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Beyond task-space exploration: 
On the role of variance for motor 
control and learning
Ernst-Joachim Hossner *† and Stephan Zahno †

Institute of Sport Science, University of Bern, Bern, Switzerland

This conceptual analysis on the role of variance for motor control and 

learning should be taken as a call to: (a) overcome the classic motor-action 

controversy by identifying converging lines and mutual synergies in the 

explanation of motor behavior phenomena, and (b) design more empirical 

research on low-level operational aspects of motor behavior rather than on 

high-level theoretical terms. Throughout the paper, claim (a) is exemplified 

by deploying the well-accepted task-space landscape metaphor. This 

approach provides an illustration not only of a dynamical sensorimotor 

system but also of a structure of internal forward models, as they are 

used in more cognitively rooted frameworks such as the theory of optimal 

feedback control. Claim (b) is put into practice by, mainly theoretically, 

substantiating a number of predictions for the role of variance in motor 

control and learning that can be derived from a convergent perspective. 

From this standpoint, it becomes obvious that variance is neither generally 

“good” nor generally “bad” for sensorimotor learning. Rather, the predictions 

derived suggest that specific forms of variance cause specific changes on 

permanent performance. In this endeavor, Newell’s concept of task-space 

exploration is identified as a fundamental learning mechanism. Beyond, 

we highlight further predictions regarding the optimal use of variance for 

learning from a converging view. These predictions regard, on the one 

hand, additional learning mechanisms based on the task-space landscape 

metaphor—namely task-space formation, task-space differentiation and 

task-space (de-)composition—and, on the other hand, mechanisms of 

meta-learning that refer to handling noise as well as learning-to-learn and 

learning-to-adapt. Due to the character of a conceptual-analysis paper, 

we  grant ourselves the right to be  highly speculative on some issues. 

Thus, we would like readers to see our call mainly as an effort to stimulate 

both a meta-theoretical discussion on chances for convergence between 

classically separated lines of thought and, on an empirical level, future 

research on the role of variance in motor control and learning.
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Introduction: Some terminological 
hair-splitting

The present research topic is introduced with the description 
that, “human motor variability has been traditionally interpreted 
as an error of the system.” Although we do, in principle, perfectly 
agree with the statement, we would like to begin this conceptual 
analysis by pointing out that some room is left for further 
clarification. To this end, we propose to make a terminological 
distinction that helps to clarify this statement as well as our 
approach in this paper; and, generally, to be more precise when 
discussing issues of variability in the context of motor control and 
learning. Etymologically, the term variability can be traced back 
to the Latin words variare for to change and habilitas for aptness 
suggesting that “vari-ability” refers to an ability to change 
something, or to (intentionally) vary behavior to achieve 
particular goals. As we will see, in “traditional” accounts of motor 
control and learning, the ability to vary motor skills was a hot 
topic in motor-behavior research and regarded as a hallmark of 
skilled performance, hence, certainly not as an “error of the 
system.” However, what has indeed been neglected or classified as 
“errors” was (unintentional) variance at the level of movement 
execution and performance outcomes. Hence, we propose that a 
more precise description would be  that: “human motor 
variance”—or even better, “the part of human motor variance that 
cannot be  ascribed to human motor vari-ability,” “has been 
traditionally interpreted as an error of the system.”

However, even when accepting this terminological 
modification, we  agree with the editors of the research-topic 
collection that there is still the need to consolidate the current 
understanding on the role of variance. So, after these introductory 
remarks (1), we will contribute to this consolidation by starting 
with a short overview on variance-related research in motor 
control and learning conducted over recent decades (2). This 
overview concludes in a deeper discussion on the function of 
variance for task-space exploration, which can be regarded as a 
fundamental learning mechanism independent of chosen 
theoretical perspective (3). However, as we  will see, a more 
cognitive approach, in contrast to a dynamical-system framework, 
opens the door for the identification of further variance-based 
learning mechanisms. These mechanisms will be debated under 
the labels of task-space formation, task-space differentiation and 
task-space (de-)composition (4). Furthermore, the role of variance 
will be discussed in connection to mechanisms of meta-learning; 
specifically, with regards to the capabilities to handle noise, 
learning-to-learn and learning-to-adapt (5). The debate will 
be rounded up by a summarizing discussion, in which we argue 
to approach motor control and learning issues with a focus on 
specific learning effects caused by specific sorts of variance. This 
builds up to a call for investigating effects that can be observed on 
a behavioral level rather than restricting one’s perspective by 
theoretical concepts (6). Based on this discussion, we  derive 
clear-cut empirical predictions for designing specific practice 
conditions to yield specific learning effects, especially in the 

practical context of motor learning in the domain of sports. These 
predictions are summarized in Table 1.

A short history of variance-related 
research on motor control and 
learning

The previously debated description—that motor variance is 
regarded as a system error—derives from the early phases of 
motor-behavior research. During the so-called information-
processing era, the human was basically conceptualized as a 
transmitter of information. Obviously, this conceptual starting 
point requires distinguishing between a “true” signal and signal-
corrupting noise (Shannon and Weaver, 1949). In the stages-of-
processing view (Marteniuk, 1976), noise should thus be expected 
to particularly impair information processing in the initial stage 
of sensation/perception and in the final stage of response 
execution. In this context, examining response execution in 
reciprocal finger tapping (Fitts, 1954), was able to empirically 
show that motor output variance can be described as a function of 
movement speed.

This overall negative view on noise also holds for the most 
prominent theory of the information-processing era, Schmidt’s 
(1975) schema theory. It should be noted, however, that at the 
same time, the advantage of variable over constant practice was 
repeatedly observed in empirical studies and underpinned by 
theoretical explanations. Indeed, a core prediction of Schmidt’s 
(1975) schema theory is that practicing variants of a generalized 
motor program improves schema formation by fostering 
interpolation between actually experienced program 
parameterizations. A related concept was suggested by the 
contextual-interference effect, an alternative explanation for the 
advantage of variable practice derived from the elaboration 
hypothesis. This explanation asserts that random practice of task 
variants, as opposed to blocked practice, leads to superior learning 
due to the opportunity to better compare these variants in short-
term memory and thus to extract communalities and differences 
(Shea and Morgan, 1979). In contrast, the competing 
reconstruction hypothesis suggested that the random-practice 
advantage is attributed to the necessity to reconstruct the motor 
response repeatedly, which is thought to lead to a deeper 
processing of task-relevant information (Lee and Magill, 1983). In 
sum, this short overview shows that variability—as intended 
variance—was actually an intensely researched topic during the 
information-processing era of motor-control research; while input 
or output noise was generally seen as a performance-hindering 
feature of motor behavior.

In the 1980s, the information-processing approach was 
severely challenged by the observation that coordinated movement 
patterns reliably emerge as a function of organismic, environmental 
or task constraints (Newell, 1986). Most strikingly, this might even 
occur despite one’s intention; as was demonstrated by the inevitable 
change from a parallel to a symmetrical mode in coupled finger 
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movements when the oscillation frequency exceeds a certain value 
(Kelso, 1981). This phenomenon has been formalized as a process 
of synergetic self-organization of the sensorimotor system, 
conceptualized in the metaphor of a potential landscape. For the 
finger movements, the landscape changes its form with increased 
frequency such that only the landscape’s symmetrical-mode 
attractor persists (Haken et al., 1985). As for the resulting phase 
transition from a parallel to a symmetrical mode, system-intrinsic 
variance is conceptually indispensable and empirically observable 
as an intensification of “critical” fluctuations around the transition 

point (Kelso et al., 1986). With this development, the notion of 
sensorimotor variance drastically gained importance in theoretical 
debates on sensorimotor coordination (Newell and Corcos, 1993). 
Interestingly, the resulting dynamical-system approach (for an 
overview, see Beek et al., 1995) – albeit not necessarily required on 
a conceptual level—has standardly been discussed as a companion 
to the ecological view on perception–action coupling (Gibson, 
1979). This connection is apparently centered on a shared, more 
holistic understanding of human motor behavior. As this marriage 
implies, action concurrently results from and results in perception 

TABLE 1 The role of variance for different sensorimotor-learning mechanisms (in brackets: chapter number).

Task-space exploration (3) • With a local search in task-space exploration, noise affords the sensorimotor system slow and continuous learning without 

any further intervention

• In local search, a certain amount of noise is helpful to prevent the system from getting stuck in a local minimum of the task-

space landscape.

• Adding noise might be required to escape a stable local minimum of the task-space landscape in order to induce  

“re-learning.”

• With a nonlocal search in task-space exploration, task variants should be practiced in a systematic manner while avoiding 

repetitions in a blocked schedule.

• Nonlocal task-space search can be induced by: discovery learning, adopting the constraints-led approach or providing 

learners with instructions that preferably relate to desired sensory consequences.

• Task-space exploration should be particularly promoted in regions of major as compared to minor importance for 

accomplishing the whole range of practically relevant task-goal variants.

• Task-space exploration should be guided into the direction of functional task-space regions that feature error tolerance and 

opportunities to exploit covariation or equifinality.

• In task-space exploration, only task-relevant variance should be considered while task-solution variants—specifically, 

variance in the task-irrelevant direction—should be particularly explored.

Task-space formation (4)

• When task goals are missed in a fundamental manner, de novo learning should focus on task-space formation by providing 

multifarious support and reducing unwanted variance.

• Minimizing intended variance helps learners gain competence in regards to noise expectations and thus to identify basic 

movement structures.

Task-space differentiation (4)

• Task-space differentiation, resulting from the identification of additional task-relevant control variables, would be best 

promoted by frequent switches between respective conditions.

• Frequent switches between task goals can be expected to decelerate the exploration of the corresponding task subspaces.

Task-space (de-)composition (4)

• Accentuated variance in variables that form a functional task subspace should support learners in detecting functional (sub)

structures that can be transferred to other tasks.

• Task-space (de-)composition can be further improved by practicing different tasks that include the same functional (sub)

structure in order to let learners detect task-space distorting factors.

Handling noise (5)

• The competence to estimate expected noise could be enhanced by exercises in which disturbing noise is added in order to 

make learners enforce their task goal against those perturbations.

• Adding more or less noise should foster the internal estimation of to what extent noise could either be actively controlled or 

be better handled by pursuing an impedance-control strategy.

Learning-to-learn/adapt (5)

• The competence of learning-to-learn might be improved best by including not only a variety of differing tasks but also by 

inducing different ways of exploring respective task spaces.

• It seems plausible that the competence of learning-to-adapt is enhanced best by being frequently confronted with drastically 

changing task demands.
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and vice versa. Consequently, both aspects are inextricably 
intertwined in a perception–action cycle (Kugler and Turvey, 
1987). Therefore, sensorimotor learning would be best described 
as a process of searching the potential landscape, that is, the 
perceptual-motor workspace—in order to detect preferable regions 
as optimal solutions of the task at hand (Newell et al., 1989).

The proposed approach of thinking in landscapes – or 
alternatively, spaces or manifolds – is illustrated in 
Figure 1A. Here, the task space for hitting a bull’s eye in dart 
throwing is depicted (as inspired by Müller and Loosch, 1999). 
For the sake of simplicity, the illustration is reduced to the 
dartboard’s vertical dimension, neglects aerodynamic aspects of 
the dart flight and is based on the assumption that the dart is 
constantly released in a distance of 2 m from the board, exactly at 
the height of the bull’s eye. Applying elementary physics, hits and 
no-hits are then determined just by the dart’s launch angle and 
velocity. As can be inferred from the task space’s form, the launch 
angle requiring the minimum velocity to hit the bull’s eye is 45°. 
However, as generating sufficient velocity is generally not a 
limiting factor in dart throwing (in contrast to, for instance, shot 
putting), the more interesting aspect of the illustration is the 
range of potential successful angle-velocity combinations. To the 
left of the valley in the region with smaller release angles, a wider 
range of velocity values can be combined to hit the bull’s eye; 
whereas to the right of the valley with larger release angles, a 
narrower range of velocity combinations are successful. Therefore, 
in this example, smaller angles are favorable over larger angles in 
terms of error tolerance (Müller and Sternad, 2004). From a 
dynamical-system perspective, this relationship constitutes a 
relevant constraint for the formation of an individual perceptual-
motor workspace. However, other constraints need to be taken 
into account as well; for example, the organismic constraint that 
individuals differ in their capability to generate the high launch 
velocities required for extremely small launch angles.

Summing up, variance plays a remarkably different role in the 
historically opposed camps of information-processing and 
dynamical-system approaches to human motor behavior. Yet, it 
should be noted that since the peak of the so-called motor-action 
controversy more than 30 years ago (Meijer and Roth, 1988), 
dramatic conceptual re-orientations within cognitively rooted 
frameworks of motor control and learning have been observed. 
Most notably, there has been a stark shift from viewing motor 
control as a top-down determined product of linear information 
processing—as, for example, in motor-program theories—toward 
the idea of effect-related control. The latter perspective views 
motor control, in essence, as self-initiated transitions from current 
(perceived) states to desired (perceived) states. This shift toward 
effect-related control was mainly initiated by Prinz’s (1997) 
argument that it is impossible for a perceptual input to be directly 
translated into motor commands, as assumed in traditional 
information-processing models, due to the incommensurability 
of the respective codes. This fundamental insight gave rise to a 
revitalization of James’s (1890) ideo-motor principle that actions 
need to be planned in terms of desired—and thus perceivable—
action effects.

Within the resulting ideo-motor conceptualizations of 
sensorimotor control, it is probably the internal-model approach 
(Wolpert and Ghahramani, 2000) that has yielded the most 
significant impact. In this theory, the ideo-motor notion of effect-
relatedness prominently appears in the predictive function of an 
internal forward model (Jordan and Rumelhart, 1992). Specifically, 
the role of such forward models, which are developed and refined 
with experience, is to predict the sensory consequences of motor 
commands given a current (perceived) state. In the theory’s 
current variant of optimal feedback control (Todorov and Jordan, 
2002), it is assumed that the sensorimotor system continuously 
refreshes its predictions for the transition from the current to the 
subsequent state. Thereby, and in sharp contrast to classical 

BA

FIGURE 1

Task-space landscapes for dart throwing without (A) and with (B) considering sensorimotor noise.
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information-processing models, it is a core feature of optimal 
feedback control theory that not each and every state dimension 
need to be  controlled (Todorov and Jordan, 2002: minimal 
intervention principle). Rather, intervening efferent commands 
are generated only if the internal forward model predicts that this 
intervention essentially contributes to the maintenance or the 
achievement of the currently desired state (for a closely related 
idea expressed in terms of affordances on the level of neural 
implementation, see Cisek, 2007). Notably, this implies that 
successful behavioral control crucially depends on reliable 
estimates of both current and desired states. To this end, the 
sensorimotor system is thought to optimally combine sources of 
information consistent with Bayesian principles (Körding and 
Wolpert, 2006). When determining the current state, noise 
estimations are used for weighting incoming (multi)sensory 
signals. In terms of one’s own motor commands, the noise in the 
execution is taken into account when selecting optimal task 
solutions (Trommershäuser et al., 2003). Consequently, a forward 
model for the dart-throwing task could be imagined as depicted 
in Figure  1B. Here, a task space as explained above has been 
overlaid by estimated noise in order to calculate probabilities 
(rather than mere physical dependencies) to achieve the desired 
goal of hitting the bull’s eye. This reorientation of the cognitively 
inspired branch of motor-control theory comes closer to the 
direction of dynamical-system approaches, rather than the 
traditional direction viewing motor control as a top-down 
determined product of central information processing.

Variance for task-space 
exploration as a fundamental 
learning mechanism

By accepting the proposed convergence between the 
dynamical-system approach and recent versions of cognitive 
theories on motor control and learning, discussions on respective 
contributions of each to the explanation of motor behavior are no 
longer warranted. In turn, this creates room for the more 
interesting and applied question of how variance—whether it 
be  inevitably or intentionally increased—could benefit motor 
learning. To this end, it can clearly be  asserted that motor 
performance should improve with the more task-specific 
experiences gathered. This assertion would thus propose a 
progressive exploration of the corresponding task space (or, 
depending on the focus and the chosen terminology: the 
“perceptual-motor workspace”) as it was originally proposed by 
Newell et  al. (1989) and has recently been theoretically and 
empirically updated by Pacheco et al. (2019).

In the present context, it is noteworthy that in the search 
strategy called “local search” by Newell et al. (1989), the role of 
noise is ambivalent. On the one hand, noise generally degrades 
performance; while on the other hand, it might by chance lead to 
the detection of a neighboring motor response that is even better 
suited to achieve the task goal. In this way, noise would result in a 

slow but continuous descent along the gradient of the task-space 
landscape and thus automatically provoke learning.

Furthermore, when descending along the gradient, a certain 
amount of noise is essential to prevent the system from getting 
stuck in a local minimum. This becomes particularly relevant if 
the minimum is sufficiently shallow to overcome its delimitating 
borders by such system-immanent noise. If this is not the case, 
adding more noise might be the most effective intervention. In 
sports, the issue of being stuck in a local minimum is well-known. 
For instance, when skiers find a stable solution to ride powder 
over a long phase of free practice, a technique with considerable 
layback may ultimately hinder maintaining control over the turns. 
If an instructor notices this error, he or she needs to take measures 
to initiate “re-learning”; for example, by making the skier feel the 
implications of riding powder while exaggeratedly laying either 
back or forward. Practicing these contrasting versions of a task 
solution can be conceptually understood as adding sufficient noise 
to overcome a local minimum. However, this does not imply that 
generally maximizing variations in practice as a matter of principle 
is beneficial—a recommendation known in the motor-learning 
literature as “differential-learning.” Since we are not able to find 
any comprehensible theoretical substantiation for “differential-
learning methods,” we would prefer to skip a respective debate 
here (for details of this dispute, see Hossner et al., 2016a, and for 
a topic-related meta-analysis, Tassignon et al., 2021).

Beyond a local search, a nonlocal search strategy induces 
variations over a broader range of the task-space landscape 
(Newell et al., 1989). Besides stimulating “re-learning” as sketched 
above, this strategy can especially be applied in the initial phase of 
learning when the task can be solved in principle, but the initially 
chosen variants are far away from the task-space’s global 
minimum. In this case, when considering the empirical findings 
from contextual-interference research (which notably does not 
require the acceptance of cognitively-based explanations), it 
seems plausible that this search should be organized in such a way 
that repetitive, blocked practice of task variants are avoided (Lee 
and Magill, 1983: reconstruction hypothesis). Moreover, the 
variants should be  presented in an order that facilitates the 
interpolation of the passed region of the landscape (Shea and 
Morgan, 1979: elaboration hypothesis). On this basis, we would 
recommend that learners be allowed to explore the task space in 
a more systematic than completely random manner (for empirical 
support for this recommendation, see Hossner et  al., 2016a). 
Drawing on the ski-practice example above, this suggests 
organizing practice in a way that learners experience the 
consequences of variations in task-relevant dimensions (e.g., the 
distance of the skis, the degree of knee flexion, the extent of 
upward-downward movements etc.) in a systematic order, for 
instance, the backward–forward position on the skis from 
extremely laying back to extremely laying forward.

When conceptualizing motor learning as task-space 
exploration, instructors or teachers are challenged to apply 
promising methods to induce the generation of task variants in the 
learner’s behavior. To achieve this objective, three approaches are 
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well-established in the world of sports. The first approach—
termed discovery learning—is based on the assumption that 
learners are better able to detect their optimal way to solve a 
sensorimotor task than any external observer (e.g., Vereijken and 
Whiting, 1990). This means that learners should first and foremost 
be encouraged to explore the task space on their own. The second 
and slightly more prescriptive concept is known as the 
constraints-led approach (Davids et al., 2008). Here, the task space 
is (further) constrained in such a way that the learners are gently 
pushed into the direction of superior task solutions. Finally, and 
in an accentuated prescriptive manner, variants can be induced by 
explicit instructions. From a dynamical-system perspective, this 
third approach remains somewhat mysterious; since the 
challenging question arises as to how explicit information can 
be transformed into the language of task spaces in order to limit 
the search to a subspace. In this regard, the internal-model 
approach offers a straight-forward explanation: As instructions 
generate sensorimotor imagery together with the desired action 
consequences this imagery provides sufficient input for the 
movement to be formed (Hossner et al., 2020). Accepting this 
explanation would imply that instructions should preferably 
be provided in terms of desired sensory consequences, which are 
accessible to the learners themselves. Thus, all three learning 
approaches should help to induce nonlocal task-space exploration. 
In practical terms for the skiing example above, this would include 
motivating skiers to play with their position on the skis (discovery 
learning), letting them ride with rather open buckles to punish a 
non-centered position (constraints-led learning), or instructing 
them to feel more pressure at the shins than at the calves 
(perception-related instruction).

The more prescriptive a learning approach is the more the 
teacher needs to be sure of the superior regions of the task space. 
On the level of desired states, this demand can be achieved by 
ascertaining which regions play major or minor roles in 
accomplishing the whole range of practically relevant task 
variants. When practicing shooting in basketball, for instance, this 
means that the region for the free-throw distance to the basket 
should be explored more profoundly than other distances, which 
are experienced less frequently in ordinary games. When looking 
to motor execution, these differences between task-space regions 
with more or less fine-grained exploration result in the well-
known especial-skill effect for “specificity embedded within 
generality” (Keetch et al., 2008).

If the relative importance of task-space regions is not that 
evident, the requirement to pre-determine superior regions in 
prescriptive learning approaches would be  highly demanding 
from an observer’s perspective. This would be  particularly 
challenging when the relevant space concerns the level of motor 
execution rather than directly goal-related performance. However, 
such a challenge could be  facilitated by applying a thorough 
functional task analysis (Hossner et al., 2015). This concept can 
be illustrated in the context of the dart-throwing task illustrated 
in Figure 1: Reducing the overall coordination demands to two 
joints—namely the elbow and the wrist joint—can be expected to 

improve throwing precision, such that this variant is actually the 
only throwing technique utilized by darts experts. Hence, in the 
course of task-space explorations, learners should simply 
be  instructed to avoid throwing variants that encompass, for 
example, shoulder movements or a posture in which the 
contralateral foot is positioned in front of the ipsilateral foot.

Beyond, the TNC-approach introduced by Müller and Sternad 
(2004) provides us with a powerful tool to decompose behavioral 
fluctuations and thus to determine superior regions of the task-
space landscape. When applying this analysis to the darts-
throwing task space illustrated in Figure 1B, it can be predicted 
that learners initially detect error-tolerant subspaces 
(T = tolerance). Specifically, the broad and deep left side of the 
depicted task-space valley is identified before noise is reduced as 
much as possible (N = noise). The first step in learning could thus 
be characterized as finding “stable solutions where intrinsic noise 
matters less” (Sternad et al., 2014). The second step then aims to 
exploit opportunities for covariation; which in our example would 
occur when deviations in the two determining variables of launch 
angle and velocity are compensated for one another 
(C = covariation). Most interestingly, the latter mechanism also 
encompasses the generation of “equifinal movement paths” 
(Müller and Loosch, 1999). Such a path in darts would be the 
(implicit) strategy to accelerate the dart with a corresponding 
change in movement angle, such that the achievement of the task 
goal becomes robust against the noise in the exact timing of 
dart launch.

The ideas of functional covariation and equifinality bring us 
to a final core concept regarding variance in sensorimotor learning 
in terms of task-space exploration: the uncontrolled-manifold 
concept (Scholz and Schöner, 1999). In this approach, the overall 
variance is decomposed into components that are either parallel 
or orthogonal to the task-solution subspace (i.e., in Figure 1B: to 
the bottom line of the valley). While the parallel component does 
not harm goal achievement and can thus be considered as “good 
variance,” the orthogonal component impacts achievement and is 
thus considered as “bad variance.” Interestingly, the same 
decomposition can be derived from the more cognitively inspired 
theory of optimal feedback control. From such a perspective, it has 
been shown that variance in the redundant, task-irrelevant 
direction is not only negligible but that pronounced reduction 
inevitably increases variance in the orthogonal, the task-relevant 
direction (Todorov and Jordan, 2002). These findings imply that, 
on the one hand, sensorimotor variance should only be considered 
if it (probably) affects performance error; while on the other hand, 
improving compensatory variability by an accentuated exploration 
of task-solution variants—as variance in the redundant, task-
irrelevant direction—can be expected to particularly enhance the 
capability to optimally exploit existing variance. Nevertheless, it 
remains a matter of speculation whether further error 
amplification in the task-relevant direction might support the 
learning process; specifically, by clarifying the respective 
contributions of both dimensions to motor performance (for an 
overview, see Sternad, 2018).
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Further mechanisms: Variance for 
task-space formation, task-space 
differentiation, and task-space 
(de-)composition

As discussed before, task-space exploration can be regarded 
as a fundamental learning mechanism; be it from a dynamical-
system perspective or, from the standpoint of optimal feedback 
control, in terms of exploring the landscape that constitutes an 
internal forward model. Further learning mechanisms can 
be  derived from both theoretical frameworks, with these 
mechanisms similarly drawing on the landscape metaphor but 
exploiting it differently. To this end, in addition to task-space 
exploration, Hossner et  al. (2020) distinguished task-space 
formation, differentiation and (de-)composition as important 
learning mechanisms. How variance affects learning based on 
these mechanisms will be discussed in the following paragraphs.

The first mechanism, task-space formation, can be mainly 
traced back to the applied issue of de novo learning of complex 
motor skills. The core problem regularly observed in such cases is 
that beginners fail to achieve the desired task goal not only by 
tendency (e.g., the dart has been successfully thrown but does not 
hit the board) but also in a fundamental way (e.g., a springboard 
diver fails to produce the forward rotation that is required for 
performing a desired somersault). Put into more theoretical terms: 
The executed movement does not yield an entry on the task-space 
landscape, and therefore task-space exploration is not feasible. 
Admittedly, as we will discuss later in this chapter, such cases of 
absolute de novo learning might be rare in real-world situations. 
However, they certainly occur; especially when control is 
demanded under completely novel conditions, may it be due to 
sports equipment (e.g., roller skates), the environmental medium 
(e.g., rough sea) or unnatural settings (e.g., running in virtual 
reality). Phenomenologically, these cases are often experienced as 
an almost entire loss of perception (e.g., in first sky-diving 
attempts), which can quite nicely be  explained by optimal 
feedback control: The problem emanating from missing 
expectations is that they need to be generated by the forward 
model as a highly relevant contribution to current-state 
estimation. From the teacher’s or instructor’s side, de novo learning 
issues require the provision of basic support that can be put into 
practice through: (i) verbal hints like metaphors that call up 
sensory feelings related to task-goal achievement, (ii) appropriate 
schedules like repetitions of the very same task variant or (iii) the 
introduction of methodological steps like exercising only parts of 
the whole task. In all these cases, movement variance shows up as 
detrimental noise and further amplification does not seem to help 
the de novo learning. Notably, this statement can be extended from 
de novo learning to all situations in which learners must identify 
basic movement structures, because uncontrollable noise can 
apparently be better estimated if the variance due to intended task 
variations is minimized.

The second learning mechanism, task-space differentiation, 
has—to the best of our knowledge—gained only minor interest in 

the context of the task-space landscape metaphor to sensorimotor 
learning. This issue regards the fact that, in mainstream literature, 
the “task” to-be-solved is regularly introduced as a predetermined 
entity that seems to “exist” prior to being experienced by learners. 
Apparently, this assumption is problematic since tasks mandatorily 
need to be conceptualized as “tasks for someone.” Consequently, 
the focus should rather be placed on understanding how task 
spaces evolve with cumulated experience. To illustrate this point 
with an example from sports: Experienced skiers have definitely 
established different forward models for the consequences of 
motor commands when riding slalom skis vs. all-mountain wide 
skis. However, it does not make the slightest sense to assume that 
these internal models previously exist and “wait” for entries as 
soon as initial experiences with different types of skis are gathered. 
Quite the contrary, different variants of forward models need to 
be developed with specific practice from an initial common task 
space for skiing in general. Newell and Mayer-Kress (2001) 
perfectly acknowledge this issue and offer a “unified dynamical 
approach” as a solution. This suggests that behavioral changes 
should be considered on different time scales; in our context most 
notably, on the time scales of motor development, learning and 
adaptation. This approach was elaborated by Newell et al. (2003) 
using infant motor development as an example. It was 
demonstrated that prone progression can be described as a process 
of structuring a landscape on a rather long time scale. Attractor 
valleys for behaviors like lying down, chin up, creeping, sitting, 
standing and walking are developed over time and kept stable by 
forming a superimposed behavioral landscape. This 
conceptualization would ultimately come down to the idea that 
sensorimotor behavior is coordinated by one single overarching 
workspace—with (multidimensional) valleys for behaviors like 
creeping, skiing and throwing darts. Everyday experience, 
however, tells us that over the course of practice, one does not only 
improve in achieving certain task goals but also in switching 
between respective task (sub)spaces. Therefore, the process of, for 
instance, learning to differentiate between slalom or wide skis 
would probably not be  described best as a progressively 
pronounced engraving of new valleys into the former general 
skiing attractor. This is due to the notion that deepened valleys 
would imply to make immediate switches between (sub)spaces 
more difficult. Such a notion certainly does not correspond to the 
everyday observation that switching from, for example, slalom to 
wide skis works increasingly reliably and instantaneously; that 
means, with a remarkable reduction of time needed for adaptation. 
From our view, this process should thus alternatively 
be conceptualized as the identification of additional task-relevant 
control variables that increase the task space’s dimensionality. 
These in turn allow for “shielding” the differentiated (sub)spaces 
against changes that, for instance, result from further experiences 
gathered in one (e.g., the slalom-ski subspace) or another (e.g., the 
wide-ski subspace) context. This process has thus been labeled as 
task-space differentiation by Hossner et  al. (2020). Under the 
indication of “encoding of motor memories,” this process has 
received wide attention in force-field learning studies on cue-use 

https://doi.org/10.3389/fpsyg.2022.935273
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Hossner and Zahno 10.3389/fpsyg.2022.935273

Frontiers in Psychology 08 frontiersin.org

in switching between different force fields (e.g., Howard et al., 
2013). In regards to the question of inducing variance, it seems 
highly plausible that a frequent switch between relevant conditions 
should, on the one hand, promote the identification of additional 
task-relevant control variables but, on the other hand, can 
be  expected to decelerate the exploration of the evolving task 
subspaces and vice versa. However, this prediction still 
considerably lacks of empirical support to date (for a promising 
approach in this respect, see Rohde et al., 2019).

The third learning mechanism proposed by Hossner et al. 
(2020), task-space (de-)composition, can be  understood as a 
complementary process to the mechanism of task-space 
differentiation sketched above. The underlying issue centers on the 
enhanced capability to “shield” one task subspace against others, 
which would naturally diminish the chances of exploiting across-
task transfer. However, this is an evident phenomenon in complex 
sensorimotor learning, for instance, when friends with different 
experiences in ball-throwing sports compete in darts for the very 
first time. As an initial approach to this contradiction—as it 
appears at first glance, Hossner et al. (2020) propose to assume 
that task subspaces are not only externally connected by 
differentiating variables but also internally structured on 
functional principles. To illustrate this idea again with the example 
of dart throwing: Given that the function relating launch angle 
and velocity to the outcome of a throwing movement (Figure 1) 
can be  traced back to fundamental laws of physics, it would 
be worthwhile to utilize the knowledge gathered in experiencing 
this relationship in task A when confronted with a task B that 
requires throwing an object as well. Braun et al. (2009) refer to this 
phenomenon of across-task transfer as “structural learning”; 
wherein task-relevant structures are thought to be identified in the 
course of learning that, in turn, can be transferred to related tasks 
that overlap in exactly these features. In more implementational 
terms, the very same process can also be described as “modular 
decomposition” (Ghahramani and Wolpert, 1997). Evidently, such 
a decomposition process would be of significant help when one is 
confronted with a completely novel task, since task-space 
exploration can then start with a well-educated guess. This 
assumption, in turn, leads to the conceptual assumption that 
learning novel skills is regularly based on a transfer of functionally 
fitting subspaces from previous experience, and therefore real de 
novo learning is met in only rare cases. When it comes to 
structuring practice for facilitating the exploitation of across-task 
transfer, the objective would then be  to support learners in 
identifying functional (sub)structures in their task spaces that can 
be potentially applied in the context of different tasks. Hossner 
et al. (2020) thus term the underlying learning mechanism task-
space (de-)composition. Variance can be expected to support the 
process of identifying (sub)structures in the task space by 
pronouncedly exercising variants that refer to variables with 
functional relevance. In a practical context, this means that letting 
learners experience the consequences of either different launch 
angles or different launch velocities in isolation or in combination, 
while keeping all the other conditions constant, should allow them 

to detect the underlying structure. And in this way, the identified 
structure can be transferred to other tasks more easily. In addition, 
by introducing variations in different tasks that include the same 
structure, learning could be further enhanced by helping learners 
detect variables that distort the transferable structure in a 
predictable way; such as, for instance, variables related to the flight 
qualities of the object to-be-thrown.

Variance for meta-learning: 
Handling noise, learning-to-learn 
and learning-to-adapt

Observant readers might have already noticed that the 
learning mechanism of task-space (de-)composition, discussed in 
the previous chapter, considerably exceeds the domain of mere 
skill learning because it prepares learners for successfully solving 
other tasks in the future by being able to transfer functionally 
relevant, clearly structured subspaces. Therefore, task-space (de-)
composition can be regarded as kind of meta-learning. In this 
chapter, we will discuss three further mechanisms related to the 
domain of meta-learning and the role of variance in the acquisition 
of related skills; namely strategies to handle noise, to “learn-to-
learn” and to “learn-to-adapt.”

Regarding the issue of handling noise, as discussed in previous 
chapters, variance in terms of unwanted (task-relevant) noise will 
naturally be reduced in the course of learning. This is due to: an 
improved assessment of perceptual variables, an enhanced 
estimation of the current state, a better image of the desired state 
in terms of expected sensory consequences and an increasingly 
fine-tuned specification of parameters as a result of a progressively 
refined exploration of the task space. However, inherent noise will 
never completely disappear. Therefore, as explained above, the 
deteriorating effects of remaining noise might be managed best by 
searching for error-tolerant regions of the task space (Sternad 
et al., 2014) and by continuously improving the competence to 
estimate noise-related effects on the movement outcome (e.g., 
Trommershäuser et  al., 2003). The development of such 
competence would be best supported by minimizing the intended 
variance, as has been suggested in the context of the learning 
mechanism of task-space formation. However, it seems 
additionally plausible to expect further gains by conducting 
exercises in which disturbing noise is added in order to make 
learners enforce their task goal against those perturbations. 
Preferably, however, noise should only be added in dimensions 
where it also occurs in natural situations. Notably, practice for 
motor learning under such aggravating conditions is quite 
common in top-level sports. For instance, hockey coaches instruct 
their players to precisely take a shot on the goal while being 
roughly jostled by defending teammates. In addition, amplifying 
noise should also help learners develop the competence to 
distinguish between situations in which their skill level suffices to 
actively handle noise—by taking unwanted variance into 
account—and situations in which the noise is so provoking that it 
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seems reasonable to switch to an impedance-control strategy 
(Hogan, 1985). In motor-control research, the latter strategy is 
commonly observed in force-field learning (Shadmehr and 
Mussa-Ivaldi, 1994). Applying such a strategy in this context, 
learners mainly increase the stiffness of co-contracting muscles to 
secure resistance prior to perturbations. This strategy is employed 
until the prediction of the perturbing forces can be progressively 
improved and ultimately, actively controlled via the production of 
appropriate counterforces (e.g., Franklin et al., 2003). Therefore, 
as a helpful tool, adding more or less noise during practice can 
foster the internal estimation of to what extent noise would 
be  better handled actively or by pursuing an impedance-
control strategy.

Classically, meta-learning is understood as the competence of 
learning-to-learn (Harlow, 1949). In relation to the variance-
related sensorimotor-learning topic at hand, Pacheco et al. (2019) 
speculate on the relevance of not only the exploration of the task 
space per se but also the specific way in which it has been explored. 
In particular, they assume that the specific exploratory experience 
might serve as a sort of guideline when confronted with other 
tasks. This thereby encourages the learner to find and learn 
generalizable task solutions. From the internal-model perspective 
as illustrated in Figure 1B, we are happy to firmly second this 
suggestion. However, to the best of our knowledge, no research 
has been conducted so far on this issue of supposed meta-learning. 
In lieu of this, we may draw on anecdotal evidence from our own 
experiences as instructors in practical sports courses which 
repeatedly and reliably brought to our awareness that students 
with different individual learning histories approach novel tasks 
differently. In particular, as it seems to us, students highly 
experienced in sports games prefer to search for task solutions that 
allow them to exploit redundancies to free them from precise 
control of movement specifics. In contrast, experienced gymnasts 
tend to rather constrain their individual workspace in the 
direction of a single stable solution, which becomes apparent in 
more precise but also more rigid movements than those observed 
in game-experienced students. However, this anecdotal evidence 
is of course highly speculative and should be  taken as a mere 
plausibilization of the assumption by Pacheco et  al. (2019). 
Nonetheless, if this assumption would prove reliable, variance for 
motor learning in sports education should not only encompass 
different sports (which would develop a breadth of transferable 
functional structures) but also include different ways of exploring 
the respective task-space landscapes in order to improve the 
competence of learning-to-learn.

Closely related to, though distinctly separate from, the 
learning-to-learn issue is the hypothetical competence of learning-
to-adapt that would refer to non-permanent changes in 
performance on a shorter time scale. Such a competence was 
addressed by Hossner et al. (2016b) under the label of “capability 
to adapt” in the course of a debate on the potential advantages of 
the induction of maximum fluctuations in motor learning. In this 
context, it was argued that a maximization of inter-trial noise over 
acquisition might exert detrimental effects on the learning rate, 
though improve the capability to quickly adapt to changing 

conditions. To emphasize, this competence should not be confused 
with the introduced mechanism of task-space differentiation, 
which takes on the assumption that adaptation is accelerated due 
to the identification of task-relevant variables resulting from 
previous experience. In contrast, what is meant here is the 
competence to acquire (implicit) meta-strategies of how to quickly 
adapt to unknown conditions or task goals without knowledge of 
predictable specifics of the observed perturbations. It seems 
plausible that this competence would be enhanced best by being 
frequently confronted with drastically changing task demands. 
Although this is once again highly speculative, we still find this 
idea worthwhile to be pursued further.

Conclusion: A call for specificity 
in research on variance for motor 
control and learning

The conclusions that can be  drawn from this paper are 
twofold. First, when evaluating the summary of hypothetical 
effects of variance on sensorimotor learning in Table 1, it becomes 
obvious that variance is neither generally “good” nor generally 
“bad” for sensorimotor learning. Rather, specific forms of variance 
can be expected to cause specific effects in regards to specific 
learning mechanisms. For instance, as it is speculated in Table 1, 
an increase of variance in form of unwanted noise would support: 
(i) escaping a local minimum in the task-space landscape to 
induce “re-learning,” (ii) enhancing the skill to enforce an 
intended task goal against perturbations and (iii) fostering meta-
learning in terms of an improved capability of learning-to-adapt. 
At the same time, however, accentuated noise supposedly hinders 
learners from gaining competence in assessing noise expectations 
and thus identifying basic movement structures. Consequently, 
rather than investigating whether variance is either “good” or 
“bad” for sensorimotor learning, we  would like to argue that 
future research should focus more on specific cause-effect 
relationships. Particularly, specific forms of variance should 
be  evaluated with respect to their specific effect on specific 
learning mechanisms. If pursuing such a research strategy results 
in the finding that, for example, a specific form of variance 
enhances learning mechanism A but impairs learning mechanism 
B, this finding should then not be disparaged as contradictory 
evidence. Rather such outcomes should be appreciated as useful 
differential information for designing optimal practice conditions 
for sensorimotor learning.

Notably, this first conclusion further extends to an appeal to 
design empirical research on variance for motor control and 
learning more so on the basis of low-level operational than high-
level theoretical terms. If, for instance, variable vs. constant 
conditions are investigated in basketball shots, it would not make 
any sense to expect more or less of an advantage from frequently 
changing the distances to the basket if the very same intervention 
has been derived from either classic information-processing 
theories (e.g., motor-schema formation; Schmidt, 1975) or the 
dynamical-system approach (e.g., searching perceptual-motor 
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workspaces; Newell et al., 1989). In contrast, theoretical terms – 
particularly the distinction of specific learning mechanisms, 
should rather come into play on a higher level. This means 
theoretical terms should be utilized to derive predictions of which 
specific learning intervention should result in which specific 
effects on permanent performance changes which implies  
that—on the lower level of practical concepts—one and the same 
intervention could yield positive effects for competence A but 
negative effects for competence B.

This last-mentioned point brings us to our second conclusion; 
namely that—at least in our view—the time is ripe to overcome the 
outdated controversy between motor and action approaches in 
motor-behavior research that flared up more than 30 years ago 
(Meijer and Roth, 1988). As already highlighted above, it should 
be noted that proponents of the “motor camp” have considerably 
shifted over recent decades, acknowledging that not all details of 
observable movements can be “prescribed” in a top-down manner 
and that movements are necessarily controlled in terms of intended 
and anticipated action effects. When taking the—more cognitively 
inspired—theory of optimal feedback control (Todorov and Jordan, 
2002) as an example, these re-orientations are implemented by an 
internal forward model (plus an internal pseudo-closed loop) such 
that behavioral control is ultimately conceptualized as moving 
from the currently (estimated) perceived state to a future 
(estimated) perceived state defined by the desired task goal. 
Obviously, this notion of control as a transition from perception to 
perception—that is more or less affected by one’s own motor 
commands—brings current motor theories much closer to a 
Gibsonian view on perception–action coupling (Gibson, 1979) 
than it was the case for classic information-processing theories of 
motor control and learning (e.g., Schmidt, 1975). In Figure 1, this 
convergence of historically incompatible theoretical frameworks is 
demonstrated; the landscape metaphor not only holds for an 
appropriate task description from a dynamical-system perspective 
but also suits to illustrate the structure of an internal forward 
model. As a matter of course, one still might vehemently debate 
whether the qualification of forward models as being located 
“internally” or whether and to what extent these models “represent” 
the world. For the practice of sensorimotor learning, however, 
we  expect that in most cases these issues—that are rooted in 
disparate philosophical stances—result in differences regarding 
only the preferred terminology and/or level of analysis rather than 
in actually competing hypotheses for designing practice for motor 
learning. Therefore, we call for proponents of the “action camp” to 
make a similar shift as their more cognitively orientated colleagues. 
A good starting point for mastering this challenge might be to 
consider the empirically substantiated proof that bimanual 

coordination is evidently controlled in the space of perceptual 
consequences rather than in the space of relative joint angles 
(Mechsner et  al., 2001). This, in turn, would imply that 
coordination is achieved in terms of anticipated—specifically, 
forward-modeled—action effects.

Ultimately, the resulting search for converging lines and 
mutual synergies in the explanation of motor behavior phenomena 
comes down to an acceptance of the inheritance left by Bernstein 
(1967). On the one hand, the work of Bernstein (1967) certainly 
focused on autonomously made contributions of lower levels of a 
sensorimotor control hierarchy but, on the other hand, also 
underlined the necessity to acquire a “model of the future” on a 
higher control level. This takes on the idea of how the current state 
of the system can be best transferred into a desired state, or in other 
words, how a reliable internal forward model is developed. We thus 
curiously look forward to becoming aware of common endeavors 
to bridge obsolete theoretical gaps—with respect to the role of 
motor variance for motor control and learning or beyond, which 
will inevitably enrich future research on sensorimotor behavior.
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