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Deep learning models are powerful tools for representing the complex

learning processes and decision-making strategies used by humans. Such

neural network models make fewer assumptions about the underlying

mechanisms thus providing experimental flexibility in terms of applicability.

However, this comes at the cost of involving a larger number of parameters

requiring significantly more data for e�ective learning. This presents practical

challenges given that most cognitive experiments involve relatively small

numbers of subjects. Laboratory collaborations are a natural way to increase

overall dataset size. However, data sharing barriers between laboratories

as necessitated by data protection regulations encourage the search for

alternative methods to enable collaborative data science. Distributed learning,

especially federated learning (FL), which supports the preservation of data

privacy, is a promising method for addressing this issue. To verify the

reliability and feasibility of applying FL to train neural networks models used

in the characterization of decision making, we conducted experiments on

a real-world, many-labs data pool including experiment data-sets from ten

independent studies. The performance of single models trained on single

laboratory data-sets was poor. This unsurprising finding supports the need

for laboratory collaboration to train more reliable models. To that end

we evaluated four collaborative approaches. The first approach represents

conventional centralized learning (CL-based) and is the optimal approach

but requires complete sharing of data which we wish to avoid. The results

however establish a benchmark for the other three approaches, federated

learning (FL-based), incremental learning (IL-based), and cyclic incremental

learning (CIL-based). We evaluate these approaches in terms of prediction

accuracy and capacity to characterize human decision-making strategies.

The FL-based model achieves performance most comparable to that of the

CL-based model. This indicates that FL has value in scaling data science

methods to data collected in computational modeling contexts when data

sharing is not convenient, practical or permissible.
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1. Introduction

One of the most important tasks in cognitive psychology

and behavioral science is to understand and explain how

people think, infer and process information. This is generally
achieved through observing their behavior under experimental
settings. In the field of human decision making, where

we evaluate how people make decisions based on learning

from experience, we can either analyze the process by

which information is itself processed (Ratcliff and McKoon,

2008; Summerfield and Tsetsos, 2012) or investigate how

the expectation values (the decision’s outcome multiplied by

the probability of that decision) of options are learned and

updated through experience (Rescorla, 1972; Dayan and Niv,

2008). In such approaches, we use cognitive models that

specify a set of assumptions about the underlying learning

processes used by the subjects, thus generally requiring

manual engineering with an iterative process to examine the

consistency between the hypothesis and the empirical data

(Dezfouli et al., 2019b). The approach may fail if subjects

adopt a completely different strategy during decision making.

Deep Learning (DL) models, especially Recurrent Neural

Network (RNN) models, present an alternative approach to the

characterization of human decision-making behavior. They can

automatically capture behavioral trends exhibited by subjects

without strong assumptions about the mathematical structure

of the underlying process through taking advantage of their

data-driven design and higher capacity for representing complex

computational processes (Dezfouli et al., 2019a,b; Fintz et al.,

2021).

Unfortunately, this does not come for free since modern DL

models involve the learning of a large number of parameters

which in turn requires large amounts of diverse data for effective

performance. For example, in a recent study (Zech et al., 2018),

it was found that DL models overfit when trained on small and

biased institutional data and generalized poorly on data from

institutions whose data were not seen during training. Although

the data used in that study comprised of medical images rather

than behavioral data, it is a good example and a warning that

DL models need to be carefully trained. Efforts must be made

to minimize the introduction of confounding factors associated

with experimental biases which can dominate the training

process and obscure the relationship of predictions to the

underlying targeted pathology. Such models may perform with

good accuracy when testing against held-out data from the same

experiment, butmay not generalize well to the same experiments

conducted in other studies. A natural way to increase both

data size and diversity is through collaborative learning, in

which many laboratories cooperate and contribute data to train

a global model together. It is an effective approach that has

the potential to solve the limitation in most cognitive studies

where the number of subjects is adequate for the modeling

approach originally intended but then becomes inadequate

when the same data is used to train new models involving a

larger number of parameters. Furthermore, one of the significant

challenges in computational psychiatry (Huys et al., 2016),

i.e., translating advances in understanding the cognitive biases

of people with mental illness into improvements in clinical

practice, will also benefit from the pattern of multi-experiment

collaboration, given that the scale of current cognitive studies is

not sufficient for developing robust models that satisfy clinical

needs.

One of the most conventional options for conducting

“many-labs” analysis requires different laboratories to share

subjects’ data to a centralized location for model training (i.e.,

centralized training). However, in practice, data sharing is not

easy, especially when involving larger number of laboratories

from different legal jurisdictions, due to privacy, ethical, and

data regulation barriers (Voigt and Von dem Bussche, 2017).

Consequently, information coming from various populations

worldwide remains distributed in isolation, across multiple

laboratories, and we lose the benefits that could accrue from

combining data. A solution for addressing this to some degree

is distributed model training, in which model parameters

instead of individual identifiable information are shared among

laboratories. One approach for distributed training is unparallel,

or as we will refer to it here—incremental distributed learning

(IL) (Sheller et al., 2018). With this approach each laboratory

trains the model and passes the learned model parameters

to the next laboratory for training on its data, until all have

trained the model once. Another approach is an extension

of incremental distributed learning, called cyclic incremental

distributed learning (CIL). This involves the repetition of the

incremental learning process multiple times, i.e., fixing the

number of training iterations at each laboratory and cycling

repeatedly through the laboratories. Chang et al. (2018) explored

these two distributed training approaches usingmedical imaging

data and found the cyclic approach performed comparably

to centralized training, suggesting that sharing data may not

always be necessary to build deep learning models for patient

imaging data. The incremental distributed learning approaches,

however, have been criticized for introducing the problem

of “catastrophic forgetting” (French, 1999), where the trained

model strongly favors the data it has most recently seen.

Nevertheless, the repeated cycles and limited iterations per

institution performed in cyclic incremental learning enable

it to make gradual progress, despite the forgetting issue,

resulting in better models than the first distributed training

approach.

Federated learning (FL) can be considered another

distributed machine learning paradigm seeking to directly

address the problem of data governance and privacy. It

was first introduced by Google AI (Konečnỳ et al., 2016) to

allow mobile devices collaboratively learn machine learning
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models without sharing data from the devices. It was applied

very successfully in training Google’s autocomplete keyboard

application (Hard et al., 2018). Institutions or laboratories can

also be viewed as “devices” in the context of FL and therefore

FL has emerged as a promising strategy in scenarios where,

for example, hospitals operate under strict privacy practices

and may face legal, administrative, or ethical constraints that

require data to remain local. Different from the unparallel

approaches, FL is a data parallel training process, in which

multiple collaborators train a DL model simultaneously (each

on their own data in parallel) and then send their model

parameters to a central sever where these are aggregated

into a global model. The central sever then sends the global

model to all collaborators for further training. Each iteration

of this process, i.e., parallel training, parameter update, and

distribution of global parameters, is referred to as a federated

round. Sheller et al. (Sheller et al., 2018, 2020) compared FL

and IL approaches on imaging datasets and unsurprisingly, the

basic IL performed the poorest compared to FL and CIL. While

cyclic incremental learning may seem a simpler alternative,

given that implementation of FL depends on a set of key

challenges (Li et al., 2020a), e.g., communication efficiency,

which is outside the scope of this article, it required additional

validation steps at the end of each cycle, which are basically

as complex as the synchronization logic of FL, to achieve

comparable results to FL paradigm. Critically, CIL was less

stable than FL, resulting in an inferior alternative. The degree

to which the laboratory datasets used for distributed learning

are independent and identically distributed (IID) can have a

significant influence on the learning performance compared

to centralized learning (Sheller et al., 2020) as deep learning

models rely on Stochastic Gradient Decent (SGD) algorithm

and the IID samples can ensure that the stochastic gradient

is an unbiased estimate of the full gradient (Rakhlin et al.,

2011). However, in practice, it is unrealistic to assume that

the local data of each laboratory is always IID, which is also

a statistical challenge for applying federated learning. It was

found in Zhao et al. (2018) that the accuracy of a federated

learning model trained for image classification was reduced

by up to 55% depending on how much institutional bias or

degree of non-IID they introduced while dividing a single

dataset into hypothetical institutions. The institutions and

institutional biases in their paper were created artificially by

defining hypothetical clients and assigning various number

of samples to the clients. However, the results of applying the

distributed approach on artificially partitioned hypothetical

institutional datasets may fail to account for how real-world

clients biases impact distributed learning paradigm, a point that

has been argued in Sheller et al. (2020). Consequently, this also

motivated this paper in which we experiment with real-world

“many-labs” datasets.

In this study, we examined and compared the reliability

and feasibility of applying distributed learning strategies to

neural network models of human decision-making processes.

This is demonstrated using a real-world “many-labs” study

comprising 10 different laboratories (Steingroever et al., 2015).

Subjects in all studies were healthy participants and completed

a computerized version of the Iowa Gambling Task (IGT),

which is one of the most widely used tasks measuring

human decision making under uncertainty in an experimental

context. Distributed learning paradigms, especially FL, have

been examined in various application scenarios including

electrocardiogram datasets (Lee and Shin, 2020), FMRI datasets

(Li et al., 2020b; Sheller et al., 2020), mobile health datasets

(Liu et al., 2021), and biomedical datasets (Dankar et al.,

2019). Nevertheless, among this literature none of them has

reported on the use of distributed learning paradigms on

trial-by-trial decision making data originating from different

laboratories, even though such experiments have become

important methods for investigating human behavior. We first

trained single laboratory models for each laboratory in the

data pool and then evaluated each of these models against

held-out testing datasets from each laboratory defined prior to

model training. This experiment is used to demonstrate the

need for numerous and diverse data for training a robust deep

learning model. Secondly, we illustrated the benefits of “many-

labs” collaboration and the superiority of federated learning

compared to incremental learning and cyclic incremental

learning. Thus, one centralized model and several distributed

models were trained for this purpose. On-policy and off-policy

simulations were then conducted to compare the performance

of the three distributed learning strategies. Together these

simulation approaches allow us to evaluate comprehensively

how well the models learn the characteristics of human

decision-making. Apart from assessing the relative performance

of distributed learning compared to the centralized learning

paradigm, these simulation analyses also allow us to reveal the

underlying learningmechanisms and decision-making strategies

used by the healthy subjects.

2. Materials and methods

2.1. The IGT

The IGT was originally developed to study the decision

making deficits of ventromedial prefrontal cortex patients

(Bechara et al., 1994). Over two decades, it has been one of the

most widely used neuropsychological paradigms for simulating

complex and experience-based decision-making (Steingroever

et al., 2018). Participants in the IGT are initially given e2,000

virtual money and presented with four decks of cards labeled
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A, B, C, and D. Each card in these decks can generate rewards,

and sometimes cause losses. Participants have to choose one card

from these four decks consecutively, until the task terminates

automatically after a fixed number of trials have been reached.

In each trial, feedback on rewards and losses for their choice

and the running tally over all trials so far are provided to the

participants, but no information is given regarding how many

trials they will play and how many trials they have completed

during the task. Participants are instructed that they can choose

cards from any deck and they can switch decks at any time. They

are also told to make as much money as possible by minimizing

losses.

2.2. The IGT dataset

The data pool (N = 617) we used in this study derives

from 10 studies assessing performance of healthy participants

(i.e., without any known neurological impairments) on the

IGT (Steingroever et al., 2015). It involves a broad range

of healthy populations aging from 10 to 88 with various

education backgrounds and social status. Participants completed

a computerized version of the IGT consisting of 95, 100 or 150

trials. All included studies used (a variant of) the traditional

IGT payoff scheme or the payoff scheme introduced by Bechara

and Damasio (2002). The variations are described in the original

paper and primarily concern the time-varying nature of rewards

and losses across the trials. For example, the loss associated

with deck C in the traditional payoff scheme varies across trials,

whereas the deck C loss in the variant scheme here is held

constant. More details about the payoff schemes of each variant

can be found in Steingroever et al. (2015).

Since the RNN model we used for predicting subjects’

actions required us to have inputs with the same size, the

trial-by-trial decision sequences of all subjects were truncated

according to the length of the smallest sequence, i.e., 95 trials. In

other words, for those subjects who completed 100 or 150 trials

of the IGT, only the first 95 trials were used for training or testing

the model. Each subject is an abstract data point (Jung, 2022)

and each data point is a sequence of decision-making choices

that contains 95 trials. The features of the data points are the

observed choices so far and the labels, which are also what we

want to predict, are the choices in the next trials. The sample

size of each laboratory, which we will refer to lab 1-10, are 15,

162, 19, 40, 70, 25, 153, 35, 57, and 41, respectively.

This dataset is reused here because, (1) first of all,

participants in all studies were healthy subjects and they all

completed the same decision making task—IGT, which makes

it feasible to train a collaborative model for all laboratories;

(2) the subjects from 10 studies were coming from different

backgrounds with various ages and female proportions, thus,

conducting multi-laboratory analysis is a natural operation to

increase data size and diversity and improve the performance

of the model; (3) it created a perfect real-world scenario where

the local data of each lab is potentially non-IID and biased,

thus it is suitable for testing out the reliability and effectiveness

of distributed learning paradigms, especially federated learning,

that are sensitive to the data distribution. Each laboratory can

be seen as a “device” in the context of federated learning and

the data assignments for the clients in FL can be matched with

the real-world data distributions, such that all subjects from the

same study are assigned to the same client; (4) last but not least,

we can more thoroughly investigate how healthy subjects learn

and behave on the IGT using deep learning models, which as

stated previously, are promising in the area of decision making

modeling because of their higher capability of learning from data

in a less model-constrained manner.

2.3. Applying RNN to the IGT

In order to model the data produced during the IGT,

we make use of state-of-the-art neural network approaches

(Dezfouli et al., 2019b), such as RNNs. The RNNmodel we used

is composed of a GRU layer and an output softmax layer with

four nodes corresponding to the four choices for the different

decks in the IGT. The inputs to the GRU layer are the previous

choices made by the subject along with the rewards and losses

they received after making that choice. The softmax output are

the probabilities of choosing each deck option and sum to 1. The

architecture of the model is shown in Figure 1.

It is known that the basic RNNs are inefficient in solving

problems that require the learning of long-term temporal

dependencies because of the gradient vanishing problem (Gers

et al., 2000). If a sequence is long enough, which is the case of

our choice sequences that include at least 95 trials, they’ll fail

to convey information (the deck preferences) from earlier trials

to later ones. LSTM (Hochreiter and Schmidhuber, 1997) and

GRU (Cho et al., 2014) networks were created as the solution to

this short-termmemory issue. In most cases, the two approaches

yield comparable performance. It is often the case that the tuning

of hyperparameters may be more important than choosing the

networks.We chose the GRU here in this paper since it has fewer

parameters and can be trained faster. We believe this to be a

suitable choice given that we have a relatively small dataset with

moderately long sequences.

The GRU layer is composed of a set of hidden units (Nu).

Each unit is associated with a unit output denoted by hkt for cell k

at time t. Let’s define ht = [h1t , h
2
t , ...h

Nu
t ]T (ht ∈ RNu ) as a vector

containing all the cell outputs at time t. They are initialized with

the value of zero and are updated after receiving each time step

input. xt ∈ RNc+2 (Nc is the number of choices, which is 4 for

the IGT) is a vector containing inputs to the network at time

t, i.e., the action ct coded using one-hot representation and the

reward rt and loss lt received after taking action. There are two

gates in GRU network, i.e., a reset gate and update gate. The
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FIGURE 1

Architecture of the RNN model. The model has a GRU layer (the left part), which receives the previous action (the action is one-hot coded), loss

and reward xt and previous hidden states ht−1 and a softmax layer (the right part), which outputs the probability of selecting each deck on the

next trial. The GRU layer is composed of two gates, i.e., an update gate and a reset gate, containing a set of weight parameters

{Wr ,Ur ,br ,Wz,Uz,bzW,U,bhw ,bhU}(br ,bz,bhW , and bhU are not shown for simplicity). The output of the cells of the GRU layer ht are connected

to the softmax layer using black lines. The weight parameters in the softmax layer are represented as V.

update gate helps the model to determine how much of the past

information needs to be passed along to the future. The output

of this gate zt is a linear combination of the input vector of the

current time step xt and the previous cell output going through

the sigmoid function.

zt = σ (Wzxt + Uzht−1 + bz) (1)

The reset gate is used to decide how much past information

is forgotten. The formula is the same as that used for the update

gate. The difference arises from the weights and the gate’s usage,

which we will examine later in this section.

rt = σ (Wrxt + Urht−1 + br) (2)

The output of the reset gate is then passed through the

current memory content, in which the reset gate is used to store

the relevant information from the past.

h′t = tanh(Wxt + bhW + rt
⊙

Uht−1 + bhU ) (3)

In the last step, the network needs to calculate the ht vector

which holds information for the current unit and passes it down

to the network. In order to do this, the update gate is needed. It

determines what to collect from the current memory content h′t
and what to take from previous steps ht−1. The parameters of

the GRU layer include Wz ,Wr ,W ∈ RNu×(Na+2), Uz ,Ur ,U ∈

RNu×Nu , and bz , br , bhW , bhU ∈ RNu .

ht = zt
⊙

ht−1 + (1− zt)
⊙

h′t (4)

The softmax layer takes outputs from the GRU layer

(ht) as its inputs and outputs the probability of choosing

each action. The parameter of the softmax layer is V ∈

RNu×Na . The parameters of the RNN model will be 2 =

{V ,Wz ,Wr ,W,Uz ,Ur ,U, bz , br , bhW , bhU }.

The RNN model was trained using the maximum-likehood

(ML)method and Categorical Cross-Entropy Loss summed over

all subjects on all trials:

Loss = −

S∑

s=1

T∑

t=1

yst log(ŷst ) (5)

The model was implemented in TensorFlow (Abadi et al.,

2016) and optimization was based on the use of the Adam

optimizer (Kingma and Ba, 2014).

2.4. The structure of the four learning
paradigms

Figure 2 demonstrates the architectures of the four

collaborative learning strategies. The first CL-based strategy is

the most straightforward approach. Here, data is shared directly

among laboratories. However, as stated above, data sharing is

not always applicable because of data protection and regulation

purposes, which makes this collaboration paradigm difficult to

achieve in the real world. Distributed learning, i.e., the following

three strategies in Figure 2, makes it possible to collaborate
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FIGURE 2

Architectures of four collaborative learning methods for multi-laboratory collaboration. The most straightforward method (A) is based on

centralized data sharing, i.e., requiring that every laboratory share data to a central node and aggregating to train a model; (B) Incremental

Learning, in which each laboratory trains the model and passes the learned model parameters to the next laboratory for training on its data, until

all have trained the model once. (C) Cyclic incremental learning, which involves the repetition of the incremental learning process multiple

times. (D) Federated learning, in which all laboratories train the same model at the same time and update their model parameters to a central

sever where it is used to create a global model.
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through sharing the model parameters rather than the more

sensitive raw data. In the CL-based strategy, each laboratory

trains the model once with their own data and passes the model

parameters to the next laboratory to continue the training. The

training process is finished when all laboratories train the model

once. In the CIL-based strategy, this process can be repeated

several times. In the FL-based strategy, all the laboratories

train the model with their data simultaneously and share their

model parameters to a central server to build a global model. All

laboratories will receive the parameters of the global model and

update their parameters to match the global model with certain

probabilities. We expect CL-based model will behave the best

in terms of prediction accuracy and capturing characteristics of

human decision-making strategies among the four collaborative

models, while the other three distributed learning paradigms

will sacrifice competitiveness to different extents in exchange

for preservation of data privacy. Thus, the CL-based model will

serve as the baseline model against which comparisons are made

with the distributed models. All of the learning paradigms are

implemented in Python 3.7. The codes for replicating the results

in this paper are available on OSF (osf.io/9ekr5/).

3. Results

3.1. Experimental settings

First of all, each laboratory dataset was divided into training

and testing datasets with 80% of the data points for the former

and the remaining 20% for the latter. Subjects were not mixed

across training and testing sets. Two experiments are conducted

with these datasets.

• The first experiment is designed to establish the need

for bigger and more diverse data to train a reliable and

robust RNN model that could predict human actions with

reasonable accuracy. In this experiment, we train a single

RNNmodel on the training dataset for each laboratory and

evaluate each of these models against testing datasets from

each laboratory. In total, we will train 10 independent RNN

models, one for each separate laboratory, and evaluate their

generalization performance both on the testing dataset

of their own laboratory and testing dataset from the

other laboratories.

• In the second experiment, we seek to demonstrate

the improvements of collaborative models compared to

single models and also to make a comparison between

the centralized learning model and distributed learning

models. Eight collaborative models will be trained. The

collaborative models are trained directly or indirectly

with bigger and more diverse datasets depending on the

collaboration methods imposed between the laboratories,

i.e., centralized learning (CL-based), incremental learning

(IL-based), cyclic incremental learning (CIL-based), and

federated learning (FL-based) paradigms. In incremental

and cyclic incremental learning, three different orders of

training the model are performed, i.e., smallest sample

first, largest sample first and random order, yielding three

models for these two learning paradigms.

The hyperparameters for training the centralized model are

set as follows: batch size 32; maximum epochs 250; learning

rate 0.02; number of hidden cells 10. To create an equal playing

ground for the centralized learning and distributed learning

paradigms, we need to guarantee that all models see exactly

the same number of samples in the whole training process.

Accordingly, the number of communication and the epochs

per round for FL paradigm are set as 5 and 50, respectively.

The maximum epochs for each laboratory is set as 250 for IL-

based model. For the CL-based model, the frequency of weight

transfer is every 50 epochs, thus the number of cycles is 5. The

learning rate and the number of hidden cells are set as the

same values for all models. The batch size for the distributed

learning paradigms is the size of each laboratory sample. For

the single models, two hyperparameters, the number of cells

and epochs, are tuned via 10-fold cross validation. Please see

Table 1, in which the parameter settings for each model are

listed. More details about hyperparameter tuning are provided

in the Supplementary material.

3.2. The need for more numerous and
diverse data

In this experiment, ten single models were trained with the

tuned hyperparameters (see Supplementary material for details

about how they are tuned) using the training datasets from each

laboratory, respectively. Thesemodels were then evaluated using

the testing datasets available from each laboratory. Figure 3

shows ten single models’ testing results both against their

own testing datasets and testing datasets of other laboratories.

The chance probability of predicting the next action taken

by the subjects correctly is 25% since there are four options

in the IGT. However, the prediction accuracy of several

single models on some of the testing datasets was lower than

the chance probability, which is obviously not satisfactory

performance. In order to diagnose why the single models

fail, we conducted a 10-fold cross validation with the training

sets of each laboratory for each single model. The training

and the validation loss are plotted in Figure 4. It can be

observed that although the training loss of the single models

is continuously decreasing across the training process, the

validation loss starts increasing shortly after around the first

10 or 20 epochs, which means the models start to overfit

since then.
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TABLE 1 Parameter setting for centralized and distributed learning models.

Model Batch size Number of epochs Learning

rate

Number of hidden cells Number of

cycles

Communication rounds

CL-based 50 250 0.02 10 N/A N/A

IL-based Size of each lab training sets 250 0.02 10 N/A N/A

CIL-based Size of each lab training sets 50 0.02 10 5 N/A

FL-based Size of each lab training sets 50 0.02 10 N/A 5

FIGURE 3

Accuracy of single lab models tested against testing datasets from each of the laboratories. The vertical axis represents models trained on a

single laboratory dataset, and the horizontal axis represents the testing dataset of each independent laboratory. AVG is the average accuracy of

each laboratory model performance over all laboratories. Overall, the prediction accuracy of each single model on the testing sets, no matter

from their own laboratory or other laboratories, are not satisfying. Some of them are lower than the chance probability 25%.

FIGURE 4

The training and validation loss of the 10 single models for each laboratory. The training loss decreases over time, whereas the validation loss

starts increasing shortly after the first 10 or 20 epochs.
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It can be seen that most single models performed the best

on the testing dataset of lab 9, except for the three models that

trained on the least size of laboratory samples, i.e., lab 1 (12),

lab 3 (15), and lab 6 (20). These laboratories with small number

of training samples did not perform well on their own testing

sets nor did they generalize well to any other testing sets from

other laboratories. The best average model performances were

shown on lab 2 and lab 7, which have the largest sizes of training

samples, 129 and 122, respectively. These results indicate that

more numerous and diverse data are needed for a laboratory site

in order to train reliable and generalizable models, at least in the

contest of training RNN models.

The accuracies of single models based on test data collected

from the same lab as that which provided the training data

are commonly lower than the accuracies calculated using test

data from different laboratories (e.g. the model developed using

Lab 2 data demonstrates better test performance for the test

data associated with Lab 9 than that for the test data associated

with Lab 2—Figure 4). This arises through chance. It may be

surprising because we might assume participants from the same

lab might demonstrate similar behavior given that they were

under similar experiment settings and thus the single models

should perform better on their own datasets. However, the

confounding factors associated with experimental biases should

not be a significant factor and does not appear to be. It is

worth considering that the testing sets (no matter where they

are sourced) represent sets of distinct, experimental subjects

whose data has never been used in training models. In other

words, we expect all test subjects to be independent performers

of the task and model prediction on their data can contribute

to an understanding of the generalization error. Test sets from

different labs contribute to our estimate of the generalization

error creating a distribution. Indeed, if we observed that the

test performance was highest for the lab in which the data

was collected, this might suggest that local idiosyncrasies of

experimental procedures were being modeled via the data

collected. This would be an undesirable phenomenon.

3.3. The benefits of training collaborative
models

In this section, we aim to demonstrate (1) the benefits of

laboratory collaboration and (2) the feasibility of conducting

distributed learning when data sharing barriers are present. We

compared the prediction accuracy of the eight collaborative

models with the single models for the first purpose. The results

are illustrated in Figure 5. As a result, apart from random

and descending-ordered IL and CL models, the prediction

accuracy of the collaborative models was significantly improved

FIGURE 5

Accuracy of four collaborative models tested against testing datasets from each of the laboratories. The vertical axis represents the collaborative

models trained on the training datasets from all laboratories and the horizontal axis represents the testing dataset of each independent

laboratory. AVG is the average accuracy of each collaborative model performance over all laboratories. Apart from the random and

descending-ordered IL and CL model, the prediction accuracy of the collaborative models is significantly improved compared to that of the

single models.
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FIGURE 6

Probability of selecting each deck (averaged over subjects). Each dot represents a subject or a simulated agent and error-bars represent 1

standard error of the mean. SUBJ refers to the data of the experimental subjects; CL-based, FL-based, CIL-based, and IL-based are the on-policy

simulations of the four collaborative models trained on the IGT with the same payo� scheme and the same number of trials the subjects

completed, respectively. CL-based, FL-based and IL-based agents behaved more similarly to human subjects, selecting more good decks than

bad decks.

when testing on each laboratory’s data. Notably, the average

performance over all laboratories of the CL-based model were

improved to 55%, 6% points higher than the highest accuracy

achieved by the single model of lab 2, and the corresponding

increase for FL-based, CIL_ascend-based and IL_ascend-based

model was 4, 4, and 3% points, respectively. Since random and

descending ordered IL and CIL models did not outperform the

single models, only the ascending ordered models were selected

to conduct further evaluation. We will refer to these as the IL-

based and the CIL-basedmodel instead of the CIL_ascend-based

and the IL_ascend-based in the following analysis for simplicity

of reference. The ascending ordered IL-based and CIL-based

models and the other two collaborative models were evaluated

from multiple aspects for the second purpose.

3.4. On-policy simulation

After training the four collaborative models, we fixed the

weight parameters of the models and simulated them on-policy

in the task. We fed the model with the same payoff schemes as

for the subjects and the models selected the decks autonomously

based on what they had learned from the human behavior data.

Since we trained on 491 experimental subjects from across all

the studies, we simulated 491 fake agents for each collaborative

model as well.

3.4.1. The average probability of selecting each
deck over subjects

The SUBJ column in Figure 6 shows the average probability

of choosing each deck over all experimental subjects. All subjects

selected DeckA the least compared to other Decks, which is not

surprising because DeckA is the bad deck that yields negative

long-term payoff and with more frequent losses. Consistent with

human’s choices, the probability of choosing DeckA for both

centralized and distributed agents was the lowest. Neither CL-

based agents (η = 0.005, SE = 0.004, p = 0.26) nor the FL-based

and the IL-based agents (FL-based: η = 0.001, SE = 0.004,

p = 0.91, IL-based: η = 0.001, SE = 0.004, p = 0.83) are

significantly different for subjects in terms of the probability

of selecting DeckA, although the CIL-based selected slightly

significant more DeckA than subjects (η = 0.01, SE = 0.005,

p = 0.03). FL-based agents had significant aversion to DeckD

(η = −0.02, SE = 0.010, p = 0.03) and CIL-based and IL-

based agents had significant preference to DeckB (CIL-based:

η = 0.03, SE = 0.009, p < 0.001, IL-based: η = 0.02,

SE = 0.008, p = 0.010) and significant aversion to DeckC (CIL-

based: η = −0.04, SE = 0.009, p < 0.001, IL-based: η = −0.03,

SE = 0.009, p < 0.001) compared to the subjects, while no

significant difference was observed between CL-based agents

and subjects on all of these decks. This can also be seen from the

plot of the overall probabilities of selecting DeckB and DeckC

where IL-based and CL-based agents are relatively higher and
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FIGURE 7

The IGT learning scores averaged over all experimental subjects

or simulated model agents across 10 di�erent blocks. Each dot

represents the mean score at each block and error-bars

represent 1 standard error of the mean. The learning process of

human subjects, CL-based and FL-based agents is very similar to

each other, overall the learning score progressively increasing

over blocks. The IL-based agents are least similar to the human

subjects, not presenting an obvious learning trend in the

process. Although CIL-based agents demonstrated similar

trends to human subjects, the magnitudes of their learning

scores are always lower than that of the subjects.

lower than that of the subjects, respectively, and the probabilities

of selecting DeckD of FL-based agents are relatively lower.

It is worth noting that subjects prefer decks with infrequent

losses, DeckB and DeckD, compared to decks with frequent

losses, DeckA and DeckC, although they ended up selecting

significantly more good decks (DeckC and DeckD) than bad

decks (DeckA and DeckB) (η = 0.078, SE = 0.010, p < 0.001).

CL-based, FL-based and IL-based agents managed to learn this

strategy from the subjects’ actions, selecting more good decks

than bad decks (CL-based: η = 0.059, SE = 0.010, p < 0.001,

FL-based: η = 0.059, SE = 0.011, p < 0.001, IL-based: η =

0.035, SE = 0.008, p < 0.001), whereas CIL-based agents did not

learn this characteristic of behavioral pattern, the probability of

selecting good decks was not significantly higher than bad decks

(η = −0.006, SE = 0.010, p = 0.51).

3.4.2. The fluctuation of probability of selecting
each deck over trials

The analysis in the previous section suggested that CL-based,

FL-based, and IL-based agents selected more good decks than

bad decks, which is more consistent with the human behavioral

data compared to CIL-based agents. There are multiple possible

strategies that the models could follow to obtain the final

proportions of each deck. Here, we aim to examine whether the

models were using similar strategies to that used by subjects. We

examined the fluctuation of deck preferences of the subjects and

model agents over trials. We divided the 95 trials into 10 blocks

of 10 trials for the first 9 blocks and 5 trials for the last block.

The proportion of each deck selection in each block and the

learning scores (i.e., the difference between the number of good

deck selections and the number of bad deck selections) for each

subject was calculated.

Figure 7 shows the learning scores across ten blocks of the

IGT. A learning process was apparent both for experimental

subjects and CL-based and FL-based agents, in which the

learning score progressively improved over blocks, although

there was a clear dip in block 10 for subjects and FL-based agents

and block 8 for CL-based agents. To quantify the differences

between the subjects and the two kinds of model agents over

blocks on learning scores, the repeated measures ANOVA tests

were conducted in the form of 10 (blocks) × 2 (groups).

The ANOVA test conducted between human and CL-based

agents and human and FL-based agents revealed no significant

interaction between the two factors [CL-based: F(7.44, 7290) =

1.39, p = 0.20, FL-based: F(7.1, 6954) = 1.82, p = 0.08],

however, there was a significant main effect of blocks [CL-based:

F(7.44, 7290) = 67.63, p < 0.001, FL-based: F(7.1, 6954) =

60.64, p < 0.001], with the interpretation that the learning

scores of both subjects and CL-based and FL-basedmodel agents

varied across blocks and the CL-based and FL-based model did

not behave significantly different across subjects in the learning

process. The ANOVA test performed between human and the

other two collaborative agents showed that the effects of blocks

and group were both significant on the learning score (CIL-

based: F(7.85, 7693) = 47.11, p = 0.03, F(1, 980) = 17.61, p <

0.001; IL-based: F(7.71, 7558) = 22.66, p = 0.02, F(1,980) = 5.69,

p = 0.02] and there was a significant interaction between groups

and blocks on the learning score [CIL-based: F(7.85, 7693) =

5.98, p < 0.001, IL-based: F(7.71, 7558) = 15.76, p < 0.001].

This result suggested that the learning process of CIL-based and

IL-based agents were significantly different from experimental

subjects, which can also be seen from the figure, in which the

learning scores of CIL-based were lower than the subjects almost

over all blocks and IL-based agents did not present apparent

learning trend in the process.

3.4.3. The switch probability after receiving
losses

We finally investigated the immediate effect of loss on

choice. The reason why reward effect is not considered here is

because subjects can always get rewards no matter which deck

they choose, 100 for DeckA and DeckB and 50 for DeckC and

DeckD, according to the payoff scheme. Figure 8 shows the effect

of receiving a loss in the previous trial on the probability of

switching to the other deck in the next trial. For the experimental

subjects, receiving a loss significantly increased the probability

of switching to other decks (η = 0.218, SE = 0.010, p <

0.001). As the figure shows, same pattern was established by

all collaborative agents (CL-based: η = 0.209, SE = 0.007,
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FIGURE 8

Probability of switching to a di�erent deck based on whether received losses or not in the previous trial averaged over subjects. Each dot

represents a subject or a simulated agent and error-bars represent 1 standard error of the mean. The CL-based agents demonstrated almost the

same switching strategy as human subjects. FL-based agents rank second. The switching probability of IL-based agents is obviously higher than

the subjects when there is no loss.

p < 0.001; FL-based: η = 0.201, SE = 0.007, p < 0.001; CIL-

based: η = 0.246, SE = 0.007, p < 0.001; IL-based: η = 0.179,

SE = 0.007, p < 0.001), suggesting that the strategy of avoidance

to losses used by the four models was similar to that seen in

the subjects’ behavior. However, the switch probabilities of CL-

based agents are more closer to that of the experimental subjects

visually and FL-based agents rank second. The switch probability

of IL-based agents was obviously higher than the subjects when

there was no loss.

3.5. O�-policy simulation

Off-policy refers to a model which uses previous actions and

payoffs to make predictions about the next action. However,

the next actions actually used to simulate the models are not

derived from these predictions, instead they are derived from

the choices made by the human subjects. With such approach

we can control the inputs the model receives and examine how

they affect the predictions.

Simulations of the models are shown in Figure 9. Each panel

shows a separate simulation across 30 trials (horizontal axis).

For the total of 30 trials, the action that was fed into the model

was DeckA (top left), DeckB (top right), DeckC (bottom left),

or DeckD (bottom right) for each simulation, respectively. The

reward and losses associated with these trials were the same as

specified in the payoff scheme of IGT. As mentioned earlier,

based on the IGT payoff scheme, the player would always receive

rewards no matter which deck they choose and only the rewards

magnitude varies depending on which deck they choose, while

they only receive losses occasionally. We only marked trials

where there were losses with blue dots in the graphs.

The four collaborative models behaved quite similarly in

responding to the losses according to the plots, especially the

FL-based model and the CL-based model. Receiving a loss from

all decks caused a dip in the probability of staying with that

deck, which showed a tendency to switch to another deck. This

is consistent with the observations we obtained in Figure 8 that

the probability of switching is higher when receiving a loss

compared to no loss. It seems the CIL-based model was more

sensitive to the losses given by DeckC as deeper dips were caused

compared to other models. The dips caused by DeckB and

DeckD were the deepest, which is not surprising, because DeckB

and DeckD are decks with less frequent but larger losses. It is

reasonable that the switch probability should be higher if you

received a significant loss from that deck choice. The probability

of choosing DeckA, DeckB, DeckC, and DeckD was higher than

that of other decks, respectively, in each simulation. This implies

sticking with the previously taken deck was an element of an

deck selection strategy of the four models. We can also see that

the perseverance with DeckA is not as strong as to the other

three decks as the probability of selecting DeckA predicted by

the two models is almost never more than 80% and this is

even more obvious for IL-based model. This result is consistent
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FIGURE 9

O�-policy simulations of the two collaborative models. Each panel shows a simulation of 30 trials. The four collaborative models behaved quite

similarly in responding to the losses, especially the FL-based and CL-based model. CIL-based model is more sensitive to the losses given by

DeckC as deeper dips are caused compared to other models. IL-based model presents least perseverance with Deck A compared with other

models.

with the result reported in Figure 7 where the proportion of

selecting DeckA was the lowest both across subjects and trials.

Interestingly, the perseverance effect to DeckC was smaller and

the sensitivity to the losses of DeckC was higher for CIL-based

model and relative to other models.

4. Discussion

The results demonstrate, as expected, that models trained

on a single laboratory’s dataset only, perform poorly both on

their own testing sets and testing sets from other laboratories.

The average prediction accuracy of the model of lab 1, which

had the smallest number of subjects among studies, on ten

testing datasets was 31%, only 6% higher than the chance correct

probability. This result highlights the need for larger and more

representative datasets and therefore emphasizes the relevance

of training using collaborative models involving subjects from

other studies.

Given the difficulties of sharing data across

studies,institutions and jurisdictions, it is attractive to use

distributed learning paradigms to replace traditional centralized

data sharing to make laboratory collaboration easier. However,

the decision to adopt such as an approach is only justifiable

so long as the resultant model yields comparable performance

with the data pooling approach. While the work presented here

cannot be fully comprehensive, it presents for the first time a

representative sampling of eight collaborative models, one of

which based on centralized data sharing while the other seven

were based on distributed learning including one FL-based,

three CIL-based and three IL-based, were trained on the training

datasets from all laboratories for comparison. It was found

that the order of the laboratories was an important factor that

influenced the performance of CIL-based and IL-based models.

An ascending order based on the laboratory data-set sizes

was the best strategy for both of these two paradigms and the

corresponding models were selected, along with the FL-based

model, to be further evaluated with the centralized model from

multiple aspects. When examining their prediction capability

on the unseen testing datasets the prediction accuracy was

improved by 24, 24, 24, and 23% points compared to the worst

single model on the same testing data-sets for CL-based, FL-

based model, CIL-based and IL-based model, respectively. This

highlights the value of involving larger numbers of data samples

for training a deep learning model. It is also clear that FL-based

and CIL-based approaches can both achieve competitive
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performance with CL-based model while retaining the benefit

of enhanced data privacy. Another interesting finding is that

all the collaborative models performed clearly better on the

testing sets of lab 9, lab 5, and lab 4 and the CIL-based and

IL-based models did not obviously suffer from the “catastrophic

forgetting” problem as reported in the literature (Chang et al.,

2018; Sheller et al., 2018, 2020). This is apparent because they

did not present performance biased to the data they had mostly

recently seen (i.e., lab 2 for the ascending order case, lab 1 in the

descending order case, and lab 10 for the random order case).

We then evaluated the capability of the distributed model in

capturing characteristics of human decision-making strategies

used on the IGT in comparison with CL-based model

through on-policy and off-policy simulations. In the on-policy

simulation, 491 fake agents, which is the same as size as the

training data-set for training the collaborative models, were

generated for the four models. The proportions for choosing

each deck averaged over subjects was examined first. The results

revealed that CL-based agents behaved more similarly to human

subjects exhibiting similar choice proportions on all decks,

while the agents generated by the three distributed models

had significantly different deck preferences and aversions on

one or two particular decks compared to the subjects choices.

This characteristic was also reflected in the fluctuation of the

probability of selecting each deck over trials except that FL-

based agents performed as well as CL-based agents in this

comparison. The probability of choosing DeckB was almost

always the highest for CIL-based and IL-based agents, whereas

the probability of choosing DeckD surpassed DeckB after four

blocks for experimental subjects and CL-based agents and five

blocks for FL-based agents. The probability of choosing DeckC

for CIL-based and IL-based agents never increased as high

as that of the subjects and the other two distributed agents

by the end of the game. The comparison analysis of the IGT

learning scores across trials between the experimental subjects

and model agents also suggested CIL-based and IL-based model

were weaker in recognizing the good decks as the learning

scores of these two agents did not change for IL-based agents

or were always lower than the other groups throughout the task,

although the overall trend of the learning score was increasing

for CIL-based agents. In terms of the strategy of dealing with

losses, all model agents adopted the same strategy as human

subjects, i.e., switching more often when they received a loss

compared to no loss. It is worth noting here that although

no statistically significant weakness was identified for CIL-

based and IL-based agents, the average switching probability of

receiving losses was relatively higher than that of the human

subjects visually, while the CL-based and FL-based agents were

almost the same as the subjects on this figure. The characteristic

of switching more after losses was validated again in the

following off-policy simulation, where the actions fed to the

model were specified by us and the models were responsible

for predicting the next action to be taken for the next trial.

According to the model’s prediction, the probability of sticking

with a deck was decreased whenever there a loss incurred.

CL-based and FL-based models reacted almost the same way

again in this simulation, but IL-based model demonstrated less

perseverance to DeckA and the CIL-based model was more

sensitive to losses compared to the other agents.

In summary, consistent with the results where FL

demonstrated comparative performance on different

benchmark datasets, (Dankar et al., 2019; Lee and Shin,

2020; Li et al., 2020b; Liu et al., 2021), the FL-based model

in this paper achieved the best prediction accuracy and

capability among the distributed learning paradigms in learning

and mimicking the decision-making strategies used by the

experimental subjects. Although CIL-based and IL-based

models also achieved considerable prediction accuracy when

compared to the CL-based model, they failed in capturing some

features such as subtle deck preferences between DeckB and

DeckC and learning curve shapes for the subjects. These findings

can help inform researchers when developing multi-laboratory

collaborations in the field of cognitive and behavioral science.

It’s worth speculating what deeper insights an interpretation of

the parameters might reveal in terms of human choices under

uncertainty. If important information describing underlying

human computational elements is encoded through subtle

variation in the parameter values, then the noise or uncertainty

introduced through distributed learning needs to be carefully

scrutinized. It suggests simulated datasets may be a useful

means for determining to what extent distributed learning

compromises the quality of the models developed. Importantly,

the comparisons of methods introduced in this paper is

informative regarding an approach to select the best technique.

Additionally, emerging improvements to FL (Ozdayi et al., 2020;

Wang et al., 2020) hold further promise for the narrowing of the

gap in performance between centralized and federated learning.

One of the limitations of this study is that the gradient

sharing scheme adopted in our distributed learning strategies

is not fully protective of the privacy of the training data. Local

gradients are potentially exploitable to reveal to contributory

sources, an issue which is called Deep Leakage Gradients (Zhang

et al., 2017; Zhu et al., 2019). However, our implementation

is sufficient to demonstrate the compromises that may be

necessary when adopting a distributed training approach.

Future work should consider applying possible strategies

to the DL methods, such as gradient pruning, to prevent

deep leakage. Experiments should be conducted to make

sure DL performance will not be impaired because of the

application of these strategies. The other limitation of this

study is that we only tested the most basic RNN model.

More complex DL models, such as BiLSTM might present

more competitive performance in terms of predicting human

decision-making strategies.
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5. Conclusion

Deep learning models, especially RNN models, have

emerged as useful methods suitable for characterizing and even

predicting human behavior in the context of computational

modeling tasks. A successfully trained model generalizes well

with respect to data it has not been seen before. Successful

training in turn requires a large representative dataset. However,

typical cognitive and behavior studies are often relatively small

in terms of the numbers of subjects recruited, which limits

the application of deep learning models to human behavior

prediction. A natural way of obtaining bigger and more diverse

data is sharing data between laboratories. Nevertheless, sharing

data is never easy for the purpose of protecting personal privacy,

especially when involving data that could potentially identify

individuals and institutions that are internationally distributed.

Distributed learning is a promising method for addressing

this issue through sharing the model parameters instead of

data themselves. In this study, the feasibility and reliability

of applying several distributed learning paradigms to the field

of cognitive studies aiming to characterize human decision-

making was examined.We demonstrated that federated learning

outperformed the other two distributed learning paradigms in

learning the learning features of human subjects in this context.

The decline of Fl-based model in terms of the capabilities of

predicting and learning human behavior was not negligible and

its impact depends on the subsequent use of the model. It should

be highlighted while such approaches allow an ease of laboratory

collaboration it does come with a model skill cost. The use of

federated learning over centralized learning has the immediate

advantage of keeping data confidential. We hope that the

development of this techniques and emerging derivations of the

approach will allow for data-private collaborative training over

various subjects with different ages, education backgrounds,

social status collected by different laboratories. In terms of the

contribution of this work it is important to note that while

distributed learning paradigms have been compared in different

applications to the best of the authors’ knowledge, they have

never been applied to trial-by-trial human decision-making

choice data. This is an important application area given the

potential of such approaches for the development of digital

biomarkers in the context of computational psychiatry. In that

context, in which AI is potentially being used to derive a

measure which could in principle directly affect a patient’s

treatment, the requirements for robust, reliable and accurate

measurement are paramount. This requirement is increasingly

enshrined in policy, regulation and law for example in the

EU. Consequently an understanding of the trade-offs inherence

in data privacy vs. accuracy of measurement is important

and this paper demonstrates an approach for assessing this

in the context of a concrete, real-world multi-center data

collection effort.
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