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Multidimensional Item Response Theory (MIRT) is widely used in educational

and psychological assessment and evaluation. With the increasing size

of modern assessment data, many existing estimation methods become

computationally demanding and hence they are not scalable to big data,

especially for the multidimensional three-parameter and four-parameter

logistic models (i.e., M3PL and M4PL). To address this issue, we propose

an importance-weighted sampling enhanced Variational Autoencoder (VAE)

approach for the estimation of M3PL and M4PL. The key idea is to adopt a

variational inference procedure in machine learning literature to approximate

the intractable marginal likelihood, and further use importance-weighted

samples to boost the trained VAE with a better log-likelihood approximation.

Simulation studies are conducted to demonstrate the computational e�ciency

and scalability of the new algorithm in comparison to the popular alternative

algorithms, i.e., Monte Carlo EM and Metropolis-Hastings Robbins-Monro

methods. The good performance of the proposed method is also illustrated

by a NAEP multistage testing data set.

KEYWORDS

Multidimensional Item Response Theory (MIRT), estimation, Monte Carlo (MC)

algorithm, variational auto encoder (VAE), four parameter item response theory

1. Introduction

Item response theory (IRT) has been widely used for the evaluation and

assessment of education and psychology test data. The most commonly used IRT

is the 2-parameter logistic model (2PL), which is based on a logistic model for

dichotomous responses and assigns a scalar factor score for each respondent. After

observing its success, flexibility beyond the 2PL model has also been pursued

for decades. Notably, McDonald (1967) suggested that the lower and upper

asymptote in 2PL can be freed up from fixed 0 and 1, respectively. Estimating

a different lower asymptote for each item results in the so-called 3PL model,
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which has been quite useful for multiple-choice items where

guessing is possible; but little empirical evidence was found

to support that estimating upper asymptote was beneficial as

well; therefore, it was widely believed that the 4PL model was

only of theoretical interest and there was no compelling reason

for practitioners to use it (Barton and Lord, 1981; Hambleton

and Swaminathan, 1985). Until the 2000s, researchers started

revisiting the 4PL model and demonstrated the rationale of

introducing upper asymptote parameters after observing early

signs of its importance (Reise and Waller, 2003; Loken and

Rulison, 2010; Waller and Reise, 2010; Yen et al., 2012). Waller

and Feuerstahler (2017) took a step further and conducted a

comprehensive study of 4PL model on a variety of real and

synthetic data. In their experiment, the 4PL model achieved

promising accuracy on medium to large data. However, despite

these existing studies and estimation methods (e.g., Ogasawara,

2002; Waller and Feuerstahler, 2017; Meng et al., 2020),

difficulties of parameter estimation in 3PL and 4PL models still

remain, especially when data sizes are large and the latent factors

exhibit a multidimensional or even high-dimensional structure.

Multidimensional IRT (MIRT) models are a family of

models where the latent trait is no longer assumed to

be unidimensional. By allowing latent factors to exhibit

multidimensional structures, 2PL, 3PL, and 4PL models are

turned into themultidimensional 2PL (M2PL), 3PL (M3PL), and

4PL (M4PL) models, respectively. Compared with IRT models,

MIRT models are capable to model each individual’s multiple

latent traits simultaneously and are usually favored by large scale

and complex real data, thereof (Reckase, 2009).

In this article, we study the general MIRT models with

a special focus on M3PL and M4PL models. Specifically,

assume that there are N individuals who respond to J items

independently with binary response Yij, for i = 1, . . . ,N and

j = 1, . . . , J. The M3PL model assumes that this response from

the i-th individual to the j-th item is modeled by the following

item response function (IRF).

P(Yij = 1 | θ i; aj, bj, cj) = cj + (1− cj)
exp(a⊤j θ i + bj)

exp(a⊤j θ i + bj)+ 1
,

(1)

where aj is a K-dimensional vector of item

discrimination (loading) parameters for the j-th item; bj is

referred to as the item easiness parameters. −bj/‖aj‖2 is

sometimes termed as item difficulty (Cho et al., 2021); cj ≥ 0

is known as the lower asymptote of the j-th item and measures

the probability of guessing j-th item correctly when θ i is of

negative infinity. Moreover, θ i is a K-dimensional latent variable

denoting the ability of i-th respondent, which is assumed to

have a standard K-dimensional Gaussian distribution in IRT

literature. Further generalizing M3PL, the M4PL model has an

IRF of

P(Yij = 1 | θ i; aj, bj, cj, dj) = cj + (dj − cj)
exp(a⊤j θ i + bj)

exp(a⊤j θ i + bj)+ 1
,

(2)

where additional dj ≤ 1 is referred to as the upper asymptote

parameter, which is the maximum probability of answering the

j-th item correctly when θ i goes to infinity. Intuitively, 1 − dj

can be treated as the slipping probability that an individual who

is able to answer the item correctly but miss it accidentally.

For both M3PL and M4PL models, we denote model

parameters A = {aj, j = 1, . . . , J}, b = {bj, j = 1, . . . , J},
c = {cj, j = 1, . . . , J}, d = {dj, j = 1, . . . , J}; and for M3PL

model dj = 1, j = 1, . . . , J andMp = {A, b, c, d} is the collection
of all model parameters. Under the typical local independence

assumption, the marginal log-likelihood ofMp is given by

l(Mp;Y) =
N
∑

i=1

log P(yi | Mp)

=
N
∑

i=1

log

∫ J
∏

j=1

P(Yij | θ i;Mp)p(θ i)dθ i, (3)

where p(θ i) is the probability density function of a standard

K-dimensional Gaussian distribution.

Due to the latent variable structure, the K dimensional

integrals involved in (3) makes maximization of the log-

likelihood function with respect to Mp intractable. Direct

numerical approximations of the integrals were proposed,

including the Gauss-Hermite quadrature (Bock and Aitkin,

1981) and Laplace approximation (Tierney and Kadane, 1986;

Lindstrom and Bates, 1988; Wolfinger and O’connell, 1993).

However, these methods usually fail to handle complicated

MIRT model, especially when the dimension K of latent

factors θ grows: Gauss-Hermite quadrature quickly becomes

computationally expensive in a high-dimensional setting; the

Laplace approximation, though being efficient in computation,

often performs less accurately when K increases or when the

likelihood function is skewed. Monte Carlo (MC) simulations

have also been applied to obtain numerical approximations

for MIRT, such as Monte Carlo expectation-maximization

(MCEM,McCulloch, 1997), stochastic expectation-maximization

(StEM, von Davier and Sinharay, 2010), andMetropolis-Hastings

Robbins-Monro (MHRM, Cai, 2010a,b). Nevertheless, MC based

methods need drawing samples from posterior distributions,

which could be computationally demanding as well. Recently,

Zhang et al. (2020) improved StEM for item factor analysis,

but its stochastic E-step involves an adaptive rejection-based

Gibbs sampler and may still be time consuming. All methods

discussed above can be seen as variants of the marginal

maximum likelihood (MML) estimator proposed in Bock and

Aitkin (1981), where latent θ are considered as random variables
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and are integrated out. Chen et al. (2019) instead studied

the constraint joint maximum likelihood estimator (CJMLE)

by treating θ as fixed effect parameters in order to achieve

higher speeds.

Unfortunately, many existing studies focusing on the M2PL

model cannot be applied to M3(4)PL models easily: for MHRM,

commercial software FlexMIRT (Chung and Houts, 2020) does

not support M4PL, and for M3PL, MHRM is known to suffer

from a lower convergence rate (Cho et al., 2021) than M2PL;

for CJMLE, the authors only derived methods for M2PL and

which not supportM3(4)PLmodels. In general, computationally

efficient estimation methods for M3(4)PL models are still

under explored.

Variational approaches stem from the machine learning

literature, which maximizes a tractable lower bound of the log-

likelihood rather than maximizing the log-likelihood directly.

They have been applied to fitting IRT models in recent years

(Rijmen and Jeon, 2013; Natesan et al., 2016; Hui et al., 2017;

Jeon et al., 2017). More recently, these variational methods also

established a variety of successes on more complicated MIRT

(Curi et al., 2019; Wu et al., 2020; Cho et al., 2021) and graded

response models (Urban and Bauer, 2021). Notably, variational

autoencoder (VAE), deep learning based variational method,

and its variation, importance weighted autoencoder (IWAE), are

shown to be effective in parameters estimation and achieve

performances competitive to traditional techniques at much

faster speeds (Curi et al., 2019;Wu et al., 2020; Urban and Bauer,

2021).

In this article, we investigate the VAE method for the

more challenging M3(4)PL models with possible missing data.

Extending explorations from Urban and Bauer (2021), we

propose a new training strategy for VAE by enhancing it with the

objective function of IWAE. As revealed in Section 2.2, although

IWAE is computationally more expensive than VAE, our mixing

training method inherits both the speed advantage of VAE and

the better performance of IWAE. We also pay great attention

to several practical issues and challenges in model training and

propose corresponding methods/tricks to solve them, which

allows our model to handle missing data and have better

numeric robustness. Compared with the existing estimation

approaches, such as MCEM and MHRM, our method succeeds

in achieving comparable or better accuracy in parameter

estimation and exhibits a much faster speed. Moreover, our

method converges under M3(4)PL models within constant

fitting times on different sizes, comparable to what Urban and

Bauer (2021) found in theM2PLmodel, which is a key advantage

of VAE based estimation over traditional methods.

The rest of this article is organized as follows. Section 2

covers our new training strategy of VAE based estimation, which

is named as Importance-Weighted sampling enhanced VAE

(IWVAE); to make the section self-contained, we also provide

an overview of VAE and IWAE; important tricks for handling

missing data as well as improving numerical stability are also

introduced. Section 3 provides a large-scale simulation study

where IWVAE shows consistently competitive performances to

MHRM and MCEMmethods across different sample sizes, item

structures, and asymptotic regimes. Section 4 compares three

methods on a real data set from a multistage testing design. We

end up this article with final discussion and remarks in Section 5.

2. Methods

We start with a brief overview of variational inference and

how it helps tackle maximizing likelihoods whose exact forms

are unavailable. We then introduce a gradient based model from

deep learning called variational autoencoder (VAE), along with

its generalization importance weighted autoencoder (IWAE).

Given the importance and popularity of multilayer perceptron

(MLP) in machine learning, which provides an efficient way of

parameterizing and implementing VAE and IWAE, we include

a concise introduction of MLP and reveal its ability to handle

missing entries which are ubiquitous in large datasets. We end

up this section with our new proposed mixing training method

of VAE, importance-weighted sampling enhanced VAE (IWVAE).

IWVAE uses both VAE and IWAE’s objective functions and

enjoys both benefits of them.

2.1. A review of variational inference and
variational autoencoder

Since the integration in Equation (3) does not admit a

closed form solution, we need a tractable objective function

to approximate it, and variational inference (VI) is a machine

learning technique to achieve this (Bishop, 2006; Blei et al.,

2017). There are two equivalent ways to setup the VI objective.

The first one aims to find the best approximation of the posterior

of latent variable θ i given yi and Mp, which results in a lower

bound of Equation (3). Additionally, the second one directly

derives the bound using Jensen Inequality.

We start with the first derivation as it better clarifies the

connection between VI and the expectation maximization (EM)

algorithm (Dempster et al., 1977). The second derivation is

revisited in Section 2.2 when we introduce a new tighter lower

bound. Let 2 = (θ1, . . . , θN ) denote the collection of all latent

variables. The best approximation of posterior p(2 | Y;Mp),

which we refer to as q(2), is obtained by finding a candidate

from some simple and tractable variational distribution families

such that theKullback-Leibler (KL) divergenceDKL[q(2)‖p(2 |
Y;Mp)] is minimized. One common variational family is the

factorized distribution q(2) =
∏N

i=1

∏K
k=1 qik(θik), where the

subscript ik in qik(θik) is to emphasize that different dimensions

can follow different distributions, or follow the same distribution

but have different parameters. For instance, we can choose the

popular Gaussian distribution for each qik(θik), equivalently,
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we have q(θ i) to follow a K-dimensional diagonal Gaussian

distribution. If one intends to characterize the dependence

structure among different dimensions of θ i, we may choose the

factorized distribution family q(2) =
∏N

i=1 qi(θ i), with qi(θ i)

following a K-dimensional Gaussian distribution.

Under this setting, the optimal variational approximation

q∗(2) is given by (Blei et al., 2017).

q∗(2) , argmin
q(2)

DKL[q(2)‖p(2 | Y;Mp)]

= argmin
q(2)

∫

q(2) log q(2)d2

−
∫

q(2) log
p(Y | 2;Mp)p(2)

p(Y | Mp)
d2. (4)

Note that log p(Y | Mp) is independent of 2, it is easy to

obtain the optimization objective

q∗(2) = argmin
q(2)

DKL[q(2)‖p(2)]− Eq(2)[log p(Y|2;Mp)],

(5)

and following decomposition

log p(Y | Mp) = Eq(2)[log p(Y|2;Mp)]− DKL[q(2)‖p(2)]

+DKL[q(2)‖p(2 | Y;Mp)]. (6)

Since DKL[q(2)‖p(2 | Y;Mp)] is non-negative, the

decomposition reveals the fact that minimizing Equation (5)

is equivalent to maximizing a lower bound of the marginal

log-likelihood, which is known as evidence lower bound (ELBO).

Remark 1. The derivation of VI above has a close connection to
the EM algorithm. Using the decomposition from Bishop (2006),
we have

log p(Y | Mp) =
∫

q(2) log p(Y | Mp)d2

=
∫

q(2) log
p(Y,2 | Mp)

q(2)
d2

+
∫

q(2) log
q(2)

p(2 | Y,Mp)
d2

= L(q(2),Mp)+ DKL[q(2)‖p(2 | Y,Mp)], (7)

where q(2) is an arbitrary distribution that includes the

variational distribution families. And the first term L(q(2),Mp)

is precisely the ELBO. In the EM algorithm, L(q(2),Mp) is

maximized with respect to q(2) and Mp in an iterative way.

In the E-step, the maximization is over q(2), which requires a

closed-form solution: the true posterior of 2 given Y and fixed

Mold
p . By doing so the second KL divergence disappears and

L(q(2),Mold
p ) = log p(Y | Mold

p ). Since the right hand side does

not depend on q(2), the ELBO takes equality thereof. In M-step,

the Mp is optimized to maximize theL(q(2),Mp) by fixing q(2).

By repeating two steps the EM algorithm is guaranteed to converge

to a local optimum of log p(Y | Mp).

The main difference between VI on IRT and EM algorithm

is that because p(2 | Y;Mp) is intractable, we cannot obtain

the analytic update of q(2) in each step, as a result, plain EM

algorithm does not scale up well to the high-dimensional MIRT

model. VI, on the other hand, finds a tractable approximation in

its “E-step” and consequently, it always optimizes a strict lower

bound. In general, another philosophical difference between VI

and EM is that unknown parameters in VI are usually treated

as latent variables as well, refer to Bishop (2006) for more

clarifications. In our setup, we distinguish model parameters Mp

and latent variable 2, but this is not necessary, refer to Wu et al.

(2020) where Mp was also treated as latent variables as well and

modeled together with 2.

Evidence lower bound derived in Equation (5) is a

global lower bound of the marginal log-likelihood of all

observations. Given the local independence assumption,

we can obtain a tighter lower bound by constructing each

individual a corresponding local lower bound. Deriving

local lower bounds indicate finding qi(θ i) such that

DKL[qi(θ i)‖p(θ i | yi;Mp)] is minimized. This is called

local variational methods, we recommend Chapter 10.4 of

Bishop (2006) for more detailed explanations, and Cho et al.

(2021) for its successful implementations on M2PL and

M3PL models.

However, despite the success of Cho et al. (2021),

in general, the local variational method is computationally

expensive on large scale data. One alternate to handle this

challenge is the amortized variational inference (AVI). To

characterize qi(θ i) = N(µi, σ
2
i ), where σ 2

i denotes the

diagonal of the covariance matrix, AVI assumes that µi, σ
2
i

depend on yi through a function F(·) parameterized by

φ, formally

(µi, log σ 2
i ) = Fφ(yi), qi(θ i) = N(µi, σ

2
i ). (8)

Henceforth, we denote qi(θ i) as qφ(θ i | yi). In practice,

Fφ can be flexible and expressed by a deep neural network.

One of its most famous applications on AVI is the variational

autoencoder (VAE) proposed by Kingma and Welling (2014).

VAE uses two neural networks together to maximize the ELBO

bound: Fφ is termed as inference or encoder network (please refer

to Section 2.3.1 for the specification of Fφ); the other generative

or decoder network learns the generative process of yi given

θ i, where this process in MIRT is essentially estimating model

parametersMp.

In VAE, φ and Mp are learned through stochastic gradient

descents. Following Kingma and Welling (2014) and Urban and

Bauer (2021), we give a brief review here. Note the ELBO for the

i-th individual is given by

ELBOi = Eqφ (θ i|yi)[log p(yi | θ i;Mp)]− DKL[qφ(θ i | yi)‖p(θ i)]
(9)
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The gradient ∇MpELBOi can be estimated readily with S

Monte Carlo samples θ si ∼ qφ(θ i | yi) for s = 1, . . . , S

as ∇MpELBOi ≈ 1
S

∑S
s=1 ∇Mp log p(yi | θ si ;Mp)]. However,

gradient ∇φELBOi cannot be obtained in the same way, as in

general ∇φ and Eqφ (θ i|yi) cannot be switched. To solve this

problem, Kingma and Welling (2014) reparameterized θ i ∼
N(µi, σ

2
i ) as follows

ei ∼ N(0, I), θ i = ei ⊙ σ i + µi, (10)

where ⊙ means the element-wise multiplications. By

transforming the integration over qφ(θ i | yi) to p(ei),

we have

∇φELBOi = ∇φEqφ (θ i|yi)[log p(yi | θ i;Mp)]

− ∇φDKL[qφ(θ i | yi)‖p(θ i)].

Then, the first term can be estimated with Monte Carlo

samples 1
S

∑S
s=1 ∇φ log p(yi | esi ⊙σ i+µi;Mp), and the second

term can be computed effectively by observing that the KL

divergence between qφ(θ i | yi) and p(θ i) has an analytic form

(Kingma and Welling, 2014).

DKL[qφ(θ i | yi)‖p(θ i)] =
1

2

K
∑

k=1

(µik + σ 2
ik − 1− log σ 2

ik).

(11)

The gradient can be computed readily through the chain rule

thereof. For more details, please refer to Kingma and Welling

(2014) and Urban and Bauer (2021).

2.2. Importance weighted variational
inference

Since the ELBO is a lower bound of the marginal likelihood

that we want to maximize, a tighter ELBO is appealing as

the true likelihood can be approximated more accurately. It

is known that the tightness of the ELBO is coupled with the

expressiveness of the variational family and limited expressivity

can negatively affect the learned models, and there have been

many works on reducing the gap between ELBO and marginal

log-likelihood (Burda et al., 2016; Kingma et al., 2016; Kingma

and Welling, 2019). Some studies aimed to extend the capacity

of the variational family, and techniques including normalizing

flows have been applied (Kingma et al., 2016; Papamakarios

et al., 2021).

Burda et al. (2016) introduced a new importance-weighted

ELBO (IW-ELBO) which alleviated the coupling without

changing the variational families. To better illustrate the

connection between IW-ELBO bound and ELBO, we start with

the second derivation of ELBO via Jensen Inequality.

log p(yi | Mp) = logEqφ (θ i|yi)

[

p(yi, θ i | Mp)

qφ(θ i | yi)

]

≥ Eqφ (θ i|yi)

[

log
p(yi, θ i | Mp)

qφ(θ i | yi)

]

= ELBOi. (12)

The above derivation can be generalized as follows

log p(yi | Mp) = logE
θ1i ,...,θ

R
i ∼qφ (θ i|yi)





1

R

R
∑

r=1

p(yi, θ
r
i | Mp)

qφ(θ
r
i | yi)





≥ E
θ1 :Ri ∼qφ (θ i|yi)



log
1

R

R
∑

r=1

wr
i



 . (13)

Equation (13) is known as IW-ELBO where wr
i , p(yi, θ

r
i |

Mp)/qφ(θ
r
i | yi). When qφ is reparameterizable, Monte Carlo

estimates of IW-ELBO and its gradient are given by

E
θ1 :Ri ∼qφ (θ i|yi)



log
1

R

R
∑

r=1

wr
i





≈ 1

S

S
∑

s=1

log
1

R

R
∑

r=1

wrs
i , (14)

∇φ,Mp
E

θ1 :Ri ∼qφ (θ i|yi)



log
1

R

R
∑

r=1

wr
i





= Ee1 :Ri
[∇φ,Mp

log
1

R

R
∑

r=1

wr
i ]

= Ee1 :Ri

[

wr
i

∑R
r=1 w

r
i

∇φ,Mp
logwr

i

]

≈ 1

S

S
∑

s=1

R
∑

r=1

wrs
i

∑R
r=1 w

rs
i

∇φ,Mp
logwrs

i , (15)

where S and R are corresponding numbers of Monte Carlo

samples and importance-weighted samples. Replacing ELBO

with IW-ELBO in VAE leads to IWAE, which is a generalization

of the VAE, as indicated by observing that IW-ELBO will reduce

to ELBO for R = 1. Notably, IW-ELBO increases in R

and converges to log p(yi | Mp) as R → ∞ under mild

conditions (Burda et al., 2016).

However, Rainforth et al. (2018) showed that using more

important samples is not always helpful. The authors introduced

the signal-to-noise ratio (SNR) of an estimator δ as the ratio

between the absolute value of its expectation and its SD, i.e.,

SNR(δ) , |E(δ)|/σ (δ). Then they show the below orders

(rewritten with our notations)

SNR(Mp) = O(
√
RS), SNR(φ) = O(

√

S/R).

In words, for any given S, increasing R makes gradient

estimates of parameters φ in the inference network noisier.
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TABLE 1 Mean and SE of RMSE ofMp estimate on M4PL models under single regime setting, best results are in bold.

N, J Item structure Model rot(A) b c d Success rates

50
0

10
0

Between MCEM 9.400± 0.181 11.477± 0.424 0.175± 0.010 0.183± 0.010 1.00

MHRM / / / / /

IWVAE 0.674 ± 0.02 0.384 ± 0.027 0.081 ± 0.008 0.087 ± 0.008 1.00

Within MCEM 10.406± 0.240 11.500± 0.481 0.163± 0.010 0.146± 0.008 1.00

MHRM / / / / /

IWVAE 0.744 ± 0.022 0.402 ± 0.034 0.073 ± 0.008 0.088 ± 0.008 1.00

10
00

10
0 Between MCEM 8.230± 0.170 11.785± 0.450 0.189± 0.012 0.178± 0.011 1.00

MHRM / / / / /

IWVAE 0.498 ± 0.019 0.341 ± 0.028 0.079 ± 0.008 0.080 ± 0.008 1.00

Within MCEM 7.799± 0.230 8.999± 0.464 0.132± 0.010 0.161± 0.011 1.00

MHRM / / / / /

IWVAE 0.609 ± 0.022 0.386 ± 0.029 0.069 ± 0.007 0.078 ± 0.008 1.00

5,
00
0

10
0 Between MCEM 3.240± 0.156 4.351± 0.276 0.189± 0.011 0.155± 0.011 1.00

MHRM / / / / /

IWVAE 0.369 ± 0.027 0.378 ± 0.043 0.091 ± 0.011 0.082 ± 0.009 1.00

Within MCEM 3.235± 0.221 2.939± 0.254 0.139± 0.012 0.133± 0.010 1.00

MHRM / / / / /

IWVAE 0.535 ± 0.029 0.383 ± 0.035 0.075 ± 0.008 0.086 ± 0.010 1.00

10
,0
00

10
0 Between MCEM 1.988± 0.099 2.690± 0.184 0.174± 0.010 0.186± 0.011 1.00

MHRM / / / / /

IWVAE 0.379 ± 0.028 0.399 ± 0.042 0.084 ± 0.008 0.079 ± 0.008 1.00

Within MCEM 1.823± 0.145 1.674± 0.151 0.136± 0.009 0.125± 0.007 1.00

MHRM / / / / /

IWVAE 0.516 ± 0.030 0.343 ± 0.038 0.084 ± 0.010 0.079 ± 0.008 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

Despite the fact that the estimates ofMp along may benefit from

a tighter likelihood bound, the final result can be deteriorated

due to the worse inference network as shown in Rainforth et al.

(2018).

To mitigate this problem, one simple solution is to increase

S of the same order, but such modification takes more

computational costs and slows down the training. We apply the

doubly reparameterized gradient estimator (DReG) from Tucker

et al. (2018), a recently developed method that gets rid of a

similar issue. Specifically, we use the below estimator to update

the inference network

∇φEθ1 :Ri ∼qφ (θ i|yi)



log
1

R

R
∑

r=1

wr
i





= Ee1 :Ri





(

wr
i

∑R
r=1 w

r
i

)2
∂ logwr

i

∂θ ri

∂θ ri

∂φ





≈ 1

S

S
∑

s=1

R
∑

r=1

(

wrs
i

∑R
r=1 w

rs
i

)2
∂ logwrs

i

∂θ rsi

∂θ rsi

∂φ
. (16)

Empirically, computing IW-ELBO and its gradient estimates

can be numerically unstable due to exponential operations

involved in p(θ rsi ) and qφ(θ
rs
i | yi). To solve this problem, we

compute vrsi = logwrs
i = log p(yi | θ rsi ;Mp)− log qφ(θ

rs
i | yi)+

log p(θ rsi ), and apply the well-known log-sum-exp trick (Zhang

et al., 2021) to log 1
R

∑

wrs
i in Equation (14) and wrs

i /
∑

wrs
i in

Equations (15) and (16) as follows:

log
1

R

R
∑

r=1

wrs
i = max

r
vrsi + log

R
∑

r=1

exp
(

vrsi −max
r

vrsi

)

− logR,

wrs
i

∑R
r=1 w

rs
i

=
exp

(

vrsi −maxr v
rs
i

)

∑R
r=1 exp

(

vrsi −maxr v
rs
i

)
.

2.3. Implementation details

2.3.1. MLP and optimization

We provide a basic overview ofmultilayer perceptron (MLP)

applied in this study, which is used to model the variational

distribution q as in Equation (8). For more details about MLP

and DNN, we recommend readers to Goodfellow et al. (2016).

Multilayer perceptron, also known as feedforward neural

networks (FNN), is one of the most popular architectures of

neural networks because of its simple form and flexibility. To
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TABLE 2 Mean and SE of RMSE ofMp estimate on M4PL models under double regime setting, best results are in bold.

N, J Item structure Model rot(A) b c d Success rates

50
0

10
0

Between MCEM 9.400± 0.181 11.477± 0.424 0.175± 0.010 0.183± 0.010 1.00

MHRM / / / / /

IWVAE 0.674 ± 0.021 0.384 ± 0.027 0.081 ± 0.008 0.087 ± 0.008 1.00

Within MCEM 10.406± 0.240 11.500± 0.481 0.163± 0.010 0.146± 0.008 1.00

MHRM / / / / /

IWVAE 0.744 ± 0.022 0.402 ± 0.034 0.073 ± 0.008 0.088 ± 0.008 1.00

10
00

20
0 Between MCEM 5.397± 0.069 8.312± 0.188 0.180± 0.007 0.178± 0.007 1.00

MHRM / / / / /

IWVAE 0.500 ± 0.016 0.377 ± 0.025 0.080 ± 0.006 0.088 ± 0.007 1.00

Within MCEM 8.242± 0.174 9.254± 0.354 0.151± 0.007 0.158± 0.007 1.00

MHRM / / / / /

IWVAE 0.600 ± 0.017 0.413 ± 0.024 0.080 ± 0.005 0.088 ± 0.007 1.00

5,
00
0

30
0 Between MCEM 1.624± 0.058 1.519± 0.068 0.163± 0.006 0.156± 0.005 1.00

MHRM / / / / /

IWVAE 0.429 ± 0.014 0.338 ± 0.019 0.084 ± 0.005 0.081 ± 0.005 1.00

Within MCEM 1.388± 0.079 0.876± 0.076 0.092± 0.005 0.086± 0.004 1.00

MHRM / / / / /

IWVAE 0.564 ± 0.015 0.319 ± 0.019 0.083 ± 0.005 0.080 ± 0.005 1.00

10
,0
00

50
0 Between MCEM 1.022± 0.023 1.152± 0.036 0.150± 0.004 0.153± 0.004 1.00

MHRM / / / / /

IWVAE 0.432 ± 0.012 0.338 ± 0.015 0.086 ± 0.004 0.086 ± 0.004 1.00

Within MCEM 0.930± 0.018 0.993± 0.031 0.119± 0.004 0.119± 0.003 1.00

MHRM / / / / /

IWVAE 0.564 ± 0.013 0.346 ± 0.015 0.085 ± 0.004 0.087 ± 0.004 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

approximate an unknown function f ∗ such that u = f ∗(v)
where v ∈ R

P, u ∈ R
Q, MLP takes the recursive form

hl = fl
(

Wlhl−1 + bl
)

, l = 1, . . . , L, and h0 = v, hL = u.

Here, f1, . . . , fL are scalar functions which are almost everywhere

differentiable and are applied elementwisely when inputs are

vectors. These functions are typically termed as activation

functions. When f1, . . . , fL are set to identity function g(z) = z,

MLP will reduce to linear regression; using non-linear activation

functions, we get a flexible function u = f (v). MLP has been

shown an universal approximator under a variety of activation

functions (Cybenko, 1989; Hornik, 1991; Sonoda and Murata,

2017), including sigmoid function g(x) = 1/(e−x + 1) , rectified

linear unit function (ReLU, Nair and Hinton, 2010) g(x) =
max(0, x), and hyperbolic tangent function (Tanh) g(x) = (ex −
e−x)/(ex + e−x); refer to Goodfellow et al. (2016) for other

choices of activation functions. In this article, we use Tanh

activation for f1 . . . , fL−1.

The fL at the last layer is chosen depending on the data form.

To see this, note that the last layer of MLP u = fL(WLhL−1+bL)

can be seen as a generalized linear model with independent

variable hL−1. When u is continuous, fL can be set to the

identity function and we get the last layer a linear regression.

When u is binary (categorical), fL can be set to the sigmoid

(softmax) function and we get a logistic (multinomial logistic)

regression, respectively.

In this article, we use the following encoder network

hi = Tanh(bL +WLTanh(bL−1 + . . .Tanh(b1 +W1yi)) . . . ),

µi = Wµhi + bµ,

σ 2
i = exp(Wσ 2hi + bσ 2 ).

Here, hi denotes the intermediate output of the encoder

given input the i-th individual data yi, and we have

φ = {W1, b1, . . . ,WL, bL,Wµ, bµ,Wσ 2 , bσ 2}. In the

decoder, to effectively utilize the gradient based method,

following Kucukelbir et al. (2017), we map c and d from

constrained ranges [0, 1]J to unconstrained space R
J through

the differentiable logit(x) = log x/(1 − x) transformation

and conduct gradient ascent in the unconstrained space. To

avoid cluttering, we still use original notations c and d in

the following.
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TABLE 3 Mean and SE of RMSE ofMp estimate on M3PL models under single regime setting, best results are in bold.

N, J Item structure Model rot(A) b c Success rates

50
0

10
0

Between MCEM 10.020± 0.318 13.638± 0.752 0.213± 0.013 1.00

MHRM 0.217 ± 0.026 0.567± 0.080 0.099± 0.007 0.35

IWVAE 0.641± 0.022 0.391 ± 0.031 0.081 ± 0.008 1.00

Within MCEM 8.133± 0.459 8.687± 0.727 0.194± 0.014 1.00

MHRM 0.417 ± 0.034 0.345 ± 0.049 0.078± 0.005 0.40

IWVAE 0.708± 0.021 0.461± 0.039 0.073 ± 0.008 1.00

10
00

10
0 Between MCEM 5.338± 0.287 7.799± 0.544 0.237± 0.016 1.00

MHRM 0.159 ± 0.017 0.280 ± 0.025 0.089± 0.007 0.30

IWVAE 0.492± 0.019 0.320± 0.026 0.079 ± 0.008 1.00

Within MCEM 2.564± 0.235 3.023± 0.423 0.120± 0.011 1.00

MHRM 0.438 ± 0.038 0.313 ± 0.040 0.075± 0.005 0.65

IWVAE 0.590± 0.020 0.325± 0.024 0.069 ± 0.007 1.00

5,
00
0

10
0 Between MCEM 1.031± 0.110 1.190± 0.204 0.144± 0.013 1.00

MHRM 0.151 ± 0.024 0.264± 0.028 0.090 ± 0.008 0.30

IWVAE 0.403± 0.024 0.259 ± 0.028 0.091± 0.011 1.00

Within MCEM 0.881± 0.063 0.575± 0.077 0.097± 0.009 1.00

MHRM 0.292 ± 0.035 0.123 ± 0.009 0.033 ± 0.004 0.90

IWVAE 0.562± 0.026 0.279± 0.032 0.075± 0.008 1.00

10
,0
00

10
0 Between MCEM 0.810± 0.078 1.008± 0.169 0.112± 0.011 1.00

MHRM 0.106 ± 0.019 0.381± 0.131 0.055 ± 0.006 0.70

IWVAE 0.393± 0.027 0.318 ± 0.036 0.084± 0.008 1.00

Within MCEM 0.754± 0.045 0.662± 0.129 0.076± 0.007 1.00

MHRM 0.343 ± 0.035 0.154 ± 0.012 0.040 ± 0.004 0.75

IWVAE 0.535± 0.027 0.283± 0.039 0.084± 0.010 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

2.3.2. Handling missing data

When yi given latent factors θ i are conditionally

independent, exactly as the MIRT models assume, MLP

based VAE and IWAE can handle incomplete data containing

entries missing at random (MAR) readily (Nazabal et al., 2020).

Here, we provide a brief summary of the input drop-out trick.

First, we replace missing entries in yi with zeros and denote

the resultant vector as ỹi; we further use indicator vector

1i to record which entries are observed, specifically, 1ij ,

1(yij is observed)
1. Next, we replace wr

i with w̃r
i = exp ṽri where

ṽri is defined as

ṽri =
J
∑

j=1

[

1ij log p(ỹij | θ̃
r
i ;Mp)

]

− log qφ(θ̃
r
i | ỹi)+ log p(θ̃

r
i ).

For now, we use θ̃ i to emphasize that the inference network

takes ỹi as input. Next we show the imputing missing entries

with 0 does not influence the training. For Mp, based on

Equation (14), its gradient estimate is determined by ∇Mp ṽ
rs
i

1 Here is a bit of abuse of notation: we use 1 to denote both the

indicator function 1(·) and its output.

and does not depend on imputed entries because of the

multiplication of 1ij, thereforeMp is also independent of them.

Additionally, if neither qφ(θ̃ i | ỹi) nor θ̃ i is affected by

imputed entries, then such imputation will not influence the

model training as vri (and wr
i ) does not rely on these entries.

To this end, we rely on the MLP architecture. The output

of each neuron in MLP is a non-linear transformation of a

linear combination of its inputs. This property ensures that all

intermediate states and output of the inference network, which

determines µi and σ i for variational distribution qφ(θ̃ i | ỹi),

does not depend on zero entries in its inputs.

These observations together guarantee the condition for

vri (and wr
i ) being independent of imputed entries, as in both

ELBO and IW-ELBO, gradient estimates of all parameters are

determined by collections of these terms.

2.3.3. Training strategy and hyperparameter
choices

We propose a three-stage training strategy for VAE by

enhancing it with IW-ELBO. We first train a standard VAE

through maximizing its own objective function ELBO. After
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TABLE 4 Mean and SE of RMSE ofMp estimate on M3PL models under double regime setting, best results are in bold.

N, J Item structure Model rot(A) b c Success rates

50
0

10
0

Between MCEM 10.020± 0.318 13.638± 0.752 0.213± 0.013 1.00

MHRM 0.217 ± 0.026 0.567± 0.080 0.099± 0.007 0.35

IWVAE 0.641± 0.022 0.391 ± 0.031 0.081 ± 0.008 1.00

Within MCEM 8.133± 0.459 8.687± 0.727 0.194± 0.014 1.00

MHRM 0.417 ± 0.034 0.345 ± 0.049 0.078± 0.005 0.40

IWVAE 0.708± 0.021 0.461± 0.039 0.073 ± 0.008 1.00

10
00

20
0 Between MCEM 5.224± 0.192 8.544± 0.407 0.243± 0.011 1.00

MHRM / / / 0.00

IWVAE 0.506 ± 0.015 0.348 ± 0.024 0.080 ± 0.006 1.00

Within MCEM 2.976± 0.193 3.441± 0.304 0.157± 0.008 1.00

MHRM / / / 0.00

IWVAE 0.638 ± 0.015 0.345 ± 0.020 0.080 ± 0.005 1.00

5,
00
0

30
0 Between MCEM 0.612± 0.019 0.508± 0.048 0.114± 0.007 1.00

MHRM / / / 0.00

IWVAE 0.459 ± 0.012 0.261 ± 0.016 0.084 ± 0.005 1.00

Within MCEM 0.693± 0.015 0.306± 0.020 0.075 ± 0.004 1.00

MHRM / / / 0.00

IWVAE 0.595 ± 0.013 0.271 ± 0.017 0.082± 0.005 1.00

10
,0
00

50
0 Between MCEM 0.561± 0.010 0.572± 0.032 0.097± 0.004 1.00

MHRM / / / 0.00

IWVAE 0.465 ± 0.011 0.258 ± 0.013 0.086 ± 0.004 1.00

Within MCEM 0.678± 0.010 0.581± 0.047 0.058 ± 0.003 1.00

MHRM / / / 0.00

IWVAE 0.592 ± 0.011 0.271 ± 0.014 0.085± 0.004 1.00

Factors are diagonal. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

reaching a local optimum, we train it to maximize the tighter

IW-ELBO until it converges again. Since the computation cost of

IW-ELBO is more expensive than ELBO, our strategy is cheaper

than training an IWAE from scratch. We refer to our model as

importance-weighted sampling enhanced VAE(IWVAE).

To be more specific, in the first 1% of total iterations, we

apply the KL annealing technique, i.e., at step t, we multiply

the KL divergence term DKL[qφ(θ i | yi)‖p(θ i)] by a factor
t

Tanl
, where Tanl = ⌈0.01Tmax⌉ and Tmax = 2,00,000

is a pre-specified maximum number of iterations to avoid

the algorithm running forever due to convergence issues. In

this stage, the weight of the KL term increases from 0 to 1

linearly. KL annealing has shown great improvement in deep

generative models (Gulrajani et al., 2016; Sønderby et al., 2016).

The rationale behind this technique is that the KL divergence

term can over-regularize the model by forcing the approximate

posterior qφ(θ i) close to the prior p(θ i) and leading the model

to converge early to unsatisfactory local minimums. To mitigate

this issue, at the beginning of training, we simply reduce the

effect of the KL term. During the annealing stage, we fix c and

d and only update φ,A, b.

After the annealing stage, we train IWVAE until its estimated

ELBO converges such that the averaged ELBO value in every

100 steps stops increasing for L = 50 times. We refer to this

stage as ELBO converging. Finally, we use importance-weighted

samples to train IWVAE until it converges again in terms of IW-

ELBO with this same rule. This stage is referred to IW-ELBO

converging. After this stage, we end up training.

Algorithm 1 demonstrates our training method in a

simplified version where at each step only 1 sample is drawn

randomly from the data to estimate gradients. In practice,

people can instead collect multiple samples (known as a mini

batch) at each step and take the average for better gradients

estimators. In practice, we used a mini batch size of 16 for

each iteration step throughout all stages, S = 1 Monte

Carlo sample in all three stages, and R = 5 importance

samples in the last IW-ELBO converging stage following (Urban

and Bauer, 2021). In terms of parameter updates, we use

stochastic gradient ascent with fixed step size to maximize

the ELBO or IW-ELBO. We assign a smaller step size (0.001)

for parameters c and d as their ranges are smaller, and all

other parameters are optimized with step size (0.01). No

Frontiers in Psychology 09 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.935419
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Liu et al. 10.3389/fpsyg.2022.935419

Algorithm 1 Stochastic gradient ascent of IWVAE.

Input: data Y; latent factor’s dimension K; Monte Carlo and importance sample

sizes S,R; maximum number of iterations Tmax .

Initialize φ̂, M̂p using random samples

(KL annealing stage)

while iteration number t not reaching Tanl = ⌈0.01Tmax⌉ do
randomly draw yi from Y ;

draw S samples θ s
i ∼ N(µi , σ

2
i ) with Equation (10) where (µi , σ

2
i ) = Fφ (yi);

compute log p(yi | θ s
i ;Mp) with Equation (1) or Equation (2), DKL[qφ (θ i |

yi)‖p(θ i)] with Equation (11). Take 1 gradient ascent step on

φ̂, M̂p = argmax
φ,Mp

1

S

S
∑

s=1

log p(yi | θ s
i ;Mp)−

t

Tanl
DKL[qφ (θ i | yi)‖p(θ i)]

end while

(ELBO converging stage)

while iteration number t not reaching Tmax and ELBO not converging do

randomly draw yi from Y ;

draw S samples θ s
i ∼ N(µi , σ

2
i ) with Equation (10) where (µi , σ

2
i ) = Fφ (yi);

compute log p(yi | θ s
i ;Mp) with Equation (1) or Equation (2), DKL[qφ (θ i |

yi)‖p(θ i)] with Equation (11). Take 1 gradient ascent step on

φ̂, M̂p = argmax
φ,Mp

1

S

S
∑

s=1

log p(yi | θ s
i ;Mp)− DKL[qφ (θ i | yi)‖p(θ i)]

end while

(IW-ELBO converging stage)

while iteration number t not reaching Tmax and IW-ELBO not converging do

randomly draw yi from Y ;

draw SR samples θ rs
i ∼ N(µi , σ

2
i ) with Equation (10) where (µi , σ

2
i ) =

Fφ (yi);

compute log p(yi | θ s
i ;Mp) with Equation (1) or Equation (2), wrs

i =
exp

[

log p(yi | θ rs
i ;Mp)− log qφ (θ

rs
i | yi)+ log p(θ rs

i )
]

. Take 1 gradient ascent

step on

φ̂, M̂p = argmax
φ,Mp

1

S

S
∑

s=1

[

log
1

R

R
∑

r=1

wrs
i

]

end while

Output: parameter estimates φ̂, M̂p

further tweaks such as gradient clippings (Pascanu et al., 2013)

are used.

3. Simulation study

3.1. Data generation

To evaluate the performances of applying IWVAE to

M3PL and M4PL models, we conducted a thorough simulation

study. We considered both within item and between item

multidimensionality. In particular, for the within item

multidimensionality, each item was loaded on two factors;

and for the between item multidimensionality, each item was

loaded on one factor. Under both settings, items dependency

were distributed to different factors evenly in an indirect way

through a sparse J × K loading matrix A. Specifically, we

first generated a blocked diagonal submatrix A′. Next, we

repeated two steps iteratively: (1) flipped A′ horizontally, and
(2) concatenated to previous results, until we have the full

s-shaped matrix A. When J is not a multiple of row numbers of

A′, we truncated the resultant matrix at the bottom. To make

the design more realistic and challenging, we considered a

missing data design. For datasets with large J, it is impractical

to have all items observed from every single respondent in

realistic scenarios. To reflect this concern, we randomly masked

a large portion (80% in our experiments) of responses from

each respondent, assuming each respondent only answer 20%

of the items.

Parameters Mp and latent factors 2 were generated as

follows. For latent factor θ i, under the independent factors

setting, it was sampled from the standard multivariate

Gaussian N(0, I). Under the correlated factors setting, a

covariance matrix 6 was first generated and shared by all

θ i. Specifically, the diagonal entries were set to 1 so that

each factor has unit variance; and off-diagonal (specifically,

upper diagonal) entries were sampled independently from

U(0, 1). This 6 was accepted if it was positive semi-

definitive, otherwise, another matrix was regenerated. For

free parameters in the discrimination matrix αij ∈ A′, we
sampled it from U(0.5, 1.5). For J pairs of guessing and upper

asymptote parameters (cj, dj), we sampled them from cj ∼
Beta(1, 9), dj ∼ Beta(9, 1) in parallel and kept them if

all cj < dj.

Our experiments were conducted as follows. First, we

chose latent factors θ i for i = 1, . . . ,N to be uncorrelated

and studied two asymptotic regimes. Specifically, in the

single asymptotic regime, the dimensions of items J and

factors K were fixed to 100 and 5 respectively, and sample

size N was increased from 500 to 10,000. In the double

asymptotic regime, only K was fixed to 5 and J was increased

from 100 to 500 as N grew. Under both settings, we chose

N ∈ {500, 1,000, 5,000, 10,000} and in the double asymptotic

settings we further chose J ∈ {100, 200, 300, 500}. Under

each combination of N, J,K, we evaluated performances

of IWVAE, MCEM, and MHRM on the M3(4)PL model

by checking item parameters Mp estimation. Finally,

we duplicated this series of experiments to correlated

factors settings.

We implemented IWVAE in PyTorch (Paszke et al., 2019)

and MCEM in the mirt R package (Chalmers, 2012). All

experiments were run on the same high performance computing

cluster (HPCC) with 4 CPUs and 4 GB memory, and no GPU
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TABLE 5 Mean and SE of RMSE ofMp estimate on M4PL models under single regime setting, best results are in bold.

N, J Item structure Model rot(A) b c d Success rates

50
0

10
0

Between MCEM 11.248± 0.217 13.315± 0.491 0.172± 0.011 0.178± 0.010 1.00

MHRM / / / / /

IWVAE 0.654 ± 0.023 0.363 ± 0.024 0.081 ± 0.008 0.087 ± 0.008 1.00

Within MCEM 12.038± 0.286 12.611± 0.665 0.148± 0.010 0.138± 0.008 1.00

MHRM / / / / /

IWVAE 0.736 ± 0.022 0.416 ± 0.032 0.073 ± 0.008 0.088 ± 0.008 1.00

10
00

10
0 Between MCEM 8.231± 0.159 11.774± 0.417 0.180± 0.011 0.189± 0.012 1.00

MHRM / / / / /

IWVAE 0.486 ± 0.019 0.334 ± 0.028 0.079 ± 0.008 0.080 ± 0.008 1.00

Within MCEM 7.181± 0.302 7.160± 0.527 0.108± 0.009 0.134± 0.010 1.00

MHRM / / / / /

IWVAE 0.623 ± 0.020 0.408 ± 0.033 0.069 ± 0.007 0.078 ± 0.008 1.00

5,
00
0

10
0 Between MCEM 3.315± 0.167 4.790± 0.354 0.182± 0.014 0.159± 0.012 1.00

MHRM / / / / /

IWVAE 0.379 ± 0.026 0.363 ± 0.043 0.091 ± 0.011 0.082 ± 0.009 1.00

Within MCEM 1.886± 0.152 1.468± 0.186 0.094± 0.009 0.087± 0.007 1.00

MHRM / / / / /

IWVAE 0.529 ± 0.031 0.397 ± 0.037 0.075 ± 0.008 0.086 ± 0.010 1.00

10
,0
00

10
0 Between MCEM 1.918± 0.114 2.555± 0.213 0.157± 0.010 0.176± 0.011 1.00

MHRM / / / / /

IWVAE 0.380 ± 0.028 0.402 ± 0.040 0.084 ± 0.008 0.079 ± 0.008 1.00

Within MCEM 1.127± 0.075 0.943± 0.079 0.095± 0.007 0.087± 0.006 1.00

MHRM / / / / /

IWVAE 0.520 ± 0.033 0.360 ± 0.039 0.085 ± 0.010 0.079 ± 0.008 1.00

Factors are correlated. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

was used. MHRMwas implemented with FlexMIRT (Chung and

Houts, 2020) and all experiments were fitted on a laptop with

Intel Intel(R) Core(TM) i7-10750H CPU and 16 GB memory2.

Because of the platform difference, we ran B = 100 independent

replications for IWVAE and MCEM on each simulated dataset,

and B = 20 replications for MHRM.

To evaluate the performances of MCEM, MHRM, and

IWVAE, we followed Cho et al. (2021) and Urban and Bauer

(2021) and reported rooted mean squared error (RMSE) across

B independent experiment replications. Specifically, for each

scalar parameter ξ (one of αjk, bj, cj, dj for j = 1, . . . , J, k =
1, . . . ,K), RMSE for each parameter was computed by

RMSE(ξ̂ ) =

√

√

√

√

1

B

B
∑

b=1

(ξ̂b − ξ )2, (17)

where ξ̂b is the estimated value from the b-th replication. The

final reported RMSEs were averages of corresponding entries in

matrix A or vectors b, c, d, and standard error were shown after

each value in the parenthesis.

2 HPCC cannot be used due to the license issue of FlexMIRT.

Note that the matrix A in MIRT (IRT) models can be only

identified up to a rotation if no further prior constraint is

imposed, and we conducted post-hoc processing on Â following

other literature. Our transformation consisted of three steps.

First, we applied the promax (Hendrickson and White, 1964)

rotation to the estimated Â, which allowed different factors to be

correlated; we denoted this intermediate result with Âr . Next, for

each column in Âr that had a negative sum, we flipped its sign

and the corresponding factor (refer to, e.g., Urban and Bauer,

2021), wemarked the resultant matrix in this step as Ârf . Finally,

we searched over the best permutation of columns of Ârf such

that RMSE was minimized, and the corresponding RMSEs were

reported in tables.

We also utilized the CF-Quartimax rotation as in Cho

et al. (2022) to evaluate the sparsity structure estimation of

different methods. However, since sparsity estimation is not the

main focus of this article, we defer presenting these results to

the appendix.

Finally, Considering that M3PL is notoriously hard for

MHRM to fit (Cho et al., 2021), andM4PL is expected to bemore

difficult, we reported the success rate of each method, which

refers to the percentage of successful replications. The exact
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TABLE 6 Mean and SE of RMSE ofMp estimate on M4PL models under double regime setting, best results are in bold.

N, J Item structure Model rot(A) b c d Success rates

50
0

10
0

Between MCEM 11.248± 0.217 13.315± 0.491 0.172± 0.011 0.178± 0.010 1.00

MHRM / / / / /

IWVAE 0.654 ± 0.023 0.363 ± 0.024 0.081 ± 0.008 0.087 ± 0.008 1.00

Within MCEM 12.038± 0.286 12.611± 0.665 0.148± 0.010 0.138± 0.008 1.00

MHRM / / / / /

IWVAE 0.736 ± 0.022 0.416 ± 0.032 0.073 ± 0.008 0.088 ± 0.008 1.00

10
00

20
0 Between MCEM 8.314± 0.097 11.742± 0.298 0.178± 0.008 0.197± 0.008 1.00

MHRM / / / / /

IWVAE 0.503 ± 0.015 0.362 ± 0.024 0.080 ± 0.006 0.088 ± 0.007 1.00

Within MCEM 7.323± 0.213 7.628± 0.362 0.125± 0.006 0.131± 0.007 1.00

MHRM / / / / /

IWVAE 0.609 ± 0.015 0.407 ± 0.024 0.080 ± 0.005 0.088 ± 0.007 1.00

5,
00
0

30
0 Between MCEM 2.041± 0.090 2.292± 0.154 0.143± 0.006 0.139± 0.006 1.00

MHRM / / / / /

IWVAE 0.426 ± 0.013 0.340 ± 0.020 0.084 ± 0.005 0.081 ± 0.005 1.00

Within MCEM 1.049± 0.053 0.525± 0.065 0.066 ± 0.005 0.059 ± 0.004 1.00

MHRM / / / / /

IWVAE 0.582 ± 0.014 0.339 ± 0.019 0.083± 0.005 0.080± 0.005 1.00

10
,0
00

50
0 Between MCEM 1.062± 0.036 1.163± 0.060 0.129± 0.004 0.131± 0.004 1.00

MHRM / / / / /

IWVAE 0.426 ± 0.011 0.332 ± 0.015 0.086 ± 0.004 0.086 ± 0.004 1.00

Within MCEM 0.884± 0.015 0.944± 0.031 0.098± 0.003 0.099± 0.003 1.00

MHRM / / / / /

IWVAE 0.562 ± 0.012 0.367 ± 0.016 0.085 ± 0.004 0.087 ± 0.004 1.00

Factors are correlated. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

definition of success for different methods differs. For MCEM,

it refers to the case where the MCEM algorithm terminates

and provides estimates successfully, regardless of convergence3.

For IWVAE, it also refers to successful termination without

reaching the maximum iteration number, which implies proper

convergence. The difference in success, as we shall see later, is

influential: MHRM usually performed the best if it succeeds.

MCEM, on the contrary, had much worse performances while

succeeding in all experiments.

3.2. Numeric results

In this section, we show detailed numeric results on

Mp estimations, which are summarized in Tables 1–8. In a

nutshell, IWVAE achieved competitive or better performances

compared to the two other statistical methods. IWVAE achieved

much lower RMSE on nearly all item parameters in almost

3 Unlike the mirt package, FlexMIRT only provides convergent

estimates.

all experiments than MCEM; and unlike MHRM, IWVAE

succeed in all experiments from small- to large-scale datasets.

Additionally, IWVAE required much more scalable training

times on all experiments, while MCEM and MHRM had time

costs growing faster as sample size increased.

Tables 1–4 show RMSE of Mp estimation in M4PL and

M3PL models under single and double asymptotic regimes,

where different entries in each latent factor θ were generated

independently. Two item structures were reported together in

the same table. First, we observed that MCEM and IWVAE are

more robust, as they succeed in all experiments, while MHRM

achieved a success rate of 50% on few experiments in the M3PL

model. Next, IWVAE reached much lower RMSE than MCEM,

especially on small to medium sized data. In addition, IWVAE

showed similar tendencies as MCEM and MHRM did: as N

grew, its RMSE showed remarkable decreases, and on more

challenging within-item structure scenarios, IWVAE also had

slightly higher RMSEs.

For experiments where each latent factor θ has correlated

components, we organized results in the same way as before.

Tables 5–8 show RMSE of Mp estimation in M4PL and M3PL
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TABLE 7 Mean and SE of RMSE ofMp estimate on M3PL models under single regime setting, best results are in bold.

N, J Item structure Model rot(A) b c Success rates

50
0

10
0

Between MCEM 9.137± 0.396 12.034± 0.799 0.192± 0.012 1.00

MHRM 0.331 ± 0.040 0.441± 0.062 0.077 ± 0.006 0.05

IWVAE 0.659± 0.020 0.411 ± 0.029 0.081± 0.008 1.00

Within MCEM 7.644± 0.465 7.291± 0.612 0.153± 0.011 1.00

MHRM 0.492 ± 0.048 0.364 ± 0.054 0.064 ± 0.005 0.45

IWVAE 0.733± 0.020 0.440± 0.038 0.073± 0.008 1.00

10
00

10
0 Between MCEM 5.231± 0.279 8.080± 0.573 0.219± 0.014 1.00

MHRM 0.284 ± 0.027 0.350± 0.041 0.090± 0.007 0.25

IWVAE 0.483± 0.019 0.312 ± 0.024 0.079 ± 0.008 1.00

Within MCEM 2.855± 0.299 2.912± 0.457 0.118± 0.010 1.00

MHRM 0.428 ± 0.034 0.336± 0.020 0.045 ± 0.004 0.80

IWVAE 0.601± 0.024 0.299 ± 0.026 0.069± 0.007 1.00

5,
00
0

10
0 Between MCEM 0.762± 0.063 0.638± 0.117 0.130± 0.015 1.00

MHRM 0.242 ± 0.019 0.120 ± 0.011 0.051 ± 0.005 0.75

IWVAE 0.415± 0.023 0.256± 0.031 0.091± 0.011 1.00

Within MCEM 0.986± 0.075 0.421± 0.054 0.066± 0.006 1.00

MHRM 0.357 ± 0.034 0.460± 0.013 0.030 ± 0.002 0.80

IWVAE 0.578± 0.029 0.308 ± 0.034 0.075± 0.008 1.00

10
,0
00

10
0 Between MCEM 0.917± 0.107 1.073± 0.170 0.110± 0.012 1.00

MHRM 0.155 ± 0.013 0.114 ± 0.014 0.037 ± 0.006 0.65

IWVAE 0.397± 0.027 0.297± 0.035 0.084± 0.008 1.00

Within MCEM 0.898± 0.056 0.751± 0.165 0.057± 0.006 1.00

MHRM 0.378 ± 0.036 0.461± 0.027 0.017 ± 0.002 0.40

IWVAE 0.547± 0.032 0.302 ± 0.040 0.084± 0.010 1.00

Factors are correlated. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

models under single and double asymptotic regimes. Again, we

observed similar results from IWVAE to MCEM and MHRM in

terms of success times and RMSE, indicating the advantage of

the proposed IWVAE method.

We finally analyzed the fitting time of IWVAE and MCEM

and reported averaged time with stand error (in shadow) in

Figure 1 (M3PL) and Figure 2 (M4PL). We combined different

factor settings (independent and correlated), and item structures

(between and within) for every pair of sample size N and item

size J. Each point contains 80 trials. As MHRM could not fit

M4PL and its convergence results under M3PL were not stable,

here, we do not report their results. From Figures 1, 2, compared

to MCEM, IWVAE required significantly lower fitting time.

Unlike MCEM, IWVAE had a much more stable fitting time

across different data sizes, which was also observed in Urban

and Bauer (2021) for estimating M2PL. As in Urban and Bauer

(2021), we also note that the computational time of IWVAE

appeared not to increase with N and J, which may be due to that

VAE-based models are more difficult to train on small data sets.

Similarly, in some cases, the computational time of MCEM also

dropped whenN increased to 10, 000, whichmay also be because

of the easier convergence of the algorithm for the larger datasets.

Moreover, we observed that fitting time of MCEM under M4PL

depended more on the choices of initialization, revealed by the

width of empirical intervals in Figure 2.

4. Real data analysis

In this section, we evaluated the performance of IWVAE,

MCEM, and MHRM on the multistage testing (MST) dataset

from the National Assessment of Education Progress (NAEP).

The data is from the 2011 grade 8 math assessment study.

The NAEP MST design takes a two-stage form: in the routing

stage, a block of items with medium difficulty is administered.

Then in the second stage, there are three targeted blocks with

varying difficulty—blocks of easy, medium, and hard items.

Based on a person’s performance in the routing block, one

of the three targeted blocks is assigned in the second-stage

accordingly. Because the assignment in stage II depends on
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TABLE 8 Mean and SE of RMSE ofMp estimate on M3PL models under double regime setting, best results are in bold.

N, J Item structure Model rot(A) b c Success rates

50
0

10
0

Between MCEM 9.137± 0.396 12.034± 0.799 0.192± 0.012 1.00

MHRM 0.331 ± 0.040 0.441± 0.062 0.077 ± 0.006 0.05

IWVAE 0.659± 0.020 0.411 ± 0.029 0.081± 0.008 1.00

Within MCEM 7.644± 0.465 7.291± 0.612 0.153± 0.011 1.00

MHRM 0.492 ± 0.048 0.364 ± 0.054 0.064 ± 0.005 0.45

IWVAE 0.733± 0.020 0.440± 0.038 0.073± 0.008 1.00

10
00

20
0 Between MCEM 4.662± 0.200 7.364± 0.410 0.220± 0.010 1.00

MHRM / / / 0.00

IWVAE 0.512 ± 0.014 0.329 ± 0.022 0.080 ± 0.006 1.00

Within MCEM 2.233± 0.171 2.294± 0.266 0.104± 0.006 1.00

MHRM / / / 0.00

IWVAE 0.670 ± 0.014 0.318 ± 0.020 0.080 ± 0.005 1.00

5,
00
0

30
0 Between MCEM 0.576± 0.017 0.450± 0.048 0.101± 0.006 1.00

MHRM / / / 0.00

IWVAE 0.450 ± 0.012 0.263 ± 0.016 0.084 ± 0.005 1.00

Within MCEM 0.728± 0.013 0.215 ± 0.017 0.050 ± 0.003 1.00

MHRM / / / 0.00

IWVAE 0.624 ± 0.013 0.290± 0.018 0.082± 0.005 1.00

10
,0
00

50
0 Between MCEM 0.571± 0.012 0.720± 0.049 0.089± 0.004 1.00

MHRM / / / 0.00

IWVAE 0.451 ± 0.011 0.246 ± 0.013 0.086 ± 0.004 1.00

Within MCEM 0.858± 0.018 1.411± 0.087 0.065 ± 0.002 1.00

MHRM / / / 0.00

IWVAE 0.587 ± 0.011 0.267 ± 0.014 0.085± 0.004 1.00

Factors are correlated. Between item structure: each item depends on 1 factor.Within item structure: each item depends on 2 factors.

FIGURE 1

Fitting times for IWVAE and MCEM with M3PL model under the single (di�erent sample sizes N and fixed item dimension J) and double [di�erent

(N, J)] asymptotic regimes. Vertical bar areas mark empirical 95% intervals.
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FIGURE 2

Fitting times for IWVAE and MCEM with M4PL model under the single (di�erent sample sizes N and fixed item dimension J) and double [di�erent

(N, J)] asymptotic regimes. Vertical bar areas mark empirical 95% intervals.

TABLE 9 Comparison of estimated Rθ from di�erent models on MST dataset.

Model IWVAE MCEM MHRM

M4PL





















1.

0.624 1.

0.571 0.51 1.

0.695 0.625 0.551 1.

0.53 0.521 0.457 0.546 1.









































1.

0.628 1.

0.616 0.604 1.

0.595 0.599 0.543 1.

0.655 0.655 0.621 0.626 1.





















/

M3PL





















1.

0.585 1.

0.557 0.699 1.

0.531 0.671 0.653 1.

0.47 0.52 0.521 0.496 1.









































1.

0.465 1.

0.669 0.363 1.

0.712 0.449 0.662 1.

0.668 0.43 0.603 0.665 1.









































1.

0.581 1.

0.52 0.589 1.

0.565 0.689 0.582 1.

0.48 0.586 0.494 0.61 1.





















M2PL





















1.

0.74 1.

0.622 0.628 1.

0.58 0.529 0.515 1.

0.594 0.593 0.507 0.451 1.









































1.

0.264 1.

0.422 0.469 1.

0.479 0.564 0.709 1.

0.435 0.479 0.625 0.69 1.









































1.

0.518 1.

0.593 0.584 1.

0.548 0.548 0.618 1.

0.551 0.601 0.624 0.638 1.





















the observed student performance in stage I, the MST design

essentially generates a unique missing-at-random pattern. Due

to the prevalence of MST design in large scale assessments,

it would interesting to evaluate how the different estimation

methods fare with such a design.

The data set contains N = 3, 344 respondents and 74 items

in total. The routing block contains two parallel forms with 17

items in each form. The three blocks in stage II contain 14, 13,

and 13 items, respectively. Each person responded to 31 or 30

items out of 74. The items cover 5 different content domains,

i.e., number properties and operations, measurement, geometry,

data analysis statistics and probability, and algebra. The break

down of items from each content domain in each form is

presented in Table 8 byWang et al. (2020). The content coverage

is pretty balanced, which suggests a five-dimensional model

to be appropriate. Hence, five-dimensional exploratory M2PL,
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TABLE 10 Mean and SE of train and held-out accuracy/log-likelihood on MST dataset (over 5 replications).

Method Model Train accuracy Held-out accuracy Train log-likelihood Held-out log-likelihood

IWVAE

M4PL 0.707± 0.001 0.704± 0.002 −0.531± 0.001 −0.539± 0.001

M3PL 0.707± 0.000 0.706± 0.002 −0.530± 0.000 −0.537± 0.000

M2PL 0.706± 0.001 0.703± 0.001 −0.531± 0.001 −0.539± 0.001

MCEM

M4PL 0.764± 0.001 0.693± 0.002 −0.481± 0.001 −0.603± 0.001

M3PL 0.761± 0.000 0.697± 0.001 −0.482± 0.000 −0.599± 0.000

M2PL 0.759± 0.001 0.697± 0.001 −0.485± 0.001 −0.589± 0.001

MHRM

M4PL / / / /

M3PL 0.612± 0.003 0.613± 0.002 −0.682± 0.003 −0.683± 0.003

M2PL 0.622± 0.003 0.623± 0.002 −0.662± 0.003 −0.664± 0.003

FIGURE 3

Predicted log-likelihood on held-out items using di�erent methods (IWVAE, MHRM, MCEM) to fit di�erent MIRT models on MST data from a

randomly selected trial. Outlier predictions are removed.

M3PL, and M4PL models were fitted to the MST data using

IWVAE, MHRM, and MCEM. We used the same algorithm,

architecture, hyper-parameters, and stop criteria on IWVAE as

in the simulation study except that we use a larger learning rate

of 0.1 for φ,A, b and 0.01 for c, d.

First, we studied the estimates of the covariance matrix 6x

and the comparison between the three methods. Due to the

identifiability issue, in all models we assumed that covariance

matrix of latent factors is 6 = I and conducted the promax

rotation to estimate the correlation matrix R̂. After rotation,

we adjusted the sign of the correlation depending on the sign

of post-hoc transformed Ârf as in the previous section. In

particular, we flipped the sign of each column in Âr if its sum

was negative, and did the same to the corresponding columns

and rows in the R̂. Table 9 shows estimated matrices under

M4PL, M3PL, and M2PL, respectively. Under all settings, the

correlation matrix recovered by IWVAE was similar to those

from MCEM and MHRM, and a bit even closer to MHRM than

MCEM did on M3PL and M2PL models.

Next, given that the true parameters are unknown, we

evaluated the predictive performances of the three methods

using a held-out validation. That is, we randomly marked

20% of items as missing, which played the role of held-out

data, and used the remaining data to estimate our person and

item parameters. That is, we used the estimated parameters

to produce model-based predicted responses, compared them

with the observed responses, and computed their consistency

as a measure of accuracy. We computed such accuracy on

both training data and held-out data. Higher accuracy indicates

more alignment between model prediction and observed data.

Meanwhile, we also used the estimated model parameters to

compute log-likelihood, with a higher likelihood implying the
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FIGURE 4

Predicted log-likelihood on held-out items using di�erent methods (IWVAE, MHRM, MCEM) to fit di�erent MIRT models on MST data from a

randomly selected trial. Outlier predictions are kept.

estimated parameters may be better reflective of unknown

truth. We reported accuracy and log-likelihood predicted by

different methods on the training and held-out data in Table 10.

To eliminate potential randomness in generating observed

responses, 5 replications were done for each model, and we

generated a different train and held-out data in each replication.

Table 10 summarizes the averaged accuracy and log-

likelihood (of each item) on the train and held-out sets, where

values in parentheses are stand errors across 5 replications.

In this experiment, IWVAE achieved the highest held-out

accuracy and log-likelihood. Figures 3, 4 further showed the

corresponding log-likelihood values of each item. First, we

observed that IWVAE had much fewer outliers than MCEM;

after removing outliers, IWVAE achieved the highest log-

likelihood on three MIRT models. Moreover, among the three

models, the held-out accuracy, training data log-likelihood, and

held-out log-likelihood from IWVAE were the best for M3PL.

This is expected in that the operational model for NAEP analysis

is indeed 3PL.

5. Discussions

In this article, we extend a variational autoencoder

estimation method (Urban and Bauer, 2021) for the parameter

estimation of the M3PL and M4PL models. By approximating

the intractable log-likelihood with variational techniques, it

provides a computationally efficient and scalable method for

the estimation of large-scale assessment data. Simulation studies

demonstrate that the proposed method outperforms the widely

used MHRM and MCEM methods in terms of parameter

recovery and computation time in both M3PL and M4PL. The

proposed method is also more robust with many fewer issues

of convergence. That said, we do want to caution readers that

a robust algorithm cannot compensate for a lack of data. For

M3PL and M4PL to be estimated well, there needs to be enough

data at the two extreme ends of the latent trait scales to help

estimate the lower and upper asymptote adequately.

Although this study focuses on the exploratory item factor

analysis, the proposed algorithm can be easily applied to

the confirmatory item factor analysis, where certain entries

of the loading matrix are set to be 0 by users. Such

structural restrictions can be naturally incorporated into the

estimation. In addition, it would be also of interest to further

estimate the sparsity loading structure from the responses.

This can be achieved by adding a lasso-type regularization

term into the loss function (the marginal log-likelihood

function), which would induce sparse estimation results from

the regularized algorithms.

Finally, a few interesting problems are left for future

investigations. Very recent works suggested that some aspects

of our training strategy can be improved; for instance,

Collier et al. (2021) revealed that the missing data can

be handled better than zero-imputation; and Wang et al.

(2021) indicated a possible direction of understanding and

solving the posterior collapse, which was solved by a KL

annealing stage in our proposed method. Moreover, this

work does not directly study the estimation uncertainty of

the VAE estimation procedure. It is interesting to further

develop valid statistical procedures to make inferences for

the corresponding estimation results. Such an important

problem, however, still remains unaddressed for VAE and
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related deep learning methods in the machine learning and

statistics literature.
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