (Zhang et al., 2021a) examining the influence of 
forcing cross-loadings to zero on parameter estimation but it only 
considers low cross-loadings (values of 0.20 or below). Congruent 
with the research in CFA models, Zhang et al. (2021a) found that 
forcing even small cross-loadings to zero leads to biased estimates 
and large estimation errors of the loadings both in the general 
factor and in the group factors, such that the loadings in the 
general factor are overestimated and the loadings in the group 
factors are underestimated.

The present study aims to analyze the consequences of 
ignoring non-zero cross-loadings in confirmatory bifactor models. 
Our study is a follow-up of previous research but it specifically 
addresses the problem for confirmatory bifactor models and uses 
a wide range of values for the cross-loadings (near-zero, small, 
medium, and large) and also for the loadings in the group factors. 
Parameter recovery is analyzed but the focus of the study is on the 
usefulness of several goodness-of-fit indices to detect the 
specification error that involves ignoring small-to-large cross-
loadings. The fit indices used in our study are summarized in the 
next section.

Effect of the magnitude of factor 
loadings on goodness-of-fit 
indices

Another important aim of the present study is to examine the 
performance of different goodness-of-fit indices to detect the 
model misspecification when ignoring the non-zero parameter 
cross-loadings and forcing them to take zero values. Hsu et al. 
(2014) addressed this issue in the context of SEM models and 
found that typically used goodness-of-fit indices could not detect 
the misspecification of forced zero cross-loadings. However, Hsu 
et al. (2014) considered small parameter cross-loadings (values 
from 0.07 to 0.19) and only examined the RMSEA and SRMR 
indices. In the present study, we specifically refer to confirmatory 
bifactor models and consider a wider range of parameter cross-
loading values (from 0.05 to 0.40). Concerning the fit indices, 
we draw on recent research by Ximénez et al. (2022) to assess the 
performance of two types of indices: RMSEA and SRMRu, which 
are consistent and asymptotically unbiased estimators of the 

parameter of interest (Maydeu-Olivares, 2017); and CFI, GFI, and 
SRMR, whose estimators are consistent but are not 
asymptotically unbiased.

Steiger (1990) pointed out the importance of using unbiased 
estimators because the sample goodness-of-fit indices can 
be severely biased at small to moderate sample sizes. The most 
widely used unbiased index is the RMSEA (Browne and Cudeck, 
1993), as it was the first defined at the population level, and it 
provides a confidence interval for the population parameter and 
a statistical test of close fit (H0: RMSEA ≤  c). However, its 
interpretation is problematic because the RMSEA is in an 
unstandardized metric, and researchers cannot judge whether any 
given value is large or small (Savalei, 2012). This problem can 
be avoided using standardized indices (e.g., the SRMR: Jöreskog 
and Sörbom, 1989). Recently, Maydeu-Olivares (2017) derived an 
unbiased estimator of the population SRMR (denoted here as 
SRMRu), which has shown good statistical properties and 
efficiency to provide interpretation guidelines to assess the 
goodness of fit (Shi et al., 2018; Ximénez et al., 2022). Thus, we will 
use the RMSEA and SRMRu to represent asymptotically 
unbiased indices.

Concerning the biased indices, we  will refer to the CFI 
(Bentler, 1990), the GFI (Jöreskog and Sörbom, 1989), and the 
SRMR index. The CFI and the GFI are relative fit indices and also 
avoid the interpretation problem of the RMSEA as the fitted 
model can be compared to an independence model (CFI) or a 
saturated model (GFI). CFI and GFI are consistent but not 
asymptotically unbiased indices,1 whereas for the SRMR, we will 
use both the naïve (consistent but biased) sample estimator of the 
SRMR currently implemented in most SEM software packages 
and its unbiased estimator (SRMRu) that is implemented in lavaan 
(Rosseel, 2012).

Besides illustrating the effect of using biased versus unbiased 
estimators to detect the model misspecification by ignoring the 
cross-loadings, the focus of our study is on examining the effect of 
the magnitude of factor loadings. Previous research has 
demonstrated that the behavior of fit indices depends on the 
magnitude of the factor loadings (Steiger, 2000; Saris et al., 2009; 
Cole and Preacher, 2014). For instance, most fit indices are affected 
by the phenomenon of the reliability paradox or poor measurement 
quality associated with better model fit (Hancock and Mueller, 
2011), such that, as standardized loadings increase, the values of 
CFI and GFI decrease while the values of RMSEA and SRMR 
increase. There is a statistical explanation for this phenomenon, 
and it is that the power of likelihood test statistic depends on the 
eigenvalues of the model implied covariance matrix, which in turn, 
depends on the variances of model errors or uniqueness (Browne 
et al., 2002). Thus, any fit index based on the difference between the 
observed and implied covariance matrix (e.g., the SRMR) will also 

1 Although unbiased estimators of the CFI have been developed (see 

Lai, 2019) but are not implemented in SEM software and will not 

be considered here.
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depend on the magnitude of the factor loadings (Heene et  al., 
2011). To avoid the phenomenon of the reliability paradox, Shi 
et al. (2018) proposed correcting the SRMR value by considering 
the average communality (R2) of the observed variables and also a 
cutoff criterion of 2SRMR / 0.05≤R  to identify close-fitting 
models and of 2SRMR / 0.10≤R  to identify adequate-fitting 
models. Previous research has found that this correction works well 
in the context of CFA models (Shi et al., 2018; Ximénez et al., 2022), 
and our study examines whether the Shi et al.’s (2018) correction 
works reasonably well to detect misspecified bifactor models.

Monte Carlo simulation study

We follow the guidelines for Monte Carlo simulation designs 
in SEM recommended by Skrondal (2000) and Boomsma (2013) 
to present the design of our simulation study.

Step 1: Research question and theoretical 
framework

This research explores the effect that different issues of the 
design of the study may have on the recovery of factor loadings 
and the assessment of goodness of fit of confirmatory bifactor 
models ignoring non-zero cross-loadings in the model 
specification. The design issues include varying conditions of the 
magnitude of the loadings in the group factors (λ), sample size 
(N), and magnitude of the cross-loadings (c), and focuses on the 
implications of ignoring non-zero cross-loading in the group 
factors. The effects of these variables on the occurrence of 
nonconvergent solutions and Heywood cases are also examined 
as bifactor models are prone to nonconvergent solutions 
particularly when the cross-loadings are large.

The consequences of ignoring non-zero cross-loadings, 
forcing them to be zero in the estimated model, have been studied 
in the context of SEM models. The present study focuses 
specifically on confirmatory bifactor models and considers a wider 
range of conditions, not only for the magnitude of the cross-
loadings but also for the magnitude of the loadings in the group 
factors. Additionally, our study analyzes the sensitivity of several 
goodness-of-fit indices to detect model misspecification. 
We consider commonly used SEM fit indices such as RMSEA, 
CFI, GFI, and SRMR (Hu and Bentler, 1999) and also evaluate the 
performance of the unbiased SRMR index (Maydeu-Olivares, 
2017), which has been revealed as the preferred one in recent 
research (Shi et al., 2018; Ximénez et al., 2022).

The research questions and hypotheses examined are as 
follows: First, we expect that the parameter recovery will worsen 
for the misspecified models ignoring the non-zero cross-loadings, 
and we aim to answer questions such as: Are the loadings in the 
general factor overestimated? Are the loadings in the group factors 
underestimated? Are there other conditions of the study design 
that attenuate these effects? Second, we examine the sensitivity of 

several goodness-of-fit indices to detect model misspecification to 
answer questions such as: What is the best goodness-of-fit index? 
Do I need a specific sample size in my study? Are there other 
characteristics of the model (e.g., magnitude of factor loadings) 
that affect the decision on the election of the goodness-of-fit 
index? Finally, we evaluate whether Shi et al.’s (2018) correction 
for the SRMR index based on the communality level works 
reasonably well for detecting misspecified confirmatory 
bifactor models.

Step 2: Experimental design

Population models
Following Boomsma’s (2013) recommendations, the choice of 

the population models is based on previous research to increase the 
comparability of the experimental results and contribute to their 
external validity. The generating models were defined on the basis 
of Reise et  al.’s (2018) model. More specifically, the population 
model is a CFA bifactor model with 12 observed variables in which 
each item depends on a single factor, and there are three group 
factors, each of which has four indicators (see Figure 1A). As can 
be seen, the model also includes three cross-loadings, one in each 
group factor. The loadings in the general factor were fixed to 0.60 
to represent strong factor loadings and ensure that a poor recovery 
of factor loadings was associated with model misspecification. In 
the group factors, the same number of indicators per factor was 
used, and the magnitude of the loadings varied between weak (0.15) 
to strong (0.60) factor loadings. Finally, the magnitude of the cross-
loadings varied between nearly zero (0.05) to large (0.40) values.

Experimental factors and response variables
The independent variables are the model specification (q), the 

sample size (N), the magnitude of the factor loadings on the group 
factors (λ), and the magnitude of the cross-loadings (c). Table 1 
summarizes the variables used in our design.

Model misspecification was introduced by fitting a bifactor 
model without the cross-loadings to the simulated data. That is, 
the model was estimated including the cross-loadings (correctly, 
as in Figure  1A) or ignoring the parameter cross-loadings 
(incorrectly, as in Figure 1B), forcing them to take zero values.

Sample size included N = 100, 200, 500, and 1,000 observations 
representing small, medium, large, and very large sample sizes. A 
wide range of sample sizes was used to determine the effect of the 
magnitude of factor loadings under different conditions of sample 
size, and to give practical recommendations to researchers about 
which sample sizes to use to achieve a good parameter recovery 
and an adequate assessment of the goodness of fit of their models.

The magnitude of the factor loadings in the group factors was 
specified using four levels: λ = 0.15, 0.30, 0.50, and 0.60; 
representing weak, small, medium, and strong factor loadings 
(Ximénez, 2006, 2007, 2009, 2016). When generating the data, the 
loading values used were the same for all variables across factors. 
The variances of the error terms were set as 1 – λ2.
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The magnitude of the cross-loadings in the group factors was 
specified using a wide range of levels. Following Gorsuch (1983), 
cross-loadings up to ± 0.10 are considered random variations from 
zero. We  used five levels: c = 0.05, 0.10, 0.20, 0.30, and 0.40, 
representing almost zero, weak, small, medium, and large cross-
loadings, respectively. Given that model misspecification was 
defined by forcing the cross-loadings to take zero values, these 
levels also define the degree of model misspecification, which 
varied between almost null (c = 0.05), substantially ignorable 
(c = 0.10), small (c = 0.20), medium (c = 0.30), and strong (c = 0.40).

In summary, the number of conditions examined was 160 = 2 
(model specification) × 4 (sample size levels) × 4 (loading levels in 
the group factors) × 5 (cross-loading levels).

Step 3: Estimation and replication

For each condition, 1,000 replications were generated with the 
simsem package in R (Pornprasertmanit et al., 2021). Data were 
generated from a multivariate normal distribution. Maximum 
likelihood (ML) estimates of the parameters and goodness-of-fit 
indices were computed with the lavaan package in R (Rosseel, 
2012; R Development Core Team, 2019). Parameters were 
estimated for the models defined in Figure  1. That is, for the 

correct model, which includes the cross-loadings in the group 
factors (Figure 1A), and the incorrect model, which ignores such 
cross-loadings, forcing them to take zero values (Figure 1B).

Step 4: Analyses of output

Nonconvergent solutions and Heywood cases were deleted to 
study the effects of the independent variables on the recovery of 
factor loadings and the goodness of fit. Prior to deleting such 
solutions, we created two qualitative variables (NCONVER and 
HEYWOOD) coded as 0 and 1 (see Table  1) and conducted 
Log-linear/logit analyses to study the effect of the independent 
variables on the occurrence of nonconvergent solutions and 
Heywood cases.

The recovery of factor loadings was assessed by examination 
of the correspondence between the theoretical loading and the 
estimated one. We used the root mean square deviation or RMSD 
(Levine, 1977) for each factor in the theoretical model:

  
RMSDk

i

p

ik t ik e p= −( )
=

( ) ( )∑
1

2
λ λ / ,

 (1)

A B

FIGURE 1

Theoretical and estimated model under the simulation study conditions. (A) Theoretical model. (B) Estimated model under model misspecification. 
The three dotted lines in Graph (A) are the cross-loadings defined in the theoretical model. Graph (B) shows the estimated model under the 
condition of model misspecification by ignoring the cross-loadings in the theoretical model.
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where p is the number of variables that define the factor k, 
λik(t) is the theoretical loading for the observed variable i on the 
factor k, and λik(e) is the corresponding loading obtained from 
the simulation data. We computed a separate RMSD index for 
each type of factor loading: one for the 12 loadings in the 
general factor (RMSD_FGen), another one for the 12 loadings in 
the group factors (RMSD_FGroup), and a final one for the three 
cross-loadings in the group factors (RMSD_Cross). The RMSD 
index defined in Equation 1 is difficult to interpret as its 
values range between zero (perfect pattern-magnitude match) 
and two (all loadings are equal to unity but of opposite signs). 
In practical applications, most studies consider that RMSD 
values below 0.20 are indicative of a satisfactory recovery 
(Ximénez, 2006).

A meta-model was used to analyze the results, which included 
the main effects and the two-, three-, and four-way interaction 
effects among the independent variables:

DV

 ,

µ λ λ λ
λ λ λ λ λ

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
= + + + + + + + + +

+ + + + + +

q N c q N q q c N N c

c q N q N c q c N c q N c  (2)

where DV: dependent variables (RMSD and goodness-of-fit 
measures), q: model specification (correct vs. incorrect), N: sample 
size (100, 200, 500, and 1,000). λ: loading size in the group factors 
(0.15, 0.30, 0.50, or 0.60), c: magnitude of the cross-loadings (0.05, 
0.10, 0.20, 0.30 or 0.40).

A separate analysis of variance (ANOVA) was conducted for 
each of the dependent variables (the three RMSD measures and 
the five goodness-of-fit values) to test the effects included in the 
meta-model of Equation (2). For RMSD_Cross, the meta-model 
includes all terms except the ones referring to q because it only 
considers correctly specified models. As the large sample size 
(n = 200,000) can cause even negligible effects to be statistically 
significant, the explained variance associated with each of the 
effects was also calculated, using the partial eta-squared statistic 
(η2). The magnitude of the effects was judged with the 
interpretation guidelines suggested by Cohen (1988): η2 values 
from 0.05 to 0.09 indicate a small effect, from 0.10 to 0.20, a 
medium effect; and above 0.20, a large effect.

Results

Nonconvergence and Heywood cases

The proportion of nonconvergent solutions and Heywood 
cases that occurred when obtaining 1,000 good solutions per 
cell is summarized in Supplementary Table S1. Of the 200,000 
solutions, 15,297 (7.6%) were nonconvergent and 8,892 (4.4%) 
presented Heywood cases. The results of the log-linear/logit 
analyses indicate that the proportion of nonconvergent 
solutions and Heywood cases was higher when the loadings in 
the group factors were weak (0.30 or below) and the sample 
size was decreased. The λ*N interaction effect was of 
considerable size. Analyses showed that the largest proportion 
of nonconvergent solutions and Heywood cases occurred for 
λ = 0.15 and N = 100 across all the values of the cross-loadings. 
Furthermore, the proportion of nonconvergent and improper 
solutions was similar regardless of model misspecification.

Overall, results indicate that the conditions manipulated in 
our study do not produce a large number of improper solutions 
and, congruent with recent research (Cooperman and Waller, 
2021), nonconvergent solutions and Heywood cases appear only 
in poorly defined factors (e.g., λ < 0.30 in the group factors) and 
when using very small sample sizes (e.g., N = 100).

Recovery of factor loadings

Table 2 summarizes the results of the ANOVAs performed on 
each dependent variable. Results for the RMSD measures appear 

TABLE 1 Variables considered in the Monte Carlo study.

Code Variable Levels

Independent variables

q Model specification Correct

Incorrect (ignoring the 

cross-loadings)

N Sample size 100 (small)

200 (medium)

500 (large)

1,000 (very large)

λ Magnitude of loadings in 

the group factors

0.15 (very low)

0.30 (low)

0.50 (medium)

0.60 (high)

c Magnitude of cross-

loadings

0.05 (near zero)

0.10 (very low)

0.20 (low)

0.30 (medium)

0.40 (high)

Dependent variables

NCONVER Nonconvergent solutions (0: Convergent solution; 1: 

nonconvergent solution)

HEYWOOD Heywood cases (0: Non-Heywood case, 1: Heywood 

case)

RMSD_FGen Recovery of factor loadings for the items of the 

general factor

RMSD_FGroup Recovery of factor loadings for the items of the 

group factors

RMSD_Cross Recovery of cross-loadings in the group factors

GOF Goodness-of-fit indices: RMSEA, CFI, GFI, SRMR, 

and SRMRu
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in the left-hand side of Table 2. For visual presentations of the 
patterns, we also plotted in Figures 2A, 3A, 4A the average sample 
estimates of the RMSD values against model specification (correct 
or incorrect), loading level in the group factors (λ = 0.15, 0.30, 0.50, 
and 0.60), sample size (N = 100, 200, 500, and 1,000), and 
magnitude of cross-loadings (cλ = 0.05, 0.10, 0.20, 0.30, and 0.40). 
A horizontal blue line has been drawn in these graphs to mark the 
recommended cutoff value for RMSD (0.20).

Recovery of the loadings in the general 
factor

As shown on the left-hand side of Table 2, the sample size (N) 
and the magnitude of the loadings in the group factors (λ) have a 
large effect on the recovery of the loadings of the general factor 
(η2 = 0.68 and 0.22), whereas their interaction (N*λ) exerts a small 
effect (η2 = 0.04). The pattern of the graphs of Figure 2A indicates 

TABLE 2 ANOVA results for the effects of the independent variables on the recovery of factor loadings and the goodness of fit.

RMSD_FGen RMSD_FGroup RMSD_Cross RMSEA CFI GFI SRMR SRMRu

df p η2 p η2 p η2 p η2 p η2 p η2 p η2 p η2

q 1 <0.001 0.00 <0.001 0.01 – – <0.001 0.06 <0.001 0.05 <0.001 0.12 <0.001 0.19 <0.001 0.21

N 3 <0.001 0.68 <0.001 0.57 <0.001 0.33 <0.001 0.12 <0.001 0.17 <0.001 0.91 <0.001 0.90 <0.001 0.09

λ 3 <0.001 0.22 <0.001 0.22 <0.001 0.09 <0.001 0.03 <0.001 0.01 <0.001 0.03 <0.001 0.00 <0.001 0.07

c 4 <0.001 0.02 <0.001 0.02 <0.001 0.00 <0.001 0.05 <0.001 0.04 <0.001 0.05 <0.001 0.09 <0.001 0.08

q*N 3 <0.001 0.01 <0.001 0.01 – – <0.001 0.01 <0.001 0.00 <0.001 0.01 <0.001 0.01 <0.001 0.01

q*λ 3 <0.001 0.00 <0.001 0.00 – – <0.001 0.02 <0.001 0.02 <0.001 0.02 <0.001 0.06 <0.001 0.05

q*c 4 <0.001 0.02 <0.001 0.04 – – <0.001 0.06 <0.001 0.05 <0.001 0.05 <0.001 0.10 <0.001 0.09

N*λ 9 <0.001 0.04 <0.001 0.04 <0.001 0.01 <0.001 0.00 <0.001 0.01 <0.001 0.00 <0.001 0.02 <0.001 0.01

N*c 12 <0.001 0.00 0.002 0.00 <0.001 0.01 <0.001 0.01 <0.001 0.00 <0.001 0.00 <0.001 0.02 <0.001 0.01

λ*c 12 <0.001 0.01 <0.001 0.00 <0.001 0.01 <0.001 0.02 <0.001 0.02 <0.001 0.02 <0.001 0.05 <0.001 0.04

q*N*λ 9 <0.001 0.00 0.011 0.00 – – <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00

q*N*c 12 <0.001 0.00 <0.001 0.00 – – <0.001 0.01 <0.001 0.00 <0.001 0.00 <0.001 0.01 <0.001 0.00

q*λ*c 12 <0.001 0.01 <0.001 0.00 – – <0.001 0.02 <0.001 0.02 <0.001 0.02 <0.001 0.04 <0.001 0.03

N*λ*c 36 <0.001 0.00 0.008 0.00 <0.001 0.00 <0.001 0.00 0.413 0.00 0.998 0.00 <0.001 0.00 <0.001 0.00

q*N*λ*c 36 <0.001 0.00 <0.001 0.00 – – <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00 <0.001 0.00

RMSD_FGen, RMSD_FGroup, and RMSD_Cross are the RMSD indices for the general factor, the group factors and the cross-loadings, respectively. RMSEA, root mean squared error of 
approximation; CFI, comparative fit index; GFI, goodness-of-fit index; SRMR, standardized root mean squared residual; SRMRu, unbiased SRMR; df, degrees of freedom; p, value of p; η2, 
partial eta-squared; q, model specification; N, sample size; λ, magnitude of loadings in the group factors; and c, magnitude of cross-loadings.

A B

FIGURE 2

Results for the general factor under the simulation study conditions. (A) Recovery of factor loadings in the general factor. (B) Difference between 
estimated and theoretical loadings in the general factor. Model is model specification (correct or incorrect by omitting the cross-loadings), N is the 
sample size (100, 200, 500, and 1,000), Lambda is the magnitude of the loadings in the group factors (0.15, 0.30, 0.50, and 0.60), Cross-loading is 
the magnitude of the cross-loadings (0.05, 0.10, 0.20, 0.30, and 0.40), and the blue solid line corresponds to the RMSD ≤ 0.20 cutoff in the graph 
(A) and to the null difference (Diff) between the theoretical and the empirical loadings in the graph (B).
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that the loadings in the general factor are adequately recovered 
across all the study conditions, even in the models misspecified by 
ignoring the cross-loadings (for more details, see also 
Supplementary Table S2). However, the recovery worsens when 
the sample size is small (e.g., N = 100) and the magnitude of the 
loadings in the group factor increases (e.g., λ = 0.60). Therefore, 
forcing the non-zero parameter cross-loadings to take zero values 

does not affect the recovery of the loadings in the general factor 
when using sample sizes of 200 or more observations.

Figure 2B shows the difference between the estimated loadings 
and the theoretical ones for the items in the general factor. As can 
be seen, congruent with the results found in previous research, 
there is a tendency to overestimation of the loadings in the general 
factor, regardless of sample size. This effect is more pronounced 

A B

FIGURE 3

Results for the group factors under the simulation study conditions. (A) Recovery of factor loadings in the group factors. (B) Difference between 
estimated and theoretical loadings in the group factors. Model is model specification (correct or incorrect by omitting the cross-loadings), N is the 
sample size (100, 200, 500, and 1,000), Lambda is the magnitude of the loadings in the group factors (0.15, 0.30, 0.50, and 0.60), Cross-loading is 
the magnitude of the cross-loadings (0.05, 0.10, 0.20, 0.30, and 0.40), and the blue solid line corresponds to the RMSD ≤ 0.20 cutoff in the graph 
(A) and to the null difference (Diff) between the theoretical and the empirical loadings in the graph (B).

A B

FIGURE 4

Results for the cross-loadings in the group factors under the simulation study conditions. (A) Recovery of cross-loadings in the group factors. 
(B) Difference between estimated and theoretical cross-loadings. Model is model specification (correct or incorrect by omitting the cross-
loadings), N is the sample size (100, 200, 500, and 1,000), Lambda is the magnitude of the loadings in the group factors (0.15, 0.30, 0.50, and 0.60), 
Cross-loading is the magnitude of the cross-loadings (0.05, 0.10, 0.20, 0.30, and 0.40), and the blue solid line corresponds to the RMSD ≤ 0.20 
cutoff in the graph (A) and to the null difference (Diff) between the theoretical and the empirical factor loadings in the graph (B).
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for the incorrect models (dotted lines) and the cross-loadings with 
larger values.

Recovery of the loadings in the group factors
As shown on the left-hand side of Table 2, the sample size (N) 

has a large effect (η2 = 0.57) on the recovery of the loadings of the 
group factors. The pattern of the graphs of Figure 3A indicates that 
the loadings in the group factors are adequately recovered across 
all the study conditions, even in the models misspecified by 
ignoring the non-zero cross-loadings, when the sample size is 
large (N = 500 or more observations). However, recovery worsens 
when the sample size is small (e.g., N = 100). The magnitude of the 
loadings in the group factor also exerts an effect (η2 = 0.22), as 
recovery worsens as the loading in the group factor decreases. 
Thus, forcing the cross-loadings to take zero values only affects the 
recovery of the loadings in the group factors when using small 
sample sizes (200 or fewer observations).

Figure 3B shows the difference between the estimated loadings 
and the theoretical ones for the items in the group factors. As can 
be seen, the difference is null only for the correct models and large 
sample sizes (N  =  500 or more observations). However, the 
loadings in the group factors are underestimated when the sample 
size is small (N = 200 or less), and this effect is more pronounced 
for incorrect models with larger values in the cross-loadings (for 
more details, see also Supplementary Table S3).

Our findings of overestimation of the loadings in the general 
factor and underestimation of the loadings in the group factors are 
congruent with previous research (Hsu et al., 2014; Zhang et al., 
2021a; Wei et  al., 2022). These results also reflect that the 
phenomenon of factor collapse (Geiser et al., 2015; Mansolf and 
Reise, 2016) may have operated. Factor collapse occurs when an 
amount of variance is shifted away from one or more group factors 
toward the general factor, as happens here, given that the loadings 
in the general factor are inflated when ignoring the non-zero 
parameter cross-loadings, whereas the values of the loadings in 
the group factors are decreased.

Recovery of the cross-loadings
In this case, model specification is not an experimental 

condition, as cross-loadings are only estimated for the correct 
models. As shown on the left-hand side of Table 2, the pattern of 
results for the recovery of cross-loadings is very similar to the one 
already commented on for the recovery of the loadings in the 
group factors. The sample size (N) and the magnitude of the 
loadings in the group factors (λ) have a large (η2  =  0.33) and 
medium (η2 = 0.09) effect on the recovery of the cross-loadings. 
The pattern of the graphs of Figure 4A indicates that the cross-
loadings are adequately recovered across all the study conditions, 
except when the sample size is very small (N  =  100) and the 
magnitude of the loadings in the group factor decreases (λ < 0.50).

Figure 4B shows the difference between the estimated loadings 
and the theoretical ones for the cross-loadings in group factors. As 
can be seen, the difference is null under the conditions of medium 
and large loadings in the group factors. However, in the models 

with weak loadings in the group factors, there is a tendency to 
underestimate the cross-loadings. This effect is more pronounced 
for smaller sample sizes and larger cross-loadings.

Overall, the finding of underestimation of the loadings both 
for the group factors and the cross-loadings may explain the bias 
of overestimation of the loadings in the general factor and how the 
phenomenon of factor collapse affects the group factors.

Goodness-of-fit indices

The right-hand side of Table 2 summarizes the results of the 
ANOVAs performed on each of the goodness-of-fit indices 
considered here (the descriptive statistics for all fit indices are 
summarized in Supplementary Tables S4–S6). For visual 
presentations of the patterns, we  plotted the average sample 
estimates of the fit indices against the simulation study conditions 
in Figures 5–7. Each figure includes an additional column with the 
population value for each fit index under the incorrect model. 
Moreover, a horizontal blue line has been drawn in these figures 
to mark the recommended cutoff values (Hu and Bentler, 1999) 
for RMSEA (0.05), CFI (0.95), GFI (0.95), and SRMR (0.08). 
Below, we summarize the main findings for each fit index.

RMSEA results
As seen in Table 2, the largest effects found in the ANOVA for 

RMSEA are the sample size (N, η2 = 0.12), model specification (q, 
η2 = 0.06), magnitude of cross-loadings (c, η2 = 0.05) and their 
interaction (q*c, η2 = 0.06) but these effects are moderate or small. 
The graphs of Figure 5A show that the RMSEA value is larger for 
the misspecified models but this effect depends on the sample size 
and the magnitude of the loadings in the group factors. The use of 
Hu and Bentler’s (1999) cutoff (RMSEA < 0.05) will lead us to 
conclude that all conditions provide a close fit to the estimated 
model when the cross-loadings adopt low values (c  ≤  0.20). 
However, the fit is poorer (sample RMSEA values between 0.07 
and 0.11) when the model is misspecified by ignoring medium 
and large cross-loadings (c  >  0.20) and the magnitude of the 
loadings in the group factors is large (λ > 0.50).

The graphs of Figure 5A also reflect the difference between 
the population RMSEA values and the estimated ones. As can 
be  seen, the RMSEA value is underestimated under all the 
study conditions. However, this effect is more pronounced for 
the models with larger cross-loadings values (c = 0.30 and 
0.40), indicating that the model misspecification is not 
detected by the RMSEA index, regardless of sample size. This 
result is important as applied studies have found such a pattern 
in bifactor models (see, for instance, Hörz-Sagstetter 
et al., 2021).

Our finding of RMSEA not being useful to detect model 
misspecification when ignoring cross-loadings with near-zero or 
lower values is congruent with Hsu et al.’s (2014) study, not being 
particularly detrimental, as the effect size of model misfit for these 
conditions is negligible. However, under the conditions of large 
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cross-loadings, the effect size of the misfit is considerable and the 
RMSEA index is unable to detect and reject the model.

Comparative fit index results
Table 2 and Figure 5B show the results of the ANOVA for the 

sample estimates of CFI as a function of model specification (q), 
sample size (N), magnitude of loadings in the group factors (λ), 
and magnitude of cross-loadings (c). As seen in Table 2, for CFI, 
the pattern of results is similar to the one already commented on 
for RMSEA. The largest effects found are due to the sample size 
(N, η2 = 0.17), model specification (q, η2 = 0.05), magnitude of 
cross-loadings (c, η2 = 0.04) and their interaction (q*c, η2 = 0.05) 
but these effects are moderate or small. As seen in Figure 5B, the 
pattern of results is similar across all the study conditions. In this 
case, the use of Hu and Bentler’s (1999) cutoff (CFI > 0.95) will 
lead us to conclude that there is an adequate fit under all the study 
conditions, even when the model is misspecified by ignoring the 
cross-loading values. The only conditions where CFI is a bit 
poorer (population CFI values between 0.91 and 0.94) occur when 
the model is misspecified and the magnitude of cross-loadings is 
large (e.g., c = 0.40), but the sample CFI is unable to detect and 
reject such models.

We therefore conclude that the CFI is not useful to detect 
model misspecification by constraining to zero the coefficients of 
the cross-loadings and recommend not assessing bifactor models 
solely based on the CFI index.

Goodness-of-fit results
The results for the GFI replicate those already explained for 

the CFI. However, the effect found in the ANOVA due to sample 
size is much larger (N, η2 = 0.91) and model specification exerts 
a medium effect (q, η2 = 0.12). The graphs of Figure 6A show that 
the values for GFI are indicative of an adequate fit when a large 

sample size is used (N = 500 or more observations), regardless of 
model misspecification. However, when a small sample size is 
used (N  =  200 or fewer observations), the GFI values are 
indicative of a poorer fit (values between 0.85 and 0.93). For 
instance, either a correct or an incorrect bifactor model by 
ignoring the cross-loadings would be  rejected using the 
conventional cutoff with samples of 100 observations.

SRMR results
This section summarizes the results for all SRMR indices 

considered here. Concerning the naïve SRMR index, as shown in 
the right-hand side of Table 2, the main drivers of the behavior of 
the SRMR are sample size (η2 = 0.90) and model specification 
(η2 = 0.19). The magnitude of the cross-loadings and its interaction 
with model specification also have a medium effect on the SRMR 
index (η2 = 0.09 for c and η2 = 0.10 for q*c). As with the other 
biased fit indices (CFI and GFI), the pattern of the graphs of 
Figure 6B indicates that the use of Hu and Bentler’s (1999) cutoff 
(SRMR <0.08) will lead us to conclude that all conditions provide 
a close fit to the estimated model, even in those with small 
sample sizes.

Concerning the behavior of the unbiased SRMR index 
(SRMRu), the pattern of results is quite different. As expected, and 
congruent with previous research, sample size is a main driver of 
the behavior of the SRMR (biased) index, whereas the SRMRu 
(unbiased) index is barely affected by the number of observations 
in the sample, as N exerts an effect but it is much smaller 
(η2 = 0.09). As seen in Figure  7A, for the SRMRu index, all 
conditions show acceptable goodness-of-fit values according to 
Hu and Bentler’s (1999) cutoff (SRMR <0.08) and therefore, the 
unbiased SRMR index is not sensitive to model misspecification 
by ignoring the cross-loadings. Concerning the difference between 
the population SRMR values and the estimated ones, similar as 

A B

FIGURE 5

Results for the RMSEA and CFI fit indices under the simulation study conditions. (A) RMSEA. (B) CFI. Model is model specification (correct or 
incorrect by omitting the cross-loadings), N is the sample size (100, 200, 500, and 1,000), Lambda is the magnitude of the loadings in the group 
factors (0.15, 0.30, 0.50, and 0.60), Cross-loading is the magnitude of the cross-loadings (0.05, 0.10, 0.20, 0.30, and 0.40), Population is the 
population values for each index, and the blue solid line refers to the corresponding cutoff for the goodness-of-fit index.
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with RMSEA, the SRMRu value is underestimated in the models 
with large cross-loadings values (c = 0.30 and 0.40).

In addition, both the magnitude of the loadings in the group 
factors (λ) and of the cross-loadings exert a small effect (η2 = 0.07 
and 0.08, respectively) on the SRMRu index, such that the smaller 
the factor loading, the better the fit. This result indicates that the 
reliability paradox may have operated. We  then analyzed Shi 
et  al.’s (2018) correction of the SRMRu index based on 
communality. Figure  7B illustrates the behavior of Shi et  al.’s 

(2018) correction under the simulation conditions (for more 
details, see also Supplementary Table S6). This figure is similar to 
Figure 7A but, in this case, the red lines, instead of representing 
Hu and Bentler’s (1999) cutoff value (i.e., SRMR <0.08), mark Shi 
et al.’s cutoff values for close-fit ( 2SRMR / 0.05≤u R , red thin 
line) and adequate-fit ( 2SRMR / 0.10≤u R , red thick line). As 
can be seen, the black solid lines fall below the cutoffs in most of 
the conditions, indicating a close-fit for the correct models, 
whereas the black dotted lines are above such cutoffs in the 

A B

FIGURE 7

Results for the unbiased SRMR fit indices under the simulation study conditions. (A) SRMRu. (B) SRMR / 2Ru . Model is model specification (correct 
or incorrect by omitting the cross-loadings), N is the sample size (100, 200, 500, and 1,000), Lambda is the magnitude of the loadings in the group 
factors (0.15, 0.30, 0.50, and 0.60), Cross-loading is the magnitude of the cross-loadings (0.05, 0.10, 0.20, 0.30, and 0.40), and Population is the 
population values for each index. The black lines reflect the behavior of the sample SRMRu under the study conditions (solid line is for the correct 
model and dotted line for the incorrect model), and the red solid lines show the two cutoffs for SRMR / 2Ru : 0.05 (red thin line, close fit) and 0.10 
(red thick line, adequate fit).

A B

FIGURE 6

Results for the GFI and SRMR fit indices under the simulation study conditions. (A) GFI. (B) SRMR. Model is model specification (correct or incorrect 
by omitting the cross-loadings), N is the sample size (100, 200, 500, and 1,000), Lambda is the magnitude of the loadings in the group factors 
(0.15, 0.30, 0.50, and 0.60), Cross-loading is the magnitude of the cross-loadings (0.05, 0.10, 0.20, 0.30, and 0.40), Population is the population 
values for each index, and the blue solid line refers to the corresponding cutoff for the goodness-of-fit index.
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misspecified models indicating unacceptable goodness of fit for 
the bifactor models ignoring the non-zero parameter cross-
loadings. At the population level, the two Shi et al.’s cutoffs work 
reasonably well to detect the misspecified models. At the sample 
level, the result for Shi et  al.’s correction is clearer for the 

2SRMR / 0.05≤u R  cutoff (close-fitting models), whereas the 
2SRMR / 0.10≤u R  cutoff (adequate-fitting models) is only 

satisfied under conditions of low loadings in the group factors. 
Finally, and congruent with the findings for the asymptotically 
unbiased indices (RMSEA and SRMRu), under conditions of 
small sample size (e.g., N = 100) and weak factor loadings in the 
group factors (λ = 0.30 or below), the goodness of fit is 
inappropriate even for the correct models.

In summary, our results indicate that the correction proposed 
by Shi et al. (2018) to determine the close fit of the SRMR index as 
a function of the communality works reasonably well for detecting 
misspecified bifactor models ignoring low-to-moderate and high 
cross-loadings. Shi et  al.’s cutoffs detect misspecified models 
whereas the SRMRu index without the correction cannot detect 
and reject a misspecified confirmatory bifactor model that ignores 
the non-zero cross-loadings.

Discussion and conclusion

The aim of the present study was to assess the consequences 
of ignoring non-zero parameter cross-loadings in confirmatory 
bifactor models. We analyzed the recovery of factor loadings and 
also studied the sensitivity of several typically used goodness-of-fit 
indices and their cutoffs to detect model misspecification. 
Previous research has addressed these issues in the context of SEM 
models but our research focuses specifically on confirmatory 
bifactor analysis and includes design variables that had not been 
considered before. For instance, we manipulated a wide range of 
values both for the loadings in the group factors and the cross-
loadings. Moreover, we  analyzed the performance of several 
goodness-of-fit indices to detect model misspecification.

We presented the results of a simulation study investigating the 
problem of ignoring the non-zero parameter cross-loadings and 
how it affects parameter recovery and the goodness of fit of the 
confirmatory bifactor model under varying conditions of sample 
size and magnitude of the factor loadings both in the group factors 
and the cross-loadings. The study analyzes the recovery of factor 
loadings and focuses on the behavior of two groups of goodness-
of-fit indices: Asymptotically unbiased estimators of fit indices (the 
RMSEA, the most widely used index; and the unbiased SRMR 
index, which is the only fit index formulated in a standardized 
metric with an associated statistical test of close fit), and biased 
estimators of fit indices commonly used in practice (the CFI, the 
GFI, and the SRMR). The purpose of the study was to examine the 
consequences of ignoring the cross-loadings on the estimation of 
the factor loadings and assess the sensitivity of the fit indices to 
detect model misspecification. Conditions regarding the 
characteristics of the model, such as the magnitude of the factor 

loadings or the sample size, were also manipulated to better 
understand the consequences of ignoring the cross-loadings and 
provide practical recommendations to researchers.

Concerning the recovery of factor loadings, our results 
indicated that ignoring the non-zero parameter cross-loadings of 
the bifactor model has a negative impact on the recovery of factor 
loadings, particularly when using small sample sizes (e.g., 200 or 
fewer observations). More specifically, the consequences of ignoring 
non-zero cross-loadings are that the loadings in the general factor 
are overestimated and those in the group factors are underestimated. 
These effects are more pronounced when the cross-loadings take 
larger values (0.20 or more) and the loadings in the group factors 
are smaller. These findings are congruent with previous research 
(Zhang et al., 2021a; Wei et al., 2022) and suggest that ignoring 
moderate and large cross-loadings and forcing them to take zero 
values will have a negative impact on parameter estimation. Our 
results of underestimation of the loadings in the group factors may 
explain the bias of overestimation of the loadings in the general 
factor and support that the phenomenon of factor collapse may 
have operated, such that the group factors improperly collapse onto 
the general factor. Thus, ignoring the cross-loadings in a 
confirmatory bifactor model may be problematic when they take 
moderate-to-large values and the sample size is small.

Concerning the goodness of fit, our results revealed that the 
biased fit indices (CFI, GFI, and SRMR) are not useful to detect 
model misspecification due to ignoring the non-zero cross-loadings, 
given that the use of Hu and Bentler’s (1999) cutoffs (CFI and 
GFI > 0.95, and SRMR <0.08) will lead us to conclude that all the 
tested conditions provide a close fit to the estimated model, even for 
the misspecified models. These results could be due to the fact that 
bifactor models better fit the data than other models (Morgan et al., 
2015; Rodriguez et al., 2016). Concerning the unbiased fit indices 
(RMSEA and SRMRu), we found that the magnitude of the factor 
loadings affects those indices, such that the smaller the factor 
loading, the better the fit of the model. As explained above, this is 
the reliability paradox phenomenon, and these indices need to 
be corrected by considering the magnitude of the factor loadings. 
We evaluated Shi et al.’s (2018) correction for the SRMRu index 
based on the communality level (R2) and their cutoff criterion of 

2SRMR / 0.05≤u R  to identify close-fitting models, and of 
2SRMR / 0.10≤u R  to identify adequate-fitting models. Our 

results indicated that the SRMRu R/ 2 correction was accurate 
and, more importantly, could detect model misspecification due to 
ignoring the cross-loadings, regardless of sample size.

Based on our findings, we conclude that the biased fit indices 
(CFI, GFI, and SRMR) are not useful to detect model 
misspecification by constraining to zero the coefficients of the 
cross-loadings and, therefore, we do not recommend their use to 
assess the goodness of fit of confirmatory bifactor models. 
We recommend the use of unbiased fit indices and a confidence 
interval. When using RMSEA, researchers should be aware that this 
index comes in an unstandardized metric and will be more difficult 
to interpret. Moreover, the RMSEA will only detect misspecified 
bifactor models when the loadings in the group factors and the 
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cross-loading take large values. We then recommend favoring the 
use of the unbiased SRMR index, which comes in a standardized 
metric, but also suggest applying Shi et al.’s (2018) correction based 
on the communality level to control for the effect of factor loading.

In conclusion, we recommend that the cross-loadings in the 
group factors be  taken into account when assessing the factor 
pattern recovery in confirmatory models assuming a bifactor 
structure. This research has shown that ignoring the non-zero cross-
loadings does not lead to the misfit of the model when SEM fit 
indexes and their cutoffs are used, but it will bias the parameter 
estimates and may lead to the group factors collapsing onto the 
general factor. Thus, we recommend researchers to model the cross-
loadings in their bifactor models instead of forcing them to take zero 
values. Of course, it must be taken into account that cross-loadings 
must be modeled without affecting the identification of the model. 
We also recommend that researchers favor the use of the SRMR 
unbiased index with Shi et  al.’s (2018) correction based on the 
magnitude of the factor loadings, as it is the only fit index that can 
detect model misspecification due to ignoring the cross-loadings in 
the bifactor confirmatory model (the unbiased SRMR index and its 
confidence intervals and tests of close fit are available in the lavaan 
package version 0.6–10 in R into the function lavResiduals).

As is the case with any simulation study, our results will hold 
only in conditions similar to those considered herein. Thus, future 
research should continue examining these effects under different 
study conditions. For instance, previous research argues that the 
problems of the cross-loadings can be  overcome by using 
Exploratory SEM models (ESEM), which integrate EFA and CFA, 
allowing cross-loadings to be freely estimated rather than being 
constrained to zero (Asparouhov and Muthén, 2009); and 
Bayesian SEM (BSEM), where one can postulate cross-loadings 
not taking zero values and estimate them with reference to a prior 
distribution (Muthén and Asparouhov, 2012). Wei et al. (2022) 
found that these approaches performed similarly in the case of 
zero cross-loadings, but SEM performed worse as cross-loadings 
increased, ESEM exhibited unstable performance in conditions of 
small factor loadings, and the performance of BSEM depended on 
the accuracy of the priors for cross-loadings. Thus, future research 
could be directed to test the effects found here in such models and 
evaluate whether Shi et al.’s (2018) correction for the SRMR index 
based on communality level works reasonably well to detect 
model misspecification under these approaches. Another current 
line of research not considered here has to do with the 
performance of the augmentation strategy, consisting of adding 
an additional indicator that only loads onto the general factor to 
reduce the probability of nonidentification problems (Eid et al., 
2017). Our simulation study did not considered such conditions 
but previous research encourages to adopt this strategy when 
analyzing data with bifactor modeling as it reduces estimation bias 
even with the presence of complex factor structures (Zhang et al., 
2021a,b). Then, future research could also be directed to study the 
performance of the augmentation strategy when modeling 
non-zero cross-loadings. Finally, future studies should examine 
data other than those based on a normal distribution. For instance, 

further study could be directed to assess the impact of ignoring 
the cross-loadings in factor analysis of nominal data (Revuelta 
et al., 2020).

In closing, we  hope that this research provides additional 
information to researchers to assist them when using bifactor 
models and conducting the difficult task of deciding whether or 
not to include the cross-loadings and select the appropriate index 
for assessing the goodness of fit of their models.
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