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Electroencephalography (EEG) based emotion recognition enables machines to perceive

users’ affective states, which has attracted increasing attention. However, most of

the current emotion recognition methods neglect the structural information among

different brain regions, which can lead to the incorrect learning of high-level EEG feature

representation. To mitigate possible performance degradation, we propose a novel

nuclear norm regularized deep neural network framework (NRDNN) that can capture

the structural information among different brain regions in EEG decoding. The proposed

NRDNN first utilizes deep neural networks to learn high-level feature representations of

multiple brain regions, respectively. Then, a set of weights indicating the contributions

of each brain region can be automatically learned using a region-attention layer.

Subsequently, the weighted feature representations of multiple brain regions are stacked

into a feature matrix, and the nuclear norm regularization is adopted to learn the

structural information within the feature matrix. The proposed NRDNN method can

learn the high-level representations of EEG signals within multiple brain regions, and

the contributions of them can be automatically adjusted by assigning a set of weights.

Besides, the structural information among multiple brain regions can be captured

in the learning procedure. Finally, the proposed NRDNN can perform in an efficient

end-to-end manner. We conducted extensive experiments on publicly available emotion

EEG dataset to evaluate the effectiveness of the proposed NRDNN. Experimental results

demonstrated that the proposed NRDNN can achieve state-of-the-art performance by

leveraging the structural information.

Keywords: electroencephalography (EEG), emotion recognition, affective brain-computer interface (aBCI),

structural information, nuclear norm regularization

INTRODUCTION

Affective brain computer interface (aBCI) can establish an effective communication pathway
between brain and devices (Mühl et al., 2014). Emotion recognition enables aBCI to accurately
perceive the affective states of brains, which has attracted increasing attention (Fragopanagos and
Taylor, 2005). Naturally, there exist several patterns of emotion expression, such as voice signals
(Ang et al., 2002), facial expressions (Xiaohua et al., 2017), body gestures (Yan et al., 2014),
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electromyogram (EMG) signals (Cheng and Liu, 2008),
electrocardiogram (ECG) signals (Agrafioti et al., 2012), and
electroencephalogram (EEG) signal (Zheng, 2017). Among
the above techniques, EEG is the most extensively adopted to
record brain electrical activities caused by emotional fluctuations
because of its portability and non-invasive way (Liu et al., 2017;
Zheng, 2017).

As shown in Figure 1, a classical EEG-based aBCI system
can be divided into four parts (Li J. et al., 2019), namely,
signal acquisition, preprocess, feature extraction, and emotion
recognition. For the acquisition of EEG signal, the electrical
signal of brain activity can be efficiently obtained by the non-
invasive electrodes along the scalp. Then, some kinds of filters,
e.g., Butterworth and Chebyshev (Bustamante et al., 2015), are
adopted to preprocess the original EEG signals to clean the
noise. Subsequently, the affective EEG data can be transformed
into a suitable feature representation by using the domain-
specific feature extractors. In general, the extracted features are
mainly represented as follows: (1) time feature; (2) frequency
feature; (3) time-frequency feature; and (4) spatial feature. For
example, Hjorth Features (Petrantonakis and Hadjileontiadis,
2010) and independent component analysis (ICA) (Iacoviello
et al., 2015) are the widely used time domain feature extractors.
Wavelet transform (WT) (Mazumder, 2019) and wavelet packet
decomposition (WPD) (Ting et al., 2008) are commonly adopted
as the affective EEG feature extractors in time-frequency
domain. Besides, fast Fourier transform (FFT) (Murugappan
and Murugappan, 2013) and autoregressive (AR) model (Atyabi
et al., 2016) are two widely used frequency domain affective
EEG feature extractors. Common spatial pattern (CSP) is the
typical spatial feature extractors for EEG data (Ramoser et al.,
2000). The main principle of CSP is to learn an optimal spatial
projection, which can maximize the variance of two classes
by simultaneous diagonalization of their covariance matrices.
Besides the methods mentioned above, many other feature
extractors have also been developed for affective EEG feature
extraction, such as differential entropy (DE) method (Duan et al.,
2013), which is widely used for extracting EEG features in time-
spatial domain. After feature extraction, many classifiers can be
exploited to emotion recognition, such as support vectormachine
(SVM) (Zhang et al., 2018), k-nearest neighbor (KNN) (Tang
et al., 2019), and Linear Discriminant Analysis (LDA) (Zhang
et al., 2013). The recognition results are finally feedback to
the users.

Although the abovementioned methods have shown their
efficacy in EEG-based aBCI system, these methods belong to
shallow learning methods that cannot exploit deep EEG feature
representations with the powerful deep learning framework.
Therefore, many deep learning methods have been developed
for EEG-based emotion recognition. For example, Zheng and
Lu (2015) proposed to utilize deep belief network to construct
emotion recognition model. Pandey and Seeja (2019) developed
a multilayer perceptron-based neural network for EEG-based
emotion recognition. In Song et al. (2018), proposed to
use graph convolution neural network extract EEG features.
Besides, Li Y. et al. (2019) developed a spatial-temporal deep
neural network model for emotion recognition. In addition
to the above methods, many other deep models have been

exploited for decoding EEG, some of them greatly advanced
the performance in feature representation and classification.
Readers can refer to the in-depth systematic review in Alarcao
and Fonseca (2017) for details. Although existing deep learning
methods exhibit powerful feature learning capability in dealing
with EEG-based emotion data, they have not considered the
different contributions of individual brain regions to EEG feature
representation and pattern classification.

Recently, neuroscience researches have shown that human
emotions are correlated to multiple cerebral cortex regions,
such as orbitofrontal cortex and ventromedial prefrontal cortex
(Lotfi et al., 2014). Hence, the EEG signals associated with
different brain regions might provide different contribution to
emotion recognition (Lindquist et al., 2012). In view of this,
Li Y. et al. (2019) assigned a set of weights to EEG signals
within different brain regions to strengthen or weaken their
contributions to EEG decoding. Besides, Park and Chung (2019)
selected some good local regions by interquartile range and then
adopted local CSP to extract their features. Despite promising
progress, most of the current methods do not take into account
the reliability of structural information among different brain
regions, which can lead to the incorrect learning of high-level
EEG feature representation.

Recently, certain methods have been developed to capture the
structural information within the EEG feature, such as support
matrix machine (SMM) (Luo et al., 2015), Robust SMM (Zheng
et al., 2018), and deep stacked SMM (Hang et al., 2020). In Luo
et al. (2015), a spectral elastic net regularization was combined
with the hinge loss to formulate a matrix classifier, named SMM,
which uses nuclear norm to exploit the structural information
within EEG feature matrices. Based on SMM, robust SMM
(Zheng et al., 2018) was proposed to eliminate outliers within
EEG signals and construct a matrix classifier using the recovered
clean data. Besides, Hang et al. (2020) adopted SMM as the
basic building block to construct a deep stacked SMM, which
inherits the characteristic of SMM that can learn the structural
information of data as well as the powerful capability of deep
representation learning. Although these methods have achieved
promise EEG classification performance, they take pre-extracted
EEG features as input, which heavily relies on the expertise.

In this study, a novel nuclear norm regularized deep neural
network framework (NRDNN) is proposed to capture the
structural information among different brain regions in affective
EEG decoding. To learn high-level feature representations
of multiple brain regions, the proposed NRDNN utilizes
different deep neural networks for decoding EEG signals
within multiple regions. In view of different brain regions
may have different functions for the EEG emotion recognition,
NRDNN introduces a region-attention layer to automatically
learn weights of different brain regions to strengthen or weaken
their corresponding contributions. To leverage the structural
information among different brain regions, the weighted feature
representations of multiple brain regions are stacked into
a feature matrix, the nuclear norm regularization with the
hinge loss is used for EEG-based emotion recognition. Besides,
NRDNN can be efficiently optimized through standard end-
to-end manner. To validate the effectiveness of the proposed
method, we conducted extensive experiments on publicly
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FIGURE 1 | A general EEG-based aBCI.

FIGURE 2 | Framework of the proposed NRDNN for EEG-based emotion recognition. NRDNN first utilizes deep neural networks to learn high-level feature

representations of multiple brain regions. Then, a set of weights indicating the contributions of each brain region can be automatically learned using a region-attention

layer. Subsequently, the weighted feature representations of multiple brain regions are stacked into a feature matrix, and the nuclear norm regularization is adopted to

capture the structural information within feature matrix.

available affective EEG dataset. Experimental results demonstrate
that our NRDNN outperforms other comparison methods.

The remainder of this study is organized as follows:
the “Nuclear norm regularized deep neural network”
section illustrates the proposed NRDNN model and its
learning algorithm in detail. In the “Experiments” section,
extensive experiments and result analyses are presented.
Finally, the conclusions of the study can be found in the
“Conclusion” section.

NUCLEAR NORM REGULARIZED DEEP
NEURAL NETWORK

Neuroscience studies have shown that relevant information exists
among different brain regions (Clark, 1994; Vecchio et al., 2013;
Kurmukov et al., 2016). To a certain extent, the structural
information among brain regions can reflect this relevant
information. Since the nuclear norm of the matrix is the convex

approximation of its rank, it can directly capture its structural
information between columns or rows. Hence, this study
develops an end-to-end nuclear norm regularized deep learning
framework by using the structural information in EEG decoding.
The flowchart of proposed framework is schematized in Figure 2.
As shown in Figure 2, NRDNNfirst utilizes deep neural networks
to learn high-level feature representations of multiple brain
regions, respectively. Then, a set of weights indicating the
contributions of each brain region can be automatically learned
using a region-attention layer. Subsequently, the weighted feature
representations of multiple brain regions are stacked into a
feature matrix, and the nuclear norm regularization is adopted
to capture the structural information within the feature matrix.

Brain Region EEG Feature Learning
Given a trial of raw affective EEG signal, we aim to indentify
the emotion states by decoding this signal. Suppose the EEG
signal has m channels, each of which has a t time point, Thus,
the EEG signal can be represented as a two-dimensional matrix
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X = [x1, x2, · · · , xm] ∈ R
m×t . Here, xi =

[

xi1, x
i
2, · · · , x

i
t

]

∈ R
t

denotes the i-th channel of the EEG signal and xij,j = 1, 2, · · · , t

denotes the value of the i-th channel at the time point t.
According to the principle of brain regions (Vecchio et al.,

2013), we divide the entire EEG signal X into J parts located in
different brain regions. Without loss of generality, EEG signal
located in the j-th brain region can be represented as follows:

X̂j =
[

x
j
1, x

j
2, · · · , x

j
mj

]

∈ R
mj×d, j = 1, 2, · · · , J. (1)

Here, we use x
j

k
, which represents the EEG signal of the k-th

channel located in the j-th brain region. mj denotes the number
of channels, which is located in the j-th brain region. Besides, we
havem1 +m2 + · · · +mJ = m.

In general, a deep classification model f can be decomposed
as f = g ◦ h, in which hθ :X → R

d parameterized by the
network weight θ that maps the input EEG signal X to the high-
level feature representation space. Besides, gw,b :Z → [0, 1]K

parameterized by the weight W and bias b that maps the feature
representation to the final output.

Currently, many deep neural networks can be used for
EEG feature extraction, such as Shallow ConvNet (SConvNet)
and Deep ConvNet (DConvNet) developed in Schirrmeister
et al. (2017), and EEGNet developed in Lawhern et al. (2018).
However, these widely used neural networks focus on motor
imagery EEG classification. Hence, we slightly modify SConvNet
to form the backbone network for affective EEG decoding
(called AConvNet for simplicity), and the detailed network
architecture of AConvNet is given in Table 1. To learn deep
feature representation of the j-th brain region, feature extractor
hθj : X̂j → zj parameterized by the network weight θj that maps
the EEG signal located in the j-th brain region to feature zj. Here,
zj, j = 1, 2, · · · , J denotes the deep EEG feature of the j-th brain
region. In addition, we also apply AConvNet to learn the high-
level EEG feature representation of the global brain region, which
can be represented as hθ :X → zJ+1.

Discriminative Feature Identification
As pointed earlier, human emotions are correlated to multiple
cerebral cortex regions, such as orbitofrontal cortex and
ventromedial prefrontal cortex (Lotfi et al., 2014). Hence,
the EEG signals acquired from different brain regions would
contribute differently to emotion recognition (Lindquist et al.,
2012). To identify the contribution of different brain regions, we
first reshape all the local and global EEG feature representations
into a feature map, which can be represented as follows:

Z =
[

z1, z2, · · · , zJ , zJ+1

]

∈ R
1×d×(J+1). (2)

Thus, identification of the contribution of different brain regions
equals to assign a set of appropriate weights to J+ 1 channels. To
achieve this goal, we use squeeze-and-excitation (SE) block (Hu
et al., 2018) to adaptively emphasize informative channels and
suppress the less useful ones, as shown in Figure 3.

To abstract the information of different brain regions, the
global average pooling is used to produce channel-wise statistics
s ∈ R

J+1, which can be obtained by

sj =
1

d

d
∑

i=1

zij , j = 1, 2, · · · , J + 1, (3)

where zij and sj denote the i-th and the j-th element of zj and

s, respectively. To capture the channel-wise dependencies, the
following gating operator and an activation is utilized:

u = σ (W2 · δ (W1 · s)) , (4)

where δ (·) and σ (·) denote the activation functions ReLU (Nair
and Hinton, 2010) and sigmoid, respectively. Besides, W1 ∈

R
J+1
r ×(J+1) andW2 ∈ R

(J+1)× J+1
r . Here, u ∈ R

J+1 represents the
weights of multiple channels, which can reflect the contributions
of brain regions.

Finally, the weighted feature representation of brain region
can be repesented as the channel-wise multiplication between the
scale uj and the feature map zj:

ẑj = uj · zj, j = 1, 2, · · · , J, J + 1, (5)

where uj denotes the j-th element of u.

Leaning Structural Information
To capture the structural information among multiple brain
regions, we first stack the weighted feature representation of
multiple brain regions into a feature matrix:

Ẑ =
[

ẑ1, ẑ2, · · · , ẑJ , ẑJ+1

]

∈ R
(J+1)×d. (6)

Then, we focus on construct a matrix classifier, i.e., gw,b : Ẑ → y,
which can exploit the structural information to help the emotion
recognition. Hence, the classifier g can be formulated as follows:

argmin
W,b

1

2
R (W) + G (W) + C

N
∑

i=1

H
(

Ẑi,W, b
)

, (7)

where W ∈ R
(J+1)×d and b represent the regression matrix and

bias, respectively. C > 0 is the trade-off parameter. R (W) =

tr
(

WTW
)

= ‖W‖2F is the squared Frobenius norm of regression
matrixW, which can be used to control the complexity of model
and avoid the overfitting problem. G (W) = τ‖W‖∗ denotes
the nuclear norm of W, where τ > 0 is the penalty parameter.
As the convex approximation of the rank of regression matrix
W, nuclear norm can grasp the structural infromation within

the featrue matrix Ẑi, i = 1, 2, · · · ,N. Besides, we adopt the
widely used hinge loss as the loss function because of its ability
in sparseness and robustness modeling.
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TABLE 1 | Network architecture of AConvNet.

Modules Layers Operation Parameters Size

Input m×d

Feature extractor Reshape 1×m×d

Convolution Conv2D 1 × 25, 40 40×m×(d-24)

Convolution Conv2D m×1, 40 40 × 1×(d-24)

Normalization BatchNorm / 40 × 1×(d-24)

Activation Square / 40 × 1×(d-24)

Pooling AveragePool 1 × 75, 15 40 × 1×[(d-99)//

Activation log / 40 × 1×[(d-99)//

Flatten / 40 [(d-99)15 + 1]

Classification Fully connected Dense 40 [(d-99)15 + 1] × 300 300

Fully connected Dense 300×K K

FIGURE 3 | Schema of the region-attention network.

TABLE 2 | The EEG electrodes associated with each brain region.

Brain region Electrode name

Frontal Fp1,Fp2,AF3,AF4, F7,F3,Fz,F4,F8

Temporal T7,T8

Central FC5,FC1,FC2,FC6,C3,Cz,C4

Parietal CP1,CP2,CP5,CP6,P7,P3,Pz,P4,P8,PO3,PO4

Occipital O1,Oz,O2

H
(

Ẑi,W, b
)

= max
(

0, 1− yn ·
{

tr
(

WT Ẑi

)

+ b
})

. (8)

Finally, the prediction of test emotion data Z̃ using classifier g can
be represented as follows:

g
(

Z̃
)

= tr
(

WT Z̃
)

+ b. (9)

Optimization
To optimize the parameter of deep classification model f , we
use the stochastic gradient descent (SGD) method to optimize
the objective function in Equation (7), so that the end-to-end
training of both feature extractor h and classifier g can be carried
out via standard backpropagation. The partial derivatives of the
objective function with respect to the regression matrix W and
bais b can be computed efficiently as follows:

∇W =







1
2 ·

∂R
∂W + ∂G

∂W , H (·) ≤ 0

1
2 ·

∂R
∂W + ∂G

∂W + C
N
∑

i=1

∂H
∂W , H (·) ≤ 0

(10)

∇b =







0, H (·) ≤ 0

C
N
∑

i=1

∂H
∂b

, H (·) ≤ 0
(11)

where the gradient of nuclear norm ∂G/∂W could be calculated
according to Papadopoulo and Lourakis (2000).

EXPERIMENTS

In this section, the proposed NRDNN is evaluated on the publicly
available affective EEG datasets [i.e., DEAP dataset (Koelstra
et al., 2011)]. The affective EEG dataset are first preprocessed.
Then, we introduce the comparisonmethods and their parameter
settings. The experimental results are subsequently presented and
discussed in detail. Finally, we conclude this study.

Affective EEG Data Preparation
The DEAP dataset contains multiple channel physiological
signals for analyzing human emotional states. It is composed
of 32-channel EEG signals recorded from 32 subjects. The
sampling rate is set to 512Hz. All subjects are required to
watch 40 one-min long music video so that their various
emotions are stimulated accordingly. Therefore, there are 40
trials per subject, each of which corresponds to affective EEG
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TABLE 3 | Classification performances (ACC) of our NRDNN against the comparison methods.

Subjects Comparison methods

SVM SMM EEGNet AConvNet FConvNet DLSVM DNN NRDNN

S01 0.4750 0.5250 0.6250 0.6250 0.7250 0.7280 0.7500 0.7500

S02 0.5500 0.5750 0.6000 0.6250 0.6500 0.7000 0.7000 0.7250

S03 0.5750 0.6000 0.5500 0.6000 0.6250 0.6375 0.6500 0.6500

S04 0.5500 0.4750 0.6750 0.6750 0.7000 0.7050 0.7250 0.7500

S05 0.5500 0.7000 0.6500 0.7000 0.7250 0.7250 0.7750 0.7750

S06 0.5500 0.7500 0.7000 0.7250 0.7000 0.7500 0.7750 0.7750

S07 0.5750 0.7000 0.6250 0.7000 0.7250 0.7250 0.7500 0.7500

S08 0.5250 0.6250 0.6000 0.6250 0.6250 0.6000 0.6500 0.7000

S09 0.7000 0.5250 0.6000 0.5750 0.6500 0.6750 0.6500 0.7000

S10 0.5250 0.6250 0.6250 0.6250 0.6500 0.6750 0.7000 0.7250

S11 0.4000 0.6500 0.6500 0.6750 0.6500 0.6750 0.7500 0.7750

S12 0.4750 0.5500 0.6250 0.7000 0.7000 0.7000 0.7000 0.7250

S13 0.5500 0.5500 0.6500 0.6500 0.7000 0.7000 0.7250 0.7500

S14 0.5750 0.6000 0.5750 0.5750 0.6000 0.6250 0.6500 0.7000

S15 0.5000 0.5250 0.6250 0.6500 0.6750 0.6750 0.7500 0.7500

S16 0.5250 0.4000 0.6000 0.6000 0.6250 0.6250 0.6750 0.6750

Avg. 0.5375 0.5859 0.6234 0.6453 0.6703 0.6825 0.7109 0.7297

The best classification results are boldfaced.

TABLE 4 | Classification performances (F1) of our NRDNN against the comparison methods.

Subjects Comparison methods

SVM SMM EEGNet AConvNet FConvNet DLSVM DNN NRDNN

S01 0.4747 0.4861 0.5807 0.6248 0.7206 0.7255 0.7469 0.7500

S02 0.4000 0.4133 0.5657 0.6389 0.6616 0.7222 0.7020 0.7234

S03 0.5726 0.4984 0.5343 0.5990 0.6248 0.6375 0.6491 0.6491

S04 0.5396 0.4130 0.6484 0.6698 0.6703 0.6918 0.7163 0.7475

S05 0.5500 0.6581 0.6465 0.6931 0.7163 0.7206 0.7382 0.7566

S06 0.4872 0.5098 0.6000 0.6204 0.6429 0.6667 0.6257 0.6894

S07 0.5402 0.4805 0.6190 0.6238 0.7025 0.6925 0.6865 0.7024

S08 0.5223 0.5636 0.6000 0.6132 0.6190 0.5733 0.6267 0.6931

S09 0.6970 0.4473 0.5908 0.5248 0.6354 0.6698 0.6419 0.7000

S10 0.5247 0.5807 0.6229 0.6229 0.6491 0.6647 0.6970 0.7234

S11 0.3600 0.5333 0.6491 0.6577 0.6419 0.6698 0.7396 0.7630

S12 0.4667 0.4357 0.6132 0.6992 0.7000 0.6992 0.7000 0.7234

S13 0.4643 0.5396 0.6011 0.6491 0.6703 0.6970 0.7163 0.7494

S14 0.5248 0.5442 0.5616 0.5726 0.5908 0.5943 0.6465 0.6800

S15 0.4885 0.3866 0.6229 0.6491 0.6577 0.6647 0.7500 0.7494

S16 0.5175 0.3750 0.5833 0.5833 0.3846 0.4398 0.6647 0.6647

Avg. 0.5081 0.4916 0.6025 0.6276 0.6430 0.6581 0.6905 0.7166

The best classification results are boldfaced.

data stimulated by one music video. After each trial, all subjects
are required to perform self-assessments on five dimensions, i.e.,
valence (from sad to joyful), arousal (from calm to excited),
dominance (from submissive to dominant), liking (related to
the preference of participants), and familiarity (related to the
prior experience of participants). In addition to the rating
range of familiarity, which is distributed from 1 (weakest) to

5 (strongest), the remaining dimensions range from 1 to 9.
Referring to Yang et al. (2018), we adopt 5 as the threshold of
the valence dimension to divide EEG trials into two categories,
i.e., if the valence rating is greater (smaller) than 5, it is
positive (negative). In this study, we downsampled 32-channel
affective EEG signals to 128Hz. We then bandpass filtered EEG
signals between 4 and 45-Hz frequency band. Without loss of

Frontiers in Psychology | www.frontiersin.org 6 June 2022 | Volume 13 | Article 924793

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Liang et al. Nuclear Norm Regularized Neural Network

TABLE 5 | Classification performances (AUC) of our NRDNN against the comparison methods.

Subjects Comparison methods

SVM SMM EEGNet AConvNet FConvNet DLSVM DNN NRDNN

S01 0.3885 0.3985 0.4862 0.5238 0.6241 0.6479 0.6717 0.6892

S02 0.2146 0.2652 0.3409 0.5126 0.5000 0.5379 0.5732 0.6010

S03 0.4520 0.3409 0.3972 0.4596 0.4975 0.4950 0.5177 0.5202

S04 0.4167 0.2839 0.5208 0.5651 0.5339 0.5776 0.6042 0.6198

S05 0.4714 0.5417 0.5859 0.6120 0.6380 0.6484 0.6250 0.6667

S06 0.3400 0.2667 0.4233 0.4533 0.5533 0.5300 0.5400 0.5467

S07 0.4524 0.3512 0.6012 0.4970 0.6399 0.6399 0.6250 0.6190

S08 0.4116 0.3965 0.4722 0.4722 0.4874 0.4091 0.4899 0.5732

S09 0.5600 0.3425 0.4725 0.4275 0.4950 0.5025 0.5500 0.5925

S10 0.3500 0.3775 0.4650 0.4675 0.5000 0.5225 0.5800 0.6125

S11 0.1563 0.2630 0.4661 0.4479 0.4583 0.4974 0.5677 0.6042

S12 0.3058 0.2281 0.4236 0.5639 0.5564 0.5539 0.5664 0.5990

S13 0.2864 0.4271 0.4348 0.5703 0.5217 0.5703 0.5985 0.6496

S14 0.3500 0.3600 0.3900 0.4225 0.4375 0.4175 0.5300 0.5375

S15 0.2725 0.1350 0.4200 0.4600 0.4550 0.4700 0.6000 0.5800

S16 0.4747 0.4027 0.5120 0.5387 0.3947 0.4400 0.6613 0.6480

Avg. 0.3689 0.3363 0.4632 0.4996 0.5183 0.5287 0.5813 0.6037

The best classification results are boldfaced.

TABLE 6 | Statistical significance comparisons of ACC and F1 of NRDNN and other comparison methods.

Metrics NRDNN vs.

SVM

NRDNN

vs. SMM

NRDNN vs.

EEGNet

NRDNN

vs. AConvNet

NRDNN vs.

FConvNet

NRDNN

vs. DLSVM

NRDNN vs.

DNN

ACC 1.71E-07 3.57E-06 8.18E-13 1.09E-08 5.63E-07 5.75E-06 1.50E-04

F1 2.84E-07 1.06E-08 1.65E-11 2.305E-08 3.11 E-05 8.00E-05 2.20E-05

AUC 4.59E-07 1.93E-09 5.75E-08 3.97E-08 1.16E-05 1.31E-05 4.14E-04

FIGURE 4 | Classification results of both EEGNet and the proposed framework NRDNN using EEGNet as its network backbone. (A) Classification performance

(ACC), and (B) Classification performance (F1).

generality, we only take the first half subjects to evaluate the
effectiveness of the proposed NRDNN, in order to reduce the
training time.

The EEG signals in DEAP database were recorded with 32
electrodes following the international 10/20 system. According to
the spatial locations of electrodes, we grouped the 32 electrodes
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into 5 brain regions. Table 2 summarizes the EEG electrodes
located in each brain region in detail (Li Y. et al., 2019).

Experimental Setup
Baseline Methods

In the experiments, the proposed method was compared with
the following comparison methods by using the aforementioned
affective EEG classification tasks: (1) Support vector machine
(SVM) (Zhang et al., 2018), (2) Support matrix machine (SMM)
(Luo et al., 2015), (3) EEGNet (Lawhern et al., 2018), (4)
Shallow ConvNet for affective EEG (AConvNet) (Schirrmeister
et al., 2017), (5) Fusion ConvNet (FConvNet) (Liang et al.,
2020), (6) Deep learning with SVM (DLSVM) (Tang, 2013),
(7) NRDNN without region-attention layer (DNN), and (8)
Our NRDNN.

Implementation Details

As the format of the input data of SMM should be matrices, the
principal component analysis (PCA) (Placidi et al., 2016) was
adopted to reduce the dimension of EEG data to 32 × 16 matrix
features. Then, the obtained two-dimensional EEG features
were reshaped into vectors, which were used as the input for
SVM. Besides, AConvNet was used as the network backbone for
FConvNet. Referring to Liang et al. (2020), we took the high-level
feature representations of multiple brain regions as multiple
views, which were then classified using cross-entropy loss. For
DLSVM, we also used AConvNet as its network backbone. The
obtained high-level feature representations of multiple brain
regions were concatenated and then classified using SVM in an
end-to-end manner. The trade-off parameter C of SVM, SMM,
DLSVM, and our NRDNN was decided through searching from
the set {1e− 2, 1e− 1, 1e0, 1e1, 1e2}. The parameter τ of SMM
and our NRDNN was decided through searching from the set
{1e− 3, 2e− 3, 5e− 3, 1e− 2, 2e− 2, 5e− 2, 1e− 1, 2e− 1, 5e
−1, 1e0}. For all comparison methods, the optimal parameters
C and τ were chosen by using the 5-fold cross-validation method
on the training dataset. For deep learning methods EEGNet,
AConvNet, FConvNet, DLSVM, and NRDNN, the batch size
and epoch were set to 40 and 1,000, respectively. The learning
rate was dynamically changed during optimization using the

formula as follows (Pei et al., 2018): ηp = η0/
(

1+ αp
)β
, in

which p linearly changes from 0 to 1, η0 = 1e − 3, α=10,
and β = 0.75. Besides, the parameter r is set to 2 in the
region-attention network.

Following the evaluation protocol developed by Lan et al.
(2018), we used the leave-one-subject-out cross-validation
method to evaluate the affective EEG classification performance
on each subject. The following metrics (Chen et al., 2020) on
the test dataset were adopted, i.e., Accuracy (ACC), F1score
(F1), and the area under the receiver operating characteristics
curve (AUC). Herein, ACC = (TP+TN)/(TP+FN+FP+TN)
and F1=2× PPV× SEN/(PPV+SEN), in which the positive
predictive value (PPV) = TP/(TP+FP) and sensitivity (SEN) =
TP/(TP+FN) . Generally, the higher are the metric values, the
better affective is the EEG classification performance.

Experimental Results Analysis
The classification accuracy (ACC), F1 score (F1), and AUC of all
comparison methods on 16 subjects are presented in Tables 3–5.
The best classification results are boldfaced. From these
classification results, we can obtain the following observations.
In terms of ACC, matrix learning method SMM can obtain better
classification performance than vector-based classifier SVM. This
is because SMM can exploit the correction within EEG feature
matrices to improve the classification performance. In addition,
deep learning methods, such as EEGNet, AConvNet, FConvNet,
DLSVM, and NRCNN, can yield better classification results
than shallow methods, such as SVM and SMM, in almost all
cases. Compared with shallow methods, deep neural networks
can automatically learn high-level feature representations from
the raw data, resulting in better EEG decoding performance. It
is notable that our NRDNN can obtain the best classification
performance than other deep learning methods. The promising
results are mainly attributed to the fact that NRDNN can not only
learn high-level feature representations of EEG signals located in
multiple brain regions but also capture the structural information
among different brain regions. The experimental results verify
the fact that the structural information among different brain
regions is conductive to boost the decoding performance of
affective EEG signals.

As summarized in Tables 3–5, we can observe that the
proposed method obtains the highest average classification
results. Specifically, the proposed NRDNN achieves promising
average results of 72.97, 71.66, and 60.37% in terms of ACC,
F1, and AUC. Compared with the baseline SVM, the absolute
average of ACC, F1, and AUC increases by 19.22, 20.85, and
23.48%, respectively. NRDNN outperforms the results of SMM
by an average of 14.38, 22.5, and 26.74%, which validates the
high-level feature learning capability of our NRDNN. Compared
with DLSVM that does not leverage the structural information
among multiple brain regions, the average classification results
of NRDNN are increased by 4.72, 5.85, and 7.5% in terms of
ACC, F1, and AUC, respectively. Besides, NRDNN outperforms
EEGNet by 10.63, 11.41, and 14.5%, and yields 8.44, 8.9, and
10.41% higher average classification results than AConvNet.
NRDNN is superior to FConvNet by 5.94, 7.36, and 8.54% in
terms of ACC, F1, and AUC, respectively. Furthermore, NRDNN
outperforms the results of DNN by an average of 1.88, 2.61,
and 2.24%, which validates the contributions of different brain
regions that can be automatically identified by our NRDNN.
These experimental results demonstrate the effectiveness of the
proposed NRDNN.

DISCUSSION

To evaluate the statistical significance of the experimental results,
we further perform pairwise two-tailed t-test (Zheng et al.,
2018) to verify whether there exist significant differences with a
confidence level of 95% between the proposed NRDNN and the
comparison methods. The statistical significance comparisons
of ACC and F1 of NRDNN and other comparison methods
are given in Table 6. The p-value less than 0.05 expresses that
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significant differences exist between the proposed NRDNN and
the comparison methods. We highlighted the p-values that are
less than 0.05 in boldface. As summarized in Table 6, we can
see that the null hypothesis can be rejected with 95% confidence
level in each case. The statistical results verify that the proposed
NRDNN significantly outperformed the comparison methods.
This further indicated the capability of the NRDNN to exploit
the structural information among multiple brain regions, as
well as the powerful high-level affective EEG feature learning
capability. The above experimental results illustrate that the
proposed NRDNN is suitable for the classification of affective
EEG data.

To obtain a better insight into the classification result of our
nuclear norm regularized deep neural network framework, we
further investigated the effects of different network backbones
on the classification performance. Figure 4A presents the ACCs
of both EEGNet and the proposed framework NRDNN using
EEGNet as its network backbone. Figure 4B gives the F1s. It
can be found that NRDNN yields better results than the baseline
EEGNet in all cases. In terms of ACC, NRDNN is superior to
EEGNet by 7.5, 10, 7.5, 5, 10, 5, 12.5, 10, 12.5, 7.5, 7.5, 7.5,
7.5, 7.5, 10, and 7.5% on 16 subjects, respectively. Compared to
EEGNet that does not leverage the deep features of multiple brain
regions and their structural information, the classification F1s
of NRDNN are increased by 8.96, 12.74, 8.86, 7.22, 8.68, 6.67,
10.63, 9.31, 12.98, 7.02, 7.15, 7.99, 12.23, 8.75, 9.34, and 8.14%,
respectively. The average ACC and F1 of NRDNN are 70.78 and
69.41%. The absolute values are increased by 8.44 and 9.16%
compared with EEGNet.

Overall, the proposed NRDNN improves the affective
EEG classification performance using different network
backbones. The abovementioned results validate that NRDNN
can effectively learn deep features of multiple brain regions
and their corresponding structural information using the
nuclear norm regularization. To summarize, NRDNN integrates
the powerful deep feature learning capability and the structural
information learning ability ofmatrix classifier. The experimental
results demonstrate that the proposed NRDNN framework
could achieve better classification performance than the
comparison methods.

CONCLUSION

In this study, we first presented a deep neural network, named
AConvNet, for affective EEG decoding. Based on AConvNet, we
further proposed a novel nuclear norm regularized deep neural
network framework called NRDNN. The proposed NRDNN

can effectively learn high-level feature representations of EEG
signals located in multiple brain regions using AConvNet,
as well as discriminate the contributions of multiple brain
regions using a set of automatically learned weights. Besides,

NRDNN can exploit the structural information among multiple
brain regions using the introduced nuclear norm regularization.
The proposed NRDNN can be carried out in an efficient
end-to-end fashion. Extensive experimental results on publicly
available emotion dataset demonstrate the superiority of
our NRDNN.

Despite the promising classification performance of NRDNN,
there is still room for further improvement. For example,
the development of more advance attention mechanism
is conductive to the identification of the contribution of
different brain regions. Besides, extending the proposed
method to multi-class classification is another interesting
direction. Furthermore, more powerful discriminative high-level
features with both spatial and temporal information of EEG
signals can further improve the performance of EEG-based
emotion recognition. We will address these issues in the
future studies.
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