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Research suggests that children’s exposure to pollutants may impact their 

neurocognitive development. While researchers have found associations 

between air pollutants and cognitive development, these associations remain 

underspecified. Further, these exposures occur in the context of the built 

environment and may be  exacerbated by local social vulnerability; in this 

context, individuals may experience a suite of socioenvironmental stressors 

that lead to increased cumulative risk exposure. In this pilot study, we tested 

whether real-time-measured personal exposure to PM2.5 relates to children’s 

executive function and mathematical skills, outcomes that may predict 

later mathematical performance, general academic performance and even 

employment outcomes. We recruited 30 families to participate in two rounds 

in Winter 2020 and Summer 2021. We collected children’s demographic data, 

as well as data about their living environment. In each round, children carried 

a small device that collected real-time ambient air pollution data for 3 days; 

parents logged their children’s activities each day. On the last day, children 

completed cognitive assessments indexing their working memory (n-back), 

inhibitory control (Go/No-Go), nonsymbolic math skills (dot comparison), 

and arithmetic skills (equation verification). Overall, 29 participants had 

pollutant readings from both rounds, and 21 had a full dataset. Nonparametric 

statistical analysis revealed no significant differences in ambient air pollution 

and cognitive performance over time, Spearman’s rho correlation assessment 

found that PM2.5 was not significantly correlated with cognitive outcomes 

in R1 and R2. However, the correlations suggested that an increase in PM2.5 

was associated with worse working memory, inhibitory control, nonsymbolic 

skills, and arithmetic skills, at least in R1. We used each participant’s zip code-

aggregated Social Vulnerability Index, which range from 0 to 1, with higher 

numbers indicating more social vulnerability. Wilcoxon Rank-Sum tests 

indicated that participants living in higher SVI zip codes (≥0.70; n = 15) were 

not significantly different from those living in lower SVI zip codes (<0.70; 

n = 14), in terms of their PM2.5 exposures and cognitive performance in each 

round. We also found that socioeconomic characteristics mattered, such that 
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children whose parent (s) had at least a Master’s degree or earned more than 

$100,000 a year had lower PM2.5 exposures than children in the other end.
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Introduction

A wealth of research shows that children’s physical 
environments influence their psychosocial, cognitive, and socio-
emotional development (see Evans, 2006; Ferguson et al., 2013 for 
reviews). When exposed to built environmental factors such as 
neurotoxic pollutants, noise, crowding, neighborhood poverty, or 
substandard housing, children exhibit greater negative 
externalizing behaviors, lower performance in IQ, cognitive, 
language, and academic tests, and changes in brain structure, 
attention, social skills, and anxiety, among others (Evans, 2006; 
Ferguson et al., 2013; Bennett et al., 2016). Recognition of the 
substantial vulnerability of the nervous system to environmental 
effects is growing, especially regarding the developing brain 
(Bennett et al., 2016; National Academies of Sciences, Engineering, 
and Medicine, 2020). The focus of this study is on the negative 
impact of air pollution and social vulnerability of the built 
environment on cognitive function among school-age children.

A growing body of human studies associate exposure to 
combustion-related air pollutants (PM2.5, polycyclic aromatic 
hydrocarbons, nitrogen dioxide, black carbon) with adverse 
effects on brain development, including deficits in intelligence, 
memory, and behavior (Brockmeyer and D’Angiulli, 2016; 
Clifford et al., 2016; Xu et al., 2016; Payne-Sturges et al., 2019). 
Inhaled air pollutants deposit into the respiratory tract and 
migrate to the central nervous system via the olfactory 
epithelium, the blood–brain barrier, or sensory afferents found 
in the gastrointestinal tract (Kleinman et al., 2008; Block et al., 
2012). Alterations in the central nervous system may directly 
and indirectly affect the brain, such as through the 
cardiovascular, pulmonary, and immune systems (Block et al., 
2012). Prenatal exposures to chemical exposures can, in the 
long term, negatively affect regions involved in the regulation 
of emotion, stress, and behavior (Margolis et al., 2022; Peterson 
et  al., 2022) as well as cognitive functioning (Guxens et  al., 
2018), as measured via blood flow, cortical thickness, tissue 
microstructure, and hippocampal and cerebral volumes, among 
others. In children, the blood–brain barrier is more permeable 
during development than later in life, making childhood a 
period of extreme vulnerability to toxic exposures (Calderón-
Garcidueñas et al., 2008). Air pollution exposures may interfere 
with neural processes, such as neuronal growth and synaptic 
processes, which are most active during infancy and in 
childhood, and such interference may affect brain development 
(Block et  al., 2012). Therefore, children who are exposed to 

higher amounts of pollution may have impaired cognitive 
performance relative to those who are less exposed (Allen 
et al., 2017).

In this study, we are interested in cognitive skills researchers 
have identified as important during middle childhood for later 
academic success: executive functions and mathematics. Executive 
functions are a set of top-down skills that are used to perform goal-
oriented, effortful tasks (Diamond, 2013) and include working 
memory and inhibitory control. Working memory helps store and 
manipulate information mentally, while inhibitory control helps 
suppress automatic, predominant responses. While these functions 
develop differentially across the lifespan (Huizinga et al., 2006), 
executive functioning, in general, at early and middle childhood 
have been found to be important for cognitive development and 
academic achievement, including math and reading (Best et al., 
2009; Zelazo et  al., 2016). In addition to these cognitive skills, 
foundational mathematical abilities such as non-symbolic skills, 
which reflects a perception or sense of number (Feigenson et al., 
2013), and arithmetic are influential in predicting academic 
achievement (Schneider et al., 2017) and success in life and in the 
workplace (Parsons and Bynner, 1997). These cognitive skills are 
interrelated: working memory and inhibitory control are significant 
predictors of mathematical achievement throughout elementary 
school (see meta-analysis by Spiegel et  al., 2021), and executive 
functions and numerical abilities occupy similar brain regions in the 
prefrontal cortex (Arsalidou et al., 2018).

We examine these effects in the context of the built 
environment, in which these effects may be exacerbated by local 
social vulnerability; in such context, individuals may experience a 
suite of socioenvironmental stressors that lead to increased 
cumulative risk exposure (e.g., Payne-Sturges et al., 2019). A broad 
but very important implication of these findings, both in research 
and practice, is a greater consideration of the environment (and 
its impact) on children’s cognitive and academic functioning.

Effects of air pollution on cognitive 
abilities

PM2.5 are inhalable fine particles that are 2.5 micrometers or 
smaller in diameter and are found in ubiquitous sources such as 
automobile exhaust (US EPA, 2016). Increased exposure to PM2.5 
and other pollutants have been associated with neurological 
effects (Payne-Sturges et al., 2019), lower IQ (Porta et al., 2016), 
developmental disorders, such as autism (Talbott et al., 2015), and 
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reduced white and gray matter in the brain (Mortamais et al., 
2019; Beckwith et al., 2020; Cserbik et al., 2020). Importantly, 
PM2.5 has been associated with poorer performance on specific 
cognitive tests, such as working memory (Alvarez-Pedrerol et al., 
2017; Forns et al., 2017; Rivas et al., 2019; Gui et al., 2020) and 
inhibitory control (Gui et al., 2020; Margolis et al., 2021), as well 
as academic assessments (Shier et al., 2019; Mullen et al., 2020). 
The negative impact of air pollution on cognitive functions is well-
documented across the lifespan, including infancy, early and 
middle childhood, adolescence, and adulthood (Lertxundi et al., 
2015; Zhang et al., 2018; Margolis et al., 2021; Miller et al., 2021).

Individual-and context-specific factors, such as age, sex, 
socioeconomic position, and characteristics of the individuals’ built 
environment, may not only affect the amount of pollution to which 
an individual is exposed but also amplify the adverse effects of 
those exposures (O’Neill et al., 2003; Thomson, 2019). For example, 
Clougherty et al. (2007) examined the combined effects of exposure 
to both socio-environmental (violence) and physico-chemical (air 
pollution) stressors, finding that among children who experienced 
more than the median scaled violent event exposure, for every 
standard deviation increase in NO2 exposure, there was an 
associated 1.63 increased odds of asthma; similarly, for children 
exposed to high stress, there was an increased asthma risk 
associated with modeled traffic-related pollution exposure 
(Shankardass et al., 2009). Household income and parent education 
may indirectly contribute to exposure in PM2.5 as they might define 
household characteristics, such as choices of school and 
neighborhood (Bell and Ebisu, 2012; Huang et al., 2019). Finally, in 
a large study of over 10,000 9-10-year-olds, higher residential PM2.5 
exposure levels were associated with participants who were ethnic 
minorities (Hispanic or Black) and had parents with a lower level 
of education and an annual income of less than $49,999 (Cserbik 
et al., 2020). It is unknown whether these findings are contingent 
upon the method by which PM2.5 exposure is measured. Whereas 
the aforementioned studies relied upon stationary air sensors, 
modeled PM2.5, and remote sensing to assess PM2.5 exposure, none 
of these studies have used wearable personal air quality monitors 
that are able to achieve round-the-clock measurement whether the 
child was outdoors or indoors at a given time.

While a significant literature base has established that air 
pollution impacts cognitive functioning in children, additional 
research is needed to understand these relationships. We address 
several limitations in previous studies, the novel contribution 
being the use of personal real-time air pollution exposure devices. 
Previous studies, using longitudinal cohort data, have used 
aggregate, geographically-matched pollutant exposure as their 
independent variables, making it difficult to understand the causal 
pathways that differentially shape poorer neurological outcomes 
in some children based on their immediate air pollution and social 
exposure histories. Furthermore, stationary air quality monitors, 
managed by regulatory entities, cover broad areas and cannot 
capture instances of the extreme, localized pollution exposure 
spikes that may be  very consequential to children’s 
neurodevelopment. Additionally, computational models that 

estimate long-term exposure may also mischaracterize personal 
exposure. Accurately assessing children’s exposure to air pollution 
is intrinsically difficult due to the high spatiotemporal variability 
of combustion-related air pollution, the unique time–activity 
patterns of children, including time spent indoors at home and 
school, in vehicles, and walking, bicycling or playing near traffic 
sources during peak exposure periods (Brauer, 2010; Cattaneo 
et  al., 2010). Therefore, children may experience high peak 
exposures over short time periods which cannot be captured by 
stationary air monitoring. Previous studies linking air pollution to 
children’s development have used a combination of stationary air 
monitoring and spatial models to estimate long-term exposure. 
Studies have demonstrated that ambient concentrations and 
models for air pollutants can mischaracterize personal exposure. 
This discrepancy is particularly important for children, who are 
highly susceptible to these exposures due to their ongoing 
respiratory, cognitive, behavioral and neurological development. 
Thus, a personal real-time air pollution exposure device may 
compensate for these limitations and would allow for more correct 
classification of pollutants and for a more accurate and precise role 
of air pollution on cognitive and academic outcomes.

Social vulnerability in the built 
environment

Though individual-level sociodemographic characteristics are 
relevant covariates when investigating the relationship between air 
pollution exposure and cognitive performance, neighborhood 
characteristics may be adjusted for when modeling the relationship 
between air pollution (PM10 and ozone) and adult’s health (Chen 
and Schwartz, 2009). A tool used to assess neighborhood resilience 
(or, conversely, neighborhood vulnerability) is the Center for 
Disease Control and Prevention’s Agency of Toxic Substances Data 
Registry Social Vulnerability Index (SVI), which is a score 
composed of 15 demographic characteristics for each census tract 
in the United States using data collected by the US Census and the 
American Community Survey (Flanagan et al., 2018). This tool’s 
intended use is for evaluating community vulnerability with 
regard to disaster preparedness—in recent years, it has been used 
in environmental health studies to capture the vulnerability of the 
neighborhood in which study participants live.

In summary, we  aim to test the effects of real-time PM2.5 
exposure on cognitive outcomes, while also accounting for 
demographic and neighborhood characteristics. Our research 
questions are:

 1. To what extent does air pollution associate with cognitive 
performance? We  hypothesize that average PM2.5 air 
pollution exposure over the time period of data collection 
is negatively and significantly correlated with cognitive  
performance.

 2. Are there differences in air pollution and cognitive 
performance over time? Based on trends about PM2.5 
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exposure in the US, participants may be exposed to higher 
concentrations in the months of January and July (i.e., 
Winter and summer), and lower concentrations in the late 
March and mid-October (Zhao et al., 2018).

 3. Do demographic and neighborhood characteristics relate 
to air pollution exposure and cognitive outcomes? 
Children whose parents have higher levels of education, 
minority (non-White) status, and greater incomes may 
be exposed to lower amounts of air pollution compared to 

their peers (Cserbik et al., 2020). These children may also 
have better performance in cognitive and academic 
assessments (Koponen et  al., 2007; Dahl and Lochner, 
2012; Last et al., 2018).

Materials and methods

This research was designed as a pilot study to investigate the 
cognitive effects of short-term PM2.5 exposures among children ages 
7 to 11 years residing in the Washington D.C. metropolitan area. 
We were interested in how variations in day-to-day exposure to air 
pollution impact children’s cognitive performance on mathematical 
tasks designed to assess the underlying cognitive processes relevant 
to numerical cognition. We aimed to conduct the air pollutant 
exposure assessment campaign across different seasons, specifically 
the warm and cold periods of the year and measure children’s short-
term personal exposures to PM2.5 using Flow, a small, portable 
device that could be worn or attached to a backpack.

Recruitment strategy and participant 
selection

Our initial sample consisted of 30 children ages 7 to 11 years 
recruited via a university-run infant and child database, social 
media postings, and bulletins posted on parks, shopping malls, 
and other public areas. We excluded children if they had asthma 
and/or lived in a house where smoking occurred within the 
home. Recruitment occurred in a large metropolitan area with 
more than six million people and a median household income of 
more than $106,000. Additionally, 51% of households in the area 
had married couples, 51.7% had a Bachelor’s degree or more.1 The 
race breakdown in the area was 51.9% White, 25.2% Black or 
African American alone, 10.4% Asian, 7% another single race 
alone, and 5.6% two or more races.

Twenty-nine children and their parents/guardians completed 
two rounds, between January 2020 and August 2021, with most of 
the participation occurring the COVID-19 pandemic. In Round 
1, 28 out of 30 participants completed the procedure between 
October 2020 and February 2021 (the two other participants 
completed the procedure between January and March 2020). In 
Round 2, 27 participants completed the procedure between May 
and August 2021 (one in October 2020). One participant from 
Round 1 did not participate in Round 2.

The sample of participants with complete data is n = 21. 
Table  1 provides the distribution of both initial and complete 
sample by parental marital status, education, and household 
income as well as by children’s race, age, and ethnicity, as reported 
by the parent who completed the baseline demographic survey.

1 www.censusreporter.org

TABLE 1 Demographic breakdown for the full sample (N = 30) and the 
sample with complete data (n = 21).

Initial sample Complete sample

Characteristic

Child’s sex
Male 14 46.67% 10 47.62%

Female 16 53.33% 11 52.38%

Parent’s marriage status

Married 27 90.00% 19 90.48%

Never Married 2 6.67% 1 4.76%

N/A 1 3.33% 1 4.76%

Child’s race

White 20 66.67% 16 76.19%

Black or African-

American

3 10.00% 1 4.76%

Asian 3 10.00% 2 9.52%

Multi-racial, or n/a 4 13.33% 2 9.52%

Child’s ethnicity

Non-Hispanic/

Latinx

25 83.33% 19 90.48%

Hispanic/Latinx 4 13.33% 2 9.52%

Age

7 4 13.33% 2 9.52%

8 10 33.33% 8 38.10%

9 8 26.67% 6 28.57%

10 7 23.33% 5 23.81%

11 1 3.33%

Annual household income

Between 20,000-

50,000

2 6.67% 2 9.52%

Between 50,000-

100,000

4 13.33% 2 9.52%

Above 100,000 23 76.67% 17 80.95%

Parent education

Some college 2 6.67% 1 4.76%

Bachelor’s 10 33.33% 7 33.33%

Master’s and/or 

Professional 

Degree

18 60.00% 13 61.90%

SVI

Greater than 0.70 8 26.67% 7 33.33%

Less than 0.70 22 73.33% 14 66.67%

Complete sample consists of participants who had a complete data set.
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Informed consent procedures

This study was approved by the University of Maryland-
College Park Institutional Review Board. As this study’s launch 
coincided with the beginning of the COVID-19 pandemic 
lockdown, we submitted a revised protocol in accordance with 
university guidelines regarding the conduct of research during the 
COVID-19 pandemic. We  developed a contactless drop-off/
pick-up procedure for the safe distribution of equipment needed 
for study participation. Parent participant consent and child assent 
procedure are described below.

Procedure

Figure 1 shows the study procedure. Children completed two 
rounds of the study, and each round consisted of the same 
procedure of 3 days of PM2.5 exposure monitoring followed by 
cognitive assessments. On the first day, study personnel delivered 
the study kit to participants homes. Each participating family 
received a 13 in. × 8 in. × 4 in. plastic box in which we placed a Flow 
Air Quality sensor, a Samsung tablet with which the sensors was 
synced for data collection, Mi-Fi devices to provide the Wi-Fi 
needed to support these devices and the associated chargers with 
each device and a laminated series of instructions for use, The 
tablet was also used for the parents’ consent forms, children’s’ 
assent forms and baseline survey, all of which were combined into 
one survey hosted on Qualtrics. Children’s daily activities were 
also noted in a Qualtrics log that was completed each of the 3 days 
of participation. Also on the Qualtrics platform, the cognitive 
assessments that children completed at the conclusion of 
participation were also available on the tablet. During each of the 
two rounds of participation, this package was dropped off by the 
research team at participants’ homes.

In the first round, the parent completed the consent form and 
a questionnaire about their household (including demographics) 
initially, while in the second round, they were asked to provide any 
updates on household information. Children completed assent 
forms. After completing the survey, participants were asked to 
ascertain the connection between the Flow air quality sensor (see 
next sub-section) and the Samsung tablet. Children wore the air 
quality sensor on a lanyard provided by the study team over the 
course of their participation. Children were instructed to keep the 
sensor by their beds while sleeping. At the end of each day, parents 
logged their children’s activities using a Qualtrics form, which 
allowed parents to enter a date and identify an activity from a drop-
down menu (e.g., Indoors at home, Outdoors at school, etc.) for 
each 15-min period in a day covering 3 days of the exposure 
assessment. On the second day, researchers sent an email or text 
message reminder to parents to remind their children to complete 
the cognitive tests the following day on the tablets before picking up 
the equipment. Study personnel communicated with the families by 
email or text messaging to remind them of the procedures and to 
check if they had any concerns. On the third day, researchers picked 
up the equipment after children completed their cognitive tests 
available on the tablet and their last period of Flow monitoring.

Air pollution personal exposure 
assessment

We used low cost (~$150/monitor) and commercially 
available sensors, Flow air quality sensor, from Plume Labs2 to 
measure real-time ambient air quality. The Flow sensor measured 
pollutants (NO2, VOCs, PM10 and PM2.5) in the ambient air by air 

2 www.plumelabs.com

FIGURE 1

Procedure. Participants completed two rounds. Each round had the same procedure. At equipment drop-off, parents completed a demographics 
survey, after which the child participants wore the Flow device for 3 days. At Day 3, they completed cognitive and math assessments.
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being drawn into the device through holes drilled into the body of 
the device with a small mechanical fan. Particulate matter was 
measured as the amount of laser-produced light diffracted by 
particles, and the sensors produced reports of ambient air quality 
every minute. Calibration of these tools within this sensors is 
executed via machine learning processes enabled through internet 
connection to the sensor.3 The accuracy, precision and overall 
performance of Flow sensors has been investigated by and 
reported in Crnosija et al. (2022), which found that these sensors 
are able to detect changes in ambient PM2.5 and PM10 reliably. 
Specifically, a coefficient of determination of 0.76 (R2 = 0.76) was 
obtained for the relationship between minute-by-minute PM2.5 
exposure in 32 Flow devices and a Plantower air sensor, indicating 
how well the average PM2.5 measured by the Flow devices predicts 
that measured by the Plantower air sensor (Crnosija et al., 2022).

For the device to be  properly calibrated and collect time-
stamped sensor air quality and spatial data, Wi-Fi and GPS 
connectivity with a companion device (i.e., a Samsung Tablet) 
were also required. To ensure that Wi-Fi connectivity was 
maintained throughout a subject’s possession of the device, each 
family was given a Tablet paired with the Flow device and a Mi-Fi, 
a small Wi-Fi hotspot that provided internet connectivity to the 
Flow device and the Tablet. Though the Tablet and Mi-Fi were left 
at home during the child’s day, the family would make sure that 
connectivity among all devices was made upon the child’s 
return home.

The PM2.5 data was downloaded from the sensors and time 
stamps were converted from UTC to EST, accounting for season. 
Then time-stamped data was aggregated into 15-min increments; 
this process allowed us to generate averages of PM2.5 exposure for 
every 15 min data was collected. These 15-min averages were then 
matched to the days of Time Activity Logs, wherein parents used 
a Qualtrics interface to identify their child’s activity at a given 
time. This coding was completed using Python 3.

Social vulnerability index

Each family was assigned a SVI (a value between 0.0 and 1.0) 
based on their zip code, with higher values suggesting greater risk 
of social vulnerability. The value is based on the index provided by 
the CDC, specifically the overall tract summary ranking variable. 
Census tracts within the state of Maryland were given an SVI 
value ranging from 0.000 to 1.000, with 1.000 representing the 
100th percentile for extreme social vulnerability and 0.000 
representing the 0th percentile for the lowest level social 
vulnerability, ranked against one another. We use the SVI as a 
proxy to capture neighborhood effects and the local built 
environment. We downloaded the 2018 SVI .csv file for Maryland 
from the CDC SVI web portal and merged it with a tract-ZIP code 
“crosswalk” file provided by the Department of Housing and 

3 https://plumelabs.zendesk.com/hc/en-us/articles/360009014973-How-does-Flow-work-

Urban Development to “translate” census tracts to ZIP code areas. 
These two pieces of data were spatially merged using the merge 
command in Python; the resultant dataset was then exported in 
an .csv format. As there were multiple entries for each zip code, 
these values were aggregated by finding the mean by each zip code 
in the dataset. This dataset was then exported in .csv format and 
then converted to .xlsx format for merging to the master dataset 
in Stata.

From this continuous SVI variable, a dichotomous variable 
was created to categorize participants based on a cutoff of 0.70, 
representing the upper bound of the scale, with participants with 
SVI value of more than or equal to 0.70 being coded as 1 (high 
vulnerability) and those with an SVI of less than 0.70 as 0 
(low vulnerability).

Cognitive measures

The child participants completed tasks that measured their 
working memory (Kane et  al., 2007; Antonini et  al., 2013), 
inhibitory control (Kim et al., 2007), non-symbolic comparison 
ability (Gebuis and Reynvoet, 2012a, b), and arithmetic ability 
(Jasinski and Coch, 2012). We refer to all tasks collectively as 
cognitive tasks. The tasks were completed on Qualtrics on a 
Samsung tablet provided by the research team. Split-half 
reliabilities were calculated for each block of each task by 
correlating the first half of the trials for each block to the second 
half. Figure 2 shows example trials from each task.

Working memory: N-back task
Children were shown a grid of nine 3×3 cm cells, with an ‘X’ in 

one of the cells. They are told to press a button if a trial is similar to 
the previous one (target; i.e., the ‘X’ did not move) and to not press 
anything if a trial is dissimilar to the previous one (non-target). 
Participants were presented with 10 practice trials with feedback 
and 160 experimental trials, distributed over 2 blocks, without 
feedback. Each block had 24 targets (i.e., the trial is similar to the 
previous one) and 56 non-targets, with an option to rest between 
blocks. Each trial was shown for 1,000 and 1,250 milliseconds, with 
500–1,000 millisecond pause between trials. A trial was a “hit” if a 
participant correctly pressed a target; a trial was a “false alarm” 
when the participant pressed a non-target. For each participant, a 
d’ statistic, which accounted for hits and false alarms, was recorded. 
Higher values of d’ indicated better working memory. Split-half 
reliability coefficients in Round 1 were r(29) = 0.84 for Block 1 and 
r(29) = 0.66 for Block 2. Split-half reliability coefficients in Round 2 
were r(23) = 0.96 for Block 1 and r(23) = 0.92 for Block 2.

Inhibitory control: Go/No-Go task
Children were shown two types of stimuli, a red or a yellow 

fish, and were told to press a button when encountering a 
yellow fish (the Go stimulus) and to not press anything when 
encountering a red fish (No-Go). Participants were presented 
with 10 practice trials with feedback and 280 experimental 
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trials, distributed over 4 blocks, without feedback. Each block 
had 42 Go trials and 14 No-Go trials, with an option to rest 
between blocks. Each trial was shown for between 1,000 and 
1,250 ms, with 500–1,000 ms pause between trials. For each 
participant, the number of commission errors (i.e., pressed the 
button when No-Go stimulus appeared) and commission error 
rate (i.e., number of commission errors divided by 56) were 
recorded. The commission error rates were then reversed (1 
minus commission error rate), so that higher values indicated 
better inhibitory control. Split-half reliability coefficients in 
Round 1 were r(29) = 0.88 for Block 1, r(29) = 0.79 for Block 2, 
r(29) = 0.51 for Block 3, and r(29) = 0.87 for Block 4. Split-half 
reliabilities in Round 2 were r(23) = 0.26 for Block 1, 
r(23) = 0.33 for Block 2, r(23) = 0.61 for Block 3, and r(23) = 0.83 
for Block 4.

Non-symbolic comparison task
Children saw two sets of dots on the screen and were asked to 

choose which set has more dots. There were 20 unique pairs of 
dots in total, and these pairs were displayed with varying sizes, 
such that sometimes, the more numerous have bigger dots 
(congruent) and sometimes the less numerous have bigger dots 
(incongruent). There were 4 blocks of 20 trials each; Blocks 1 and 
4 were fully congruent; Blocks 2 and 3 were fully incongruent. 
Participants completed 6 practice trials that were not analyzed. 
Participants’ accuracy was recorded. Split-half reliability 
coefficients were r(29) = 0.81 for Block 1, r(29) = 0.85 for Block 2, 
r(29) = 0.65 for Block 3, and r(29) = 0.45 for Block 4 in Round 1. 
Split-half reliability coefficients in Round 2 were r(23) = 0.41 for 
Block 1, r(23) = 0.47 for Block 2, r(23) = 0.30 for Block 3, and 
r(23) = 0.52 for Block 4.

Equation verification task
Children were shown a single-digit addition equation in two 

screens, such as that the problem (e.g., ‘2×2=’) is followed by its 
answer (e.g., ‘4’). They are told to press a button if the answer was 
right and to not press anything when the answer is wrong. 112 

equations were created, such that 56 problems were presented 
twice with either the right or a wrong answer. The 56 problems 
had nonidentical addends and the wrong answer was either 1 or 
3 more than the right answer. Participants were first shown 
practice trials, after which the equations were randomized and 
shown across 2 experimental blocks. Trials began with the 
presentation of a warning signal (‘+’) in the center of the screen 
for a duration of between 500 and 1,000 ms, after which the 
problem appeared for 1,500 ms, followed by a correct or wrong 
answer for 1,500 ms and a blank screen for 1,500 ms. Participants 
were allowed to respond as soon as they saw the answer, so they 
had 3,000 ms to respond. Participants’ accuracy was recorded. 
Split-half reliability coefficients in Round 1 were r(29) = 0.80 for 
Block 1 and r(29) = 0.66 for Block 2. Split-half reliability 
coefficients in Round 2 were r(23) = 0.84 for Block 1 and 
r(23) = 0.71 for Block 2.

Data preparation

The final dataset consisted of all 30 participants’ demographic 
data, dichotomized SVI values, PM2.5 air pollution exposure over 
3 days on each round, and performance in the cognitive tasks on 
each round.

Results

We present our results according to our research questions. Our 
first two questions explore the extent to which air pollution 
exposure associate with cognitive performance (Research Question 
#1) and whether there are differences in air pollution exposure and 
cognitive performance over time (Research Question #2). 
We present descriptive statistics, as well as results from Spearman’s 
rho correlation and quantile regression analyses. Our last question 
concerns whether air pollution exposure and performance in 
cognitive tasks differ by demographic characteristics, such as sex, 

FIGURE 2

Cognitive Tasks. Participants completed four cognitive tasks. See Methods section for the tasks’ description.
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income, parental education, and dichotomized SVI (Research 
Question #3). We present results of Wilcoxon rank-sum tests. Due 
to the small sample size, we could not infer the distribution of the 
data and therefore used nonparametric tests for our analysis. 
Analysis was conducted in Stata 14 (College Station, TX).

Description of PM2.5 exposure and 
outcomes

We first describe round-by-round data and then proceed to 
examine complete data across both rounds. Table  2 lists the 
descriptive statistics for the PM2.5 and cognitive measures in 
Round 1 (n = 28) and Round 2 (n = 23). Average 3-day PM2.5 
exposures were below the EPA standard in both Round 1 
[Median = 3.66, Mean (M) = 6.22, standard deviation (SD) = 10.32] 
and Round 2 (Median = 3.01, M = 3.13, SD = 1.29). There was an 
outlier in Round 1 (i.e., greater than an absolute z-score of 3), but 
we kept that data point in our analysis.

Table 3 lists the descriptive statistics for those with complete data 
(n = 21). Similar patterns emerged. Compared to Round 1, these 

children committed fewer errors in the inhibitory control task (3.05 
vs. 2.05) and were more accurate in the non-symbolic (64% vs. 73%) 
and arithmetic tasks in Round 2 (91% vs. 92%). Wilcoxon signed-
rank tests were used to determine whether there were differences 
between Round 1 and Round 2. The tests revealed a near-significant 
difference in three-day average PM2.5 readings between Round 1 and 
Round 2 (Z = −1.96; p = 0.05), and no differences in three cognitive 
measures: working memory (Z = −1.13; p = 0.26), inhibitory control 
(Z = −1.52; p = 0.10), and arithmetic (Z = −0.87; p = 0.39). The only 
significant difference from Round 1 to Round 2 is in non-symbolic 
comparison skills (Z = −2.24; p = 0.02).

Associations between exposure and 
outcomes

Table 3 also shows the Spearman’s Rho correlations between 
PM2.5 and cognitive measures for those who had completed data 
across both rounds (n = 21). The correlations suggested that 
cognitive measures (working memory and inhibitory control) 
were correlated with mathematical outcomes. In Round 1, 
working memory was correlated with arithmetic performance 
(rs = 0.81, p = 0.02). Inhibitory control was also correlated with 
arithmetic performance (rs = −0.49, p = 0.02). In Round 2, working 
memory was correlated with non-symbolic comparison skill 
(rs = 0.46, p = 0.04) and arithmetic performance (rs = 0.50, p = 0.01). 
Non-symbolic comparison skill was significantly correlated with 
arithmetic (rs = 0.50, p = 0.02).

We conducted quantile regressions to examine whether the 
associations between PM2.5 exposure and children’s cognitive 
outcomes depend on the latter. Quantile regression is a relatively 
new approach that allows for examination at extreme values of an 
outcome variable (Koenker, 2005). In separate quantile regressions, 
we  explored the possibility that the PM2.5 exposure may affect 
cognitive outcome at lower quantiles of outcome performance. 
We started by standardizing all variables (except working memory, 

TABLE 2 Descriptive statistics in Round 1 (n = 28) and Round 2 (n = 23).

Round 1 Round 2

Mean SD Mean SD

Flow 3-day Average 6.22 10.32 3.13 1.29

N-back d’ 0 1.71 0 1.68

Inhibitory Control 

Commission Errors

4.36 4.75 2.30 2.62

Dot Comparison 0.64 0.17 0.73 0.13

Equation 

Verification acc

0.88 0.11 0.91 0.09

N in each round indicates the number of participants that had full data in the given round.

TABLE 3 Descriptive statistics and Spearman’s rho correlation coefficients for participants with complete data (n = 21).

Round 1 Round 2 1 2 3 4 5

M SD M SD p

1. Flow 3-day 

Average

7.06 11.81 3.06 1.29 0.05 0.25 0.18 −0.11 0.17

2. Working Memory 

d’

0.34 1.57 −0.04 1.75 0.26 −0.30 0.21 0.46* 0.53*

3. Inhibitory Control 

Commission Errors a

3.05 3.11 2.05 2.27 0.13 −0.21 0.55** 0.25 0.11

4. Non-Symbolic 

Comparison

0.64 0.20 0.73 0.13 0.02 −0.11 0.34 0.29 0.50*

5. Arithmetic 0.91 0.07 0.92 0.07 0.39 0.06 0.51* 0.49* 0.05

Statistical tests consisted only of participants who had full data for both rounds. Round 1 on lower triangle and Round 2 on upper triangle. p values are from Wilcoxon signed rank tests 
of performance between Round 1 and Round 2. 
aFor correlational analysis, we used 1-commission error rate.
*p < 0.05 and **p < 0.01.
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which was already standardized) and then dividing the outcomes 
into deciles. Then, each outcome was regressed to PM2.5 exposure in 
each round using the quantreg package in R (Koenker, 2005).

Table  4 lists the regression coefficients. In Round 1, all 
regression coefficient estimates were negative at the lowest four 
percentiles, indicating that at the lowest quantiles (i.e., children 
who performed poorly), children showed negative associations 
between outcomes and PM2.5 exposure. However, the only 
significant association was for inhibitory control at the 40th 
percentile, with a coefficient of −0.34, .95 CI[−0.95, −0.03]. In 
Round 2, the patterns were different. For working memory, the 
lowest quantiles had high, positive coefficients; for inhibitory 
control, the coefficient of almost every quantile was zero. There 
was no discriminable pattern for non-symbolic and arithmetic 
skills and no coefficients were significant.

The role of demographic and 
neighborhood characteristics

To tease out the associations and account for covariates, 
we conducted separate Wilcoxon rank-sum tests by round and by 
demographic variable (sex, income, parental education, and SVI). 
Table 5 consists of these statistics. For Round 1 (n = 28), there were 
no significant differences by sex, income, parental education. For 
Round 2, we found some significant differences: by income and 
parental education. Children from households who made above 
$100,000 (n = 18) had significantly less PM2.5 exposure than 
children from households who made below 100,000 (n = 5), with 
2.69 compared to 4.79 (Z = −3.09; p = 0.002). Additionally, those 
with parents that had master’s or professional degree (n = 9) had 

significantly less PM2.5 exposure (n = 14) than those with parents 
who only finished some or all of college (n = 9), with 2.51 compared 
to 4.09 (Z = −3.09; p = 0.002). (These results held when for those 
who only had complete data.) We did not find any other significant 
differences in other outcome measures or in any demographic 
category. When comparing those who were assigned an SVI of less 
than 0.70 and those with SVI of greater than 0.70, we found no 
differences in PM2.5 exposures or the cognitive outcomes in both 
Round 1 (ps: 0.37 to 1) and Round 2 (ps: 0.09 to 0.95).

Discussion

In this exploratory study, we sought to examine the associations 
between children’s personal exposure to PM2.5, a common air 
pollutant, and their cognitive abilities, namely working memory, 
inhibitory control, non-symbolic skills, and arithmetic ability. Our 
novel contribution to this literature is our real-time measurement 
of pollution children encounter on a daily basis in their immediate 
environments. Our findings also mirror extant findings in the 
extant literature. We highlight three of them.

First, on average, the children in our sample were exposed to 
PM2.5 below the US EPA National Ambient Air Quality Standard 
(NAAQS). Though it may be  perceived that children who 
experience exposure less than the NAAQS levels are “safe” from the 
harmful effects of PM2.5, there are several limitations to reliance 
upon this standard when evaluating these air pollutant exposures 
with regard to neurocognitive outcomes. The annual standard fails 
to capture the effects of brief periods of high exposure, or the effects 
of indoor air pollution, which fall outside of the purview of the 
EPA. Further, these PM2.5 standards may not provide effective 

TABLE 4 Quantile regression coefficient estimates and 95% confidence intervals with exposure as predictor.

Rnd Qtle Working memory Inhibitory control Non-symbolic comparison Arithmetic

1 0.10 −0.15 [−3.83, 0.53] 0.56 [−8.77, 0.57] −0.15 [−5.35, 0.47] −0.23 [−2.71, 0.10]

0.20 −0.53 [−1.05, 0.36] −0.23 [−1.56, 0.14] −0.43 [−1.21, 0.37] −0.06 [−2.03, 0.45]

0.30 −0.58 [−1.31, 0.25] −0.24 [−0.96, 0.20] −0.30 [−0.90, 0.06] −0.27 [−1.42, 0.38]

0.40 −0.51 [−0.95, 0.10] −0.34 [−0.95, −0.03] −0.17 [−0.64, 0.05] −0.33 [−0.54, 0.23]

0.50 0.02 [−0.86, 0.27] −0.37 [−0.61, 0.03] −0.03 [−0.50, 0.02] −0.29 [−0.42, 0.21]

0.60 0.09 [−0.78, 0.29] −0.10 [−0.48, 0.16] −0.04 [−0.25, 0.52] −0.11 [−0.45, 0.14]

0.70 −0.04 [−0.83, 0.53] −0.12 [−0.52, 0.57] −0.12 [−0.14, 0.60] 0 [−0.48, 0.10]

0.80 −0.08 [−0.18, 0.72] −0.15 [−0.33, 0.53] −0.17 [−0.20, 0.97] 0.06 [−0.21, 0.22]

0.90 −0.12 [−0.12, 1.60] −0.18 [−0.19, 5.45] 0 [−0.26, 1.74] 0 [0, 1.45]

2 0.10 0.39 [−0.06, 0.82] 0 [−0.47, 0.50] −0.88 [−1.44, 0.63] −0.12 [−0.73, 0.39]

0.20 0.46 [−0.39, 0.79] 0.29 [−0.65, 0.61] −0.15 [−1.05, 0.11] 0.20 [−1.26, 0.29]

0.30 0.20 [−0.17, 0.92] 0 [−0.79, 0.41] −0.10 [−0.48, 0.07] 0 [−0.97, 0.50]

0.40 0.10 [−0.30, 0.64] 0 [−0.29, 0.13] −0.16 [−0.48, 0.01] −0.16 [−0.50, 0.36]

0.50 −0.09 [−0.21, 0.64] 0 [−0.29, 0.19] −0.26 [−0.51, 0.14] 0 [−0.26, 0.68]

0.60 −0.01 [−0.18, 0.49] 0 [−0.34, 0.26] −0.30 [−0.61, 0.26] 0 [−0.28, 0.70]

0.70 0.03 [−0.21, 0.24] 0 [−0.13, 0.21] −0.40 [−0.63, 0.33] −0.08 [−0.34, 0.38]

0.80 0.03 [−0.11, 0.17] 0 [−0.15, 0.44] −0.40 [−0.54, 0.35] 0.05 [−0.46, 0.47]

0.90 0 [−0.21, 0.12] −0.13 [−0.15, 10.05] 0.11 [−0.61, 0.90] 0.05 [−0.50, 0.23]

https://doi.org/10.3389/fpsyg.2022.933327
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Medrano et al. 10.3389/fpsyg.2022.933327

Frontiers in Psychology 10 frontiersin.org

protection against poor neurocognitive health outcomes. We did 
not have any hypothesis regarding the sample, although we did 
expect relatively consistent PM2.5, given the restricted spatial 
coverage of our study catchment area, and for the average exposure 

to be elevated, due to the sample’s proximity to a major metropolitan 
area (as reported by the EPA’s EJSCREEN tool).

However, there was a nearly statistically significant decrease 
in exposure (and a significant improvement in non-symbolic 

TABLE 5 Differences between demographic categories on all measures.

PM2.5 (3-day 
ave.)1

Working memory 
d’

Inhibitory control2 Non-symbolic 
comparison3

Arithmetic3

Sex - Round 1

Female (n = 15) 7.24 −0.208 0.949 0.627 0.849

Male (n = 13) 5.04 0.244 0.921 0.658 0.921

Wilcoxon Test Z −0.36 −1.04 −0.67 −0.95 −1.78

p value 0.72 0.3 0.5 0.34 0.075

Sex - Round 2

Female (n = 12) 3.4 −0.137 0.96 0.72 0.88

Male (n = 11) 2.84 0.149 0.98 0.74 0.95

Wilcoxon Test Z −0.76 −0.40 −1.06 −1.23 −1.81

p value 0.45 0.69 0.29 0.22 0.07

Income - Round 1

Below 100,000 (n = 5) 4.34 0.92 0.97 0.67 0.9

Above 100,000 (n = 23) 6.63 −0.2 0.93 0.63 0.88

Wilcoxon Test Z −0.23 −0.99 −1.17 −1.17 −0.33

p value 0.82 0.32 0.24 0.24 0.74

Income - Round 2

Below 100,000 (n = 5) 4.72 0.2 0.96 0.69 0.87

Above 100,000 (n = 18) 2.69 −0.05 0.97 0.74 0.92

Wilcoxon Test Z −3.09 −0.23 −0.28 −0.33 −0.60

p value 0.002 0.82 0.78 0.74 0.55

P Education - Round 1

Bachelor’s or below 

(n = 11)

5.31 0.57 0.95 0.63 0.91

Master’s or Professional 

Degree (n = 17)

6.81 −0.37 0.93 0.65 0.87

Wilcoxon Test Z −3.09 −0.23 −0.28 −0.33 −0.60

p value 0.21 0.51 0.35 0.89 0.24

P Education - Round 2

Bachelor’s or below 

(n = 9)

4.09 0.39 0.97 0.69 0.92

Master’s or Professional 

Degree (n = 14)

2.51 −0.25 0.96 0.76 0.91

Wilcoxon Test Z −3.09 −0.23 −0.28 −0.33 −0.60

p value 0.002 0.73 0.32 0.51 0.47

SVI - Round 1

Less than 0.70 (n = 20) 4.21 0.1 0.93 0.63 0.87

Greater than 0.70 (n = 8) 11.2 −0.24 0.94 0.66 0.91

Wilcoxon Test Z −3.09 −0.23 −0.28 −0.33 −0.60

p value 0.38 0.96 0.98 1 0.57

SVI - Round 2

Less than 0.70 (n = 16) 3.2 −0.03 0.97 0.73 0.9

Greater than 0.70 (n = 7) 2.96 0.06 0.96 0.73 0.93

Wilcoxon Test Z −3.09 −0.23 −0.28 −0.33 −0.60

p value 0.77 0.95 0.09 0.57 0.81

1Median; 21 – commission rate; 3accuracy.
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comparison ability) between the first and second round of data 
collection. Two important factors were the variation in schooling 
in response to the COVID-19 pandemic and the season in which 
data collection occurred. For a majority of the children (28 out of 
30), the first round occurred between October 2020 and February 
2021; the second round (for 28 out of 29 children) occurred 
between May and August 2021.

Second, children’s PM2.5 exposure was negatively related to 
cognitive abilities, though non-significantly. The negative 
associations correspond to other findings, at least with regard to 
working memory and inhibitory control (Freire et al., 2010). The 
current study was the first to include tasks that measured 
foundational mathematical abilities and found negative 
associations. However, we found significant associations only in 
Round 1 (though there was a negative correlation in Round 2). 
One possible explanation is participants’ near-ceiling 
improvement from Round 1 to Round 2. Another possible 
explanation is the time of data collection—Round 1 occurred 
when a majority of schools in the state were in lockdown (and in 
the winter), while Round 2 occurred when children were going 
back to schools in-person. Through the quantile regression 
analysis, we also found the negative associations between PM2.5 
and cognitive abilities more for those who did poorly on the 
cognitive tasks. This suggests that participants at the lower end of 
cognitive outcome distribution represent a vulnerable group, 
which is consistent with other studies (e.g., Ebisu and Bell, 2012). 
Given that air pollution exposure as early as before birth influences 
children at middle childhood and beyond, future research should 
continue to study its implications for cognitive and academic 
outcomes across the lifespan.

Third, there were significant differences in exposure by 
household income and by parent education, with lower PM2.5 
exposure for children who were in higher household income and 
had parent(s) with higher education greater than a Bachelor’s 
degree, consistent with other findings (Cserbik et al., 2020). These 
were important variables to consider because these describe 
social vulnerabilities and may help earners and their dependents 
cope with environmental hazards (Cutter et  al., 2006). While 
we did not find any significant differences between participants 
with SVI greater than 0.70 and those with less than 0.70, it is 
likely that only some components of the index were more 
important when considering the effects of air pollution, although 
more research should be done using the widely-used index.

Limitations and future directions

We were not able to look at whether air pollutant exposure 
causally affects children’s cognitive abilities. However, a candidate 
causal pathway for socioeconomic differences in neurocognitive 
development is exposure to environmental contaminants such as 
air pollution. Racial, ethnic and socioeconomic differences in air 
pollutant exposures are well documented (Miranda et al., 2011; 
Tessum et al., 2019; Rubio et al., 2021), and this may be reflected 

in the brain. For example, Miller et al. (2021) tracked early life 
stress experiences of 9–13 year olds for two years, as well as 
volume changes in specific areas of their brains and their 
exposure to PM2.5 in the participants’ residential areas. They 
found a stronger negative effect of PM2.5 on brain development 
for adolescents who had less severe early life experiences. Though 
in contrast to most studies on respiratory health, it demonstrates 
that at the neural level, there is an interaction of PM2.5 exposure, 
demographics, and life experiences.

Another limitation is the convenience sampling and the small 
sample size, as the study was exploratory. Future studies should 
use a sample representative of families at least in the metropolitan 
area and should continue to explore the role of demographic 
factors along with air pollution exposures and other variables that 
measure the built environment, such as noise pollution 
(Thompson et al., 2022). Currently, it is unclear whether some 
factors, such as household income and parent education, are 
more important than others, such as whether the family lives in 
a more urban than suburban area. It could be  that the air 
pollution is a mediator of these relations: families with certain 
demographic characteristics are more likely to live in more 
polluted areas, and therefore, children in those families have 
lower cognitive or academic attainment.

Relatedly, increasing the sample size to increase statistical 
power to identify differences among groups and correlation 
between measures and providing more research support to 
participants may be beneficial and may help resolve some of the 
incomplete data. The incomplete data we had were more due to 
lack of cognitive scores in some of the participants. Participants 
completed all measures in a tablet, most of them in one sitting. 
The estimated time of completion was 1 h and 30 min. While 
families were given explicit instructions regarding how to 
complete the tests, researchers can provide more guidance, in the 
form of proctoring, in the future. It is important to note that the 
measures are more often used in a laboratory setting.

Prospective researchers may look at other air pollutants, such 
as PAH, NO2, and CO2, and the reliability of the Flow sensor. 
Future studies may also compare the measurements from the Flow 
sensor to stationary monitors, as well as measurements in 
children’s exposure when at home in comparison to time when not 
at home. Implications for practice include using such devices in 
science classrooms, which may not only teach children about air 
pollution and its impacts but also encourage actions toward 
reducing air pollution (Varaden et al., 2021).

Conclusion

The present pilot study aimed to provide evidence for the role 
of the environment in child development. The results of the study 
revealed that 1) children’s cumulative exposure to particulate 
matter, PM2.5, over 3 days is negatively related to their cognitive 
abilities, 2) these relations matter greatly for those with poorer 
cognitive abilities, and 3) socioeconomic characteristics matter.
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